JP2000223156A - Solid electrolyte battery - Google Patents

Solid electrolyte battery

Info

Publication number
JP2000223156A
JP2000223156A JP11020188A JP2018899A JP2000223156A JP 2000223156 A JP2000223156 A JP 2000223156A JP 11020188 A JP11020188 A JP 11020188A JP 2018899 A JP2018899 A JP 2018899A JP 2000223156 A JP2000223156 A JP 2000223156A
Authority
JP
Japan
Prior art keywords
solid electrolyte
negative electrode
positive electrode
lithium
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP11020188A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yamaura
潔 山浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP11020188A priority Critical patent/JP2000223156A/en
Publication of JP2000223156A publication Critical patent/JP2000223156A/en
Abandoned legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To suppress self-discharge resulting from a reaction of a negative electrode with a solid electrolyte by strengthening reduction resistance of the solid electrolyte. SOLUTION: This solid electrolyte battery is equipped with a positive electrode containing, as an active material, a compound including a transition metal oxide, a negative electrode disposed opposite to the positive electrode and containing lithium metal, a lithium alloy, or a carbon material capable of being doped with and being cleared of lithium, and a solid electrolyte having lithium- ion conductivity and disposed between the positive electrode and the negative electrode, and the solid electrolyte having lithium-ion conductivity is a compound composed of Li, La, Ce, and O.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、正極と負極とリチ
ウムイオン伝導性の固体電解質とを備えた固体電解質電
池に関する。
The present invention relates to a solid electrolyte battery provided with a positive electrode, a negative electrode, and a lithium ion conductive solid electrolyte.

【0002】[0002]

【従来の技術】従来より、電池における電解質として
は、一般に電解質を水系あるいは非水系の溶媒に溶解さ
せた電解液が使用されていた。このような電解液を用い
る場合には、電池外部への漏液や腐食の完全防止のため
の施策が必要となり、また、電解液の注液工程におい
て、内部短絡の発生による歩留まり低下などの問題があ
った。
2. Description of the Related Art Conventionally, as an electrolyte in a battery, an electrolyte in which an electrolyte is dissolved in an aqueous or non-aqueous solvent has been generally used. When such an electrolytic solution is used, measures must be taken to completely prevent leakage or corrosion of the electrolyte to the outside of the battery, and in the process of injecting the electrolytic solution, a problem such as a decrease in yield due to the occurrence of an internal short circuit. was there.

【0003】そして、近年、このような液体の電解質に
代えて、イオン伝導性を有する無機セラミックス等から
なる固体電解質を用いた固体電解質電池が注目されるよ
うになった。
[0003] In recent years, a solid electrolyte battery using a solid electrolyte made of an inorganic ceramic having ion conductivity instead of such a liquid electrolyte has attracted attention.

【0004】すなわち、固体電解質を用いた固体電解質
電池においては、電解質が液体でないため、漏液や腐食
の完全防止のための施策、電解液の注液工程等を避ける
ことができ、電池の構造が簡単でその組立も容易になる
等の利点があるからである。
That is, in a solid electrolyte battery using a solid electrolyte, since the electrolyte is not a liquid, measures for completely preventing leakage and corrosion, a step of injecting the electrolyte, and the like can be avoided, and the structure of the battery can be reduced. This is because there are advantages such as simplicity and easy assembling.

【0005】[0005]

【発明が解決しようとする課題】ところが、このような
固体電解質の中で無機セラミックス系の化合物は、電解
液に比べ、酸化還元に対する耐性が弱く、安定に存在す
ることのできる電位領域である電位窓が狭かった。例え
ば、初期に実用化されたLi固体電解質は、貴な電位で
の耐性が低いため、電池電圧が2V以下の電池でしか使
用することができなかった。
However, among such solid electrolytes, inorganic ceramics-based compounds have a lower resistance to oxidation and reduction than an electrolytic solution and have a potential region which is a potential region where they can stably exist. The windows were small. For example, Li solid electrolytes put to practical use in the early days have low resistance at a noble potential, and thus can be used only in batteries having a battery voltage of 2 V or less.

【0006】しかし、最近では、4V級の電圧を有す
る、非水系電解液を用いた電池が製造されるようにな
り、これらの高い電位を維持しつつ電解液を固体化する
ことが望まれており、固体電解質の電位窓を広くする試
みがなされている。
However, recently, batteries using a non-aqueous electrolyte having a voltage of 4V class have been manufactured, and it is desired to solidify the electrolyte while maintaining these high potentials. Attempts have been made to widen the potential window of the solid electrolyte.

【0007】一方、最近、セラッミクス系固体電解質と
して、ペロブスカイト構造を有するLi0.34La0.51
iO2.94化合物が報告された(Y.Inaguma,C.Liquan,M.I
tohet al.,Solid State Communications,Vol.86,No.10,
pp689-693(1993))。この固体電解質は、10-3S/
cmという高リチウムイオン伝導性を有することで注目
を浴びたが、含有されるTiの還元が約1.7V(対リ
チウム電位)で生じてしまうという欠点があった(P.Br
ike,.S.Schamer,R.A.Huggins et al.,J.Electrochem.So
c.Vol.144.No.6,June1997)。
On the other hand, recently, as a ceramics-based solid electrolyte, Li 0.34 La 0.51 T having a perovskite structure has been used.
An iO 2.94 compound was reported (Y. Inaguma, C. Liquan, MI
tohet al., Solid State Communications, Vol. 86, No. 10,
pp689-693 (1993)). This solid electrolyte is 10 −3 S /
cm, which has attracted attention because of its high lithium ion conductivity, but has the disadvantage that the reduction of the contained Ti occurs at about 1.7 V (relative to lithium potential) (P. Br.
ike, .S.Schamer, RAHuggins et al., J.Electrochem.So
c.Vol.144.No.6, June1997).

【0008】このため、例えば、上記の固体電解質を用
いて電池を構成する際に、負極として金属リチウムや低
結晶性カーボン、黒鉛等の材料を用いた場合に、固体電
解質と負極とが不可逆的な反応を引き起こしてしまう。
For this reason, for example, when a battery is formed using the above-mentioned solid electrolyte, if a material such as metallic lithium, low-crystalline carbon, or graphite is used as the negative electrode, the solid electrolyte and the negative electrode may be irreversible. Cause a reaction.

【0009】固体電解質と負極とが反応すると、当該固
体電解質中のTiが混合原子価状態となるため、固体電
解質に電子伝導性が発現し、固体電解質を通じて正極と
負極間に電流が流れ、固体電解質電池の自己放電を増長
させてしまう。
[0009] When the solid electrolyte reacts with the negative electrode, Ti in the solid electrolyte enters a mixed valence state, so that the solid electrolyte exhibits electron conductivity, a current flows between the positive electrode and the negative electrode through the solid electrolyte, and This increases the self-discharge of the electrolyte battery.

【0010】本発明は、上述したような従来の実情に鑑
みて提案されたものであり、固体電解質の還元耐性を強
化し、負極と固体電解質との反応によって生じる自己放
電を抑制した固体電解質電池を提供することを目的とす
る。
[0010] The present invention has been proposed in view of the above-mentioned conventional circumstances, and has a solid electrolyte battery in which the reduction resistance of the solid electrolyte is enhanced and self-discharge generated by the reaction between the negative electrode and the solid electrolyte is suppressed. The purpose is to provide.

【0011】[0011]

【課題を解決するための手段】本発明の固体電解質電池
は、遷移金属酸化物を含む化合物を活物質として含有す
る正極と、上記正極と対向して配され、リチウム金属、
リチウム合金、又はリチウムをドープ、脱ドープ可能な
炭素材料を含有する負極と、上記正極と上記負極との間
に配され、リチウムイオン伝導性の固体電解質とを備
え、上記リチウムイオン伝導性の固体電解質が、Li,
La,Ce及びOから構成される化合物であることを特
徴とする。
According to the present invention, there is provided a solid electrolyte battery comprising a positive electrode containing a compound containing a transition metal oxide as an active material;
Lithium alloy or lithium-doped, a negative electrode containing a carbon material that can be dedoped, and disposed between the positive electrode and the negative electrode, including a lithium-ion conductive solid electrolyte, the lithium-ion conductive solid The electrolyte is Li,
It is a compound composed of La, Ce and O.

【0012】上述したような本発明に係る固体電解質電
池では、固体電解質として、Li,La,Ce及びOか
ら構成される化合物を用いているので、負極の電位がL
i電位で1.5V以下である場合においても、負極と固
体電解質との反応が起こらない。
In the solid electrolyte battery according to the present invention as described above, since the compound composed of Li, La, Ce and O is used as the solid electrolyte, the potential of the negative electrode is low.
Even when the i potential is 1.5 V or less, no reaction occurs between the negative electrode and the solid electrolyte.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。
Embodiments of the present invention will be described below.

【0014】本実施の形態に係る固体電解質電池の一構
成例を図1に示す。この固体電解質電池1は、正極2
と、正極2と対向して配された負極3と、正極2と負極
3との間に配された固体電解質層4とを備え、絶縁材料
からなる外装ケース5により覆われて密閉されている。
そして、正極2には正極端子6が、負極3には負極端子
7がそれぞれ接続されており、これらの正極端子6と負
極端子7とは、外装ケース5の周縁部である封口部に挟
み込まれている。
FIG. 1 shows an example of the configuration of the solid electrolyte battery according to the present embodiment. This solid electrolyte battery 1 has a positive electrode 2
And a negative electrode 3 disposed opposite to the positive electrode 2 and a solid electrolyte layer 4 disposed between the positive electrode 2 and the negative electrode 3, and are covered and sealed by an outer case 5 made of an insulating material. .
A positive electrode terminal 6 is connected to the positive electrode 2, and a negative electrode terminal 7 is connected to the negative electrode 3. The positive electrode terminal 6 and the negative electrode terminal 7 are sandwiched by a sealing portion that is a peripheral portion of the outer case 5. ing.

【0015】正極2は、正極集電体上に、正極活物質を
含有する正極活物質層が形成されてなる。正極活物質と
しては、リチウムの吸蔵、放出が可能な遷移金属化合物
を用いることができ、例えば、マンガン、コバルト、ニ
ッケル、バナジウム、ニオブの少なくとも1種類を含む
遷移金属化合物を使用することができる。
The positive electrode 2 is formed by forming a positive electrode active material layer containing a positive electrode active material on a positive electrode current collector. As the positive electrode active material, a transition metal compound capable of inserting and extracting lithium can be used. For example, a transition metal compound containing at least one of manganese, cobalt, nickel, vanadium, and niobium can be used.

【0016】負極3は、例えば金属リチウムが所定形状
に打ち抜かれてなる。また、負極活物質として、リチウ
ムの吸蔵、放出が可能な合金、酸化物及びカーボン等を
使用することができる。負極活物質として、リチウムの
吸蔵、放出が可能な合金、酸化物及びカーボン等を使用
する場合、負極3は、負極集電体上に、上述したような
負極活物質を含有する負極活物質層が形成されてなる。
The negative electrode 3 is formed, for example, by punching metallic lithium into a predetermined shape. In addition, as the negative electrode active material, an alloy, an oxide, carbon, or the like that can occlude and release lithium can be used. When an alloy, oxide, carbon, or the like capable of inserting and extracting lithium is used as the negative electrode active material, the negative electrode 3 is a negative electrode active material layer containing the above-described negative electrode active material on a negative electrode current collector. Is formed.

【0017】固体電解質層4は、リチウムイオン伝導性
を有し、Li,La,Ce及びOから構成される化合物
からなる。上記のような化合物として、具体的にはペロ
ブスカイト構造を有するLi0.34La0.51CeO2.94
挙げられる。このLi0.34La0.51CeO2.94は、上述
したような、セラッミクス系固体電解質であるペロブス
カイト構造を有するLi0.34La0.51TiO2.94化合物
において、Tiの代わりにCeを用いたものである。
The solid electrolyte layer 4 has lithium ion conductivity and is made of a compound composed of Li, La, Ce and O. Specific examples of the compound as described above include Li 0.34 La 0.51 CeO 2.94 having a perovskite structure. The Li 0.34 La 0.51 CeO 2.94 is obtained by using Ce instead of Ti in the above-described Li 0.34 La 0.51 TiO 2.94 compound having a perovskite structure, which is a ceramics-based solid electrolyte.

【0018】上述したように、ペロブスカイト構造を有
するLi0.34La0.51TiO2.94化合物では、含有され
るTiの還元が約1.7V(対リチウム電位)で生じ
る。このため、例えば、金属リチウムや低結晶性カーボ
ン、黒鉛などを負極3として用いた場合に、固体電解質
層4と負極3とが不可逆的な反応を引き起こすおそれが
ある。
As described above, in the Li 0.34 La 0.51 TiO 2.94 compound having a perovskite structure, the contained Ti is reduced at about 1.7 V (relative to lithium potential). Therefore, for example, when lithium metal, low crystalline carbon, graphite, or the like is used as the negative electrode 3, the solid electrolyte layer 4 and the negative electrode 3 may cause an irreversible reaction.

【0019】固体電解質層4と負極3とが反応すると、
当該固体電解質層4中のTiが混合原子価状態となるた
め、固体電解質層4に電子伝導性が発現し、固体電解質
層4を通じて正極2と負極3間に電流が流れ、固体電解
質電池1の自己放電を増長させてしまう。
When the solid electrolyte layer 4 and the negative electrode 3 react,
Since the Ti in the solid electrolyte layer 4 is in a mixed valence state, electron conductivity is developed in the solid electrolyte layer 4, a current flows between the positive electrode 2 and the negative electrode 3 through the solid electrolyte layer 4, and the solid electrolyte battery 1 It increases the self-discharge.

【0020】従来の固体電解質中のTiに変えて、Ti
よりも還元電位の大きなCeを用いることで、Tiを用
いた場合と同等のリチウムイオン伝導性を有しながら、
還元に対する耐性を高めることができる。そして、この
固体電解質を用いることにより、固体電解質層4と負極
3との反応を抑制し、自己放電による固体電解質電池1
の容量低下を防ぎ、保存特性を向上することができる。
Instead of the conventional solid electrolyte Ti, Ti
By using Ce having a larger reduction potential, while having lithium ion conductivity equivalent to that of using Ti,
Resistance to reduction can be increased. Then, by using this solid electrolyte, the reaction between the solid electrolyte layer 4 and the negative electrode 3 is suppressed, and the solid electrolyte battery 1 by self-discharge is suppressed.
Can be prevented from lowering and storage characteristics can be improved.

【0021】上述したような本実施の形態に係る固体電
解質電池1は、角型、コイン型、ボタン型等、その形状
については特に限定されることはなく、また、薄型、大
型等の種々の大きさにすることができる。また、本発明
は、一次電池についても二次電池についても適用可能で
ある。
The solid electrolyte battery 1 according to the present embodiment as described above is not particularly limited in its shape such as a square type, a coin type, a button type and the like. Can be sized. Further, the present invention is applicable to both primary batteries and secondary batteries.

【0022】[0022]

【実施例】本発明に係る固体電解質電池を作製し、その
特性を評価した。
EXAMPLES A solid electrolyte battery according to the present invention was manufactured and its characteristics were evaluated.

【0023】〈実施例〉まず、以下のようにして正極と
負極とを作製した。
<Example> First, a positive electrode and a negative electrode were prepared as follows.

【0024】正極を作製するに当たっては、正極活物質
として、700℃〜900℃の温度で熱処理したリチウ
ム含有二酸化コバルトLiCoO2を用い、この正極活
物質と、導電剤としてカーボン粉末と、結着剤としてフ
ッ素樹脂粉末とを90:7:3の重量比で混合して正極
合剤とした。
In preparing the positive electrode, lithium-containing cobalt dioxide LiCoO 2 heat-treated at a temperature of 700 ° C. to 900 ° C. was used as the positive electrode active material, this positive electrode active material, carbon powder as a conductive agent, a binder Was mixed with a fluororesin powder at a weight ratio of 90: 7: 3 to prepare a positive electrode mixture.

【0025】次に、この正極合剤を、ドクターブレード
法により厚みが約200μmになるように、正極集電体
となる金属板上に塗布した後、この金属板を100℃〜
150℃の温度で真空熱処理して正極活物質層を形成し
た。
Next, the positive electrode mixture is applied to a metal plate serving as a positive electrode current collector so as to have a thickness of about 200 μm by a doctor blade method.
Vacuum heat treatment was performed at a temperature of 150 ° C. to form a positive electrode active material layer.

【0026】最後に、正極活物質層が形成された金属板
を円形状に打ち抜くことにより円版状の正極を作製し
た。さらに、金属板の正極合剤未塗布部分に、正極端子
を溶接した。
Finally, the metal plate on which the positive electrode active material layer was formed was punched out in a circular shape to produce a circular plate-shaped positive electrode. Further, a positive electrode terminal was welded to a portion of the metal plate where the positive electrode mixture was not applied.

【0027】また、リチウム金属を、上記正極と略同径
の円板状に打ち抜くことにより負極とした。さらに、こ
の負極に負極端子を溶接した。
A negative electrode was obtained by punching lithium metal into a disk having substantially the same diameter as the positive electrode. Further, a negative electrode terminal was welded to the negative electrode.

【0028】次に、以下のようにして固体電解質を作製
した。
Next, a solid electrolyte was prepared as follows.

【0029】まず、酸化セリウムCeO2と、炭酸リチ
ウムLi2CO3と、酸化ランタンLa23とを所定の量
混合させ、この混合物を800〜1350℃の温度で2
時間〜8時間焼成した。次に、上記焼成物を徐冷するこ
とにより、固体電解質となるLi0.34La0.51CeO
2.94を得た。
First, cerium oxide CeO 2 , lithium carbonate Li 2 CO 3, and lanthanum oxide La 2 O 3 are mixed in predetermined amounts, and the mixture is mixed at a temperature of 800 to 1350 ° C.
Fired for ~ 8 hours. Next, by slowly cooling the calcined product, Li 0.34 La 0.51 CeO to be a solid electrolyte is obtained.
2.94 was obtained.

【0030】次に、上述のようにして作製した正極と負
極とを、固体電解質を介して積層して電極積層体とし
た。最後に、この電極積層体を外装ケースに収納し、減
圧により外装ケースを封印した。このとき、この外装ケ
ースの封口部に上記正極端子と負極端子とを挟み込ん
だ。このようにして、平板状の固体電解質二次電池を作
製した。
Next, the positive electrode and the negative electrode produced as described above were laminated via a solid electrolyte to form an electrode laminate. Finally, the electrode laminate was housed in an outer case, and the outer case was sealed under reduced pressure. At this time, the positive electrode terminal and the negative electrode terminal were sandwiched between the sealing portions of the outer case. Thus, a plate-shaped solid electrolyte secondary battery was produced.

【0031】〈比較例〉まず、上述した実施例と同様に
して正極と負極とを作製した。
Comparative Example First, a positive electrode and a negative electrode were manufactured in the same manner as in the above-described example.

【0032】次に、以下のようにして固体電解質を作製
した。
Next, a solid electrolyte was prepared as follows.

【0033】ルチル型の酸化チタンTiO2と、炭酸リ
チウムLi2CO3と、酸化ランタンLa23とを所定の
量混合させ、この混合物を800℃〜1350℃の温度
で2時間〜8時間焼成した。次に、上記焼成物を徐冷す
ることにより、固体電解質となるLi0.34La0.51Ti
2.94を得た。
A predetermined amount of rutile-type titanium oxide TiO 2 , lithium carbonate Li 2 CO 3 and lanthanum oxide La 2 O 3 are mixed, and the mixture is heated at a temperature of 800 ° C. to 1350 ° C. for 2 hours to 8 hours. Fired. Next, by slowly cooling the fired product, Li 0.34 La 0.51 Ti
O 2.94 was obtained.

【0034】次に、上述のようにして作製した正極と負
極とを、固体電解質を介して積層して電極積層体とし
た。最後に、この電極積層体を外装ケースに収納し、減
圧により外装ケースを封印した。このとき、この外装ケ
ースの封口部に上記正極端子と負極端子とを挟み込ん
だ。このようにして、平板状の固体電解質二次電池を作
製した。
Next, the positive electrode and the negative electrode produced as described above were laminated via a solid electrolyte to form an electrode laminate. Finally, the electrode laminate was housed in an outer case, and the outer case was sealed under reduced pressure. At this time, the positive electrode terminal and the negative electrode terminal were sandwiched between the sealing portions of the outer case. Thus, a plate-shaped solid electrolyte secondary battery was produced.

【0035】そして、上述のようにして作製された実施
例及び比較例の固体電解質二次電池について、自己放電
の程度を調べた。
The extent of self-discharge was examined for the solid electrolyte secondary batteries of Examples and Comparative Examples produced as described above.

【0036】自己放電の程度を調べるには、まず、温度
60℃の雰囲気下において、実施例及び比較例の電池
を、充電電流密度100μA/cm2で終止電圧4.2
Vまでそれぞれ充電させた。次に、充電された電池を常
温まで1分以内に冷却し、常温を維持しながら、経過時
間と電圧降下との関係を調べた。
In order to examine the degree of self-discharge, first, the batteries of Examples and Comparative Examples were charged at a charging current density of 100 μA / cm 2 and a final voltage of 4.2 in an atmosphere at a temperature of 60 ° C.
To V respectively. Next, the charged battery was cooled to room temperature within one minute, and the relationship between the elapsed time and the voltage drop was examined while maintaining the room temperature.

【0037】以上のようにして調べられた、実施例及び
比較例の固体電解質二次電池についての、経過時間と電
圧降下との関係を図2に示す。なお、図2において、実
施例の電池については○で示し、比較例の電池について
は●で示した。
FIG. 2 shows the relationship between the elapsed time and the voltage drop for the solid electrolyte secondary batteries of Examples and Comparative Examples, which were examined as described above. In FIG. 2, the battery of the example was indicated by ○, and the battery of the comparative example was indicated by ●.

【0038】図2から明らかなように、実施例の電池で
は、時間が経過しても、電池電圧の低下はほとんど見ら
れなかった。一方、比較例の電池では、時間が経過する
に従って電池電圧は大きく低下してしまった。これによ
り、実施例の電池では自己放電はほとんど起こっていな
いが、比較例の電池では、自己放電が起こっていること
がわかる。
As is clear from FIG. 2, in the batteries of the examples, the battery voltage hardly decreased even after the elapse of time. On the other hand, in the battery of the comparative example, the battery voltage dropped significantly as time passed. This shows that self-discharge hardly occurred in the battery of the example, but self-discharge occurred in the battery of the comparative example.

【0039】また、実施例及び比較例の電池に、100
μA/cm2の定電流で還元電流をそれぞれ加え、その
ときの電池電圧と電荷移動量との関係を調べた。その結
果を図3に示す。ここで、図3からは、自己放電の原因
となる、卑電位での固体電解質と負極との反応を見て取
ることができる。なお、図3において、実施例の電池に
ついては点線で示し、比較例の電池については実線で示
した。
The batteries of Examples and Comparative Examples had 100
A reduction current was applied at a constant current of μA / cm 2 , and the relationship between the battery voltage and the amount of charge transfer at that time was examined. The result is shown in FIG. Here, from FIG. 3, the reaction between the solid electrolyte and the negative electrode at a base potential, which causes self-discharge, can be seen. In FIG. 3, the batteries of the examples are indicated by dotted lines, and the batteries of the comparative examples are indicated by solid lines.

【0040】図3から明らかなように、Ce系の固体電
解質を用いた実施例の電池では、直線状に電圧が低下し
ていき、電荷移動は観察されず、固体電解質と負極との
反応は起こっていないことがわかる。
As is apparent from FIG. 3, in the battery of the embodiment using the Ce-based solid electrolyte, the voltage decreases linearly, no charge transfer is observed, and the reaction between the solid electrolyte and the negative electrode occurs. You can see that it is not happening.

【0041】一方、Ti系の固体電解質を用いた比較例
の電池では、1.5V付近でグラフが大きく曲がってい
ることから、電荷移動を観察することができる。この電
荷移動は、1.5V付近でTiが4価から3価に還元さ
れたことを意味する。従って、比較例の電池では、固体
電解質と負極との反応が起こり、Tiが還元されている
ことがわかる。
On the other hand, in the battery of the comparative example using a Ti-based solid electrolyte, the charge transfer can be observed since the graph is largely bent around 1.5 V. This charge transfer means that Ti was reduced from tetravalent to trivalent around 1.5V. Therefore, in the battery of the comparative example, the reaction between the solid electrolyte and the negative electrode occurred, and it was found that Ti was reduced.

【0042】以上の結果より、リチウムイオン伝導性の
固体電解質中のTiの代わりにCeを用いることで、負
極と固体電解質との反応を抑制することができ、正極と
負極との間での自己放電を防止できることがわかった。
From the above results, by using Ce instead of Ti in the lithium ion conductive solid electrolyte, the reaction between the negative electrode and the solid electrolyte can be suppressed, and the self-reaction between the positive electrode and the negative electrode can be suppressed. It was found that discharge could be prevented.

【0043】[0043]

【発明の効果】本発明では、Ce系セラミックスを固体
電解質に用いることで、固体電解質と負極との反応に起
因する自己放電を防ぎ、高容量、優れた保存特性を有す
る固体電解質電池を実現することができる。
According to the present invention, by using Ce-based ceramics for the solid electrolyte, self-discharge caused by the reaction between the solid electrolyte and the negative electrode is prevented, and a solid electrolyte battery having high capacity and excellent storage characteristics is realized. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る固体電解質電池の一構成例を示す
断面図である。
FIG. 1 is a cross-sectional view illustrating a configuration example of a solid electrolyte battery according to the present invention.

【図2】実施例及び比較例の電池の、経過時間と電池電
圧との関係を示す図である。
FIG. 2 is a diagram showing a relationship between elapsed time and battery voltage of batteries of an example and a comparative example.

【図3】実施例及び比較例の電池の、電池電圧と電荷移
動量との関係を示す図である。
FIG. 3 is a diagram showing a relationship between a battery voltage and a charge transfer amount of batteries of an example and a comparative example.

【符号の説明】[Explanation of symbols]

1 固体電解質電池、 2 正極、 3 負極、 4
固体電解質層、5 外装ケース、 6 正極端子、 7
負極端子
1 solid electrolyte battery, 2 positive electrode, 3 negative electrode, 4
Solid electrolyte layer, 5 outer case, 6 positive electrode terminal, 7
Negative terminal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 遷移金属酸化物を含有する正極と、 上記正極と対向して配され、リチウム金属、リチウム合
金、又はリチウムをドープ、脱ドープ可能な材料を含有
する負極と、 上記正極と上記負極との間に配され、リチウムイオン伝
導性の固体電解質とを備え、 上記固体電解質が、Li,La,Ce及びOから構成さ
れる化合物であることを特徴とする固体電解質電池。
1. A positive electrode containing a transition metal oxide; a negative electrode disposed opposite to the positive electrode and containing a material capable of doping or undoping lithium metal, a lithium alloy, or lithium; A solid electrolyte battery comprising: a lithium ion conductive solid electrolyte disposed between the anode and the anode; wherein the solid electrolyte is a compound composed of Li, La, Ce, and O.
【請求項2】 上記Li,La,Ce及びOから構成さ
れる化合物が、Li0.34La0.51CeO2.94であること
を特徴とする請求項1記載の固体電解質電池。
2. The solid electrolyte battery according to claim 1, wherein the compound composed of Li, La, Ce and O is Li 0.34 La 0.51 CeO 2.94 .
JP11020188A 1999-01-28 1999-01-28 Solid electrolyte battery Abandoned JP2000223156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11020188A JP2000223156A (en) 1999-01-28 1999-01-28 Solid electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11020188A JP2000223156A (en) 1999-01-28 1999-01-28 Solid electrolyte battery

Publications (1)

Publication Number Publication Date
JP2000223156A true JP2000223156A (en) 2000-08-11

Family

ID=12020211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11020188A Abandoned JP2000223156A (en) 1999-01-28 1999-01-28 Solid electrolyte battery

Country Status (1)

Country Link
JP (1) JP2000223156A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011204632A (en) * 2010-03-26 2011-10-13 Tokyo Institute Of Technology Hydride ion conductor and method of manufacturing the same
WO2015030052A1 (en) 2013-09-02 2015-03-05 三菱瓦斯化学株式会社 Solid-state battery
WO2015030053A1 (en) 2013-09-02 2015-03-05 三菱瓦斯化学株式会社 Solid-state battery and method for manufacturing electrode active material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011204632A (en) * 2010-03-26 2011-10-13 Tokyo Institute Of Technology Hydride ion conductor and method of manufacturing the same
WO2015030052A1 (en) 2013-09-02 2015-03-05 三菱瓦斯化学株式会社 Solid-state battery
WO2015030053A1 (en) 2013-09-02 2015-03-05 三菱瓦斯化学株式会社 Solid-state battery and method for manufacturing electrode active material
KR20160048892A (en) 2013-09-02 2016-05-04 미츠비시 가스 가가쿠 가부시키가이샤 Solid-state battery
KR20160048894A (en) 2013-09-02 2016-05-04 미츠비시 가스 가가쿠 가부시키가이샤 Solid-state battery and method for manufacturing electrode active material
US10038192B2 (en) 2013-09-02 2018-07-31 Mitsubishi Gas Chemical Company, Inc. Solid-state battery
US10147937B2 (en) 2013-09-02 2018-12-04 Mitsubishi Gas Chemical Company, Inc. Solid-state battery and method for manufacturing electrode active material

Similar Documents

Publication Publication Date Title
JP3269396B2 (en) Non-aqueous electrolyte lithium secondary battery
KR100559104B1 (en) Positive electrode for nonaqueous electrolyte battery and method of manufacturing the same, and nonaqueous electrolyte battery using the positive electrode and method of manufacturing the same
EP2800171B1 (en) Cathode active material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery including same
TWI311827B (en) Positive electrode active material and non-aqueous electrolyte secondary cell
EP1009055B1 (en) Nonaqueous electrolyte battery and charging method therefor
EP1079454B1 (en) Flat non-aqueous electrolyte secondary cell
KR101607916B1 (en) Manufacturing method of positive electrode active material and positive electrode active material
CA2351332A1 (en) Lithium based phosphates for use in lithium ion batteries and method of preparation
KR20000029401A (en) Nonaqueous electrolyte cell
JP2000156229A (en) Nonaqueous electrolyte lithium secondary battery
JP2005135775A (en) Lithium ion secondary battery
CN108717977A (en) A kind of lithium ion battery with excellent zero volt storage performance
JP2006302756A (en) Battery
JP2002042812A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JP5076301B2 (en) Secondary battery
JP2000223156A (en) Solid electrolyte battery
JP3185273B2 (en) Non-aqueous electrolyte secondary battery
JPH0487268A (en) Nonaqueous electrolyte secondary battery
JP3921836B2 (en) Organic electrolyte secondary battery
JP3775107B2 (en) Lithium secondary battery
JP2703278B2 (en) Non-aqueous secondary battery
JPH1064542A (en) Nonaqueous electrolyte secondary battery
JPH11260350A (en) Nonaqueous system secondary battery
JP2005322597A (en) Battery and its manufacturing method
JP4798966B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051129

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20070622