CN110371995A - A kind of electric field induction crystallization P5+、Al3+、Be2+Cooperate with the K of doping2MgSi5O12Potassium fast-ionic conductor and preparation method thereof - Google Patents
A kind of electric field induction crystallization P5+、Al3+、Be2+Cooperate with the K of doping2MgSi5O12Potassium fast-ionic conductor and preparation method thereof Download PDFInfo
- Publication number
- CN110371995A CN110371995A CN201910613873.2A CN201910613873A CN110371995A CN 110371995 A CN110371995 A CN 110371995A CN 201910613873 A CN201910613873 A CN 201910613873A CN 110371995 A CN110371995 A CN 110371995A
- Authority
- CN
- China
- Prior art keywords
- fast
- potassium
- ionic conductor
- potassium ion
- minutes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/20—Silicates
- C01B33/26—Aluminium-containing silicates, i.e. silico-aluminates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/054—Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Conductive Materials (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
A kind of electric field induction crystallization P5+、Al3+、Be2+The K of ion collaboration doping2MgSi5O12Potassium fast-ionic conductor and preparation method thereof, it is characterized in that: stoichiometric equation K2+2x+y‑zMgBexAlyPzSi5‑x‑y‑ zO12, in which: x=0.05-0.15;Y=0.05-0.15;Z=0.02-0.05;Room temperature potassium ion conductivity is more than 510‑4S/cm.Using Al3+、Be2+Part replaces Si4+Ion generates gap potassium ion in crystal and reduces potassium ion migration activation energy;Pass through P5+Doping further decreases the electron conduction of fast-ionic conductor;Pass through the Be of small ionic radii2+Doping adjusts the size of the migrating channels of potassium ion to adapt to the fast transferring of potassium ion;And during the preparation process in K2MgSi5O12The surface of particle is modified, and easy-sintering characteristic is formed.The induction crystallization of strong dc electric field is introduced simultaneously to accelerate the speed of crystallization, reduce the temperature of crystallization and improve crystallization integrity degree.These synergistic effects are so that the room temperature potassium ion conductivity of the potassium fast-ionic conductor is more than 510‑4S/cm is more nearly the potassium ion conductivity of liquid electrolyte.
Description
Technical field
The present invention relates to a kind of solid potassium fast-ionic conductor manufacturing fields.
Background technique
Lithium ion battery has volume, weight energy than high, voltage is high, self-discharge rate is low, memory-less effect, cycle life
The absolute advantages such as length, power density height possess in global mobile power source market and exceed 30,000,000,000 dollar/year shares and far more than other
The occupation rate of market of battery is electrochmical power source [Wu Yuping, Wan Chunrong, Jiang Changyin, the lithium ion two of most market development prospect
Primary cell, Beijing: Chemical Industry Press, 2002.].Lithium ion secondary battery is most of using liquid both at home and abroad at present
Electrolyte, liquid lithium ionic cell have some unfavorable factors, and such as: liquid organic electrolyte may be revealed, in excessively high temperature
Lower generation explosion can not apply the occasion high in some pairs of security requirements to cause safety accident;Liquid electrolyte lithium from
The sub- generally existing Capacity fading problem of battery, after a period of use due to electrode active material in the electrolyte molten
Solution, reaction and degradation failure [Z.R.Zhang, Z.L.Gong, and Y.Yang, J.Phys.Chem.B, 108,2004,
17546.].And all-solid-state battery it is highly-safe, substantially without Capacity fading, wherein fast as the solid that electrolyte uses
Ion conductor also acts the effect of diaphragm, simplifies the structure of battery;Further, since also simplifying life without completely cutting off air
To the requirement of equipment during production, the configuration design of battery is also more convenient and flexible, and [Wen Zhaoyin, Zhu Xiujian know hero etc., entirely perhaps
The research of solid secondary batteries, the 12nd Chinese solid-state ionics academic meeting paper collection, 2004.].
In all-solid lithium-ion battery, migration rate of the carrier in fast-ionic conductor is often far smaller than electrode surface
Electric charge transfer and ion diffusion rates in positive electrode and become the rate determining step in entire electrode reaction dynamics,
Therefore it is the core key for constructing high performance lithium ion battery that developing, which has the inorganic fast ionic conductor of higher li ionic conductivity,
Place.From the point of view of current lithium fast-ionic conductor Development Status: LLTO (Li, La) TiO3Fast-ionic conductor has very high transgranular
Conductivity is (10-3S/cm or so) and relatively high room temperature total conductivity (10-4S/cm-10-5S/cm), but LLTO decomposes electricity
It forces down, the above all-solid-state battery of discharge voltage 3.7V and unstable to lithium anode can not be constituted;It is more with NASICON type
Brilliant LiM2(PO4)3(M=Ti, Ge, Zr) is by tetrahedron PO4With octahedra MO6The grid structure collectively constituted, generation finish
Hole and fillable coordination on structure, allow to regulate and control a large amount of Li ion, are a kind of up-and-coming high-lithium ion electricity
Conductance fast-ionic conductor.By the substitution of aliovalent ion, introduce hole in the structure or calking lithium ion can further improve from
Subconductivity [Xiaoxiong Xu, Zhaoyin Wen, ZhonghuaGu, et al., Solid State Ionics, 171,
2004,207-212.].Such as woods ancestral Zuxiang, Li Shichun [woods ancestral Zuxiang, Li Shichun, silicate journal, 9 (3), 1981,253-257.]
It was found that Li1+xTi2-xGaxP3O12, Li1+2xTi2-xMgxP3O12, Li1+xGe2-xCrxP3O12, Li1+xGe2-xAlxP3O12, Li1+ xTi2-xInxP3O12Etc. systems or other such as Li1+2x+2yAlxMgyTi2-x-ySixP3-xO12, Li1+x+yAlxTi2-xSiyP3-yO12, Li1+ xAlxTi2-xP3O12Etc. systems all have higher lithium ion conductivity.But the room temperature lithium ion conductivity of these systems usually exists
10-4S/cm-10-6Between S/cm, requirement of the non-film lithium ion battery to electrolytic conductivity can't be met very well.In addition
NASICON system is equally unstable to lithium anode.Ramaswamy Murugan is equal to 2007 in German application term
A kind of novel lithium ion fast-ionic conductor Li has been reported on periodical7La3Zr2O12Its lithium ion conductivity at normal temperature is more than 1 ×
10-4S·cm-1, decomposition voltage is more than 5.5V, and lithium metal can be used as cathode, be that one kind has very much to air and moisture stabilization
The fast ion solid electrolyte of the lithium of application potential (Ramaswamy Murugan, Venkataraman Thangadurai,
Werner Weppner, (2007) " Fast lithium ion conduction in garnet-type
Li7La3Zr2O12" Angewandte Chemie-International Edition 46 (41): 7778-7781.).However
5.0 × 10 will often be reached to the higher occasion conductivity of current requirements-4S/cm or so just can satisfy normal battery operation
It needs, in addition the solid electrolyte synthesis temperature is at 1350 DEG C or so, and temperature is high, and energy consumption is high.
It additionally needs and is pointed out that the consumption of lithium rises rapidly as secondary cell is quickly applied in power battery,
Reserves of the elemental lithium in the earth's crust very it is low only PPM grade, rare lithium resource make future lithium ion battery cost it is continuous on
It rises.The electrochemical energy storing device for seeking a kind of alternative low cost becomes urgent problem to be solved.Sodium and potassium element are in the earth
The electrochemical properties very high and with lithium of abundance have certain similar, be following to be expected to replace most having for lithium ion all-solid-state battery uncommon
The selection of prestige.However the building essential potassium ion conductor of potassium ion all-solid-state battery is also substantially at space state at present.
Therefore screening has the potassium fast ion conducting material of high conductance to the inexpensive kalium ion battery of building and full-solid potassium ion
Battery has great importance.
Summary of the invention
The technical problem to be solved by the present invention is to a kind of electric field provided for existing background technique induction crystallization P5+、
Al3+、Be2+The K of ion collaboration doping2MgSi5O12Potassium fast-ionic conductor and preparation method thereof.Using Al3+、Be2+Part replaces
Si4+Ion generates high concentration gap potassium ion in crystal, to generate more potassium ions collaboration migration of short distance, facilitates
It reduces potassium ion and migrates activation energy;Pass through P5+Doping further decreases the electron conduction of fast-ionic conductor;Pass through small ion half
The Be of diameter2+Doping adjusts the size of the migrating channels of potassium ion to adapt to the fast transferring of potassium ion;And exist during the preparation process
K2MgSi5O12The surface of particle is modified, and easy-sintering characteristic is formed, and is conducive to improve the potassium fast-ionic conductor and is being prepared block
Crystal boundary gap is reduced when device, increases consistency to improve the potassium ion conductivity of block potassium fast-ionic conductor;It introduces simultaneously
The induction crystallization of strong dc electric field accelerates the speed of crystallization, reduces the temperature of crystallization and improve crystallization integrity degree.These synergistic effects
So that the room temperature potassium ion conductivity of the potassium fast-ionic conductor is more than 510-4S/cm is more nearly the potassium ion of liquid electrolyte
Conductivity.
The present invention reaches by the following technical solutions, which provides a kind of room temperature potassium ion conductivity and be more than
5·10-4The potassium fast-ionic conductor of S/cm, stoichiometric equation K2+2x+y-zMgBexAlyPzSi5-x-y-zO12, in which: x=
0.05-0.15;Y=0.05-0.15;Z=0.02-0.05.
In the technical scheme, by solid K2CO3∶NH4H2PO4∶MgO∶Al2O3∶SiO2: BeO is according to K2+2x+y- zMgBexAlyPzSi5-x-y-zO12Nonstoichiometric molar ratio ratio uniform mixing, additions quality be mixture quality 3%-9%
Dehydrated alcohol, in the ball mill with revolving speed ball milling 10-50 hours of 100-500 revs/min, in gas pressure after ball milling
It is drying 2-10 hours in 60 DEG C of -120 DEG C of vacuum drying ovens for 3Pa-20Pa temperature, grinds in alms bowl and re-grind in agate after taking-up
10-30 minutes, rate of the powder in air atmosphere with 5-30 DEG C/min after grinding was warming up to 550-650 DEG C of heat preservation 3-10
Furnace cooling after hour;Powder after cooling is ground in alms bowl in agate and is regrind 10-30 minutes, the powder after grinding is in air
It is fast that rate in atmosphere in platinum crucible with 5-15 DEG C/min takes out burner hearth after being warming up to 1250-1350 DEG C of heat preservation 25-48 hours
Quickly cooling is but;After material after cooling is crushed in grinding and is ground 30-50 minutes in the sodium hydroxide solution of 0.1-0.3M
It filters, dry and in a press 1 × 10 after impregnating 5-15 minutes7Pa-8×107The pressure of Pa pushes flakiness, will be made
Half SiO 2 powder full of porcelain boat of thin slice embedment in, which is put into both ends setting 800-1100V DC voltage
Rate in tube furnace in the oxygen atmosphere of 10-60Pa with 5-10 DEG C/min is warming up to 700-800 DEG C of heat preservation 30-60 hours
Furnace cooling afterwards;The potassium ion fast-ionic conductor thin slice is made.If Fig. 1 is that group becomes K2.13MgBe0.05Al0.05P0.02Si4.88O12
The XRD spectrum of potassium fast-ionic conductor, spectral line meet PDF card 82-0548 K2MgSi5O12Mutually without miscellaneous phase, through LCR821 impedance
Analysis-e/or determining conductivity is 8.110-4S/cm。
Compared with the prior art, the advantages of the present invention are as follows: use Al3+、Be2+Part replaces Si4+Ion, in crystal
High concentration gap potassium ion is generated, to generate more potassium ions collaboration migration of short distance, helping, which reduces potassium ion migration, lives
Change energy;Pass through P5+Doping further decreases the electron conduction of fast-ionic conductor;Pass through the Be of small ionic radii2+Doping is adjusted
The size of the migrating channels of potassium ion is to adapt to the fast transferring of potassium ion;It will be particularly beneficial that existing during the preparation process
K2MgSi5O12The surface of particle is modified, and easy-sintering characteristic is formed, and is conducive to improve the potassium fast-ionic conductor and is being prepared block
Crystal boundary gap is reduced when device, increases consistency to improve the potassium ion conductivity of block potassium fast-ionic conductor;It introduces simultaneously
The induction crystallization of strong dc electric field accelerates the speed of crystallization, reduces the temperature of crystallization and improve crystallization integrity degree.These synergistic effects
So that the room temperature potassium ion conductivity of the potassium fast-ionic conductor is more than 510-4S/cm is very beneficial for full-solid potassium ion battery
Building.
Detailed description of the invention
Fig. 1 is that group becomes K2.13MgBe0.05Al0.05P0.02Si4.88O12The XRD spectrum of potassium fast-ionic conductor.
Specific embodiment
Below in conjunction with embodiment, present invention is further described in detail.
Embodiment 1: by solid K2CO3∶NH4H2PO4∶MgO∶Al2O3∶SiO2: BeO is according to K2.13MgBe0.05Al0.05P0.02
Si4.88O12Nonstoichiometric molar ratio ratio uniform mixing, be added quality be mixture quality 3% dehydrated alcohol, in ball
With revolving speed ball milling 10 hours of 120 revs/min in grinding machine, in 60 DEG C of vacuum drying ovens, (gas pressure exists in baking oven after ball milling
It is 3 hours dry in 5Pa), it grinds in alms bowl and re-grinds 12 minutes in agate after taking-up, the powder after grinding is in air atmosphere with 7
DEG C/min rate be warming up to 550 DEG C heat preservation 3 hours after furnace cooling;Powder after cooling is ground in alms bowl in agate and is ground again
Mill 10 minutes, the powder after grinding are warming up to 1250 DEG C of heat preservations 25 in platinum crucible in air atmosphere with 5 DEG C/min of rate
Burner hearth is taken out after hour to cool down rapidly;In the hydroxide of 0.1M after material after cooling is crushed in grinding and is ground 30 minutes
It is impregnated in sodium solution and filters, dries and in a press 1.8 × 10 after five minutes7The pressure of Pa pushes flakiness, will be obtained
In half SiO 2 powder full of porcelain boat of thin slice embedment, which is put into the tube furnace of both ends setting 810V DC voltage
Furnace cooling after being warming up to 710 DEG C of heat preservations 30 hours in the oxygen atmosphere of 15Pa with 5 DEG C/min of rate;Be made the potassium from
Sub- fast-ionic conductor thin slice.
Embodiment 2: by solid K2CO3∶NH4H2PO4∶MgO∶Al2O3∶SiO2: BeO is according to K2.4MgBe0.15Al0.15P0.05
Si4.65O12Nonstoichiometric molar ratio ratio uniform mixing, be added quality be mixture quality 9% dehydrated alcohol, in ball
With revolving speed ball milling 50 hours of 450 revs/min in grinding machine, in 110 DEG C of vacuum drying ovens, (gas pressure exists in baking oven after ball milling
Dry 10 hours in 20Pa), grind in alms bowl and re-grind 30 minutes in agate after taking-up, the powder after grinding in air atmosphere with
30 DEG C/min of rate is warming up to furnace cooling after 650 DEG C of heat preservations 10 hours;Powder after cooling is ground in alms bowl again in agate
Grinding 30 minutes, the powder after grinding is warming up to 1350 DEG C of guarantors in platinum crucible in air atmosphere with 13 DEG C/min of rate
Temperature is taken out burner hearth and is cooled down rapidly after 45 hours;In the hydrogen of 0.3M after material after cooling is crushed in grinding and is ground 50 minutes
It filters, dry and in a press 7.5 × 10 after being impregnated 15 minutes in sodium hydroxide solution7The pressure of Pa pushes flakiness, will
In half SiO 2 powder full of porcelain boat of thin slice embedment obtained, which is put into both ends setting 1100V DC voltage
Furnace cooling after being warming up to 800 DEG C of heat preservations 60 hours in the oxygen atmosphere of 60Pa with 10 DEG C/min of rate in tube furnace;System
At the potassium ion fast-ionic conductor thin slice.
Embodiment 3: by solid K2CO3∶NH4H2PO4∶MgO∶Al2O3∶SiO2: BeO according to
K2.27MgBe0.1Al0.1P0.03Si4.77O12Nonstoichiometric molar ratio ratio uniform mixing, additions quality be mixture quality
6% dehydrated alcohol dries after ball milling in 100 DEG C of vacuum in the ball mill with revolving speed ball milling 30 hours of 300 revs/min
It is 6 hours dry in case (gas pressure is in 15Pa in baking oven), it grinds in alms bowl and re-grinds 20 minutes, after grinding in agate after taking-up
Furnace cooling after powder is warming up to 600 DEG C of heat preservations 7 hours in air atmosphere with 20 DEG C/min of rate;By powder after cooling
Body is ground in alms bowl in agate to be regrind 20 minutes, and the powder after grinding is in air atmosphere with 10 DEG C/min in platinum crucible
Rate is taken out burner hearth after being warming up to 1300 DEG C of heat preservations 35 hours and is cooled down rapidly;Material after cooling is crushed and ground in grinding
It is impregnated in the sodium hydroxide solution of 0.2M after forty minutes and filters, dries and in a press 5 × 10 after ten minutes7The pressure of Pa
Power pushes flakiness, and by half SiO 2 powder full of porcelain boat of thin slice obtained embedment, which is put into both ends setting
750 DEG C, which are warming up to, with 7 DEG C/min of rate in the oxygen atmosphere of 50Pa in the tube furnace of 900V DC voltage keeps the temperature 42 hours
Furnace cooling afterwards;The potassium ion fast-ionic conductor thin slice is made.
Embodiment 4: by solid K2CO3∶NH4H2PO4∶MgO∶Al2O3∶SiO2: BeO according to
K2.35MgBe0.15Al0.1P0.05Si4.7O12Nonstoichiometric molar ratio ratio uniform mixing, additions quality be mixture quality
6% dehydrated alcohol dries after ball milling in 110 DEG C of vacuum in the ball mill with revolving speed ball milling 40 hours of 400 revs/min
It is 10 hours dry in case (gas pressure is in 20Pa in baking oven), it grinds in alms bowl and re-grinds 20 minutes, after grinding in agate after taking-up
Powder in air atmosphere with 20 DEG C/min of rate be warming up to 620 DEG C heat preservation 7 hours after furnace cooling;It will be after cooling
Powder is ground in alms bowl in agate to be regrind 20 minutes, and the powder after grinding is in air atmosphere with 10 DEG C/min in platinum crucible
Rate be warming up to 1310 DEG C heat preservation 45 hours after take out burner hearth cool down rapidly;Material after cooling is crushed and ground in grinding
Mill impregnates in the sodium hydroxide solution of 0.2M after 50 minutes to be filtered after ten minutes, dries and in a press 5 × 107Pa's
Pressure pushes flakiness, by half SiO 2 powder full of porcelain boat of thin slice obtained embedment, which is put into both ends and is set
It sets in the tube furnace of 1000V DC voltage and 760 DEG C of heat preservations 40 is warming up to 10 DEG C/min of rate in the oxygen atmosphere of 50Pa
Furnace cooling after hour;The potassium ion fast-ionic conductor thin slice is made.
Embodiment 5: by solid K2CO3∶NH4H2PO4∶MgO∶Al2O3∶SiO2: BeO according to
K2.27MgBe0.1Al0.1P0.03Si4.77O12Nonstoichiometric molar ratio ratio uniform mixing, additions quality be mixture quality
5% dehydrated alcohol, in the ball mill with revolving speed ball milling 15 hours of 100 revs/min, in 60 DEG C of vacuum drying ovens after ball milling
It is 10 hours dry in (gas pressure is in 20Pa in baking oven), it grinds in alms bowl and re-grinds 20 minutes, after grinding in agate after taking-up
Furnace cooling after powder is warming up to 550 DEG C of heat preservations 3 hours in air atmosphere with 10 DEG C/min of rate;By powder after cooling
Body is ground in alms bowl in agate to be regrind 20 minutes, and the powder after grinding is in air atmosphere with 10 DEG C/min in platinum crucible
Rate is taken out burner hearth after being warming up to 1300 DEG C of heat preservations 40 hours and is cooled down rapidly;Material after cooling is crushed and ground in grinding
It is impregnated in the sodium hydroxide solution of 0.1M after forty minutes and filters, dries and in a press 6 × 10 after ten minutes7The pressure of Pa
Power pushes flakiness, and by half SiO 2 powder full of porcelain boat of thin slice obtained embedment, which is put into both ends setting
760 DEG C, which are warming up to, with 5 DEG C/min of rate in the oxygen atmosphere of 10Pa in the tube furnace of 800V DC voltage keeps the temperature 40 hours
Furnace cooling afterwards;The potassium ion fast-ionic conductor thin slice is made.
Claims (1)
1. a kind of electric field induction crystallization P5+、Al3+、Be2+Cooperate with the K of doping2MgSi5O12Potassium fast-ionic conductor, it is characterized in that: chemistry
Metering-type is K2+2x+y-zMgBexAlyPzSi5-x-y-zO12, in which: x=0.05-0.15;Y=0.05-0.15;Z=0.02-0.05;
Room temperature potassium ion conductivity is more than 510-4S/cm;Its preparation process is by solid K2CO3∶NH4H2PO4∶MgO∶Al2O3∶SiO2∶
BeO is according to K2+2x+y-zMgBexAlyPzSi5-x-y-zO12Nonstoichiometric molar ratio ratio uniform mixing, be added quality be mixing
The dehydrated alcohol of amount of substance 3%-9%, in the ball mill with revolving speed ball milling 10-50 hours of 100-500 revs/min, ball milling knot
It is 3Pa-20Pa temperature in gas pressure after beam is dry 2-10 hour in 60 DEG C of -120 DEG C of vacuum drying ovens, in agate stone roller after taking-up
It is re-grind in alms bowl 10-30 minutes, the powder after grinding is warming up to 550- in air atmosphere with 5-30 DEG C/min of rate
650 DEG C of furnace coolings after heat preservation 3-10 hours;Powder after cooling is ground in alms bowl in agate and is regrind 10-30 minutes, is ground
It is small that rate of the powder afterwards in air atmosphere in platinum crucible with 5-15 DEG C/min is warming up to 1250-1350 DEG C of heat preservation 25-48
When after take out burner hearth cool down rapidly;0.1-0.3M's after material after cooling is crushed in grinding and is ground 30-50 minutes
It filters, dry and in a press 1 × 10 after being impregnated 5-15 minutes in sodium hydroxide solution7Pa-8×107The pressure of Pa pushes
The porcelain boat is put into both ends setting 800- in half SiO 2 powder full of porcelain boat of thin slice obtained embedment by flakiness
700-800 is warming up to 5-10 DEG C/min of rate in the oxygen atmosphere of 10-60Pa in the tube furnace of 1100V DC voltage
Furnace cooling is to be made the potassium fast-ionic conductor DEG C after heat preservation 30-60 hour.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910613873.2A CN110371995A (en) | 2019-06-27 | 2019-06-27 | A kind of electric field induction crystallization P5+、Al3+、Be2+Cooperate with the K of doping2MgSi5O12Potassium fast-ionic conductor and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910613873.2A CN110371995A (en) | 2019-06-27 | 2019-06-27 | A kind of electric field induction crystallization P5+、Al3+、Be2+Cooperate with the K of doping2MgSi5O12Potassium fast-ionic conductor and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110371995A true CN110371995A (en) | 2019-10-25 |
Family
ID=68252525
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910613873.2A Withdrawn CN110371995A (en) | 2019-06-27 | 2019-06-27 | A kind of electric field induction crystallization P5+、Al3+、Be2+Cooperate with the K of doping2MgSi5O12Potassium fast-ionic conductor and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110371995A (en) |
-
2019
- 2019-06-27 CN CN201910613873.2A patent/CN110371995A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102780031B (en) | A kind of Mg 2+, Al 3+, Zr 4+, F -ion co-doped garnet-type solid electrolyte | |
CN102867988B (en) | B3+, Al3 +, Ti4 +, Y3+ F-codoped solid electrolyte Li7La3Zr2Ol2 | |
CN102780028B (en) | Four-component iron co-doped garnet type solid electrolyte | |
CN102867987B (en) | A B3+, al3+, mg2+, Y3+, F- codoped solid electrolyte Li7La3Zr2O12 | |
CN102769147B (en) | Mg<2+>, Al<3+>, Zr<4+> and S<2-> ion co-doped garnet type solid electrolyte | |
CN110372350A (en) | A kind of B3+、Al3+The K of ion collaboration doping6Si2O7Potassium fast-ionic conductor and preparation method | |
CN102867985B (en) | B<3+>, Al<3+>, Mg<2+>, Y<3+> and S<2-> co-doped solid electrolyte Li7La3Zr2O12 | |
CN110265706A (en) | A kind of electric field induction crystallization P5+、Al3+、B3+The K of ion collaboration doping6Si2O7Potassium fast-ionic conductor and preparation method thereof | |
CN110372357A (en) | A kind of P5+、Al3+、B3+The K of ion collaboration doping2MgSi5O12Potassium fast-ionic conductor and preparation method thereof | |
CN102780029B (en) | A kind of three component cation codope carbuncle type solid lithium-ion electrolytes | |
CN110372348A (en) | A kind of electric field induction crystallization K6.15Zn0.05B0.2Al0.1P0.05Zr0.05Si1.6O7Potassium fast-ionic conductor and preparation method | |
CN110526697A (en) | A kind of liquid phase synthesis K6.25Be0.1Al0.1P0.05Ti0.05Si1.7O7Potassium fast-ionic conductor and preparation method thereof | |
CN110371995A (en) | A kind of electric field induction crystallization P5+、Al3+、Be2+Cooperate with the K of doping2MgSi5O12Potassium fast-ionic conductor and preparation method thereof | |
CN110371997A (en) | A kind of P5+、Al3+、Be2+The K of ion collaboration doping2MgSi5O12Potassium fast-ionic conductor and preparation method thereof | |
CN110304912A (en) | A kind of electric field induction crystallization P5+、Be2+Cooperate with the K of doping2MgSi5O12Potassium fast-ionic conductor and preparation method thereof | |
CN110372358A (en) | A kind of electric field induction crystalline A l3+、Be2+The K of doping2MgSi5O12Potassium fast-ionic conductor and preparation method | |
CN110357598A (en) | A kind of P5+、Be2+The K of ion collaboration doping2MgSi5O12Potassium fast-ionic conductor and preparation method thereof | |
CN110350250A (en) | A kind of P5+、Al3+、B3+The K of ion collaboration doping6Si2O7Potassium fast-ionic conductor and preparation method thereof | |
CN102856584B (en) | A B3+, al3+, ti4+, Y3+and S2- codoped solid electrolyte Li7La3Zr2O12 | |
CN110357599A (en) | A kind of P5+、Al3+、Be2+、Zn2+The K of ion collaboration doping2MgSi5O12Potassium fast-ionic conductor and preparation method thereof | |
CN110372349A (en) | A kind of P5+、Al3+、Be2+The K of ion collaboration doping6Si2O7Potassium fast-ionic conductor and preparation method thereof | |
CN102867986B (en) | One B3+, al3+, ti4+and Y3+cationic co-doped solid electrolyte Li7La3Zr2O12 | |
CN102780030B (en) | Four-component cation and anion co-doped garnet-type solid electrolyte | |
CN110336008A (en) | A kind of P5+、Al3+、Be2+、Zn2+The K of ion collaboration doping6Si2O7Potassium fast-ionic conductor and preparation method thereof | |
CN110371996A (en) | A kind of Al3+、B3+The K of ion collaboration doping2MgSi5O12Potassium fast-ionic conductor and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20191025 |
|
WW01 | Invention patent application withdrawn after publication |