JP5540179B2 - Hydride ion conductor and method for producing the same - Google Patents
Hydride ion conductor and method for producing the same Download PDFInfo
- Publication number
- JP5540179B2 JP5540179B2 JP2010073408A JP2010073408A JP5540179B2 JP 5540179 B2 JP5540179 B2 JP 5540179B2 JP 2010073408 A JP2010073408 A JP 2010073408A JP 2010073408 A JP2010073408 A JP 2010073408A JP 5540179 B2 JP5540179 B2 JP 5540179B2
- Authority
- JP
- Japan
- Prior art keywords
- hydride
- liho
- ion conductor
- hydride ion
- lih
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 150000004678 hydrides Chemical class 0.000 title claims description 55
- 239000010416 ion conductor Substances 0.000 title claims description 27
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 17
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 17
- 229910052791 calcium Inorganic materials 0.000 claims description 16
- 229910052712 strontium Inorganic materials 0.000 claims description 16
- 229910052788 barium Inorganic materials 0.000 claims description 13
- 239000002994 raw material Substances 0.000 claims description 11
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 10
- 238000010304 firing Methods 0.000 claims description 7
- 229910052746 lanthanum Inorganic materials 0.000 claims description 7
- 229910052744 lithium Inorganic materials 0.000 claims description 7
- 229910052684 Cerium Inorganic materials 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 229910052693 Europium Inorganic materials 0.000 claims description 5
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 5
- 229910052779 Neodymium Inorganic materials 0.000 claims description 5
- 229910052772 Samarium Inorganic materials 0.000 claims description 5
- 229910052749 magnesium Inorganic materials 0.000 claims description 5
- 229910052706 scandium Inorganic materials 0.000 claims description 5
- 229910052727 yttrium Inorganic materials 0.000 claims description 5
- 239000006104 solid solution Substances 0.000 description 32
- 238000005259 measurement Methods 0.000 description 21
- 238000002441 X-ray diffraction Methods 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 12
- 238000003786 synthesis reaction Methods 0.000 description 12
- -1 oxygen ions Chemical class 0.000 description 11
- 229910052760 oxygen Inorganic materials 0.000 description 10
- 239000001301 oxygen Substances 0.000 description 9
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 8
- 238000003991 Rietveld refinement Methods 0.000 description 8
- 238000001683 neutron diffraction Methods 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 239000010931 gold Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 230000007812 deficiency Effects 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 229910018071 Li 2 O 2 Inorganic materials 0.000 description 4
- 150000001450 anions Chemical class 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 229910018068 Li 2 O Inorganic materials 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000002847 impedance measurement Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 239000007784 solid electrolyte Substances 0.000 description 2
- 238000012916 structural analysis Methods 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 229910017493 Nd 2 O 3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000002250 neutron powder diffraction Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000002411 thermogravimetry Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Conductive Materials (AREA)
- Hybrid Cells (AREA)
- Fuel Cell (AREA)
Description
本発明はヒドリドイオン導電体およびその製造方法に関する。 The present invention relates to a hydride ion conductor and a method for producing the same.
プロトンや酸素イオンは、燃料電池や空気電池を代表としたエネルギー変換デバイスの可動イオンとして重要な役割を担っている。ヒドリドイオンは、一価でイオン半径が約1.2 Åと適度な大きさであることから、プロトンや酸素イオンより可動イオンとして適した特徴を持つ。さらに、H2 + 2e- → 2H-の酸化還元電位が-2.25 V(vs. SHE)と高いことから、高電位の新規エネルギー変換デバイスを生み出すポテンシャルを有している。しかし、これまでにヒドリドイオン導電体の報告は皆無であり、電子伝導性酸化物中にヒドリドイオンを導入した場合、高速で動く可能性があると報告されているだけである(非特許文献1)。 Protons and oxygen ions play an important role as mobile ions in energy conversion devices typified by fuel cells and air cells. Since hydride ions are monovalent and have a moderate ionic radius of about 1.2 Å, they are more suitable as mobile ions than protons and oxygen ions. Furthermore, since the redox potential of H 2 + 2e − → 2H − is as high as −2.25 V (vs. SHE), it has the potential to produce a high potential new energy conversion device. However, no hydride ion conductor has been reported so far, and it has only been reported that when hydride ions are introduced into an electron conductive oxide, there is a possibility of moving at high speed (Non-Patent Document 1). ).
ヒドリドイオンを結晶構造中に導入可能な酸化物としてはK2NiF4型構造(Fig. 1a)が提案されている(非特許文献2)。CaH2による還元処理でLaSrCoO4-xの格子中にヒドリドイオンを導入できる(LaSrCoO3Hx)とされているが、分解温度の500℃付近でヒドリドが通電する可能性が示唆されたのみで、実験的なヒドリド導電の確証は報告されていない(非特許文献1)。また、遷移金属であるコバルトを含有し、電子伝導性を持つことから、固体電解質としての利用は困難である。 As an oxide capable of introducing hydride ions into the crystal structure, a K 2 NiF 4 type structure (Fig. 1a) has been proposed (Non-patent Document 2). Although it is said that hydride ions can be introduced into the lattice of LaSrCoO 4-x by reduction treatment with CaH 2 (LaSrCoO 3 H x ), it has only been suggested that hydride may be energized near the decomposition temperature of 500 ° C. No evidence of experimental hydride conduction has been reported (Non-Patent Document 1). Moreover, since it contains cobalt which is a transition metal and has electronic conductivity, utilization as a solid electrolyte is difficult.
本発明は、LaSrCoO3Hxと同じ構造を持つが、遷移金属を含まないLa2LiHO3に着目し、ヒドリドを構造中に含む酸化物によって、固体中で高いイオン伝導を持つヒドリドイオン導電体を提供することを目的とする。 The present invention focuses on La 2 LiHO 3 which has the same structure as LaSrCoO 3 H x but does not contain a transition metal, and a hydride ion conductor having high ionic conductivity in a solid by an oxide containing hydride in the structure. The purpose is to provide.
本発明は、上記の課題を解決するために、以下の発明を提供する。
(1)一般式Ln2−X MXAHyO3(式中、Lnは3価の希土類元素、Mは4価のCeまたはアルカリ土類金属元素、AはLiまたはNaを示す。Mが4価のCeであるとき、0<x<0.2、y=1+xであり、そしてMがアルカリ土類金属元素であるとき、0<x<1、y=1−xである。)で示される組成を有してなるヒドリドイオン導電体。
(2)3価の希土類元素が、La、Ce,Sc、Y、Nd、Sm、Eu、およびGdの少なくとも1種から選ばれる上記(1)に記載のヒドリドイオン導電体。
(3)アルカリ土類金属元素が、Ca,Sr、Ba、およびMgの少なくとも1種から選ばれる上記(1)または(2)に記載のヒドリドイオン導電体。
(4)一般式Ln2−X MXAHyO3(式中、Lnは3価の希土類元素、Mは4価のCeまたはアルカリ土類金属元素、AはLiまたはNaを示す。Mが4価のCeであるとき、0<x<0.2、y=1+xであり、そしてMがアルカリ土類金属元素であるとき、0<x<1、y=1−xである。)で示される組成を有してなるヒドリドイオン導電体を製造する方法であって、Ln、MおよびAを含む原料化合物を焼成することを特徴とするヒドリドイオン導電体の製造方法。
(5)焼成が、600〜1000℃で行われる上記(4)に記載のヒドリドイオン導電体の製造方法。
(6)焼成が、加圧下で行われる上記(4)または(5)に記載のヒドリドイオン導電体の製造方法。
(7)3価の希土類元素が、La、Ce,Sc、Y、Nd、Sm、Eu、およびGdの少なくとも1種から選ばれる上記(4)〜(6)のいずれかに記載のヒドリドイオン導電体。
(8)アルカリ土類金属元素が、Ca,Sr、Ba、およびMgの少なくとも1種から選ばれる上記(4)〜(7)のいずれかに記載のヒドリドイオン導電体。
In order to solve the above problems, the present invention provides the following inventions.
(1) In formula Ln 2-X M X AH y O 3 ( wherein, Ln is a trivalent rare earth elements, M is tetravalent Ce or alkaline earth metal element, A is the .M showing the Li or Na When tetravalent Ce, 0 <x <0.2, y = 1 + x, and when M is an alkaline earth metal element, 0 <x <1, y = 1-x. The hydride ion conductor which has a composition shown by this.
(2) The hydride ion conductor according to (1) above, wherein the trivalent rare earth element is selected from at least one of La, Ce, Sc, Y, Nd, Sm, Eu, and Gd.
(3) The hydride ion conductor according to (1) or (2), wherein the alkaline earth metal element is selected from at least one of Ca, Sr, Ba, and Mg.
(4) General formula Ln 2-X M X AH y O 3 ( wherein, Ln is a trivalent rare earth elements, M is tetravalent Ce or alkaline earth metal element, A is the .M showing the Li or Na When tetravalent Ce, 0 <x <0.2, y = 1 + x, and when M is an alkaline earth metal element, 0 <x <1, y = 1-x. A method for producing a hydride ion conductor, comprising firing a raw material compound containing Ln, M, and A.
(5) The manufacturing method of the hydride ion conductor as described in said (4) by which baking is performed at 600-1000 degreeC.
(6) The manufacturing method of the hydride ion conductor as described in said (4) or (5) with which baking is performed under pressure.
(7) The hydride ion conduction according to any one of (4) to (6), wherein the trivalent rare earth element is selected from at least one of La, Ce, Sc, Y, Nd, Sm, Eu, and Gd. body.
(8) The hydride ion conductor according to any one of (4) to (7), wherein the alkaline earth metal element is selected from at least one of Ca, Sr, Ba, and Mg.
本発明によれば、ヒドリドを構造中に含む酸化物によって、固体中で高いイオン伝導を持つヒドリドイオン導電体を提供し得る。 According to the present invention, a hydride ion conductor having high ionic conductivity in a solid can be provided by an oxide containing hydride in its structure.
本発明のヒドリドイオン導電体は、一般式Ln2−X MXAHyO3で示される組成を有してなる。式中、Lnは3価の希土類元素、Mは4価のCeまたはアルカリ土類金属元素、AはLiまたはNaを示す。Mが4価のCeであるとき、0<x<0.2、y=1+xであり、そしてMがアルカリ土類金属元素であるとき、0<x<1、y=1−xである。すなわち、Mが4価のCeであるとき、ヒドリド過剰Ln2−X CeXAH1+xO3で表わされ(0<x<0.2、好ましくは0.10<x<0.18)、一方Mがアルカリ土類金属元素のとき、ヒドリド欠損Ln2−X MXAH1-xO3で表される(0<x<1、好ましくは0<x≦0.3)。 Hydride ion conductor of the present invention comprises a composition represented by the general formula Ln 2-X M X AH y O 3. In the formula, Ln represents a trivalent rare earth element, M represents a tetravalent Ce or alkaline earth metal element, and A represents Li or Na. When M is tetravalent Ce, 0 <x <0.2, y = 1 + x, and when M is an alkaline earth metal element, 0 <x <1, y = 1-x is there. That is, when M is tetravalent Ce, it is represented by hydride excess Ln 2-X Ce X AH 1 + x O 3 (0 <x <0.2, preferably 0.10 <x <0.18 On the other hand, when M is an alkaline earth metal element, it is represented by hydride-deficient Ln 2 -X M X AH 1-x O 3 (0 <x <1, preferably 0 <x ≦ 0.3).
希土類元素は、La、Ce、Sc、Y、Nd、Sm、Eu、およびGdの少なくとも1種から選ばれるが、イオン半径、コストの点からはLaが好ましい。また、アルカリ土類金属元素は、Ca,Sr、Ba、およびMgの少なくとも1種から選ばれるが、イオン半径の点からはSr,Ca,またはBaが好ましい。また、Aとしては、イオン半径の点からはLiが好ましい。 The rare earth element is selected from at least one of La, Ce, Sc, Y, Nd, Sm, Eu, and Gd, and La is preferable from the viewpoint of ion radius and cost. The alkaline earth metal element is selected from at least one of Ca, Sr, Ba, and Mg, but Sr, Ca, or Ba is preferable from the viewpoint of the ionic radius. Moreover, as A, Li is preferable from the point of an ion radius.
本発明のヒドリドイオン導電体は、Ln、MおよびAを含む原料化合物を焼成することにより得られる。好適にはLn、MまたはAの酸化物、水素化物、炭酸塩もしくは硝酸塩等、Aの水素化物、含む原料化合物を焼成することにより得られる。Lnの酸化物としては、La2O3、Sc2O3、Y2O3、Nd2O3、Sm2O3、Eu2O3、またはGd2O3が挙げられる。また、Mの酸化物としては、CeO2、CaO,SrO、BaO、またはMgOが挙げられる。Aの酸化物としては、Li2O,Na2O,Li2O2,またはNa2O2が挙げられる。焼成を加圧下に行う場合には、LnおよびMの酸化物もしくは水素化物、ならびにAHを用いるのが好適である。これらの原料化合物の仕込み比は、目的とする組成比に応じて調整されるが、たとえば、Liと反応容器であるAuチューブの合金化による組成ずれの回避、合成時の水素分圧の制御等のために、随時微調整され得る。 The hydride ion conductor of the present invention can be obtained by firing a raw material compound containing Ln, M and A. Preferably, it is obtained by firing a raw material compound containing a hydride of A such as an oxide, hydride, carbonate or nitrate of Ln, M or A. Examples of the oxide of Ln include La 2 O 3 , Sc 2 O 3 , Y 2 O 3 , Nd 2 O 3 , Sm 2 O 3 , Eu 2 O 3 , and Gd 2 O 3 . Examples of the oxide of M include CeO 2 , CaO, SrO, BaO, and MgO. Examples of the oxide of A include Li 2 O, Na 2 O, Li 2 O 2 , and Na 2 O 2 . When firing is performed under pressure, it is preferable to use oxides or hydrides of Ln and M, and AH. The charge ratio of these raw material compounds is adjusted according to the target composition ratio. For example, avoiding compositional deviation due to alloying of Li and the reaction vessel Au tube, control of hydrogen partial pressure during synthesis, etc. Can be fine tuned at any time.
焼成は、通常600〜1000℃で行われる。好適には1〜10GPa程度の加圧下で、620〜750℃である。加圧下での焼成に際して、反応器は、特に制限されないが、AuもしくはPtチューブ内に所定仕込み比で原料化合物を封入して高圧反応を行うのが好適である。反応時間は、反応条件に依存するが、通常、30分〜24時間程度から選ばれる。 Baking is normally performed at 600-1000 degreeC. Preferably, the pressure is 620 to 750 ° C. under a pressure of about 1 to 10 GPa. When firing under pressure, the reactor is not particularly limited, but it is preferable to carry out the high pressure reaction by enclosing the raw material compound in a predetermined charge ratio in an Au or Pt tube. The reaction time depends on the reaction conditions, but is usually selected from about 30 minutes to 24 hours.
また、本発明のヒドリドイオン導電体は、無機複合酸化物等の固相反応に用いられる、通常の電気炉内で700〜1000℃程度の温度で製造され得、その焼成は、水素気流中で低圧ないし常圧下で行われるのが好適である。 Further, the hydride ion conductor of the present invention can be produced at a temperature of about 700 to 1000 ° C. in a normal electric furnace used for a solid phase reaction of an inorganic composite oxide or the like. It is preferable to carry out under low pressure or normal pressure.
以下、実施例により、本発明をさらに詳細に説明する。
実施例1
(A)合成
合成は高圧合成法によって行った。以下に合成条件を示す。
1) La2LiHO3
原料: La2O3、LiH
条件: 1〜2GPa、650〜750 ℃、Auチューブ
原料の仕込み比は、LiとAuチューブの合金化による組成ずれの回避と合成時の水素分圧の制御のため、Li過剰のLa2O3:LiH=1:2とした。
2) La2-xMxLiH1-xO3 (M = Ca, Sr, Ba)
原料: 定比のLa2LiHO3の合成に用いたLa2O3、LiHに加え、アルカリ土類金属のドープ源として、SrO, SrH2,CaH2, CaO, BaO、BaH2を用いた。また、Li2O2は組成の酸素量を3に固定するために用いた。代表例として、La1.8Sr0.2LiH0.8O3の合成に用いる原料の比は、La2O3:SrH2:LiH:Li2O2=0.9:0.2:1.6:0.15またはLa2O3:SrO:LiH:Li2O2=0.9:0.2:2:0.05となる。
条件: 2GPa、620〜650℃、Auチューブ
3) La2−xCexLiH1+xO3
原料: La2O3、LaH3,LiH、CeO2
代表例として、La1.9Ce0.1LiH1.1O3では、La2O3:LaH3:LiH:CeO2=0.93:0.13:2:0.1となる。
条件: 2GPa、620℃、Auチューブ
(B) TG/DTA測定
測定対象:正方晶t- La2LiHO3および斜方晶t- La2LiHO3(2GPa, 750℃で合成した試料)
測定条件:昇温速度5℃/min、Ar flow
(C)粉末X線回折測定
高圧合成によって得られる試料が少量であることから、無反射板を用いて測定した。また、構造解析にはプログラムRIEAN-FPを用いた。
(D)粉末中性子回折測定
J-PARC iMateriaを使用して測定を行った。構造解析にはプログラムZ−Cooleを用いた。
(E)交流インピーダンス測定
高圧合成後の凝結した試料(直径2.3〜2.6 φ)を厚さ約0.61〜1mmの円筒形ペレットに切断した。ペレットの両面に金ペーストを塗り、Ar雰囲気中で測定用セルに固定した。以下に測定条件を記す。
測定装置:Solatron 1260
測定条件:室温〜320℃、周波数1Hz〜10 MHz、交流電圧1000 mV
結果・考察
1) La2LiHO3
LiH120%過剰、2 GPa、750℃の条件で合成すると単相の斜方晶o- La2LiHO3が得られた。また、温度を650℃に低下させても同様にo- La2LiHO3が得られた。図1にX線回折図形を、表1にリートベルト解析から得られた格子定数を示す(Laの一部をMで置換しても母構造は維持されている)。
Hereinafter, the present invention will be described in more detail with reference to examples.
Example 1
(A) Synthesis The synthesis was performed by a high pressure synthesis method. The synthesis conditions are shown below.
1) La 2 LiHO 3
Raw materials: La 2 O 3 , LiH
Conditions: 1 to 2 GPa, 650 to 750 ° C., Au tube Raw material charge ratio is Li 2 O 3 in excess of Li in order to avoid compositional deviation due to alloying of Li and Au tube and control hydrogen partial pressure during synthesis. : LiH = 1: 2.
2) La 2-x M x LiH 1-x O 3 (M = Ca, Sr, Ba)
Raw materials: In addition to La 2 O 3 and LiH used for the synthesis of a constant ratio of La 2 LiHO 3 , SrO, SrH 2 , CaH 2 , CaO, BaO, and BaH 2 were used as alkaline earth metal doping sources. Li 2 O 2 was used to fix the oxygen content of the composition to 3. As a typical example, the ratio of raw materials used for the synthesis of La 1.8 Sr 0.2 LiH 0.8 O 3 is La 2 O 3 : SrH 2 : LiH: Li 2 O 2 = 0.9: 0.2: 1.6: 0.15 or La 2 O 3 : SrO : LiH: Li 2 O 2 = 0.9: 0.2: 2: 0.05
Condition: 2GPa, 620-650 ° C, Au tube
3) La 2-x Ce x LiH 1 + x O 3
Raw materials: La 2 O 3 , LaH 3 , LiH, CeO 2
As a representative example, La 1.9 Ce 0.1 LiH 1.1 O 3 is La 2 O 3 : LaH 3 : LiH: CeO 2 = 0.93: 0.13: 2: 0.1.
Conditions: 2GPa, 620 ° C, Au tube (B) TG / DTA measurement Measurement object: Tetragonal t-La 2 LiHO 3 and orthorhombic t-La 2 LiHO 3 (sample synthesized at 2GPa, 750 ° C)
Measurement conditions: Temperature rising rate 5 ℃ / min, Ar flow
(C) Powder X-ray diffraction measurement Since a small amount of sample was obtained by high-pressure synthesis, measurement was performed using a non-reflective plate. The program RIEAN-FP was used for structural analysis.
(D) Powder neutron diffraction measurement
Measurement was performed using J-PARC iMateria. The program Z-Coole was used for structural analysis.
(E) AC impedance measurement The condensed sample (diameter 2.3 to 2.6 φ) after high-pressure synthesis was cut into cylindrical pellets having a thickness of about 0.61 to 1 mm. A gold paste was applied to both sides of the pellet and fixed to a measuring cell in an Ar atmosphere. The measurement conditions are described below.
Measuring device: Solatron 1260
Measurement conditions: room temperature to 320 ° C, frequency 1 Hz to 10 MHz, AC voltage 1000 mV
Results and discussion
1) La 2 LiHO 3
When synthesized under the conditions of LiH120% excess, 2 GPa and 750 ° C., single-phase orthorhombic o-La 2 LiHO 3 was obtained. Further, even when the temperature was lowered to 650 ° C., o-La 2 LiHO 3 was similarly obtained. FIG. 1 shows an X-ray diffraction pattern, and Table 1 shows lattice constants obtained from Rietveld analysis (the mother structure is maintained even if part of La is replaced with M).
o- La2LiHO3はt- La2LiHO3と比較して格子定数a, cが収縮、bが伸長しており、結果的に格子体積は収縮していた。このことから、b軸方向にヒドリドが規則的に配列しているo- La2LiHO3に対して、t- La2LiHO3では以下の3通りの構造モデル(図2)が考えられる。i アニオンの欠損は無く、ヒドリドと酸素のみが不規則配列した構造、iiアニオン欠損が存在し、ヒドリド、酸素、欠損が不規則配列した構造、およびiii ヒドリドが無く、酸素と欠損が不規則配列した構造。 Compared with t-La 2 LiHO 3 , o-La 2 LiHO 3 contracted lattice constants a and c, and b expanded, resulting in contraction of the lattice volume. From this, the following three structural models (FIG. 2) can be considered for t-La 2 LiHO 3 as compared to o-La 2 LiHO 3 in which hydrides are regularly arranged in the b-axis direction. i There is no anion deficiency, a structure in which only hydride and oxygen are irregularly arranged, ii anion deficiency exists, a structure in which hydride, oxygen, and deficiency are arranged irregularly, and iii There is no hydride, and oxygen and deficiency are irregularly arranged Structure.
構造内のヒドリド含有量を見積もるためにo- La2LiHO3とt- La2LiHO3に対してTG/DTA測定を行った。結果を図3に示す。その結果、室温〜500℃の昇降温によってo- La2LiHO3では約3%、t- La2LiHO3では約1%の質量増加が観測された。この質量増加は、気流させた工業用アルゴン中に含まれる水分によって、ヒドリドと酸素の交換反応が引き起こされたためと考えられる。質量増加量の違いから、含有しているヒドリド量がo- La2LiHO3とt- La2LiHO3で異なると予想され、全てのヒドリドが酸素に置換された場合(La2LiHO3→La2LiHO3.5)の重量増加が約2%であることを考慮すると、t- La2LiHO3の組成はLa2LiH1−2xO3+x(x = 0.2〜0.3程度)となる。また、o- La2LiHO3についてのみTG/DTA後にX線回折測定を行った(図4)。その結果、o- La2LiHO3はt- La2LiHO3とLa2O3に分解していたことが明らかとなった。さらに、観測されたt- La2LiHO3は、合成直後のt- La2LiHO3の回折図形と比較して、ピークがシフトしていた。
2) o-La2-xSrxLiH1-xO3 (x = 0.1, 0.2)
図5にo- La2-xSrxLiH1-xO3 (x = 0.1, 0.2)のX線回折図形を比較して示す。Srの固溶により若干のt- La2LiHO3が副相として観測されたが、固溶によるピークシフトはo- La2LiHO3相にのみ確認された。従って、LaサイトへのSrの置換はo-La2LiHO3相でのみ成されていると考えられる。
TG / DTA measurements were performed on o-La 2 LiHO 3 and t-La 2 LiHO 3 to estimate the hydride content in the structure. The results are shown in FIG. As a result, room temperature to 500 ° C. heating and cooling by o- La 2 LiHO in 3 to about 3 percent, t-La 2 mass increase of the LiHO 3 to about 1% was observed. This increase in mass is considered to be due to the exchange reaction between hydride and oxygen caused by the moisture contained in the industrial argon gas. When the amount of hydride contained is expected to be different between o-La 2 LiHO 3 and t-La 2 LiHO 3 due to the difference in mass increase, all hydrides are replaced with oxygen (La 2 LiHO 3 → La 2 LiHO 3.5 ) is considered to have a weight increase of about 2%, the composition of t-La 2 LiHO 3 is La 2 LiH 1-2x O 3 + x (x = about 0.2 to 0.3). Further, only o-La 2 LiHO 3 was subjected to X-ray diffraction measurement after TG / DTA (FIG. 4). As a result, it was revealed that o-La 2 LiHO 3 was decomposed into t-La 2 LiHO 3 and La 2 O 3 . Further, the observed t-La 2 LiHO 3 had a shifted peak compared to the diffraction pattern of t-La 2 LiHO 3 immediately after synthesis.
2) o-La 2-x Sr x LiH 1-x O 3 (x = 0.1, 0.2)
FIG. 5 shows a comparison of X-ray diffraction patterns of o-La 2-x Sr x LiH 1-x O 3 (x = 0.1, 0.2). Although some t-La 2 LiHO 3 was observed as a subphase due to the solid solution of Sr, the peak shift due to the solid solution was confirmed only in the o-La 2 LiHO 3 phase. Therefore, it is considered that the substitution of Sr to the La site is made only in the o-La 2 LiHO 3 phase.
リートベルト解析によって得られた格子定数を図6に示す。Sr固溶量に依存した直線的な格子定数の増加 (a, c, V) または減少 (b) が確認できる。b軸の収縮から、b軸方向に配列したヒドリドが欠損することでSrの固溶による電荷補償をおこなっていることが示唆される。また、a、c軸の伸長はSrとLaのイオン半径がSr > Laであることや、欠損の生成による静電反発から生じていると考えられる。
3) Ca, Sr, Ba置換による格子変化
o- La2LiHO3のAサイトのLa3+(1.5 Å)をイオン半径、価数の異なるCa2+(1.48 Å), Sr2+(1.58 Å), Ba2+(1.75 Å)で置換する際の格子変化を調査した。図7にo- La2-xMxLiH1-xO3 (M = Ca, Sr, Ba、x = 0, 0.1) のX線回折図形を、表2にそれぞれの格子定数を示す。若干のt- La2LiHO3が副相として検出されたSr固溶系と異なり、Ca、Ba固溶系では単相の回折図形が得られた。格子体積は置換する原子のイオン半径の増大に伴い膨張する傾向を示したが、置換によりアニオンの欠損も生じるため、変化は異方的であった。イオン半径の最も大きいBa固溶系においては、a, b, c全ての方位で格子が膨張したが、Ca、Sr固溶系においては、a,c軸が伸長したのに対してb軸は収縮した。ヒドリドがb軸方向に一次元的に配列していることを考慮すると、欠損したアニオンがヒドリドであると予想される。
The lattice constant obtained by the Rietveld analysis is shown in FIG. A linear increase (a, c, V) or decrease (b) depending on the amount of Sr solid solution can be confirmed. The contraction of the b-axis suggests that charge compensation by solid solution of Sr is performed due to the lack of hydride arranged in the b-axis direction. The elongation of the a and c axes is thought to be caused by the fact that the ionic radius of Sr and La is Sr> La and electrostatic repulsion due to the generation of defects.
3) Lattice change by Ca, Sr, Ba substitution
o-La 2 LiHO 3 A site La 3+ (1.5 Å) is replaced by Ca 2+ (1.48 Å), Sr 2+ (1.58 Å), Ba 2+ (1.75 Å) with different ionic radii The lattice change was investigated. FIG. 7 shows the X-ray diffraction pattern of o-La 2- xM x LiH 1-x O 3 (M = Ca, Sr, Ba, x = 0, 0.1), and Table 2 shows the respective lattice constants. Unlike the Sr solid solution system in which some t-La 2 LiHO 3 was detected as a subphase, single phase diffraction patterns were obtained in the Ca and Ba solid solution systems. The lattice volume tended to expand as the ionic radius of the substituting atoms increased, but the change was anisotropic because of the loss of anions due to the substitution. In the Ba solid solution system with the largest ionic radius, the lattice expanded in all directions of a, b, and c, but in the Ca and Sr solid solution systems, the a and c axes expanded while the b axis contracted. . Considering that hydrides are arranged one-dimensionally in the b-axis direction, the deficient anion is expected to be hydride.
4) o- La2-xCexLiH1。1O3 (x = 0.1)
ヒドリド量を過剰にするためにAサイトのLa3+をCe4+で置換した。図8にo- La2LiHO3とo- La1.9Ce0.1LiH1。1O3のX線回折図形を、表3に格子定数を示す。Ceの固溶による不純物の生成などはなく、単相のo- La1.9Ce0.1LiH1。1O3が得られた。
4) o- La 2-x Ce x LiH 1.1 O 3 (x = 0.1)
In order to increase the amount of hydride, La 3+ at the A site was replaced with Ce 4+ . FIG. 8 shows an X-ray diffraction pattern of o-La 2 LiHO 3 and o-La 1.9 Ce 0.1 LiH 1.1 O 3 , and Table 3 shows lattice constants. There was no generation of impurities due to solid solution of Ce, and single-phase o-La 1.9 Ce 0.1 LiH 1.1 O 3 was obtained.
Ceの固溶により格子は収縮していた。これは、La3+(1.5 Å)とCe4+(1.28 Å)のイオン半径の違いに起因すると考えられる。さらに、格子の収縮はCeがCe3+(1.48 Å)ではなく、Ce4+で存在していることを示唆している。合成がLiH過剰で行われていることを考慮するとCe4+固溶の際の電荷補償にはヒドリド過剰が寄与している可能性が高い。 The lattice contracted due to the solid solution of Ce. This is thought to be due to the difference in ionic radius between La 3+ (1.5 Å) and Ce 4+ (1.28 Å). Furthermore, lattice contraction suggests that Ce is present in Ce 4+ rather than Ce 3+ (1.48 Å). Considering that the synthesis is performed in excess of LiH, it is highly possible that excess hydride contributes to charge compensation during Ce 4+ solid solution.
5) 導電率測定
図9に300 ℃における各試料のCole-Coleプロットとアレニウスプロットを示す。インピーダンス測定結果を比較すると、導電率と活性化エネルギーは表4に示す値となり、Sr、Ceの固溶により導電率が一桁上昇した。
5) Conductivity measurement Figure 9 shows the Cole-Cole plot and Arrhenius plot of each sample at 300 ° C. Comparing the impedance measurement results, the conductivity and activation energy were as shown in Table 4, and the conductivity increased by an order of magnitude due to the solid solution of Sr and Ce.
なお、円弧の容量成分が10-11〜10-10 F程度であったことから、バルク成分としてフィッティングを行い、抵抗値を算出した。 Since the capacitance component of the arc was about 10 −11 to 10 −10 F, fitting was performed as a bulk component, and the resistance value was calculated.
6) 中性子回折測定
図10と表5にo- La2LiHO3の中性子回折測定に対するリートベルト解析結果を示す。解析プログラムにはZ-Rietveld を用いた。
6) Neutron diffraction measurement Fig. 10 and Table 5 show Rietveld analysis results for neutron diffraction measurement of o-La 2 LiHO 3 . Z-Rietveld was used as the analysis program.
不純物として若干のLi2Oを含むが、解析結果と実測値は良好な一致を示した。また、ヒドリドの占有率はほぼ定比の0.998で、温度因子は1.94という高い値を示している。ヒドリドが導電を示している。さらに、酸素とリチウムの温度因子は低い値を示したため、主にヒドリドがイオン導電に関与すると考えられる。
実施例2
実施例1に記載される方法と同様な方法により、La2-xCexLiH1+xO3(x = 0.2, 0.3, 0.4)を合成し、そのX線回折測定結果から、固溶量 xの上限値を見積もった。また、中性子回折のリートベルト解析結果では等方性温度因子の精密化に加えて、異方性温度因子の精密化を行った。導電率に関しては、交流インピーダンス測定から、La1.9Ca0.1LiH0.9O3、La1.9Ba0.1LiH0.9O3、およびLa1.7Ce0.3LiH1.3O3の導電率と活性化エネルギーを算出し、固溶による構造変化と導電率の相関を検討した。
1)ヒドリド過剰La2-xCexLiH1+xO3(x = 0.2, 0.3, 0.4)の合成
図11は、得られたLa2-xCexLiH1+xO3(x = 0.2, 0.3, 0.4)のX線回折図形を示す。固溶量の増加によるピークシフトは無く、格子定数の変化も観測されなかった。さらに、固溶量の増加に伴い、ピークが肩を持ち、17度付近には副相として新たなピークが出現していた。従って、La2-xCexLiH1+xO3の固溶範囲は、好ましくは(?) x < 0.2であると考えられる。
2) La2LiHO3 の中性子回折測定結果に対する異方性温度因子の精密化
図12および表6は、中性子回折測定結果に対するリートベルト解析結果を示す。o-La2LiHO3の中性子回折測定結果に対して行ったリートベルト解析から、ヒドリドが定比で存在することが明らかとなり、温度因子も1.94という高い値を示した。これらの結果は、o- La2LiHO3のヒドリドイオン導電性を支持するものである。
Although some Li 2 O was included as an impurity, the analysis results and the measured values showed good agreement. The hydride occupancy is almost constant 0.998 and the temperature factor is 1.94. Hydride shows conductivity. Furthermore, since the temperature factors of oxygen and lithium showed low values, it is considered that hydride is mainly involved in ionic conduction.
Example 2
La 2 -x Ce x LiH 1 + x O 3 (x = 0.2, 0.3, 0.4) was synthesized by the same method as described in Example 1, and the amount of solid solution was determined from the X-ray diffraction measurement results. We estimated the upper limit of x. In addition to the refinement of the isotropic temperature factor, the Rietveld analysis of neutron diffraction refined the anisotropic temperature factor. For conductivity, from AC impedance measurements, calculate the conductivity and activation energy of La 1.9 Ca 0.1 LiH 0.9 O 3 , La 1.9 Ba 0.1 LiH 0.9 O 3 , and La 1.7 Ce 0.3 LiH 1.3 O 3 , The relationship between the structural change due to solid solution and the conductivity was investigated.
1) Synthesis of hydride-excess La 2-x Ce x LiH 1 + x O 3 (x = 0.2, 0.3, 0.4) FIG. 11 shows the obtained La 2-x Ce x LiH 1 + x O 3 (x = 0.2 , 0.3, 0.4). There was no peak shift due to an increase in the amount of solid solution, and no change in lattice constant was observed. Furthermore, as the amount of solid solution increased, the peak had a shoulder, and a new peak appeared as a subphase near 17 degrees. Therefore, it is considered that the solid solution range of La 2−x Ce x LiH 1 + x O 3 is preferably (?) X <0.2.
2) Refinement of anisotropic temperature factor for neutron diffraction measurement of La 2 LiHO 3
FIG. 12 and Table 6 show the Rietveld analysis results for the neutron diffraction measurement results. Rietveld analysis performed on the results of neutron diffraction measurements of o-La 2 LiHO 3 revealed that hydride was present at a constant ratio, and the temperature factor was as high as 1.94. These results support the hydride ion conductivity of o-La 2 LiHO 3 .
図13は、異方性温度因子を考慮したLa2LiHO3結晶構造を示す。ヒドリドイオンは他の原子と比較して温度因子が大きかった。特に、c 軸方向の温度因子が大きく現れていることが確認できる。
実施例3
本発明により得られたヒドリドイオン導電体試料の導電率測定結果を図14に示す。図4において、(a)は各試料のアレニウスプロット、(b)はBa,SrおよびCa固溶量による比較、(c)はSr固溶量による比較、(d)はCe固溶量による比較を示す。
FIG. 13 shows the La 2 LiHO 3 crystal structure considering the anisotropic temperature factor. The hydride ion had a larger temperature factor than other atoms. In particular, a large temperature factor in the c-axis direction can be confirmed.
Example 3
The conductivity measurement result of the hydride ion conductor sample obtained by the present invention is shown in FIG. In FIG. 4, (a) is an Arrhenius plot of each sample, (b) is a comparison by Ba, Sr and Ca solid solution amounts, (c) is a comparison by Sr solid solution amounts, and (d) is a comparison by Ce solid solution amounts. Indicates.
また、各試料のイオン導電率および活性化エネルギーを表7に示す。 Table 7 shows the ionic conductivity and activation energy of each sample.
図14の(b)から、Ba、Sr、Caそれぞれの固溶による影響を比較する。固溶によりヒドリドの欠損が生じるため、定比の La2LiHO3から導電率の向上が確認された。影響の度合いは、Sr固溶体とBa固溶体がほぼ同程度であったのに対し、Ca固溶体では小さく現れた。Sr固溶体とBa固溶体と比較してCa固溶体の格子体積が最も小さいことを考慮すると、Ca固溶体はヒドリドイオンの導電パスが狭く、欠損導入による影響が最も小さく現れたと予想される。表8に、o-La2−X MXLiH1-xO3(M=Ca,Sr,Ba、x=0、0.1)の格子定数の比較を示す。 From FIG. 14 (b), the effects of solid solution of Ba, Sr, and Ca are compared. Since hydride deficiency occurs due to solid solution, the improvement in conductivity was confirmed from the constant ratio La 2 LiHO 3 . The degree of influence was almost the same in the Sr solid solution and the Ba solid solution, whereas it appeared small in the Ca solid solution. Considering that the lattice volume of the Ca solid solution is the smallest compared to the Sr solid solution and the Ba solid solution, it is expected that the Ca solid solution has a narrow conduction path of hydride ions and the effect of introducing defects is minimal. Table 8 shows o-La 2-X M X LiH 1-x O 3 (M = Ca, Sr, Ba, x = 0,0.1) a comparison of the lattice constants of.
一方、Ce固溶系については、固溶量x = 0.3の試料では x = 0.1より導電率が低下した。これは、過剰Ce源由来の不純物による影響と考えられる。 On the other hand, for the Ce solid solution system, the conductivity decreased from x = 0.1 in the sample with the solid solution amount x = 0.3. This is thought to be due to impurities from excess Ce source.
本発明によれば、ヒドリドを構造中に含む酸化物によって、固体中で高いイオン伝導を持つヒドリドイオン導電体を提供し得、固体電解質燃料電池等の電解質として利用し得る。さらには、ヒドリドイオン導電体を用いた新たなエネルギーデバイスを生み出す可能性を有する。 ADVANTAGE OF THE INVENTION According to this invention, the hydride ion conductor which has high ionic conductivity in solid can be provided with the oxide which contains a hydride in a structure, and it can utilize as electrolytes, such as a solid electrolyte fuel cell. Furthermore, it has the potential to create new energy devices using hydride ion conductors.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010073408A JP5540179B2 (en) | 2010-03-26 | 2010-03-26 | Hydride ion conductor and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010073408A JP5540179B2 (en) | 2010-03-26 | 2010-03-26 | Hydride ion conductor and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011204632A JP2011204632A (en) | 2011-10-13 |
JP5540179B2 true JP5540179B2 (en) | 2014-07-02 |
Family
ID=44881058
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010073408A Active JP5540179B2 (en) | 2010-03-26 | 2010-03-26 | Hydride ion conductor and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5540179B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11795062B2 (en) | 2018-03-14 | 2023-10-24 | Japan Science And Technology Agency | Electron or hydride ion intake/release material, electron or hydride ion intake/release composition, transition metal-supported material and catalyst, and use in relation thereto |
JPWO2023013497A1 (en) * | 2021-08-06 | 2023-02-09 | ||
WO2023013496A1 (en) * | 2021-08-06 | 2023-02-09 | Agc株式会社 | Hydride ion conductor |
CN117995456A (en) * | 2022-11-07 | 2024-05-07 | 中国科学院大连化学物理研究所 | Hydride ion conductor and preparation method and application thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000223156A (en) * | 1999-01-28 | 2000-08-11 | Sony Corp | Solid electrolyte battery |
DE102004010892B3 (en) * | 2004-03-06 | 2005-11-24 | Christian-Albrechts-Universität Zu Kiel | Chemically stable solid Li ion conductor of garnet-like crystal structure and high Li ion conductivity useful for batteries, accumulators, supercaps, fuel cells, sensors, windows displays |
-
2010
- 2010-03-26 JP JP2010073408A patent/JP5540179B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011204632A (en) | 2011-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | An effective doping strategy to improve the cyclic stability and rate capability of Ni-rich LiNi0. 8Co0. 1Mn0. 1O2 cathode | |
Park et al. | Heat treatment protocol for modulating ionic conductivity via structural evolution of Li3-xYb1-xMxCl6 (M= Hf4+, Zr4+) new halide superionic conductors for all-solid-state batteries | |
Matsuda et al. | Sintering behavior and electrochemical properties of garnet-like lithium conductor Li6. 25M0. 25La3Zr2O12 (M: Al3+ and Ga3+) | |
Tarutin et al. | Barium-doped nickelates Nd2–xBaxNiO4+ δ as promising electrode materials for protonic ceramic electrochemical cells | |
Lu et al. | Ta-doped PrBa0. 94Co2-xTaxO5+ δ as promising oxygen electrodes: A focused study on catalytic oxygen reduction reaction activity, stability and CO2-durability | |
Sharma et al. | Lan+ 1NinO3n+ 1 (n= 2 and 3) phases and composites for solid oxide fuel cell cathodes: Facile synthesis and electrochemical properties | |
JP7067731B2 (en) | Hydride ion conductor and its manufacturing method | |
Pershina et al. | Phase composition, density, and ionic conductivity of the Li7La3Zr2O12-based composites with LiPO3 glass addition | |
Mather et al. | A-site-cation deficiency in the SrCe 0.9 Yb 0.1 O 3− δ perovskite: effects of charge-compensation mechanism on structure and proton conductivity | |
Qin et al. | Oriented attachment strategy toward enhancing ionic conductivity in garnet-type electrolytes for solid-state lithium batteries | |
JP5540179B2 (en) | Hydride ion conductor and method for producing the same | |
Bahout et al. | Stability of NdBaCo 2− x Mn x O 5+ δ (x= 0, 0.5) layered perovskites under humid conditions investigated by high-temperature in situ neutron powder diffraction | |
Liu et al. | Improving the room temperature ionic conductivity of Al-Li7La3Zr2O12 ceramics by Ba and Y or Ba and W co-doping | |
KR102657399B1 (en) | Lithium halide-based solid electrolyte, manufacturing method thereof and all-solid-state battery comprising the lithium halide-based solid electrolyte | |
Filonova et al. | Assessment of prospective cathodes based on (1-x) Ca 3 Co 4 O 9+ δ-x BaCe 0.5 Zr 0.3 Y 0.1 Yb 0.1 O 3-δ composites for protonic ceramic electrochemical cells | |
Xiang et al. | Study on xLiBH4-NaBH4 (x= 1.6, 2.3, and 4) composites with enhanced lithium ionic conductivity | |
Yi et al. | Ga-doped Ca 12 Al 14 O 33 mayenite oxide ion conductors: synthesis, defects, and electrical properties | |
Pikalova et al. | Comprehensive study of functional properties and electrochemical performance of layered lanthanum nickelate substituted with rare-earth elements | |
Kant et al. | Structural, thermal and transport properties of (0≤ x≤ 0.4) | |
Howard et al. | Synthesis and ionic conductivity of new high Li ion content garnets, LnSr2Ta2Li7O12 (Ln= La, Pr, Nd, Sm, Gd) | |
Paydar et al. | Chemically stable Dy–Y double substituted barium zirconate with high proton conductivity and improved sinterability | |
Dawczak et al. | Enhanced acceptor concentration, proton conductivity, and hydration in multicomponent rare‐earth ortho‐niobates | |
JP2014130687A (en) | Solid electrolyte, method for producing the same, and electricity storage device | |
Périllat-Merceroz et al. | New insights on the structure and reducibility of 3D versus 2D La/Sr titanates for SOFC anodes | |
Peng et al. | Synthesis and ionic conductivity of Li6La3BiSnO12 with cubic garnet-type structure via solid-state reaction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130225 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20130314 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20130314 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140304 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5540179 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |