CN102780031B - A kind of Mg 2+, Al 3+, Zr 4+, F -ion co-doped garnet-type solid electrolyte - Google Patents
A kind of Mg 2+, Al 3+, Zr 4+, F -ion co-doped garnet-type solid electrolyte Download PDFInfo
- Publication number
- CN102780031B CN102780031B CN201210269172.XA CN201210269172A CN102780031B CN 102780031 B CN102780031 B CN 102780031B CN 201210269172 A CN201210269172 A CN 201210269172A CN 102780031 B CN102780031 B CN 102780031B
- Authority
- CN
- China
- Prior art keywords
- solid electrolyte
- lithium ion
- ion
- hours
- conductivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Conductive Materials (AREA)
- Secondary Cells (AREA)
Abstract
A kind of Mg
2+, Al
3+, Zr
4+, F
-ion co-doped carbuncle type lithium ion solid electrolyte Li
5la
3nb
2o
12, it is characterized in that stoichiometric equation is Li
5+x+2y+z-mla
3-xmg
xal
yzr
znb
2-y-zo
12-mf
mwherein: x=0.1-0.5; Y=0.1-0.2; Z=0.1-0.2; M=0.1-0.3; By Li
2cO
3: La
2o
3: MgO: Al
2o
3: ZrO
2: Nb
2o
5: Li
2f is the ratio uniform mixing of 2.25-2.9: 1.25-1.45: 0.1-0.5: 0.05-0.1: 0.1-0.2: 0.8-0.9: 0.1-0.3 (mol ratio), forms through ball milling, compacting, sintering; Can obtain and be greater than 10
-4the room temperature lithium ion conductivity of S/cm.
Description
Technical field
The present invention relates to a kind of solid lithium-ion electrolyte and manufacture field.
Background technology
Lithium ion battery have volume, weight energy than high, voltage is high, self-discharge rate is low, memory-less effect, have extended cycle life, the high absolute advantage of power density, have in global portable power source market and exceed 30,000,000,000 dollars of/year shares and the occupation rate of market far exceeding other batteries, the chemical power source [Wu Yuping most with market development prospect, Wan Chunrong, Jiang Changyin, lithium rechargeable battery, Beijing: Chemical Industry Press, 2002.].Lithium rechargeable battery major part employing both at home and abroad is liquid electrolyte at present, liquid lithium ionic cell has some unfavorable factors, as: liquid organic electrolyte may be revealed, blast at too high a temperature thus cause security incident, the occasion that some are high to security requirement cannot be applied in; Liquid electrolyte lithium ion battery ubiquity Capacity fading problem, uses after a period of time due to electrode active material dissolving in the electrolyte, reaction and degradation failure [Z.R.Zhang, Z.L.Gong, andY.Yang, J.Phys.Chem.B, 108,2004,17546.].And all-solid-state battery fail safe is high, substantially do not have Capacity fading, solid electrolyte also serves the effect of barrier film, simplifies the structure of battery; In addition, due to without the need to isolated air, also simplify the requirement to equipment in production process, configuration design also more convenient and flexible [Wen Zhaoyin, Zhu Xiujian, the Xu Xiaoxiong etc. of battery, the research of solid state secondary battery, the 12 Chinese solid-state ionics academic meeting paper collection, 2004.]。
In all-solid lithium-ion battery, the rate determining step that the migration rate of charge carrier in solid electrolyte is often far smaller than the ion diffusion rates in the Charger transfer of electrode surface and positive electrode and becomes in whole electrode reaction dynamics, therefore development has the inorganic solid electrolyte of higher li ionic conductivity is the key place building high performance lithium ion battery.The solid lithium-ion electrolyte with Practical significance will be researched and developed in addition, require that it can have good stability (to carbon dioxide and moisture stabilization) in the environment simultaneously, in order to enable the all-solid-state battery of composition use lithium metal to have high energy density as negative pole, also wish that solid state electrolysis mass-energy is stablized lithium metal and has higher decomposition voltage.Lithium ion solid electrolyte from having report at present: LLTO (Li, La) TiO
3solid electrolyte has very high intracrystalline conductivity (10
-3about S/cm) and higher normal temperature total conductivity (10
-4s/cm-10
-5s/cm), but LLTO decomposition voltage is low, cannot form the above all-solid-state battery of discharge voltage 3.7V and unstable to lithium anode; There is the LiM of NASICON type polycrystalline
2(PO
4)
3(M=Ti, Ge, Zr) is by tetrahedron PO
4with octahedra MO
6the grid structure of common composition, the coordination creating structural hole and can fill, making it possible to a large amount of Li ions, is a kind of up-and-coming high-lithium ion conductivity solid electrolyte.By the replacement of aliovalent ion, introducing hole or calking lithium ion can further improve ionic conductivity [XiaoxiongXu, ZhaoyinWen, ZhonghuaGu, etal., SolidStateIonics, 171,2004,207-212.] in the structure.As the Li that [woods ancestral Zuxiang, Li Shichun, silicate journal, 9 (3), 1981,253-257.] such as woods ancestral Zuxiang, Li Shichun find
1+xti
2-xga
xp
3o
12, Li
1+2xti
2-xmgxP
3o
12, Li
1+xge
2-xcrxP
30
12, Li
1+xge
2-xal
xp
3o
12, Li
1+xti
2-xin
xp
3o
12etc. system or other are as Li
1+2x+2yal
xmg
yti
2-x-ysi
xp
3-xo
12, Li
1+x+yal
xti
2-xsi
yp
3-yo
12, Li
1+xal
xti
2-xp
3o
12etc. system, all there is higher lithium ion conductivity.But the normal temperature lithium ion conductivity of these systems is usually 10
-4s/cm-10
-6between S/cm, the requirement of non-film lithium ion battery to electrolytic conductivity can't be met very well.NASICON system is unstable to lithium anode equally in addition.W.Weppner etc. proposed a kind of solid electrolyte Li of new garnet structure in 2003
5la
3m
2o
12(M=Nb, Ta) (Thangadurai, V., H.Kaack, etal., JournaloftheAmericanCeramicSociety, 86 (3) 2003,437-440.), this solid electrolytic confrontation lithium anode or even motlten metal lithium all highly stable, be the solid electrolyte that all-solid lithium-ion battery has using value.But pure Li
5la
3m
2o
12the electrical conductivity at room temperature of (M=Nb, Ta) only has 10
-6about S/cm.W.Weppner etc. reported K again in 2006
+, In
3+the Li of single ion doping
5la
3m
2o
12(M=Nb, Ta) (Thangadurai, V.andW.Weppner, JournalofSolidStateChemistry179 (4), 2006,974-984.).Normal temperature ionic conductivity has been brought up to 10
-5the S/cm order of magnitude.But the requirement of non-film lithium ion battery to electrolytic conductivity can't be met very well.
Ion doping improves a kind of very effective mode of solid lithium ion electrolytic conductivity, but the interaction of Doped ions and matrix is very complicated, the characteristic such as size, electronic structure, electronegativity of Doped ions all has a significant impact the ion conductivity of parent, and have interaction between different Doped ions, be promote lithium ion mobility or suppress the degree of lithium ion mobility and promotion and suppression all can have very large difference along with the ionic species mixed and concentration.The selection of Doped ions should meet transmission bottleneck and Li as far as possible in principle
+radius size is mated, Li
+, vacancy concentration weak with skeleton ionic bonding forces and Li
+moderate three conditions of ratio of concentration.The lithium ion mobility mechanism of this garnet-type solid electrolyte also not yet complete studied personnel is understood.Therefore the Garnet-type solid electrolyte of contamination to exploitation high-lithium ion conductivity studying Doped ions further has very important meaning.
Summary of the invention
Technical problem to be solved by this invention is a kind of Mg provided for existing background technology
2+, Al
3+, Zr
4+, F
-ion co-doped carbuncle type lithium ion solid electrolyte Li
5la
3nb
2o
12.First Mg is passed through
2+replace La
3+, Al
3+replace Nb
5+mode at a low price ionic compartmentation high valence ion produce extra calking lithium ion, increase the quantity of moving lithium ion in lattice; Mg simultaneously
2+ionic radius be less than La
3+, Al
3+ionic radius is less than Nb
5+ionic radius, both synergies make the contraction distortion that La-O is octahedra and the generation of Nb-O octahedron is certain, the migrating channels cross section of proper expand lithium ion, thus improve lithium ion conductivity; F
-part replaces O
2-, F
-with O
2-radius is close, but electronegativity is strong, and Lattice Contraction increases lithium ion mobility channel cross-section further, improves lithium ion mobility speed; Zr
4+part replaces Nb
5+contribute to reducing lithium ion mobility activation energy.These synergies make the normal temperature ionic conductivity of this solid electrolyte more than 10
-4s/cm, more close to the ionic conductivity of liquid electrolyte.
The present invention reaches by the following technical solutions, and this technical scheme provides a kind of lithium ion conductivity more than 10
-4the lithium ion solid electrolyte of S/cm, its stoichiometric equation is Li
5+x+2y+z-mla
3-xmg
xal
yzr
znb
2-y-zo
12-mf
mwherein: x=0.1-0.5; Y=0.1-0.2; Z=0.1-0.2; M=0.1-0.3.
In this technical scheme, by Li
2cO
3: La
2o
3: MgO: Al
2o
3: ZrO
2: Nb
2o
5: Li
2f is the ratio uniform mixing of 2.25-2.9: 1.25-1.45: 0.1-0.5: 0.05-0.1: 0.1-0.2: 0.8-0.9: 0.1-0.3 (mol ratio), add 95% ethanol of 3%-10%, with the rotating speed ball milling 10-30 hour of 200-400 rev/min in ball mill, after ball milling terminates in 60 DEG C of-80 DEG C of vacuum drying ovens (vacuum degree is at 10Pa-100Pa) dry 10-30 hour, grind in alms bowl at agate after taking-up and again grind 10-30 minute, powder after grinding is to be incubated 5-10 hour with the ramp of 5-10 DEG C/min to 700-800 DEG C, then within 10-30 hour, make solid electrolyte powder with the ramp of 2-10 DEG C/min to 900-1100 DEG C of insulation.This powder mixing 1-5wt% bonding agent (this bonding agent is PVC or PVA) is to keep under the pressure of 300-500MPa forming thin slice in pressure 2-6 minute under forcing press, and this thin slice makes lithium ion solid electrolyte thin slice in 10-30 hour with the ramp of 10-20 DEG C/min to 900-1150 DEG C of insulation in air atmosphere.As Fig. 1 consists of Li
5.3la
2.9mg
0.1al
0.1zr
0.1nb
1.8o
11.9f
0.1solid electrolyte sheet is AC impedance figure under electrochemical workstation, and from figure, calculate conductivity is 3.6x10
-4s/cm.
Compared with prior art, the invention has the advantages that: adopt Mg
2+, Al
3+, Zr
4+, F
-ion co-doped carbuncle type lithium ion solid electrolyte Li
5la
3nb
2o
12.Pass through Mg
2+replace La
3+, Al
3+replace Nb
5+mode at a low price ionic compartmentation high valence ion produce extra calking lithium ion, increase the quantity of moving lithium ion in lattice; Mg simultaneously
2+ionic radius be less than La
3+, Al
3+ionic radius is less than Nb
5+ionic radius, both synergies make the contraction distortion that La-O is octahedra and the generation of Nb-O octahedron is certain, the migrating channels cross section of proper expand lithium ion, thus improve lithium ion conductivity; F
-part replaces O
2-, F
-with O
2-radius is close, but electronegativity is strong, and Lattice Contraction increases lithium ion mobility channel cross-section further, improves lithium ion mobility speed; Zr
4+part replaces Nb
5+contribute to reducing lithium ion mobility activation energy.These synergies improve the conductivity of this carbuncle type solid lithium-ion electrolyte significantly.Be very beneficial for the structure of all-solid lithium-ion battery.
Accompanying drawing explanation
Fig. 1 is the AC impedance figure of lithium ion solid electrolyte thin slice under electrochemical workstation, frequency versus impedance and frequency-phase figure.
Embodiment
Below in conjunction with embodiment, the present invention is described in further detail.
Embodiment 1: by Li
2cO
3: La
2o
3: MgO: Al
2o
3: ZrO
2: Nb
2o
5: Li
2f is the ratio uniform mixing of 2.55: 1.41: 0.18: 0.06: 0.13: 0.875: 0.15 (mol ratio), add 95% ethanol of 3.2%, with the rotating speed ball milling 10 hours of 250 revs/min in ball mill, the middle drying of 60 DEG C of vacuum drying ovens (vacuum degree 20Pa) 10 hours after ball milling terminates, grind in alms bowl at agate after taking-up and again grind 30 minutes, powder after grinding to 720 DEG C of insulations 10 hours, then makes solid electrolyte powder in 11 hours with the ramp of 3 DEG C/min to 900 DEG C of insulations with the ramp of 5 DEG C/min.This powder mixing 2wt% bonding agent PVC is to keep pressure to form thin slice in 5 minutes under forcing press under the pressure of 300MPa, this thin slice makes lithium ion solid electrolyte thin slice in 10 hours with the ramp of 11 DEG C/min to 1000 DEG C of insulations in air atmosphere.
Embodiment 2: by Li
2cO
3: La
2o
3: MgO: Al
2o
3: ZrO
2: Nb
2o
5: Li
2f is the ratio uniform mixing of 2.66: 1.3: 0.4: 0.07: 0.12: 0.87: 0.16 (mol ratio), add 95% ethanol of 8.5%, with the rotating speed ball milling 15 hours of 380 revs/min in ball mill, the middle drying of 80 DEG C of vacuum drying ovens (vacuum degree 95Pa) 30 hours after ball milling terminates, grind in alms bowl at agate after taking-up and again grind 30 minutes, powder after grinding to 780 DEG C of insulations 10 hours, then makes solid electrolyte powder in 15 hours with the ramp of 7 DEG C/min to 950 DEG C of insulations with the ramp of 8 DEG C/min.This powder mixing 5wt% bonding agent PVC to keep pressure to form thin slice in 2 minutes under the pressure of 450MPa, makes lithium ion solid electrolyte thin slice in 10 hours with the ramp of 15 DEG C/min to 1050 DEG C of insulations under this thin slice air atmosphere under forcing press.
Embodiment 3: by Li
2cO
3: La
2o
3: MgO: Al
2o
3: ZrO
2: Nb
2o
5: Li
2f is the ratio uniform mixing of 2.55: 1.45: 0.1: 0.05: 0.1: 0.9: 0.10 (mol ratio), add 95% ethanol of 3%, with the rotating speed ball milling 20 hours of 300 revs/min in ball mill, the middle drying of 70 DEG C of vacuum drying ovens (vacuum degree 50Pa) 20 hours after ball milling terminates, grind in alms bowl at agate after taking-up and again grind 10 minutes, powder after grinding to 800 DEG C of insulations 7 hours, then makes solid electrolyte powder in 12 hours with the ramp of 2 DEG C/min to 1100 DEG C of insulations with the ramp of 10 DEG C/min.This powder mixing 1wt% bonding agent PVA is to keep pressure to form thin slice in 6 minutes under forcing press under the pressure of 300MPa, this thin slice makes lithium ion solid electrolyte thin slice in 28 hours with the ramp of 15 DEG C/min to 1150 DEG C of insulations in air atmosphere.
Embodiment 4: by Li
2cO
3: La
2o
3: MgO: Al
2o
3: ZrO
2: Nb
2o
5: Li
2f is the ratio uniform mixing of 2.565: 1.35: 0.3: 0.07: 0.15: 0.855: 0.2 (mol ratio), add 95% ethanol of 9%, with the rotating speed ball milling 29 hours of 390 revs/min in ball mill, the middle drying of 80 DEG C of vacuum drying ovens (vacuum degree 100Pa) 10 hours after ball milling terminates, grind in alms bowl at agate after taking-up and again grind 20 minutes, powder after grinding to 750 DEG C of insulations 5 hours, then makes solid electrolyte powder in 20 hours with the ramp of 9 DEG C/min to 1000 DEG C of insulations with the ramp of 8 DEG C/min.This powder mixing 2.6wt% bonding agent PVA is to keep pressure to form thin slice in 4 minutes under forcing press under the pressure of 400MPa, this thin slice makes lithium ion solid electrolyte thin slice in 18 hours with the ramp of 20 DEG C/min to 1050 DEG C of insulations in air atmosphere.
Embodiment 5: by Li
2cO
3: La
2o
3: MgO: Al
2o
3: ZrO
2: Nb
2o
5: Li
2f is the ratio uniform mixing of 2.6: 1.25: 0.5: 0.1: 0.2: 0.8: 0.3 (mol ratio), add 95% ethanol of 6%, with the rotating speed ball milling 10 hours of 210 revs/min in ball mill, the middle drying of 60 DEG C of vacuum drying ovens (vacuum degree 20Pa) 30 hours after ball milling terminates, grind in alms bowl at agate after taking-up and again grind 30 minutes, powder after grinding to 710 DEG C of insulations 10 hours, then makes solid electrolyte powder in 28 hours with the ramp of 6 DEG C/min to 900 DEG C of insulations with the ramp of 5 DEG C/min.This powder mixing 5wt% bonding agent PVC is to keep pressure to form thin slice in 2 minutes under forcing press under the pressure of 500MPa, this thin slice makes lithium ion solid electrolyte thin slice in 10 hours with the ramp of 10 DEG C/min to 900 DEG C of insulations in air atmosphere.
Claims (2)
1. a Mg
2+, Al
3+, Zr
4+, F
-ion co-doped carbuncle type lithium ion solid electrolyte, is characterized in that its stoichiometric equation is Li
5+x+2y+z-mla
3-xmg
xal
yzr
znb
2-y-zo
12-mf
m, wherein: x=0.1-0.5; Y=0.1-0.2; Z=0.1-0.2; M=0.1-0.3; Described solid electrolyte is adopted and is prepared with the following method: by Li
2cO
3: La
2o
3: MgO: Al
2o
3: ZrO
2: Nb
2o
5: Li
2f, with the ratio uniform mixing of mol ratio 2.25-2.9: 1.25-1.45: 0.1-0.5: 0.05-0.1: 0.1-0.2: 0.8-0.9: 0.1-0.3, adds 95% ethanol of 3%-10%, with the rotating speed ball milling 10-30 hour of 200-400 rev/min in ball mill.
2. carbuncle type lithium ion solid electrolyte according to claim 1, is characterized in that the normal temperature lithium ion conductivity of the thin slice of the described solid electrolyte obtained is greater than 10
-4s/cm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210269172.XA CN102780031B (en) | 2012-07-18 | 2012-07-18 | A kind of Mg 2+, Al 3+, Zr 4+, F -ion co-doped garnet-type solid electrolyte |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210269172.XA CN102780031B (en) | 2012-07-18 | 2012-07-18 | A kind of Mg 2+, Al 3+, Zr 4+, F -ion co-doped garnet-type solid electrolyte |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102780031A CN102780031A (en) | 2012-11-14 |
CN102780031B true CN102780031B (en) | 2016-03-30 |
Family
ID=47124863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210269172.XA Expired - Fee Related CN102780031B (en) | 2012-07-18 | 2012-07-18 | A kind of Mg 2+, Al 3+, Zr 4+, F -ion co-doped garnet-type solid electrolyte |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102780031B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3904283A4 (en) * | 2018-12-28 | 2022-03-09 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery using same |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013128759A1 (en) * | 2012-03-02 | 2013-09-06 | 日本碍子株式会社 | Solid electrolyte ceramic material and production method therefor |
CN104591231B (en) * | 2013-10-31 | 2019-04-16 | 中国科学院上海硅酸盐研究所 | Fluorine-containing garnet structure lithium ion oxide ceramics |
JP6672848B2 (en) * | 2015-03-10 | 2020-03-25 | Tdk株式会社 | Lithium ion conductive oxide ceramic material having garnet type or garnet type similar crystal structure |
EP3905272B1 (en) | 2018-12-28 | 2023-01-18 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery using same |
JP7432897B2 (en) | 2018-12-28 | 2024-02-19 | パナソニックIpマネジメント株式会社 | Solid electrolyte materials and batteries using them |
US11837695B2 (en) | 2019-08-05 | 2023-12-05 | Samsung Electronics Co., Ltd. | Oxide, method of preparing the same, solid electrolyte including the oxide, and electrochemical device including the oxide |
WO2021024785A1 (en) * | 2019-08-07 | 2021-02-11 | Tdk株式会社 | Solid electrolyte, solid electrolyte layer, and solid electrolyte cell |
CN113130976A (en) * | 2019-12-30 | 2021-07-16 | 天津国安盟固利新材料科技股份有限公司 | Garnet type solid electrolyte and preparation method thereof |
CN115398694A (en) * | 2020-04-30 | 2022-11-25 | 松下知识产权经营株式会社 | Solid electrolyte material and battery using the same |
JPWO2021220578A1 (en) * | 2020-04-30 | 2021-11-04 | ||
JP7171826B1 (en) | 2021-06-02 | 2022-11-15 | 住友化学株式会社 | Method for producing lithium-containing oxide and solid electrolyte |
JPWO2023074143A1 (en) * | 2021-10-28 | 2023-05-04 | ||
CN114171787B (en) * | 2021-12-07 | 2024-04-16 | 四川大学 | Mg (magnesium) 2+ Doped modified NASCION sodium ion solid electrolyte and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101014540A (en) * | 2004-03-06 | 2007-08-08 | 维尔纳·韦普内 | Chemically stable solid lithium ion conductors |
CN102292849A (en) * | 2010-01-22 | 2011-12-21 | 丰田自动车株式会社 | Negative electrode structure for aqueous electrolyte battery, and aqueous electrolyte battery comprising the negative electrode structure |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9034525B2 (en) * | 2008-06-27 | 2015-05-19 | Johnson Ip Holding, Llc | Ionically-conductive amorphous lithium lanthanum zirconium oxide |
-
2012
- 2012-07-18 CN CN201210269172.XA patent/CN102780031B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101014540A (en) * | 2004-03-06 | 2007-08-08 | 维尔纳·韦普内 | Chemically stable solid lithium ion conductors |
CN102292849A (en) * | 2010-01-22 | 2011-12-21 | 丰田自动车株式会社 | Negative electrode structure for aqueous electrolyte battery, and aqueous electrolyte battery comprising the negative electrode structure |
Non-Patent Citations (1)
Title |
---|
GENERATION OF "TYPE II" Fe4+ IONS IN Ca2+ AND F- DOPED YTTRIUM IRON GARNET;L.Y. LIU等;《Journal of Magnetism and Magnetic Materials》;19890131;第78卷(第1期);全文 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3904283A4 (en) * | 2018-12-28 | 2022-03-09 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery using same |
Also Published As
Publication number | Publication date |
---|---|
CN102780031A (en) | 2012-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102780031B (en) | A kind of Mg 2+, Al 3+, Zr 4+, F -ion co-doped garnet-type solid electrolyte | |
CN102780028B (en) | Four-component iron co-doped garnet type solid electrolyte | |
CN102867988B (en) | B3+, Al3 +, Ti4 +, Y3+ F-codoped solid electrolyte Li7La3Zr2Ol2 | |
CN102456918B (en) | F<->, Zn<2+>, and B<3+> co-doped NASICON type solid lithium-ion electrolyte | |
CN102867987B (en) | A B3+, al3+, mg2+, Y3+, F- codoped solid electrolyte Li7La3Zr2O12 | |
CN102456919B (en) | Zn<2+> and B<3+> ion doped NASICON solid lithium ion electrolyte | |
CN101894972B (en) | NASICON type solid lithium-ion electrolyte and preparation method thereof | |
CN102769147B (en) | Mg<2+>, Al<3+>, Zr<4+> and S<2-> ion co-doped garnet type solid electrolyte | |
CN108155413A (en) | The Li of divalent alkaline-earth metal and tantalum codope7La3Zr2O12Solid electrolyte material and preparation method | |
CN102867985B (en) | B<3+>, Al<3+>, Mg<2+>, Y<3+> and S<2-> co-doped solid electrolyte Li7La3Zr2O12 | |
CN102780029B (en) | A kind of three component cation codope carbuncle type solid lithium-ion electrolytes | |
CN102780030B (en) | Four-component cation and anion co-doped garnet-type solid electrolyte | |
CN102856584B (en) | A B3+, al3+, ti4+, Y3+and S2- codoped solid electrolyte Li7La3Zr2O12 | |
CN102867986B (en) | One B3+, al3+, ti4+and Y3+cationic co-doped solid electrolyte Li7La3Zr2O12 | |
CN102456917B (en) | F<-> and Zn<2+> co-doped NASICON type solid lithium ion electrolyte | |
CN110372350A (en) | A kind of B3+、Al3+The K of ion collaboration doping6Si2O7Potassium fast-ionic conductor and preparation method | |
CN110265706A (en) | A kind of electric field induction crystallization P5+、Al3+、B3+The K of ion collaboration doping6Si2O7Potassium fast-ionic conductor and preparation method thereof | |
CN110372357A (en) | A kind of P5+、Al3+、B3+The K of ion collaboration doping2MgSi5O12Potassium fast-ionic conductor and preparation method thereof | |
CN105576289A (en) | F-And N3+Ion-synergistically-doped lithium ion solid electrolyte and preparation method thereof | |
CN110372348A (en) | A kind of electric field induction crystallization K6.15Zn0.05B0.2Al0.1P0.05Zr0.05Si1.6O7Potassium fast-ionic conductor and preparation method | |
CN101958429B (en) | Solid lithium oil electrolyte using kaolin as raw material and preparation method thereof | |
CN110371997A (en) | A kind of P5+、Al3+、Be2+The K of ion collaboration doping2MgSi5O12Potassium fast-ionic conductor and preparation method thereof | |
CN110304912A (en) | A kind of electric field induction crystallization P5+、Be2+Cooperate with the K of doping2MgSi5O12Potassium fast-ionic conductor and preparation method thereof | |
CN110372349A (en) | A kind of P5+、Al3+、Be2+The K of ion collaboration doping6Si2O7Potassium fast-ionic conductor and preparation method thereof | |
CN110371995A (en) | A kind of electric field induction crystallization P5+、Al3+、Be2+Cooperate with the K of doping2MgSi5O12Potassium fast-ionic conductor and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160330 Termination date: 20180718 |
|
CF01 | Termination of patent right due to non-payment of annual fee |