CN102780031B - A kind of Mg 2+, Al 3+, Zr 4+, F -ion co-doped garnet-type solid electrolyte - Google Patents

A kind of Mg 2+, Al 3+, Zr 4+, F -ion co-doped garnet-type solid electrolyte Download PDF

Info

Publication number
CN102780031B
CN102780031B CN201210269172.XA CN201210269172A CN102780031B CN 102780031 B CN102780031 B CN 102780031B CN 201210269172 A CN201210269172 A CN 201210269172A CN 102780031 B CN102780031 B CN 102780031B
Authority
CN
China
Prior art keywords
solid electrolyte
ion
lithium
lithium ion
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210269172.XA
Other languages
Chinese (zh)
Other versions
CN102780031A (en
Inventor
水淼
杨天赐
舒杰
程亮亮
冯琳
任元龙
郑卫东
高珊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo University
Original Assignee
Ningbo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo University filed Critical Ningbo University
Priority to CN201210269172.XA priority Critical patent/CN102780031B/en
Publication of CN102780031A publication Critical patent/CN102780031A/en
Application granted granted Critical
Publication of CN102780031B publication Critical patent/CN102780031B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

一种Mg2+,Al3+,Zr4+,F-离子共掺杂的石榴石型锂离子固体电解质Li5La3Nb2O12,其特征在于化学计量式为Li5+x+2y+z-mLa3-xMgxAlyZrzNb2-y-zO12-mFm其中:x=0.1-0.5;y=0.1-0.2;z=0.1-0.2;m=0.1-0.3;将Li2CO3∶La2O3∶MgO∶Al2O3∶ZrO2∶Nb2O5∶Li2F为2.25-2.9∶1.25-1.45∶0.1-0.5∶0.05-0.1∶0.1-0.2∶0.8-0.9∶0.1-0.3(摩尔比)的比例均匀混合,经过球磨、压制、烧结而成;能够获得大于10-4S/cm的室温锂离子电导率。

A Mg 2+ , Al 3+ , Zr 4+ , F - ion co-doped garnet-type lithium ion solid electrolyte Li 5 La 3 Nb 2 O 12 , characterized in that the stoichiometric formula is Li 5+x+2y +zm La 3-x Mg x Al y Zr z Nb 2-yz O 12-m F m where: x=0.1-0.5; y=0.1-0.2; z=0.1-0.2; m=0.1-0.3; 2 CO 3 : La 2 O 3 : MgO: Al 2 O 3 : ZrO 2 : Nb 2 O 5 : Li 2 F is 2.25-2.9: 1.25-1.45: 0.1-0.5: 0.05-0.1: 0.1-0.2: 0.8- The ratio of 0.9:0.1-0.3 (molar ratio) is evenly mixed, and it is made by ball milling, pressing and sintering; it can obtain the lithium ion conductivity at room temperature greater than 10 -4 S/cm.

Description

一种Mg2+,Al3+,Zr4+,F-离子共掺杂石榴石型固体电解质A Mg2+, Al3+, Zr4+, F- ion co-doped garnet-type solid electrolyte

技术领域 technical field

本发明涉及一种固体锂离子电解质制造领域。 The invention relates to the field of manufacturing a solid lithium ion electrolyte.

背景技术 Background technique

锂离子电池具有体积、重量能量比高、电压高、自放电率低、无记忆效应、循环寿命长、功率密度高等绝对优点,在全球移动电源市场拥有逾300亿美元/年份额并远超过其他电池的市场占有率,是最具有市场发展前景的化学电源[吴宇平,万春荣,姜长印,锂离子二次电池,北京:化学工业出版社,2002.]。目前国内外锂离子二次电池大部分采用的是液态电解质,液态锂离子电池具有一些不利因素,如:液态有机电解质可能泄露,在过高的温度下发生爆炸从而造成安全事故,无法应用在一些对安全性要求高的场合;液态电解质锂离子电池普遍存在循环容量衰减问题,使用一段时间后由于电极活性物质在电解质中的溶解、反应而逐步失效[Z.R.Zhang,Z.L.Gong,andY.Yang,J.Phys.Chem.B,108,2004,17546.]。而全固态电池安全性高、基本没有循环容量衰减,固体电解质还起到了隔膜的作用,简化了电池的结构;此外,由于无需隔绝空气,也简化了生产过程中对设备的要求,电池的外形设计也更加方便、灵活[温兆银,朱修剑,许晓雄等,全固态二次电池的研究,第十二届中国固态离子学学术会议论文集,2004。]。 Lithium-ion batteries have absolute advantages such as high volume, high weight-to-energy ratio, high voltage, low self-discharge rate, no memory effect, long cycle life, and high power density. They have an annual share of more than 30 billion US dollars in the global mobile power market and far exceed other The market share of batteries is the most promising chemical power source [Wu Yuping, Wan Chunrong, Jiang Changyin, Lithium-ion Secondary Batteries, Beijing: Chemical Industry Press, 2002.]. At present, most of the lithium-ion secondary batteries at home and abroad use liquid electrolytes. Liquid lithium-ion batteries have some disadvantages, such as: liquid organic electrolytes may leak, and may explode at too high a temperature, causing safety accidents, and cannot be used in some applications. Occasions with high safety requirements; liquid electrolyte lithium-ion batteries generally have the problem of cycle capacity fading, and gradually fail due to the dissolution and reaction of electrode active materials in the electrolyte after a period of use [Z.R.Zhang, Z.L.Gong, and Y.Yang, J. .Phys.Chem.B, 108, 2004, 17546.]. The all-solid-state battery has high safety and basically no cycle capacity decay. The solid electrolyte also acts as a diaphragm, which simplifies the structure of the battery; The design is also more convenient and flexible [Wen Zhaoyin, Zhu Xiujian, Xu Xiaoxiong, etc., Research on All-Solid Secondary Batteries, Proceedings of the Twelfth Chinese Academic Conference on Solid State Ionics, 2004. ].

全固态锂离子电池中,载流子在固态电解质中的迁移速率往往远远小于电极表面的电荷转移及正极材料中的离子扩散速率而成为整个电极反应动力学中的速率控制步骤,因此研制具有较高锂离子电导率的无机固态电解质是构建高性能锂离子电池的核心关键所在。另外要研发具有实用意义的固体锂离子电解质,同时要求其能够在环境中具有良好的稳定性(对二氧化碳和水分稳定),为了使组成的全固态电池能够使用金属锂作为负极而具有高的能量密度,也希望固态电解质能对金属锂稳定并具有较高的分解电压。从目前已有报导的锂离子固态电解质来看:LLTO(Li,La)TiO3固态电解质具有很高的晶内电导率(在10-3S/cm左右)及比较高的常温总电导率(10-4S/cm-10-5S/cm),但是LLTO分解电压低,无法构成放电电压3.7V以上全固态电池并且对金属锂负极不稳定;具有NASICON型多晶的LiM2(PO4)3(M=Ti,Ge,Zr)是由四面体PO4和八面体MO6共同组成的网架结构,产生了结构上的空穴及可填充的配位,使得可以调控大量的Li离子,是一种很有前途的高锂离子电导率固态电解质。通过异价离子的取代,在结构中引入空穴或填隙锂离子可进一步提高离子导电性[XiaoxiongXu,ZhaoyinWen,ZhonghuaGu,etal.,SolidStateIonics,171,2004,207-212.]。如林祖纕、李世椿等[林祖纕,李世椿,硅酸盐学报,9(3),1981,253-257.]发现的Li1+xTi2-xGaxP3O12,Li1+2xTi2-xMgxP3O12,Li1+xGe2-xCrxP3012,Li1+xGe2-xAlxP3O12,Li1+xTi2-xInxP3O12等体系或其他如Li1+2x+2yAlxMgyTi2-x-ySixP3-xO12,Li1+x+yAlxTi2-xSiyP3-yO12,Li1+xAlxTi2-xP3O12等体系均具有较高的锂离子电导率。但这些体系的常温锂离子电导率通常在10-4S/cm-10-6S/cm之间,还不能很好满足非薄膜锂离子电池对电解质电导率的要求。另外NASICON体系同样对金属锂负极不稳定。W.Weppner等在2003年提出了一种新的石榴石结构的固体电解质Li5La3M2O12(M=Nb,Ta)(Thangadurai,V.,H.Kaack,etal.,JournaloftheAmericanCeramicSociety,86(3)2003,437-440.),这种固体电解质对金属锂负极甚至是熔融金属锂都非常稳定,是全固态锂离子电池极具有应用价值的固态电解质。然而纯Li5La3M2O12(M=Nb,Ta)的常温电导率只有10-6S/cm左右。W.Weppner等在2006年又报道了K+,In3+单离子掺杂的Li5La3M2O12(M=Nb,Ta)(Thangadurai,V.andW.Weppner,JournalofSolidStateChemistry179(4),2006,974-984.)。将常温离子电导率提高到了10-5S/cm数量级。但是还不能很好满足非薄膜锂离子电池对电解质电导率的要求。 In all-solid-state lithium-ion batteries, the mobility of carriers in the solid-state electrolyte is often much lower than the charge transfer on the electrode surface and the ion diffusion rate in the positive electrode material, which becomes the rate-controlling step in the entire electrode reaction kinetics. Therefore, the development of Inorganic solid-state electrolytes with high lithium-ion conductivity are the core key to constructing high-performance lithium-ion batteries. In addition, it is necessary to develop a solid lithium-ion electrolyte with practical significance, and it is required to have good stability in the environment (stable to carbon dioxide and moisture), in order to enable the composition of the all-solid-state battery to use metal lithium as the negative electrode. Density, it is also hoped that the solid electrolyte can be stable to metal lithium and have a high decomposition voltage. Judging from the lithium-ion solid electrolytes that have been reported so far: LLTO (Li, La) TiO 3 solid electrolytes have very high intragranular conductivity (about 10 -3 S/cm) and relatively high total conductivity at room temperature ( 10 -4 S/cm-10 -5 S/cm), but the LLTO decomposition voltage is low, unable to form an all-solid-state battery with a discharge voltage above 3.7V and unstable to metallic lithium anodes; LiM 2 (PO 4 ) 3 (M=Ti, Ge, Zr) is a network structure composed of tetrahedral PO 4 and octahedral MO 6 , which produces structural holes and fillable coordination, making it possible to control a large number of Li ions , is a promising solid-state electrolyte with high Li-ion conductivity. The introduction of holes or interstitial lithium ions in the structure can further improve the ionic conductivity through the substitution of asymmetric ions [XiaoxiongXu, ZhaoyinWen, ZhonghuaGu, et al., Solid State Ionics, 171, 2004, 207-212.]. Li 1+x Ti 2-x Ga x P 3 O 12 , Li 1+2x Ti 2 -x MgxP 3 O 12 , Li 1+x Ge 2-x CrxP 3 0 12 , Li 1+x Ge 2-x Al x P 3 O 12 , Li 1+x Ti 2-x In x P 3 O 12 etc. system or others such as Li 1+2x+2y Al x Mg y Ti 2-xy Si x P 3-x O 12 , Li 1+x+y Al x Ti 2-x Si y P 3-y O 12 , Li 1 Systems such as +x Al x Ti 2-x P 3 O 12 have high lithium ion conductivity. However, the normal temperature lithium ion conductivity of these systems is usually between 10 -4 S/cm-10 -6 S/cm, which cannot well meet the requirements of non-thin film lithium ion batteries for electrolyte conductivity. In addition, the NASICON system is also unstable to metallic lithium anodes. W.Weppner et al. proposed a new garnet-structured solid electrolyte Li 5 La 3 M 2 O 12 (M=Nb, Ta) in 2003 (Thangadurai, V., H.Kaack, et al., Journal of the American Ceramic Society, 86 (3) 2003, 437-440.), this solid electrolyte is very stable to metal lithium negative electrode and even molten metal lithium, and it is a solid electrolyte with great application value for all-solid lithium ion batteries. However, the normal temperature conductivity of pure Li 5 La 3 M 2 O 12 (M=Nb, Ta) is only about 10 -6 S/cm. In 2006, W.Weppner et al reported K + , In 3+ single-ion doped Li 5 La 3 M 2 O 12 (M=Nb, Ta) (Thangadurai, V.andW.Weppner, Journal of Solid State Chemistry 179 (4), 2006, 974-984.). The normal temperature ionic conductivity is increased to the order of 10 -5 S/cm. But it still can't meet the requirement of electrolyte conductivity for non-thin-film lithium-ion batteries.

离子掺杂是提高固态锂离子电解质电导率一种非常有效的方式,但是掺杂离子与基体的相互作用非常复杂,掺杂离子的大小、电子结构、电负性等特性都对母体的离子导电能力有很大影响,而且不同的掺杂离子之间会有互相作用,是促进锂离子迁移还是抑制锂离子迁移以及促进和抑制的程度都会随着掺入的离子种类及浓度有非常大的差异。原则上掺杂离子的选择应尽量满足传输瓶颈与Li+半径大小匹配,Li+与骨架离子键合力弱、空位浓度与Li+浓度的比例适中三个条件。该石榴石型固体电解质的锂离子迁移机理也尚未完全被研究人员弄清楚。因此进一步研究掺杂离子的种类及含量对开发高锂离子电导率的石榴石型固态电解质有着很重要的意义。 Ion doping is a very effective way to improve the conductivity of solid-state lithium-ion electrolytes, but the interaction between doped ions and the matrix is very complicated, and the size, electronic structure, and electronegativity of the doped ions all affect the ionic conductivity of the matrix. The ability has a great influence, and there will be interaction between different dopant ions, whether to promote lithium ion migration or inhibit lithium ion migration and the degree of promotion and inhibition will vary greatly with the type and concentration of doped ions . In principle, the selection of dopant ions should meet the three conditions of matching the transport bottleneck with the size of the Li + radius, weak bonding between Li + and the framework ions, and a moderate ratio of vacancy concentration to Li + concentration. The lithium ion migration mechanism of this garnet-type solid electrolyte has not yet been fully understood by researchers. Therefore, further research on the type and content of dopant ions is of great significance for the development of garnet-type solid electrolytes with high lithium ion conductivity.

发明内容 Contents of the invention

本发明所要解决的技术问题是针对现有背景技术而提供的一种Mg2+,Al3+,Zr4+,F-离子共掺杂的石榴石型锂离子固体电解质Li5La3Nb2O12。首先通过Mg2+取代La3+,Al3+取代Nb5+的方式低价离子取代高价离子产生额外的填隙锂离子,增加晶格中迁移锂离子的数量;同时Mg2+的离子半径小于La3+,Al3+离子半径小于Nb5+离子半径,两者的协同作用使得La-O八面体和Nb-O八面体产生一定的收缩畸变,适度扩张锂离子的迁移通道截面,从而提高锂离子电导率;F-部分取代O2-,F-与O2-半径接近,但电负性强,晶格收缩,进一步增大锂离子迁移通道截面,提高锂离子迁移速率;Zr4+部分取代Nb5+有助于降低锂离子迁移活化能。这些协同作用使得该固体电解质的常温离子电导率超过10-4S/cm,更加接近液态电解质的离子电导率。 The technical problem to be solved by the present invention is to provide a Mg 2+ , Al 3+ , Zr 4+ , F- ion co - doped garnet lithium ion solid electrolyte Li 5 La 3 Nb 2 for the existing background technology O 12 . First, replace La 3+ with Mg 2+ and replace Nb 5+ with Al 3+ . Low-valent ions replace high-valent ions to generate additional interstitial lithium ions, increasing the number of migrating lithium ions in the lattice; at the same time, the ionic radius of Mg 2+ is smaller than La 3+ , and the radius of Al 3+ ions is smaller than that of Nb 5+ ions. The synergistic effect of the two makes La-O octahedron and Nb-O octahedron produce a certain shrinkage distortion, which moderately expands the migration channel cross section of lithium ions, thereby Improve the conductivity of lithium ions; F - partly replaces O 2- , F - is close to O 2 - in radius, but has strong electronegativity and lattice shrinkage, further increases the cross section of lithium ion migration channels, and improves lithium ion migration rate; Zr 4 + Partial substitution of Nb 5+ helps to reduce the activation energy of lithium ion migration. These synergistic effects make the normal temperature ionic conductivity of the solid electrolyte exceed 10 -4 S/cm, which is closer to the ionic conductivity of the liquid electrolyte.

本发明通过如下的技术方案达到,该技术方案提供一种锂离子电导率超过10-4S/cm的锂离子固体电解质,其化学计量式为Li5+x+2y+z-mLa3-xMgxAlyZrzNb2-y-zO12-mFm其中:x=0.1-0.5;y=0.1-0.2;z=0.1-0.2;m=0.1-0.3。 The present invention is achieved through the following technical solution. The technical solution provides a lithium ion solid electrolyte with a lithium ion conductivity exceeding 10 -4 S/cm, and its stoichiometric formula is Li 5+x+2y+zm La 3-x Mg xAlyZrzNb2 -yzO12-mFm where : x =0.1-0.5; y =0.1-0.2; z=0.1-0.2; m=0.1-0.3.

在该技术方案中,将Li2CO3∶La2O3∶MgO∶Al2O3∶ZrO2∶Nb2O5∶Li2F为2.25-2.9∶1.25-1.45∶0.1-0.5∶0.05-0.1∶0.1-0.2∶0.8-0.9∶0.1-0.3(摩尔比)的比例均匀混合,加入3%-10%的95%乙醇,在球磨机中以200-400转/分钟的转速球磨10-30小时,球磨结束后在60℃-80℃真空烘箱(真空度在10Pa-100Pa)中干燥10-30小时,取出后在玛瑙碾钵中重新研磨10-30分钟,研磨后的粉体以以5-10℃/分钟的速率升温到700-800℃保温5-10小时,而后以2-10℃/分钟的速率升温到900-1100℃保温10-30小时制成固态电解质粉体。该粉体混合1-5wt%结合剂(该结合剂为PVC或PVA)在压力机下以300-500MPa的压强下保持压力2-6分钟形成薄片,该薄片在空气气氛下以10-20℃/分钟的速率升温到900-1150℃保温10-30小时制成锂离子固体电解质薄片。如图1是组成为Li5.3La2.9Mg0.1Al0.1Zr0.1Nb1.8O11.9F0.1固态电解质薄片在电化学工作站下交流阻抗图,从图中计算出电导率为3.6x10-4S/cm。 In this technical solution, Li 2 CO 3 : La 2 O 3 : MgO: Al 2 O 3 : ZrO 2 : Nb 2 O 5 : Li 2 F is 2.25-2.9: 1.25-1.45: 0.1-0.5: 0.05- 0.1: 0.1-0.2: 0.8-0.9: 0.1-0.3 (molar ratio) and mix evenly, add 3%-10% 95% ethanol, ball mill in a ball mill at a speed of 200-400 rpm for 10-30 hours After ball milling, dry in a vacuum oven at 60°C-80°C (vacuum degree at 10Pa-100Pa) for 10-30 hours, take it out and re-grind it in an agate mortar for 10-30 minutes, and grind the powder with 5- The temperature is raised to 700-800°C at a rate of 10°C/min and kept for 5-10 hours, and then the temperature is raised to 900-1100°C at a rate of 2-10°C/min and kept for 10-30 hours to form a solid electrolyte powder. The powder is mixed with 1-5wt% binder (the binder is PVC or PVA) and kept under a pressure of 300-500MPa under a press for 2-6 minutes to form a thin sheet. Raise the temperature at a rate of 1/min to 900-1150° C. and keep it warm for 10-30 hours to make a lithium-ion solid electrolyte sheet. Figure 1 is the AC impedance diagram of the solid electrolyte sheet with the composition of Li 5.3 La 2.9 Mg 0.1 Al 0.1 Zr 0.1 Nb 1.8 O 11.9 F 0.1 under the electrochemical workstation, and the calculated conductivity is 3.6x10 -4 S/cm from the diagram.

与现有技术相比,本发明的优点在于:采用Mg2+,Al3+,Zr4+,F-离子共掺杂的石榴石型锂离子固体电解质Li5La3Nb2O12。通过Mg2+取代La3+,Al3+取代Nb5+的方式低价离子取代高价离子产生额外的填隙锂离子,增加晶格中迁移锂离子的数量;同时Mg2+的离子半径小于La3+,Al3+离子半径小于Nb5+离子半径,两者的协同作用使得La-O八面体和Nb-O八面体产生一定的收缩畸变,适度扩张锂离子的迁移通道截面,从而提高锂离子电导率;F-部分取代O2-,F-与O2-半径接近,但电负性强,晶格收缩,进一步增大锂离子迁移通道截面,提高锂离子迁移速率;Zr4+部分取代Nb5+有助于降低锂离子迁移活化能。这些协同作用较大地提高了该石榴石型固体锂离子电解质的电导率。非常有利于全固态锂离子电池的构建。 Compared with the prior art, the present invention has the advantages of adopting Mg 2+ , Al 3+ , Zr 4+ , and F- ions co - doped garnet-type lithium ion solid electrolyte Li 5 La 3 Nb 2 O 12 . By substituting Mg 2+ for La 3+ and Al 3+ for Nb 5+ , low-valent ions replace high-valent ions to generate additional interstitial lithium ions, increasing the number of migrating lithium ions in the lattice; at the same time, the ionic radius of Mg 2+ is less than The radius of La 3+ and Al 3+ ions is smaller than that of Nb 5+ ions. The synergistic effect of the two causes a certain shrinkage distortion of the La-O octahedron and Nb-O octahedron, which moderately expands the cross-section of the migration channel of lithium ions, thereby improving Lithium ion conductivity; F - partially replaces O 2- , F - is close to O 2 - in radius, but has strong electronegativity and lattice shrinkage, which further increases the cross section of lithium ion migration channel and improves lithium ion migration rate; Zr 4+ Partial substitution of Nb 5+ helps to reduce the activation energy of lithium ion migration. These synergistic effects greatly enhance the conductivity of the garnet-type solid Li-ion electrolyte. It is very beneficial to the construction of all-solid-state lithium-ion batteries.

附图说明 Description of drawings

图1为锂离子固体电解质薄片在电化学工作站下的交流阻抗图、频率-阻抗及频率-相位图。 Figure 1 is the AC impedance diagram, frequency-impedance and frequency-phase diagram of the lithium-ion solid electrolyte sheet under the electrochemical workstation.

具体实施方式 detailed description

以下结合实施实例对本发明作进一步详细描述。 The present invention will be described in further detail below in conjunction with the implementation examples.

实施例1:将Li2CO3∶La2O3∶MgO∶Al2O3∶ZrO2∶Nb2O5∶Li2F为2.55∶1.41∶0.18∶0.06∶0.13∶0.875∶0.15(摩尔比)的比例均匀混合,加入3.2%的95%乙醇,在球磨机中以250转/分钟的转速球磨10小时,球磨结束后在60℃真空烘箱(真空度20Pa)中干燥10小时,取出后在玛瑙碾钵中重新研磨30分钟,研磨后的粉体以5℃/分钟的速率升温到720℃保温10小时,而后以3℃/分钟的速率升温到900℃保温11小时制成固态电解质粉体。该粉体混合2wt%结合剂PVC在压力机下以300MPa的压强下保持压力5分钟形成薄片,该薄片在空气气氛下以11℃/分钟的速率升温到1000℃保温10小时制成锂离子固体电解质薄片。 Example 1: Li 2 CO 3 : La 2 O 3 : MgO: Al 2 O 3 : ZrO 2 : Nb 2 O 5 : Li 2 F is 2.55: 1.41: 0.18: 0.06: 0.13: 0.875: 0.15 (molar ratio ) in a uniform mixing ratio, add 3.2% of 95% ethanol, ball mill with a speed of 250 rev/min for 10 hours in a ball mill, dry in a 60°C vacuum oven (vacuum degree 20Pa) for 10 hours after the ball mill finishes, take it out and place it on agate Re-grind in the mortar for 30 minutes. The ground powder is heated at a rate of 5 °C/min to 720 °C for 10 hours, and then heated at a rate of 3 °C/min to 900 °C for 11 hours to make a solid electrolyte powder. The powder is mixed with 2wt% binder PVC and kept under a pressure of 300MPa under a press for 5 minutes to form a thin sheet. The thin sheet is heated to 1000°C at a rate of 11°C/min and kept for 10 hours in an air atmosphere to make a lithium ion solid Electrolyte sheets.

实施例2:将Li2CO3∶La2O3∶MgO∶Al2O3∶ZrO2∶Nb2O5∶Li2F为2.66∶1.3∶0.4∶0.07∶0.12∶0.87∶0.16(摩尔比)的比例均匀混合,加入8.5%的95%乙醇,在球磨机中以380转/分钟的转速球磨15小时,球磨结束后在80℃真空烘箱(真空度95Pa)中干燥30小时,取出后在玛瑙碾钵中重新研磨30分钟,研磨后的粉体以8℃/分钟的速率升温到780℃保温10小时,而后以7℃/分钟的速率升温到950℃保温15小时制成固态电解质粉体。该粉体混合5wt%结合剂PVC在压力机下以450MPa的压强下保持压力2分钟形成薄片,该薄片空气气氛下以15℃/分钟的速率升温到1050℃保温10小时制成锂离子固体电解质薄片。 Example 2: Li 2 CO 3 : La 2 O 3 : MgO: Al 2 O 3 : ZrO 2 : Nb 2 O 5 : Li 2 F is 2.66: 1.3: 0.4: 0.07: 0.12: 0.87: 0.16 (molar ratio ) in a uniform mixing ratio, add 8.5% of 95% ethanol, ball mill with a speed of 380 rev/min for 15 hours in a ball mill, dry in a vacuum oven (vacuum degree 95Pa) at 80°C for 30 hours after ball milling, take it out and place it on agate Re-grind in the mortar for 30 minutes, and the ground powder is heated to 780°C at a rate of 8°C/min for 10 hours, and then heated to 950°C at a rate of 7°C/min for 15 hours to make a solid electrolyte powder. The powder is mixed with 5wt% binder PVC and kept under a pressure of 450MPa under a press for 2 minutes to form a thin sheet. The thin sheet is heated to 1050°C at a rate of 15°C/min and kept for 10 hours in an air atmosphere to make a lithium-ion solid electrolyte. Flakes.

实施例3:将Li2CO3∶La2O3∶MgO∶Al2O3∶ZrO2∶Nb2O5∶Li2F为2.55∶1.45∶0.1∶0.05∶0.1∶0.9∶0.10(摩尔比)的比例均匀混合,加入3%的95%乙醇,在球磨机中以300转/分钟的转速球磨20小时,球磨结束后在70℃真空烘箱(真空度50Pa)中干燥20小时,取出后在玛瑙碾钵中重新研磨10分钟,研磨后的粉体以10℃/分钟的速率升温到800℃保温7小时,而后以2℃/分钟的速率升温到1100℃保温12小时制成固态电解质粉体。该粉体混合1wt%结合剂PVA在压力机下以300MPa的压强下保持压力6分钟形成薄片,该薄片在空气气氛下以15℃/分钟的速率升温到1150℃保温28小时制成锂离子固体电解质薄片。 Example 3: Li 2 CO 3 : La 2 O 3 : MgO: Al 2 O 3 : ZrO 2 : Nb 2 O 5 : Li 2 F is 2.55: 1.45: 0.1: 0.05: 0.1: 0.9: 0.10 (molar ratio ) in a uniform mixing ratio, add 3% 95% ethanol, ball mill with a speed of 300 rev/min for 20 hours in a ball mill, dry in a 70°C vacuum oven (vacuum degree 50Pa) for 20 hours after ball milling, take it out and put it on agate Re-grind in the mortar for 10 minutes. The ground powder is heated at a rate of 10 °C/min to 800 °C for 7 hours, and then heated at a rate of 2 °C/min to 1100 °C for 12 hours to make a solid electrolyte powder. The powder is mixed with 1wt% binder PVA and kept under a pressure of 300MPa under a press for 6 minutes to form a thin sheet. The thin sheet is heated to 1150°C at a rate of 15°C/min and kept for 28 hours in an air atmosphere to make a lithium ion solid Electrolyte sheets.

实施例4:将Li2CO3∶La2O3∶MgO∶Al2O3∶ZrO2∶Nb2O5∶Li2F为2.565∶1.35∶0.3∶0.07∶0.15∶0.855∶0.2(摩尔比)的比例均匀混合,加入9%的95%乙醇,在球磨机中以390转/分钟的转速球磨29小时,球磨结束后在80℃真空烘箱(真空度100Pa)中干燥10小时,取出后在玛瑙碾钵中重新研磨20分钟,研磨后的粉体以8℃/分钟的速率升温到750℃保温5小时,而后以9℃/分钟的速率升温到1000℃保温20小时制成固态电解质粉体。该粉体混合2.6wt%结合剂PVA在压力机下以400MPa的压强下保持压力4分钟形成薄片,该薄片在空气气氛下以20℃/分钟的速率升温到1050℃保温18小时制成锂离子固体电解质薄片。 Example 4: Li 2 CO 3 : La 2 O 3 : MgO: Al 2 O 3 : ZrO 2 : Nb 2 O 5 : Li 2 F is 2.565: 1.35: 0.3: 0.07: 0.15: 0.855: 0.2 (molar ratio ) ratio evenly mixed, added 9% of 95% ethanol, ball milled at a speed of 390 revs/min for 29 hours in a ball mill, dried in a vacuum oven (vacuum degree 100Pa) at 80° C. for 10 hours after ball milling, and placed on agate Re-grind in the mortar for 20 minutes. The ground powder is heated at a rate of 8 °C/min to 750 °C for 5 hours, and then heated at a rate of 9 °C/min to 1000 °C for 20 hours to make a solid electrolyte powder. The powder is mixed with 2.6wt% binder PVA and kept under a pressure of 400MPa under a press for 4 minutes to form a thin sheet. The thin sheet is heated to 1050°C at a rate of 20°C/min and kept for 18 hours in an air atmosphere to produce lithium ion. Solid Electrolyte Sheets.

实施例5:将Li2CO3∶La2O3∶MgO∶Al2O3∶ZrO2∶Nb2O5∶Li2F为2.6∶1.25∶0.5∶0.1∶0.2∶0.8∶0.3(摩尔比)的比例均匀混合,加入6%的95%乙醇,在球磨机中以210转/分钟的转速球磨10小时,球磨结束后在60℃真空烘箱(真空度20Pa)中干燥30小时,取出后在玛瑙碾钵中重新研磨30分钟,研磨后的粉体以5℃/分钟的速率升温到710℃保温10小时,而后以6℃/分钟的速率升温到900℃保温28小时制成固态电解质粉体。该粉体混合5wt%结合剂PVC在压力机下以500MPa的压强下保持压力2分钟形成薄片,该薄片在空气气氛下以10℃/分钟的速率升温到900℃保温10小时制成锂离子固体电解质薄片。 Example 5: Li 2 CO 3 : La 2 O 3 : MgO: Al 2 O 3 : ZrO 2 : Nb 2 O 5 : Li 2 F is 2.6: 1.25: 0.5: 0.1: 0.2: 0.8: 0.3 (molar ratio ) was evenly mixed in proportion, added 6% of 95% ethanol, and ball milled for 10 hours at a speed of 210 revs/min in a ball mill. After ball milling, dried in a vacuum oven (vacuum degree 20Pa) at 60°C for 30 hours, and placed on agate after taking out Re-grind in the mortar for 30 minutes. The ground powder is heated to 710°C at a rate of 5°C/min and kept for 10 hours, and then heated to 900°C at a rate of 6°C/min for 28 hours to make a solid electrolyte powder. The powder is mixed with 5wt% binder PVC and kept under a pressure of 500MPa under a press for 2 minutes to form a thin sheet, which is heated to 900°C at a rate of 10°C/min and kept for 10 hours in an air atmosphere to make a lithium ion solid Electrolyte sheets.

Claims (2)

1. a Mg 2+, Al 3+, Zr 4+, F -ion co-doped carbuncle type lithium ion solid electrolyte, is characterized in that its stoichiometric equation is Li 5+x+2y+z-mla 3-xmg xal yzr znb 2-y-zo 12-mf m, wherein: x=0.1-0.5; Y=0.1-0.2; Z=0.1-0.2; M=0.1-0.3; Described solid electrolyte is adopted and is prepared with the following method: by Li 2cO 3: La 2o 3: MgO: Al 2o 3: ZrO 2: Nb 2o 5: Li 2f, with the ratio uniform mixing of mol ratio 2.25-2.9: 1.25-1.45: 0.1-0.5: 0.05-0.1: 0.1-0.2: 0.8-0.9: 0.1-0.3, adds 95% ethanol of 3%-10%, with the rotating speed ball milling 10-30 hour of 200-400 rev/min in ball mill.
2. carbuncle type lithium ion solid electrolyte according to claim 1, is characterized in that the normal temperature lithium ion conductivity of the thin slice of the described solid electrolyte obtained is greater than 10 -4s/cm.
CN201210269172.XA 2012-07-18 2012-07-18 A kind of Mg 2+, Al 3+, Zr 4+, F -ion co-doped garnet-type solid electrolyte Expired - Fee Related CN102780031B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210269172.XA CN102780031B (en) 2012-07-18 2012-07-18 A kind of Mg 2+, Al 3+, Zr 4+, F -ion co-doped garnet-type solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210269172.XA CN102780031B (en) 2012-07-18 2012-07-18 A kind of Mg 2+, Al 3+, Zr 4+, F -ion co-doped garnet-type solid electrolyte

Publications (2)

Publication Number Publication Date
CN102780031A CN102780031A (en) 2012-11-14
CN102780031B true CN102780031B (en) 2016-03-30

Family

ID=47124863

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210269172.XA Expired - Fee Related CN102780031B (en) 2012-07-18 2012-07-18 A kind of Mg 2+, Al 3+, Zr 4+, F -ion co-doped garnet-type solid electrolyte

Country Status (1)

Country Link
CN (1) CN102780031B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3904283A4 (en) * 2018-12-28 2022-03-09 Panasonic Intellectual Property Management Co., Ltd. SOLID ELECTROLYTE MATERIAL AND BATTERY WITH USE THEREOF

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5970060B2 (en) * 2012-03-02 2016-08-17 日本碍子株式会社 Solid electrolyte ceramic material and manufacturing method thereof
CN104591231B (en) * 2013-10-31 2019-04-16 中国科学院上海硅酸盐研究所 Fluorine-containing garnet structure lithium ion oxide ceramics
JP6672848B2 (en) * 2015-03-10 2020-03-25 Tdk株式会社 Lithium ion conductive oxide ceramic material having garnet type or garnet type similar crystal structure
WO2020137153A1 (en) 2018-12-28 2020-07-02 パナソニックIpマネジメント株式会社 Solid electrolyte material and battery using same
EP3905272B1 (en) * 2018-12-28 2023-01-18 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery using same
US11837695B2 (en) 2019-08-05 2023-12-05 Samsung Electronics Co., Ltd. Oxide, method of preparing the same, solid electrolyte including the oxide, and electrochemical device including the oxide
US20220246983A1 (en) * 2019-08-07 2022-08-04 Tdk Corporation Solid electrolyte, solid electrolyte layer, and solid electrolyte cell
CN113130976A (en) * 2019-12-30 2021-07-16 天津国安盟固利新材料科技股份有限公司 Garnet type solid electrolyte and preparation method thereof
CN115398694A (en) * 2020-04-30 2022-11-25 松下知识产权经营株式会社 Solid electrolyte material and battery using the same
WO2021220578A1 (en) * 2020-04-30 2021-11-04 パナソニックIpマネジメント株式会社 Solid electrolyte material and battery using same
JP7171826B1 (en) 2021-06-02 2022-11-15 住友化学株式会社 Method for producing lithium-containing oxide and solid electrolyte
JPWO2023074143A1 (en) * 2021-10-28 2023-05-04
CN114171787B (en) * 2021-12-07 2024-04-16 四川大学 Mg (magnesium) 2+ Doped modified NASCION sodium ion solid electrolyte and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101014540A (en) * 2004-03-06 2007-08-08 维尔纳·韦普内 Chemically stable solid lithium ion conductors
CN102292849A (en) * 2010-01-22 2011-12-21 丰田自动车株式会社 Negative electrode structure for aqueous electrolyte battery, and aqueous electrolyte battery comprising the negative electrode structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9034525B2 (en) * 2008-06-27 2015-05-19 Johnson Ip Holding, Llc Ionically-conductive amorphous lithium lanthanum zirconium oxide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101014540A (en) * 2004-03-06 2007-08-08 维尔纳·韦普内 Chemically stable solid lithium ion conductors
CN102292849A (en) * 2010-01-22 2011-12-21 丰田自动车株式会社 Negative electrode structure for aqueous electrolyte battery, and aqueous electrolyte battery comprising the negative electrode structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GENERATION OF "TYPE II" Fe4+ IONS IN Ca2+ AND F- DOPED YTTRIUM IRON GARNET;L.Y. LIU等;《Journal of Magnetism and Magnetic Materials》;19890131;第78卷(第1期);全文 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3904283A4 (en) * 2018-12-28 2022-03-09 Panasonic Intellectual Property Management Co., Ltd. SOLID ELECTROLYTE MATERIAL AND BATTERY WITH USE THEREOF

Also Published As

Publication number Publication date
CN102780031A (en) 2012-11-14

Similar Documents

Publication Publication Date Title
CN102780031B (en) A kind of Mg 2+, Al 3+, Zr 4+, F -ion co-doped garnet-type solid electrolyte
CN102867988B (en) A B3+, Al3+, Ti4+, Y3+, F- co-doped solid electrolyte Li7La3Zr2O12
CN102780028B (en) Four-component iron co-doped garnet type solid electrolyte
CN102867987B (en) A B3+, al3+, mg2+, Y3+, F- codoped solid electrolyte Li7La3Zr2O12
CN102456918B (en) A NASICON solid Li-ion electrolyte co-doped with F-, Zn2+, B3+ ions
CN102456919B (en) A NASICON solid Li-ion electrolyte co-doped with Zn2+ and B3+ ions
CN102769147B (en) A Mg2+, Al3+, Zr4+, S2- ion co-doped garnet-type solid electrolyte
CN102867985B (en) A B3+, Al3+, Mg2+, Y3+, S2- co-doped solid electrolyte Li7La3Zr2O12
CN102780029B (en) A kind of three component cation codope carbuncle type solid lithium-ion electrolytes
CN102780030B (en) Four-component cation and anion co-doped garnet-type solid electrolyte
CN102867986B (en) A B3+, Al3+, Ti4+, Y3+ four-component cation co-doped solid electrolyte Li7La3Zr2O12
CN102856584B (en) A B3+, Al3+, Ti4+, Y3+, S2- co-doped solid electrolyte Li7La3Zr2O12
CN111276734B (en) Solid electrolyte conducting potassium ions, preparation method and potassium solid battery
CN110372350A (en) A kind of B3+、Al3+The K of ion collaboration doping6Si2O7Potassium fast-ionic conductor and preparation method
CN102456917B (en) A NASICON-type solid lithium-ion electrolyte co-doped with F- and Zn2+ ions
CN109698382B (en) A kind of lithium ion solid electrolyte and preparation method thereof
CN110372357A (en) A kind of P5+、Al3+、B3+The K of ion collaboration doping2MgSi5O12Potassium fast-ionic conductor and preparation method thereof
CN110265706A (en) A K6Si2O7 Potassium Fast Ion Conductor Co-doped with P5+, Al3+, B3+ Ions Co-doped by Electric Field Induced Crystallization and Its Preparation Method
CN110372348A (en) A kind of electric field induction crystallization K6.15Zn0.05B0.2Al0.1P0.05Zr0.05Si1.6O7Potassium fast-ionic conductor and preparation method
CN110526697A (en) A kind of liquid phase synthesis K6.25Be0.1Al0.1P0.05Ti0.05Si1.7O7Potassium fast-ionic conductor and preparation method thereof
CN110371997A (en) A kind of P5+、Al3+、Be2+The K of ion collaboration doping2MgSi5O12Potassium fast-ionic conductor and preparation method thereof
CN110371995A (en) A kind of electric field induction crystallization P5+、Al3+、Be2+Cooperate with the K of doping2MgSi5O12Potassium fast-ionic conductor and preparation method thereof
CN110350250A (en) A kind of P5+、Al3+、B3+The K of ion collaboration doping6Si2O7Potassium fast-ionic conductor and preparation method thereof
CN110372351A (en) A kind of P5+、Al3+The K of ion collaboration doping6Si2O7Potassium fast-ionic conductor and preparation method thereof
CN110371996A (en) A kind of Al3+、B3+The K of ion collaboration doping2MgSi5O12Potassium fast-ionic conductor and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160330

Termination date: 20180718