JP5262572B2 - Lithium-containing garnet-type oxide, lithium secondary battery, and method for producing solid electrolyte - Google Patents

Lithium-containing garnet-type oxide, lithium secondary battery, and method for producing solid electrolyte Download PDF

Info

Publication number
JP5262572B2
JP5262572B2 JP2008272985A JP2008272985A JP5262572B2 JP 5262572 B2 JP5262572 B2 JP 5262572B2 JP 2008272985 A JP2008272985 A JP 2008272985A JP 2008272985 A JP2008272985 A JP 2008272985A JP 5262572 B2 JP5262572 B2 JP 5262572B2
Authority
JP
Japan
Prior art keywords
lithium
solid electrolyte
firing
mixing
inorganic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008272985A
Other languages
Japanese (ja)
Other versions
JP2010102929A (en
Inventor
慎吾 太田
哲郎 小林
賢彦 朝岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2008272985A priority Critical patent/JP5262572B2/en
Publication of JP2010102929A publication Critical patent/JP2010102929A/en
Application granted granted Critical
Publication of JP5262572B2 publication Critical patent/JP5262572B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Conductive Materials (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、リチウム含有ガーネット型酸化物、リチウム二次電池及び固体電解質の製造方法に関する。   The present invention relates to a lithium-containing garnet-type oxide, a lithium secondary battery, and a method for producing a solid electrolyte.

従来、固体電解質としては、目的の組成となるように原料のリチウム炭酸塩などを混合し、700℃程度で仮焼してガス成分を蒸発させたのち、1300℃程度で本焼成を行い溶解させ板状のガラスとし、その後600℃程度でキャストし、Li1+x(M,Al,Ga)x(Ge1-yTiy2-x(PO4)の結晶層を析出させたものが提案されている(例えば、特許文献1参照)。この固体電解質では、熱的、化学的に安定であり、室温で高い伝導度を有する。
特開2000−34134号公報
Conventionally, as a solid electrolyte, a raw material lithium carbonate or the like is mixed so as to have a target composition, and calcined at about 700 ° C. to evaporate gas components, followed by firing at about 1300 ° C. for dissolution. It is a plate-like glass, and then cast at about 600 ° C., and a crystal layer of Li 1 + x (M, Al, Ga) x (Ge 1-y Ti y ) 2-x (PO 4 ) is deposited. It has been proposed (see, for example, Patent Document 1). This solid electrolyte is thermally and chemically stable and has high conductivity at room temperature.
JP 2000-34134 A

しかしながら、この特許文献1に記載された固体電解質では、高い伝導度を有するものの、焼成時にはリチウムなどの揮発しやすい成分(揮発成分とも称する)が消失しやすいことがあった。揮発成分が消失すると、得られた固体電解質に欠損などが生じ、構造が不安定になったり、伝導度が低下したりする問題があった。これに対して、原料混合時に揮発成分を目的の組成より過剰に入れておくことなどが考えられるが、過剰に入れた揮発成分が水分や二酸化炭素などと反応し、本焼成を行う際にガスが生成するなどして緻密さが低下し伝導度が低下してしまう問題があった。また、リチウム二次電池に用いられる固体電解質として、その他の組成の材料として、化学的安定に優れ、電位窓が広いことから、Fe3Al2(SiO43に類似する結晶構造を有するリチウム含有ガーネット型酸化物が注目されている。このリチウム含有ガーネット型酸化物は、まだ伝導度が低く、より高い伝導度を示すものの開発が望まれていた。 However, although the solid electrolyte described in Patent Document 1 has high conductivity, a component such as lithium (also referred to as a volatile component) that tends to volatilize easily disappears during firing. When the volatile component disappears, there is a problem in that the obtained solid electrolyte is deficient and the structure becomes unstable or the conductivity is lowered. On the other hand, it is conceivable that the volatile component is added in excess of the target composition when mixing the raw materials, but the excess volatile component reacts with moisture, carbon dioxide, etc., and gas is used during the main firing. As a result, there is a problem in that the density decreases and the conductivity decreases. In addition, as a solid electrolyte used in a lithium secondary battery, as a material of other compositions, lithium having a crystal structure similar to Fe 3 Al 2 (SiO 4 ) 3 because it has excellent chemical stability and a wide potential window. Containing garnet-type oxides are attracting attention. This lithium-containing garnet-type oxide has still low conductivity, and development of a material exhibiting higher conductivity has been desired.

本発明は、このような課題に鑑みなされたものであり、より高い電池性能を有するものとするリチウム含有ガーネット型酸化物、リチウム二次電池及び固体電解質の製造方法を提供することを主目的とする。   The present invention has been made in view of such problems, and has as its main object to provide a method for producing a lithium-containing garnet-type oxide, a lithium secondary battery, and a solid electrolyte having higher battery performance. To do.

上述した目的を達成するために鋭意研究したところ、本発明者らは、仮焼時にガスが生じる無機材料を混合し所定の仮焼温度で仮焼し、この無機材料の焼成に応じた添加量の無機材料を添加して更に混合して仮焼温度で再仮焼したあと、成形体へ成形し仮焼温度よりも高い本焼成温度で焼成するものとすると、リチウム含有ガーネット型酸化物を好適に製造でき、より高い電池性能を有することを見いだし本発明を完成するに至った。   As a result of diligent research to achieve the above-mentioned object, the present inventors mixed an inorganic material that generates gas during calcination, calcined at a predetermined calcining temperature, and an addition amount according to the firing of this inorganic material If the inorganic material is added and further mixed and re-calcined at the calcining temperature, then formed into a molded body and calcined at a main calcining temperature higher than the calcining temperature, a lithium-containing garnet type oxide is suitable. The present invention has been completed by finding that it has a higher battery performance.

即ち、本発明のリチウム含有ガーネット型酸化物は、
リチウム二次電池に用いられるリチウム含有ガーネット型酸化物であって、
理論密度に対する相対密度が70(%)以上であり、
伝導度が1.0×10-5(Scm-1)以上であるものである。
That is, the lithium-containing garnet oxide of the present invention is
A lithium-containing garnet-type oxide used in a lithium secondary battery,
The relative density with respect to the theoretical density is 70 (%) or more,
The conductivity is 1.0 × 10 −5 (Scm −1 ) or more.

また、本発明のリチウム二次電池は、
正極活物質を有する正極と、
負極活物質を有する負極と、
前記正極と前記負極との間に介在しリチウムイオンを伝導する上述したリチウム含有ガーネット型酸化物からなる固体電解質と、
を備えたものである。
The lithium secondary battery of the present invention is
A positive electrode having a positive electrode active material;
A negative electrode having a negative electrode active material;
A solid electrolyte composed of the above-described lithium-containing garnet-type oxide that is interposed between the positive electrode and the negative electrode and conducts lithium ions;
It is equipped with.

また、本発明の固体電解質の製造方法は、
リチウムイオンを伝導する固体電解質の製造方法であって、
所定温度の焼成により状態が変化するものを含む複数種の無機材料を混合する第1混合工程と、
前記所定温度以上且つ成形後に焼成する成形焼成温度よりも低い所定の第1温度で前記混合した無機材料を焼成して第1材料を得る第1焼成工程と、
前記無機材料の焼成に応じて定められる所定の添加量の前記無機材料を前記第1材料へ添加して混合する第2混合工程と、
前記所定温度以上且つ前記成形焼成温度よりも低い所定の第2温度で前記無機材料を添加した第1材料を焼成して第2材料を得る第2焼成工程と、
前記第2材料を成形体へ成形し前記成形焼成温度で焼成する成形焼成工程と、
を含むものである。
Moreover, the method for producing the solid electrolyte of the present invention comprises:
A method for producing a solid electrolyte that conducts lithium ions,
A first mixing step of mixing a plurality of types of inorganic materials including those whose state changes by firing at a predetermined temperature;
A first firing step of firing the mixed inorganic material at a predetermined first temperature that is equal to or higher than the predetermined temperature and lower than a molding firing temperature that is fired after molding, to obtain a first material;
A second mixing step of adding and mixing a predetermined addition amount of the inorganic material determined according to the firing of the inorganic material to the first material;
A second baking step of baking the first material added with the inorganic material at a predetermined second temperature that is equal to or higher than the predetermined temperature and lower than the molding baking temperature to obtain a second material;
A molding and firing step of molding the second material into a molded body and firing at the molding and firing temperature;
Is included.

このリチウム含有ガーネット型酸化物、リチウム二次電池及び固体電解質の製造方法では、より高い電池性能を有するものとすることができる。このような効果が得られる理由は、例えば以下のように推測される。第1焼成工程で、予め無機材料の状態を変化させたのち、この第1焼成工程で揮発した成分などを第2混合工程で添加して補う。第1混合工程での大部分の無機材料は状態変化しており、第2焼成工程では、添加した無機材料が状態変化するにとどまるから、体積変化などをより小さくすることができる。また、第2混合工程では、第2焼成工程や成形焼成工程での揮発成分の補完も含めた無機材料の添加を行うことが可能であるから、組成のずれをより精度よく抑制することができる。これにより、成形焼成工程での焼成において、より体積変化などが小さく、且つより組成ずれを抑制することができる。このため、本発明の製造方法で得られる固体電解質では、より高い電池性能を有するものと推測される。また、リチウム含有ガーネット型酸化物では、体積変化などの影響を受けやすいことが考えられ、本発明を適用する意義が高く、その結果、相対密度を70%以上に高めることができ、伝導度を1.0×10-5以上に、より高められるものと推測される。 In this method for producing a lithium-containing garnet-type oxide, a lithium secondary battery and a solid electrolyte, higher battery performance can be obtained. The reason why such an effect is obtained is estimated as follows, for example. In the first baking step, the state of the inorganic material is changed in advance, and then the components volatilized in the first baking step are added and supplemented in the second mixing step. Most inorganic materials in the first mixing step change in state, and in the second baking step, the added inorganic material only changes in state, so that volume change and the like can be further reduced. Further, in the second mixing step, it is possible to add an inorganic material including complementation of volatile components in the second baking step and the molding baking step, so that the compositional deviation can be suppressed with higher accuracy. . Thereby, in baking in a shaping | molding baking process, a volume change etc. are smaller and composition shift can be suppressed more. For this reason, it is estimated that the solid electrolyte obtained by the production method of the present invention has higher battery performance. In addition, lithium-containing garnet-type oxides are likely to be affected by volume changes and the like, and the significance of applying the present invention is high. As a result, the relative density can be increased to 70% or more, and the conductivity is increased. It is estimated that it can be further increased to 1.0 × 10 −5 or more.

本発明のリチウム二次電池は、リチウムイオンを吸蔵・放出しうる正極活物質を有する正極と、リチウムイオンを吸蔵・放出しうる負極活物質を有する負極と、正極と負極との間に介在しリチウムイオンを伝導する固体電解質と、を備えたリチウムイオン二次電池として構成されている。   The lithium secondary battery of the present invention is interposed between a positive electrode having a positive electrode active material capable of occluding and releasing lithium ions, a negative electrode having a negative electrode active material capable of occluding and releasing lithium ions, and the positive electrode and the negative electrode. And a solid electrolyte that conducts lithium ions.

本発明のリチウム二次電池の正極は、例えば正極活物質と導電材と結着材とを混合し、適当な溶剤を加えてペースト状の正極材としたものを、集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成してもよい。正極活物質としては、遷移金属元素を含む硫化物や、リチウムと遷移金属元素とを含む酸化物などを用いることができる。具体的には、TiS2、TiS3、MoS3、FeS2などの遷移金属硫化物、Li(1-x)MnO2(0<x<1など、以下同じ)、Li(1-x)Mn24などのリチウムマンガン複合酸化物、Li(1-x)CoO2などのリチウムコバルト複合酸化物、Li(1-x)NiO2などのリチウムニッケル複合酸化物、LiV23などのリチウムバナジウム複合酸化物、V25などの遷移金属酸化物などを用いることができる。これらのうち、リチウムの遷移金属複合酸化物、例えば、LiCoO2、LiNiO2、LiMnO2、LiV23などが好ましい。導電材は、正極の電池性能に悪影響を及ぼさない電子伝導性材料であれば特に限定されず、例えば、天然黒鉛(鱗状黒鉛、鱗片状黒鉛)や人造黒鉛などの黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラック、カーボンウィスカ、ニードルコークス、炭素繊維、金属(銅、ニッケル、アルミニウム、銀、金など)などの1種又は2種以上を混合したものを用いることができる。これらの中で、導電材としては、電子伝導性及び塗工性の観点より、カーボンブラック及びアセチレンブラックが好ましい。結着材は、活物質粒子及び導電材粒子を繋ぎ止める役割を果たすものであり、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、フッ素ゴム等の含フッ素樹脂、或いはポリプロピレン、ポリエチレン等の熱可塑性樹脂、エチレン−プロピレン−ジエンマー(EPDM)、スルホン化EPDM、天然ブチルゴム(NBR)等を単独で、あるいは2種以上の混合物として用いることができる。また、水系バインダーであるセルロース系やスチレンブタジエンゴム(SBR)の水分散体等を用いることもできる。正極活物質、導電材、結着材を分散させる溶剤としては、例えばN−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフランなどの有機溶剤を用いることができる。また、水に分散剤、増粘剤等を加え、SBRなどのラテックスで活物質をスラリー化してもよい。増粘剤としては、例えば、カルボキシメチルセルロース、メチルセルロースなどの多糖類を単独で、あるいは2種以上の混合物として用いることができる。塗布方法としては、例えば、アプリケータロールなどのローラコーティング、スクリーンコーティング、ドクターブレイド方式、スピンコーティング、バーコータなどが挙げられ、これらのいずれかを用いて任意の厚さ・形状とすることができる。集電体としては、アルミニウム、チタン、ステンレス鋼、ニッケル、鉄、焼成炭素、導電性高分子、導電性ガラスなどのほか、接着性、導電性及び耐酸化性向上の目的で、アルミニウムや銅などの表面をカーボン、ニッケル、チタンや銀などで処理したものを用いることができる。これらについては、表面を酸化処理することも可能である。集電体の形状については、箔状、フィルム状、シート状、ネット状、パンチ又はエキスパンドされたもの、ラス体、多孔質体、発泡体、繊維群の形成体などが挙げられる。集電体の厚さは、例えば1〜500μmのものが用いられる。 The positive electrode of the lithium secondary battery of the present invention is, for example, a mixture of a positive electrode active material, a conductive material, and a binder, and an appropriate solvent is added to form a paste-like positive electrode material, which is applied to the surface of the current collector. It may be dried and compressed to increase the electrode density as necessary. As the positive electrode active material, a sulfide containing a transition metal element, an oxide containing lithium and a transition metal element, or the like can be used. Specifically, transition metal sulfides such as TiS 2 , TiS 3 , MoS 3 , FeS 2 , Li (1-x) MnO 2 (0 <x <1, etc., the same shall apply hereinafter), Li (1-x) Mn Lithium manganese composite oxide such as 2 O 4 , lithium cobalt composite oxide such as Li (1-x) CoO 2 , lithium nickel composite oxide such as Li (1-x) NiO 2 , lithium such as LiV 2 O 3 Vanadium composite oxides, transition metal oxides such as V 2 O 5, and the like can be used. Of these, lithium transition metal composite oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , and LiV 2 O 3 are preferable. The conductive material is not particularly limited as long as it is an electron conductive material that does not adversely affect the battery performance of the positive electrode. For example, graphite such as natural graphite (scale-like graphite, scale-like graphite) or artificial graphite, acetylene black, carbon black, What mixed 1 type (s) or 2 or more types, such as ketjen black, carbon whisker, needle coke, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.) can be used. Among these, as the conductive material, carbon black and acetylene black are preferable from the viewpoints of electron conductivity and coatability. The binder serves to bind the active material particles and the conductive material particles. For example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), fluorine-containing resin such as fluorine rubber, or polypropylene, Thermoplastic resins such as polyethylene, ethylene-propylene-dienemer (EPDM), sulfonated EPDM, natural butyl rubber (NBR) and the like can be used alone or as a mixture of two or more. In addition, an aqueous dispersion of cellulose or styrene butadiene rubber (SBR), which is an aqueous binder, can also be used. Examples of the solvent for dispersing the positive electrode active material, the conductive material, and the binder include N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, and N, N-dimethylaminopropyl. Organic solvents such as amine, ethylene oxide, and tetrahydrofuran can be used. Moreover, a dispersing agent, a thickener, etc. may be added to water, and an active material may be slurried with latex, such as SBR. As the thickener, for example, polysaccharides such as carboxymethyl cellulose and methyl cellulose can be used alone or as a mixture of two or more. Examples of the application method include roller coating such as applicator roll, screen coating, doctor blade method, spin coating, bar coater, and the like, and any of these can be used to obtain an arbitrary thickness and shape. Current collectors include aluminum, titanium, stainless steel, nickel, iron, calcined carbon, conductive polymer, conductive glass, and aluminum, copper, etc. for the purpose of improving adhesion, conductivity, and oxidation resistance. A surface treated with carbon, nickel, titanium, silver or the like can be used. For these, the surface can be oxidized. Examples of the shape of the current collector include foil, film, sheet, net, punched or expanded, lath, porous, foam, and formed fiber group. The thickness of the current collector is, for example, 1 to 500 μm.

本発明のリチウム二次電池の負極は、例えば負極活物質と導電材と結着材とを混合し、適当な溶剤を加えてペースト状の負極材としたものを、集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成してもよい。負極活物質としては、リチウム、リチウム合金、スズ化合物などの無機化合物、リチウムイオンを吸蔵・放出可能な炭素質材料、導電性ポリマーなどが挙げられるが、このうち炭素質材料が安全性の面から見て好ましい。この炭素質材料は、特に限定されるものではないが、コークス類、ガラス状炭素類、グラファイト類、難黒鉛化性炭素類、熱分解炭素類、炭素繊維などが挙げられる。このうち、人造黒鉛、天然黒鉛などのグラファイト類が、金属リチウムに近い作動電位を有し、高い作動電圧での充放電が可能であり電解質塩としてリチウム塩を使用した場合に自己放電を抑え、且つ充電時おける不可逆容量を少なくできるため、好ましい。また、負極に用いられる導電材、結着材、溶剤などは、それぞれ正極で例示したものを用いることができる。負極の集電体には、銅、ニッケル、ステンレス鋼、チタン、アルミニウム、焼成炭素、導電性高分子、導電性ガラス、Al−Cd合金などのほか、接着性、導電性及び耐還元性向上の目的で、例えば銅などの表面をカーボン、ニッケル、チタンや銀などで処理したものも用いることができる。これらについては、表面を酸化処理することも可能である。集電体の形状は、正極と同様のものを用いることができる。   The negative electrode of the lithium secondary battery of the present invention is prepared by, for example, mixing a negative electrode active material, a conductive material, and a binder, and adding a suitable solvent to form a paste-like negative electrode material on the surface of the current collector. It may be dried and compressed to increase the electrode density as necessary. Examples of negative electrode active materials include inorganic compounds such as lithium, lithium alloys and tin compounds, carbonaceous materials capable of occluding and releasing lithium ions, and conductive polymers. Among these, carbonaceous materials are used from the viewpoint of safety. It is preferable to see. The carbonaceous material is not particularly limited, and examples thereof include cokes, glassy carbons, graphites, non-graphitizable carbons, pyrolytic carbons, and carbon fibers. Of these, graphites such as artificial graphite and natural graphite have an operating potential close to that of metallic lithium, can be charged and discharged at a high operating voltage, and suppresses self-discharge when a lithium salt is used as an electrolyte salt. In addition, the irreversible capacity during charging can be reduced, which is preferable. In addition, as the conductive material, binder, solvent, and the like used for the negative electrode, those exemplified for the positive electrode can be used. The negative electrode current collector includes copper, nickel, stainless steel, titanium, aluminum, calcined carbon, conductive polymer, conductive glass, Al-Cd alloy, etc., as well as improved adhesion, conductivity and reduction resistance. For the purpose, for example, a copper surface treated with carbon, nickel, titanium, silver or the like can be used. For these, the surface can be oxidized. The shape of the current collector can be the same as that of the positive electrode.

本発明のリチウム二次電池の固体電解質は、リチウム含有ガーネット型酸化物を主成分としている。ここでは、固体電解質は、基本組成がLixy3-y212であり、理論密度に対する相対密度が70(%)以上であり、伝導度が1.0×10-5(Scm-1)以上であるリチウム含有ガーネット型酸化物からなる。但し、Aは第2族元素(例えばMgやCa,Sr,Ba,Ra)のうちいずれか1以上、Bはランタノイド元素及びY,Scのうちいずれか1以上、yは0以上の正数、x=7+yであるときにMはTi,Zr,Hfのうちいずれか1以上であり、x=5+yであるときにはMはV,Nb,Taのうちいずれか1以上である。このうち、AとしてはCaやSr、Baなどが好ましく、BとしてはLaやNdなどが好ましく、MとしてはZrやNb、Taなどが好ましい。この固体電解質は、基本組成がLixyLa3-yZr212やLixyLa3-yNb212であることがより好ましい。リチウム含有ガーネット型酸化物としては、このほか、(Na1-xLixy2Fe312(ただし、Mは酸化数+6の状態をとることができる元素(S,Se,Te,Poのうち1以上)、0.3≦x≦1.0、2.5≦y≦3.0を満たす)や、Ca3LiMV312(但しMは、Co,Ni,Fe,Mnのうち1以上)、Ca3LixNb(1.5+x)Ga(3.5-2x)12(但し、xは0.24≦x≦0.60)なども挙げられる。なお、「基本組成」とは、この組成の各元素の含有量に対して2割、1割など異なっているものも含まれる趣旨である。例えば、「基本組成がLi7La3Zr212であるもの」には、概して組成が合っているもの、例えば、組成がLi7.2La3Zr212.2であるものや組成がLi6.8La3Zr211.8であるものをも含む趣旨である。 The solid electrolyte of the lithium secondary battery of the present invention is mainly composed of a lithium-containing garnet oxide. Here, the solid electrolyte has a basic composition of Li x A y B 3 -y M 2 O 12 , a relative density with respect to the theoretical density of 70 (%) or more, and a conductivity of 1.0 × 10 −5 ( Scm −1 ) or more lithium-containing garnet type oxide. However, A is any one or more of group 2 elements (for example, Mg, Ca, Sr, Ba, Ra), B is any one or more of lanthanoid elements and Y, Sc, y is a positive number of 0 or more, When x = 7 + y, M is any one or more of Ti, Zr, and Hf, and when x = 5 + y, M is any one or more of V, Nb, and Ta. Of these, A is preferably Ca, Sr, Ba or the like, B is preferably La or Nd, and M is preferably Zr, Nb, Ta or the like. The solid electrolyte is more preferably basic composition is Li x A y La 3-y Zr 2 O 12 and Li x A y La 3-y Nb 2 O 12. As the lithium-containing garnet-type oxide, in addition to this, (Na 1-x Li x ) y M 2 Fe 3 O 12 (where M is an element that can take an oxidation number +6 state (S, Se, Te, 1 or more of Po), 0.3 ≦ x ≦ 1.0, 2.5 ≦ y ≦ 3.0), and Ca 3 LiMV 3 O 12 (where M is Co, Ni, Fe, Mn) 1 or more of them), Ca 3 Li x Nb (1.5 + x) Ga (3.5-2x) O 12 (where x is 0.24 ≦ x ≦ 0.60), and the like. The “basic composition” is intended to include those that differ by 20%, 10%, etc. with respect to the content of each element of this composition. For example, “what the basic composition is Li 7 La 3 Zr 2 O 12 ” is generally the same as the composition, for example, the composition is Li 7.2 La 3 Zr 2 O 12.2 or the composition is Li 6.8 La. It is intended to include those that are 3 Zr 2 O 11.8 .

リチウム含有ガーネット型酸化物の基本組成がLixyLa3-yZr212であるものについては、xが7以上9以下であることが好ましく、8以下であることがより好ましい。また、yが0以上2以下であることが好ましく、1以下であることがより好ましい。このうちx=7,y=0である基本組成がLi7La3Zr212であるものが好ましい。このとき、理論密度に対する相対密度が70(%)以上であるが、90(%)以上であることがより好ましく、92(%)以上であることが一層好ましい。また、伝導度が1.0×10-5以上であるが、1.0×10-4以上であることがより好ましい。伝導度が1.0×10-4以上であれば電池性能を一層向上することができる。 In the case where the basic composition of the lithium-containing garnet-type oxide is Li x A y La 3 -y Zr 2 O 12 , x is preferably 7 or more and 9 or less, and more preferably 8 or less. Moreover, y is preferably 0 or more and 2 or less, and more preferably 1 or less. Of these, the basic composition of x = 7 and y = 0 is preferably Li 7 La 3 Zr 2 O 12 . At this time, the relative density with respect to the theoretical density is 70 (%) or more, more preferably 90 (%) or more, and still more preferably 92 (%) or more. Further, the conductivity is 1.0 × 10 −5 or more, and more preferably 1.0 × 10 −4 or more. If the conductivity is 1.0 × 10 −4 or more, the battery performance can be further improved.

リチウム含有ガーネット型酸化物の基本組成がLixyLa3-yNb212であるものについては、xが5以上7以下であることが好ましく、6以下であることがより好ましい。また、yが0以上2以下であることが好ましく、1以下であることがより好ましい。このうちx=5,y=0である基本組成がLi5La3Nb212であるものが好ましい。このとき、理論密度に対する相対密度が70(%)以上であるが、90(%)以上であることがより好ましく、92(%)以上であることが一層好ましい。また、伝導度は、1.0×10-5以上である。 In the case where the basic composition of the lithium-containing garnet-type oxide is Li x A y La 3 -y Nb 2 O 12 , x is preferably 5 or more and 7 or less, and more preferably 6 or less. Moreover, y is preferably 0 or more and 2 or less, and more preferably 1 or less. Of these, the basic composition of x = 5 and y = 0 is preferably Li 5 La 3 Nb 2 O 12 . At this time, the relative density with respect to the theoretical density is 70 (%) or more, more preferably 90 (%) or more, and still more preferably 92 (%) or more. The conductivity is 1.0 × 10 −5 or more.

本発明のリチウム二次電池の形状は、特に限定されないが、例えばコイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型などが挙げられる。また、電気自動車等に用いる大型のものなどに適用してもよい。このリチウムイオン二次電池の一例を図1に示す。図1は、コイン型電池20の構成の概略を表す断面図である。このコイン型電池20は、カップ形状の電池ケース21と、正極活物質を有しこの電池ケース21の下部に設けられた正極22と、負極活物質を有し正極22に対して固体電解質24を介して対向する位置に設けられた負極23と、絶縁材により形成されたガスケット25と、電池ケース21の開口部に配設されガスケット25を介して電池ケース21を密封する封口板26と、を備えている。ここでは、固体電解質24は、上述したリチウム含有ガーネット型酸化物により構成されている。   The shape of the lithium secondary battery of the present invention is not particularly limited, and examples thereof include a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, and a square type. Moreover, you may apply to the large sized thing etc. which are used for an electric vehicle etc. An example of this lithium ion secondary battery is shown in FIG. FIG. 1 is a cross-sectional view schematically showing the configuration of the coin-type battery 20. The coin-type battery 20 includes a cup-shaped battery case 21, a positive electrode 22 having a positive electrode active material and provided at a lower portion of the battery case 21, and a negative electrode active material having a solid electrolyte 24 with respect to the positive electrode 22. A negative electrode 23 provided at a position facing each other, a gasket 25 formed of an insulating material, and a sealing plate 26 disposed in the opening of the battery case 21 and sealing the battery case 21 via the gasket 25. I have. Here, the solid electrolyte 24 is comprised by the lithium containing garnet-type oxide mentioned above.

次に、このリチウム二次電池20の固体電解質の製造方法について説明する。この固体電解質の製造方法は、1)焼成により状態が変化するリチウム化合物など原料としての無機材料を混合する第1混合工程、2)所定の仮焼温度で仮焼して状態変化後の無機材料を得る第1焼成工程、3)所定の添加量の無機材料を添加して混合する第2混合工程、4)所定の仮焼温度で第2混合工程後の無機材料を仮焼する第2焼成工程、5)第2焼成後の無機材料を成形体へ成形し成形焼成温度で焼成する成形焼成工程、を含んでいる。ここでは、固体電解質として、リチウム含有ガーネット型酸化物の製造方法について具体的に説明する。以下、各工程順に説明する。   Next, a method for manufacturing the solid electrolyte of the lithium secondary battery 20 will be described. The solid electrolyte manufacturing method includes 1) a first mixing step of mixing an inorganic material as a raw material such as a lithium compound whose state changes by firing, and 2) an inorganic material after the state is changed by calcination at a predetermined calcination temperature. 3) a second mixing step in which a predetermined addition amount of inorganic material is added and mixed, and 4) a second baking in which the inorganic material after the second mixing step is calcined at a predetermined calcining temperature. Step 5) includes a molding and firing step in which the inorganic material after the second firing is formed into a molded body and fired at a molding firing temperature. Here, the manufacturing method of a lithium containing garnet-type oxide is demonstrated concretely as a solid electrolyte. Hereinafter, it demonstrates in order of each process.

1)第1混合工程
この工程では、所定温度の焼成により状態が変化するものを含む複数種の無機材料を混合する。具体的には、基本組成がLixy3-y212(但し、Aはアルカリ土類金属のうちいずれか1以上、Bはランタノイド元素のうちいずれか1以上、yは0以上の正数、x=7+yであるときにMはTi,Zr,Hfのうちいずれか1以上であり、x=5+yであるときにはMはV,Nb,Taのうちいずれか1以上である。)となる無機材料を混合粉砕するものとした。状態が変化するものを含む無機材料としては、リチウム含有ガーネット型酸化物に含まれる成分の、炭酸塩や硫酸塩、硝酸塩、シュウ酸塩、塩化物、水酸化物、酸化物などを用いることができ、このうち、熱分解して炭酸ガスを生じる炭酸塩及び熱分解して水蒸気を生じる水酸化物が、ガスの処理が比較的容易であり好ましい。例えば、基本組成がLi7La3Zr212となる無機材料を混合する際には、Li2CO3、La(OH)3、ZrO2を用いることが好ましい。また、基本組成がLi5La3Nb212となる無機材料を混合する際には、Li2CO3、La(OH)3、Nb25を用いることが好ましい。なお、「状態が変化する」とは、ガスを発生するものとしてもよいし所定の相変化を生じるものとしてもよい。ここでは、目的となる基本組成の配合比となるように上記原料の無機材料を混合することが好ましい。無機材料の混合方法は、溶媒に入れずに乾式で混合粉砕してもよいし、溶媒に入れて湿式で混合粉砕するものとしてもよいが、溶媒に入れて湿式の混合粉砕を行うことが混合性の向上の面からは好ましい。この混合方法は、例えば、遊星ミル、アトライター、ボールミルなどを用いることができる。溶媒としては、Liが溶解しにくいものが好ましく、例えばエタノールなどの有機溶媒がより好ましい。混合時間は、混合量にもよるが、例えば2h〜8hとすることができる。
1) First mixing step In this step, a plurality of types of inorganic materials including those whose state changes by firing at a predetermined temperature are mixed. Specifically, the basic composition of Li x A y B 3-y M 2 O 12 ( where, A is any one or more of the alkaline earth metal, B is any one or more of the lanthanide elements, y is 0 When x = 7 + y, M is one or more of Ti, Zr, and Hf, and when x = 5 + y, M is one or more of V, Nb, and Ta. ) To be mixed and ground. As inorganic materials including those whose state changes, carbonates, sulfates, nitrates, oxalates, chlorides, hydroxides, oxides, etc., of the components contained in the lithium-containing garnet oxide may be used. Of these, carbonates that thermally decompose to generate carbon dioxide and hydroxides that thermally decompose to generate water vapor are preferable because they are relatively easy to process. For example, when mixing an inorganic material whose basic composition is Li 7 La 3 Zr 2 O 12 , it is preferable to use Li 2 CO 3 , La (OH) 3 , or ZrO 2 . Moreover, when mixing the inorganic material whose basic composition is Li 5 La 3 Nb 2 O 12 , it is preferable to use Li 2 CO 3 , La (OH) 3 , and Nb 2 O 5 . Note that “the state changes” may be a gas generation or a predetermined phase change. Here, it is preferable to mix the inorganic material as the raw material so as to obtain a target composition ratio of the basic composition. The mixing method of the inorganic material may be mixed and pulverized dry without adding it to the solvent, or may be mixed and pulverized wet and then mixed with the solvent. From the aspect of improving the properties, it is preferable. As this mixing method, for example, a planetary mill, an attritor, a ball mill, or the like can be used. As the solvent, those in which Li is difficult to dissolve are preferable, and for example, an organic solvent such as ethanol is more preferable. The mixing time depends on the amount of mixing, but can be 2h to 8h, for example.

2)第1焼成工程
この工程では、状態が変化する所定温度以上且つ成形後に焼成する成形焼成温度よりも低い所定の仮焼温度(第1温度)で第1混合工程後の無機材料を焼成する工程である。所定温度としては、例えば、Li2CO3を無機材料に含むときには、この炭酸塩が分解する温度以上を仮焼温度とする。こうすれば、のちの成形焼成工程において、熱分解でのガス発生による密度の低下を抑制することができる。基本組成がLi7La3Zr212となる無機材料の仮焼では、900℃以上1100℃以下とすることが好ましい。基本組成がLi5La3Nb212となる無機材料の仮焼では、900℃以上1150℃以下とすることが好ましい。仮焼時間は、無機材料の状態が十分変化する時間で且つ揮発しやすい成分(揮発成分とも称する)、例えば、リチウムなどの揮発量を抑制可能な範囲に経験的に定めることができる。
2) First firing step In this step, the inorganic material after the first mixing step is fired at a predetermined calcining temperature (first temperature) that is equal to or higher than a predetermined temperature at which the state changes and lower than a molding baking temperature for baking after molding. It is a process. As the predetermined temperature, for example, when Li 2 CO 3 is included in the inorganic material, a temperature equal to or higher than the temperature at which the carbonate is decomposed is set as the calcining temperature. If it carries out like this, the fall of the density by the gas generation | occurrence | production by thermal decomposition can be suppressed in a subsequent shaping | molding baking process. In calcination of an inorganic material whose basic composition is Li 7 La 3 Zr 2 O 12 , it is preferably 900 ° C. or higher and 1100 ° C. or lower. In calcining an inorganic material whose basic composition is Li 5 La 3 Nb 2 O 12 , it is preferably 900 ° C. or higher and 1150 ° C. or lower. The calcination time can be determined empirically within a range in which the amount of volatilization of a component (also referred to as a volatile component) that easily volatilizes, for example, lithium, can be suppressed.

3)第2混合工程
この工程では、無機材料の焼成に応じて定められる所定の添加量の無機材料を第1焼成後の無機材料(第1材料とも称する)へ添加して混合する。この工程では、各焼成工程で揮発するなどして生じる組成ずれを修正することを主目的としている。添加する無機材料としては、揮発成分を含む無機材料(例えばLi2CO3)などが挙げられる。無機材料の添加量は、第1焼成工程、第2焼成工程及び成形焼成工程などの焼成工程の各条件に応じて、経験的に定めるものとすることができる。例えば、基本組成から変化するのに応じて定められた添加量を添加するものとしてもよい。添加する無機材料の種類、無機材料の混合方法、混合時間などは、第1混合工程で説明したものを利用することができる。なお、第2混合工程は、第1混合工程と同じ無機材料の種類、無機材料の混合方法、混合時間などとしてもよいし、第1工程と異なる方法及び条件で行うものとしてもよい。第2混合工程では、基本組成がLi7La3Zr212となる無機材料であるときには、添加量として無機材料中のLi量に対してLi量が4atmic%以上20atmic%以下の範囲に相当するLiを添加することが好ましく、6atmic%以上14atmic%以下の範囲に相当するLiを添加することがより好ましい。こうすれば、より高い電池特性を有するものとすることができる。また、基本組成がLi5La3Nb212となる無機材料であるときには、添加量として無機材料中のLi量に対してLi量が7atmic%以上13atmic%以下の範囲に相当するLiを添加することがより好ましい。こうすれば、より高い電池特性を有するものとすることができる。
3) Second mixing step In this step, a predetermined addition amount of an inorganic material determined according to the firing of the inorganic material is added to and mixed with the inorganic material after the first firing (also referred to as the first material). The main purpose of this step is to correct compositional deviation caused by volatilization in each firing step. Examples of the inorganic material to be added include inorganic materials containing volatile components (for example, Li 2 CO 3 ). The addition amount of the inorganic material can be determined empirically according to each condition of the firing step such as the first firing step, the second firing step, and the molding firing step. For example, it is good also as what adds the amount determined according to changing from a basic composition. As the kind of the inorganic material to be added, the method for mixing the inorganic material, the mixing time, etc., those described in the first mixing step can be used. The second mixing step may be the same inorganic material type, inorganic material mixing method, mixing time, etc. as in the first mixing step, or may be performed under different methods and conditions from the first step. In the second mixing step, when the basic composition is an inorganic material having Li 7 La 3 Zr 2 O 12 , the amount of Li corresponds to a range of 4 atomic% or more and 20 atomic% or less with respect to the amount of Li in the inorganic material. It is preferable to add Li, and it is more preferable to add Li corresponding to a range of 6 atomic% to 14 atomic%. If it carries out like this, it can have a higher battery characteristic. Further, when the basic composition is an inorganic material having Li 5 La 3 Nb 2 O 12 , Li corresponding to the amount of Li in the range of 7 atomic% to 13 atomic% with respect to the amount of Li in the inorganic material is added. More preferably. If it carries out like this, it can have a higher battery characteristic.

4)第2焼成工程
この工程では、無機材料が状態変化する所定温度以上且つ成形焼成温度よりも低い所定の仮焼温度(第2温度)で無機材料を添加した無機材料(第1材料)を仮焼する。この工程では、添加した無機材料の状態を変化させることを主目的としている。この第2焼成工程では、上述した第1焼成工程と同様の条件で行うものとしてもよい。なお、この第2焼成工程では、無機材料の状態変化が起きる所定温度以上、且つ上述した第1焼成工程の仮焼温度以下の温度で行うことが好ましい。こうすれば、再仮焼した材料が固化してしまうのが抑制されるため、後述する成形焼成工程で再仮焼した材料を粉砕する必要がなく好ましい。また、第2焼成工程では、第1焼成工程に比して状態変化させる必要がある無機材料の量が希少であるため、仮焼時間を短くするものとしてもよい。この工程を行うことにより、のちの成形焼成工程において、組成ずれを抑制するために添加した無機材料の状態変化に伴う密度の低下を抑制することができる。
4) Second firing step In this step, an inorganic material (first material) to which an inorganic material is added at a predetermined calcining temperature (second temperature) that is equal to or higher than a predetermined temperature at which the state of the inorganic material changes and lower than the molding baking temperature is used. Calcinate. The main purpose of this step is to change the state of the added inorganic material. In this 2nd baking process, it is good also as what is performed on the conditions similar to the 1st baking process mentioned above. In addition, it is preferable to perform in this 2nd baking process at the temperature more than the predetermined temperature in which the state change of an inorganic material occurs, and below the calcining temperature of the 1st baking process mentioned above. By doing so, the re-calcined material is suppressed from solidifying, and therefore, it is not necessary to pulverize the re-calcined material in the molding and firing step described later. Further, in the second baking step, the amount of the inorganic material that needs to be changed as compared with the first baking step is scarce, and therefore the calcination time may be shortened. By performing this step, it is possible to suppress a decrease in density associated with a change in the state of the inorganic material added in order to suppress composition deviation in the subsequent molding and firing step.

5)成形焼成工程
この工程では、第2焼成工程を経て得られた無機材料(第2材料とも称する)を成形体へ成形し、この成形体を仮焼温度よりも高い成形焼成温度で焼成する。この成形焼成工程では、成形体への成形前には第2材料を溶媒に入れた粉砕を行わないことが好ましい。第2材料には、成形焼成工程により揮発する成分をも過剰に加えていることがあり、こうすれば、その過剰の揮発成分が溶媒にふれて状態が変化してしまうのを抑制することができ、より確実に無機材料の状態変化に伴う密度の低下を抑制することができる。例えば、Li2CO3を無機材料に含むときには、過剰に含まれていることにより第2焼成工程により生じたLi2OがLiOHやLi2CO3に変化してしまうことを抑制することができる。上述した第1及び第2混合工程において、溶媒に入れた混合を行った場合には、成形焼成工程前に溶媒に入れた混合を行わないことがより好ましい。なお、第2焼成工程後には、2回仮焼しており、第2材料が固化・固着していることが少ないため、簡単な解砕により比較的容易に成形体へ成形することができる。成形体への成形は、例えば得られた第2材料を用いて、冷間等方成形(CIP)や熱間等方成形(HIP)、金型成形、ホットプレスなどにより任意の形状に行うことができる。
5) Molding and firing step In this step, the inorganic material (also referred to as second material) obtained through the second firing step is formed into a molded body, and the molded body is fired at a molding and firing temperature higher than the calcining temperature. . In this molding and firing step, it is preferable not to pulverize the second material in a solvent before molding into a molded body. In some cases, the second material may contain an excessive amount of components that volatilize in the molding and firing step, and this prevents the excessive volatile components from touching the solvent and changing the state. It is possible to more reliably suppress a decrease in density associated with a change in the state of the inorganic material. For example, when Li 2 CO 3 is included in the inorganic material, it can be suppressed that Li 2 O generated by the second baking step is changed to LiOH or Li 2 CO 3 due to being excessively contained. . In the first and second mixing steps described above, when mixing in a solvent is performed, it is more preferable not to perform mixing in the solvent before the molding and firing step. In addition, after the second firing step, the calcination is performed twice, and the second material is hardly solidified and fixed, so that it can be formed into a molded body relatively easily by simple crushing. For example, the molded body is formed into an arbitrary shape using the obtained second material by cold isotropic forming (CIP), hot isotropic forming (HIP), mold forming, hot pressing, or the like. Can do.

以上詳述した本実施形態の固体電解質の製造方法によれば、第1焼成工程で無機材料を仮焼したあと、経験的に求めた添加量の無機材料を添加して再仮焼し、その後成形焼成を行うため、無機材料の状態変化に伴う体積変化などをより小さくすることができるし、組成のずれをより精度よく抑制することができる。したがって、より高い電池性能を有するものとすることができる。特に、リチウム含有ガーネット型酸化物では、体積変化などの影響を受けやすいことが考えられ、本発明を適用する意義が高く、その結果、相対密度を90%以上に高めることができ、伝導度を1.0×10-5以上に、より高められるものと推測される。 According to the manufacturing method of the solid electrolyte of the present embodiment described in detail above, after calcining the inorganic material in the first firing step, the amount of inorganic material empirically obtained is added and re-calcined, and then Since molding and baking are performed, a change in volume accompanying a change in state of the inorganic material can be further reduced, and a shift in composition can be suppressed more accurately. Therefore, it can have higher battery performance. In particular, lithium-containing garnet-type oxides are likely to be affected by volume changes and the like, and the significance of applying the present invention is high. As a result, the relative density can be increased to 90% or more, and the conductivity is increased. It is estimated that it can be further increased to 1.0 × 10 −5 or more.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

例えば、上述した実施形態では、固体電解質の製造方法をリチウム含有ガーネット型酸化物の製造方法として説明したが、特にこれに限定されず、成形して焼成する固体電解質であれば特に限定されずに本発明の固体電解質の製造方法を適用することができる。なお、リチウム二次電池に用いられる固体電解質の製造方法に適用するのがより好ましい。   For example, in the above-described embodiment, the method for producing a solid electrolyte has been described as a method for producing a lithium-containing garnet-type oxide. However, the present invention is not particularly limited thereto, and is not particularly limited as long as the solid electrolyte is molded and fired. The method for producing a solid electrolyte of the present invention can be applied. In addition, it is more preferable to apply to the manufacturing method of the solid electrolyte used for a lithium secondary battery.

以下には、リチウム含有ガーネット型酸化物の固体電解質を具体的に作製した例を、実施例として説明する。   Below, the example which produced the solid electrolyte of the lithium containing garnet-type oxide concretely is demonstrated as an Example.

[実施例1]
Li2CO3、La(OH)3、ZrO2を出発原料とし、Li7La3Zr212の基本組成の化学量論比になるようにこの出発原料を秤量し、エタノール中にて遊星ボールミル(300rpm/ジルコニアボール)で4時間、混合・粉砕を行った(第1混合工程)。次に、出発原料(無機材料)の混合粉末をボールとエタノールから分離したのち、Al23るつぼ中にて、950℃、10時間の条件で大気雰囲気で仮焼を行った(第1焼成工程)。その後、本焼成でのLiの欠損をも補う目的で、仮焼した粉末に対してLi2CO3を無機材料中のLi量に対してLi量が5atmic%となるように添加し、仮焼した粉末の粉砕と混合の目的で、エタノール中にて遊星ボールミル(300rpm/ジルコニアボール)で6時間粉砕混合した(第2混合工程)。得られた粉末を再び大気圧下、950℃、5時間の条件下で再度仮焼した(第2焼成工程)。続いて、得られた粉末を成形し冷水間等方加圧(CIP)を施したのち、成形焼成温度を1150℃とし、36時間、大気中の条件下で本焼成を行い、得られた固体電解質を実施例1とした。CIPは、溶媒を水とし、27℃、200MPaの条件で行った。
[Example 1]
Li 2 CO 3 , La (OH) 3 , and ZrO 2 are used as starting materials. The starting materials are weighed so as to have a stoichiometric ratio of the basic composition of Li 7 La 3 Zr 2 O 12 , and planets are obtained in ethanol. Mixing and grinding were performed for 4 hours with a ball mill (300 rpm / zirconia balls) (first mixing step). Next, after the mixed powder of the starting material (inorganic material) was separated from the balls and ethanol, calcination was performed in an air atmosphere at 950 ° C. for 10 hours in an Al 2 O 3 crucible (first firing) Process). Thereafter, Li 2 CO 3 is added to the calcined powder so that the amount of Li is 5 atomic% with respect to the amount of Li in the inorganic material for the purpose of compensating for the loss of Li in the main firing. For the purpose of pulverizing and mixing the obtained powder, it was pulverized and mixed in a planetary ball mill (300 rpm / zirconia ball) in ethanol for 6 hours (second mixing step). The obtained powder was again calcined again at 950 ° C. for 5 hours under atmospheric pressure (second firing step). Subsequently, the obtained powder was molded and subjected to isostatic pressing (CIP) between cold water, and then the firing temperature was set to 1150 ° C. and the main firing was performed under atmospheric conditions for 36 hours. The electrolyte was Example 1. CIP was performed under the conditions of 27 ° C. and 200 MPa using water as a solvent.

[実施例2〜6]
第2混合工程においてLi2CO3を無機材料中のLi量に対してLi量が7.5atmic%、10.0atmic%、12.5atmic%、15.0atmic%、20.0atmic%となるように添加した以外は実施例1と同様の工程を行い、得られた固体電解質をそれぞれ実施例2〜6とした。
[Examples 2 to 6]
In the second mixing step, Li 2 CO 3 is adjusted so that the Li amount is 7.5 atomic%, 10.0 atomic%, 12.5 atomic%, 15.0 atomic%, 20.0 atomic% with respect to the Li amount in the inorganic material. Except for the addition, the same steps as in Example 1 were performed, and the obtained solid electrolytes were referred to as Examples 2 to 6, respectively.

[実施例7]
Li2CO3、La(OH)3、Nb25を出発原料とし、Li5La3Nb212の基本組成の化学量論比になるようにこの出発原料を秤量し、エタノール中にて遊星ボールミル(300rpm/ジルコニアボール)で4時間、混合・粉砕を行った(第1混合工程)。次に、出発原料(無機材料)の混合粉末をボールとエタノールから分離したのち、Al23るつぼ中にて、950℃、10時間の条件で大気雰囲気で仮焼を行った(第1焼成工程)。その後、本焼成でのLiの欠損をも補う目的で、仮焼した粉末に対してLi2CO3を無機材料中のLi量に対してLi量が10.0atmic%となるように添加し、仮焼した粉末の粉砕と混合の目的で、エタノール中にて遊星ボールミル(300rpm/ジルコニアボール)で6時間粉砕混合した(第2混合工程)。得られた粉末を再び大気圧下、950℃、5時間の条件下で再度仮焼した(第2焼成工程)。続いて、得られた粉末を成形し冷水間等方加圧(CIP)を施したのち、成形焼成温度を1200℃とし、36時間、大気中の条件下で本焼成を行い、得られた固体電解質を実施例5とした。CIPは、溶媒を水とし、27℃、200MPaの条件で行った。
[Example 7]
Li 2 CO 3 , La (OH) 3 , and Nb 2 O 5 are used as starting materials, and the starting materials are weighed so as to have a stoichiometric ratio of the basic composition of Li 5 La 3 Nb 2 O 12. Then, mixing and pulverization were performed with a planetary ball mill (300 rpm / zirconia ball) for 4 hours (first mixing step). Next, after the mixed powder of the starting material (inorganic material) was separated from the balls and ethanol, calcination was performed in an air atmosphere at 950 ° C. for 10 hours in an Al 2 O 3 crucible (first firing) Process). Thereafter, Li 2 CO 3 is added to the calcined powder so that the amount of Li is 10.0 atomic% with respect to the amount of Li in the inorganic material, in order to compensate for the loss of Li in the main firing, For the purpose of grinding and mixing the calcined powder, it was ground and mixed in a planetary ball mill (300 rpm / zirconia balls) in ethanol for 6 hours (second mixing step). The obtained powder was again calcined again at 950 ° C. for 5 hours under atmospheric pressure (second firing step). Subsequently, the obtained powder is molded and subjected to isostatic pressing (CIP) between cold water, and then the firing temperature is set to 1200 ° C. and the main firing is performed under atmospheric conditions for 36 hours. The electrolyte was Example 5. CIP was performed under the conditions of 27 ° C. and 200 MPa using water as a solvent.

[比較例1〜3]
第2混合工程及び第2焼成工程を省略した以外は実施例1と同様の工程を経て得られた固体電解質を比較例1とした。また、第2混合工程及び第2焼成工程を省略した以外は実施例5と同様の工程を経て得られた固体電解質を比較例2とした。また、第1混合工程で0.35molのLi2CO3を過剰とし、第2混合工程及び第2焼成工程を省略した以外は実施例5と同様の工程を経て得られた固体電解質を比較例3とした。
[Comparative Examples 1-3]
A solid electrolyte obtained through the same steps as in Example 1 except that the second mixing step and the second firing step were omitted was used as Comparative Example 1. Moreover, the solid electrolyte obtained through the process similar to Example 5 was set as the comparative example 2 except having omitted the 2nd mixing process and the 2nd baking process. Moreover, the excess of Li 2 CO 3 in 0.35mol in the first mixing step, comparing the second mixing step and the solid electrolyte, except for omitting the second firing step obtained through the same process as in Example 5 Example It was set to 3.

(相対密度測定)
各サンプルの相対密度は、電子天秤にて測定した乾燥重量をノギスを用いて測定した実寸から求めた体積で除算することにより測定密度を算出すると共に、理論密度を算出し、測定密度を理論密度で除算し100を乗算することにより計算した値を相対密度(%)とした。
(Relative density measurement)
The relative density of each sample was calculated by dividing the dry weight measured with an electronic balance by the volume obtained from the actual size measured using a caliper, and calculating the theoretical density, calculating the theoretical density, and calculating the measured density to the theoretical density. The value calculated by dividing by 100 and multiplying by 100 was taken as the relative density (%).

(XRD測定)
各サンプルの相の同定は、試料粉末のXRD測定器(リガク社製RINT−TTR)を用い、CuKa、2θの範囲を10〜80°とし、0.02°step/ 1secの条件で行った。
(XRD measurement)
The phase of each sample was identified by using a sample powder XRD measuring device (RINT-TTR manufactured by Rigaku Corporation) and setting the range of CuKa, 2θ to 10 to 80 ° and 0.02 ° step / 1 sec.

(伝導度測定)
各サンプルの伝導度は、25℃設定の恒温槽中にてACインピーダンスアナライザー(Agilent製インピーダンスアナライザー4294A)を用い、周波数が30MHz〜40Hz、振幅電圧が100mVとなるような条件で、ナイキストプロットの円弧より抵抗値を求め、伝導度を算出した。ACインピーダンスアナライザーで測定する際のブロッキング電極にはAu電極を用いた。Au電極は市販のAuペーストを850℃30分の条件でそれぞれの試料へ焼き付けることで形成した。
(Conductivity measurement)
The conductivity of each sample was measured using an AC impedance analyzer (Agilent's impedance analyzer 4294A) in a constant temperature bath set at 25 ° C., with a frequency of 30 MHz to 40 Hz and an amplitude voltage of 100 mV. Thus, the resistance value was obtained and the conductivity was calculated. An Au electrode was used as a blocking electrode when measuring with an AC impedance analyzer. The Au electrode was formed by baking a commercially available Au paste on each sample at 850 ° C. for 30 minutes.

(実験結果)
図2は、比較例1、実施例3,6のLi7La3Zr212のXRD測定結果であり、図3は、比較例2、実施例7のLi5La3Nb212のXRD測定結果であり、図4は、Li2CO3の添加量と相対密度の関係を表すプロット図であり、図5は、Li2CO3の添加量と伝導度の関係を表すプロット図である。なお、これらの各データをまとめて表1に示した。図2,3では、Li2CO3を添加しなかった場合、本焼成の過程でLiの蒸発によりLi不足が起こり、La2Zr27やLa2Nb28などが副相として生成することがわかった。ここで、仮焼したあとLi2CO3を適量添加することでLi7La3Zr212やLi5La3Nb212の単相を得ることができることがわかった。しかし、Li2CO3を過剰添加してしまうと、同定できないピークが多数生じ始めることが明らかとなり、伝導度の低下が起きてしまうことがわかった(図5参照)。このことから、Li7La3Zr212やLi5La3Nb212の単相を得るためには最適添加量が存在することがわかった。相対密度は、Li2CO3の添加量が少ない場合は、低いことがわかった。これは、Liの不足により副相が生成しているためだと考えられる。Li2CO3を過剰添加するとXRDの結果では同定できないピークの存在が確認されたが、相対密度が低下しないが伝導度は低下する副相が生成していると推察された。また、伝導度について、添加量が不足している場合(4atmic%未満など)、相対密度が低く、また副相も存在するため伝導度は低いことがわかった。一方、添加量が多くなると(15atmic%を超えるなど)、相対密度は高いが、副相が存在するため、伝導度は低下する傾向を示した。Li7La3Zr212を基本組成とする場合は、無機材料中のLi量に対してLi量が4atmic%以上20atmic%以下の範囲で添加すると、相対密度が70%以上となり、1.0×10-5Scm-1以上の伝導度を示し、6atmic%以上14atmic%以下の範囲で添加すると相対密度が80%以上となり1.0×10-4Scm-1以上の伝導度を示すことが明らかとなった。また、Li5La3Nb212を基本組成とする場合は、無機材料中のLi量に対してLi量が5atmic%以上20atmic%以下の範囲で添加すると、相対密度が70%以上となり、1.0×10-6Scm-1以上の伝導度を示し、7atmic%以上13atmic%以下の範囲で添加すると、相対密度が80%以上となり、1.0×10-5Scm-1以上の伝導度を示すことが明らかとなった。
(Experimental result)
2 is an XRD measurement result of Li 7 La 3 Zr 2 O 12 of Comparative Example 1 and Examples 3 and 6, and FIG. 3 is a graph of Li 5 La 3 Nb 2 O 12 of Comparative Example 2 and Example 7. FIG. 4 is a plot showing the relationship between the amount of Li 2 CO 3 added and the relative density, and FIG. 5 is a plot showing the relationship between the amount of Li 2 CO 3 added and the conductivity. is there. These data are collectively shown in Table 1. In FIGS. 2 and 3, when Li 2 CO 3 is not added, Li deficiency occurs due to evaporation of Li during the main firing, and La 2 Zr 2 O 7 , La 2 Nb 2 O 8, etc. are generated as subphases. I found out that Here, it was found that a single phase of Li 7 La 3 Zr 2 O 12 or Li 5 La 3 Nb 2 O 12 can be obtained by adding an appropriate amount of Li 2 CO 3 after calcination. However, when Li 2 CO 3 was excessively added, it became clear that many peaks that could not be identified began to occur, and it was found that the conductivity decreased (see FIG. 5). From this, it was found that there is an optimum addition amount for obtaining a single phase of Li 7 La 3 Zr 2 O 12 or Li 5 La 3 Nb 2 O 12 . It was found that the relative density was low when the amount of Li 2 CO 3 added was small. This is thought to be because a subphase is generated due to lack of Li. When Li 2 CO 3 was added excessively, the presence of a peak that could not be identified by the XRD results was confirmed, but it was presumed that a subphase in which the relative density did not decrease but the conductivity decreased was generated. Further, regarding the conductivity, it was found that when the addition amount is insufficient (less than 4 atomic%, etc.), the relative density is low, and the subphase is also present, so the conductivity is low. On the other hand, when the amount added increased (exceeding 15 atomic%), the relative density was high, but the sub-phase was present, so that the conductivity tended to decrease. When Li 7 La 3 Zr 2 O 12 is used as the basic composition, if the Li content is added in the range of 4 atomic% or more and 20 atomic% or less with respect to the Li content in the inorganic material, the relative density becomes 70% or more. It exhibits a conductivity of 0 × 10 −5 Scm −1 or more, and when added in the range of 6 atomic% or more and 14 atomic% or less, the relative density becomes 80% or more and exhibits a conductivity of 1.0 × 10 −4 Scm −1 or more. Became clear. Further, when Li 5 La 3 Nb 2 O 12 is used as the basic composition, when the Li amount is added in the range of 5 atomic% or more and 20 atomic% or less with respect to the Li amount in the inorganic material, the relative density becomes 70% or more, It exhibits a conductivity of 1.0 × 10 −6 Scm −1 or more, and when added in the range of 7 atomic% or more and 13 atomic% or less, the relative density becomes 80% or more, and the conductivity is 1.0 × 10 −5 Scm −1 or more. It became clear to show the degree.

Figure 0005262572
Figure 0005262572

ここで、Li7La3Zr212について、Angew.Chem.Int.Ed.2007,46 7778−7781にその伝導度が報告されている。しかし、発明者らが実験したところ、論文に記載されている作製方法ではその伝導度が1.0×10-5Scm-1を超えることはなかった。したがって、本発明の固体電解質の製造方法及び固体電解質は、今までない高い電池性能を有していることが明らかとなった。また、Li5La3Nb212について、J.Am.Ceram.Soc.,2005,88 411−418に伝導度が8.0×10-6Scm-1と報告されており、本発明の固体電解質はこの報告値よりも高く、本発明の固体電解質の製造方法及び固体電解質は、より高い電池性能を有していることが明らかとなった。 Here, for Li 7 La 3 Zr 2 O 12 , Angew. Chem. Int. Ed. 2007, 46 7778-7781, its conductivity is reported. However, when the inventors experimented, the conductivity did not exceed 1.0 × 10 −5 Scm −1 in the production method described in the paper. Therefore, it was revealed that the method for producing a solid electrolyte and the solid electrolyte of the present invention have unprecedented high battery performance. In addition, Li 5 La 3 Nb 2 O 12 is described in J. Am. Ceram. Soc. 2005, 88 411-418, the conductivity is reported to be 8.0 × 10 −6 Scm −1, and the solid electrolyte of the present invention is higher than the reported value. The method for producing the solid electrolyte of the present invention and the solid The electrolyte was found to have higher battery performance.

本発明は、電池産業に利用可能である。   The present invention is applicable to the battery industry.

コイン型電池20の構成の概略を表す断面図である。2 is a cross-sectional view illustrating a schematic configuration of a coin-type battery 20. FIG. 比較例1、実施例3,6のLi7La3Zr212のXRD測定結果XRD measurement results of Li 7 La 3 Zr 2 O 12 of Comparative Example 1 and Examples 3 and 6 比較例2、実施例7のLi5La3Nb212のXRD測定結果XRD measurement results of Li 5 La 3 Nb 2 O 12 of Comparative Example 2 and Example 7 Li2CO3の添加量と相対密度の関係を表すプロット図Plot diagram showing relationship between addition amount of Li 2 CO 3 and relative density Li2CO3の添加量と伝導度の関係を表すプロット図Plot diagram showing relationship between conductivity and conductivity of Li 2 CO 3

符号の説明Explanation of symbols

20 コイン型電池、21 電池ケース、22 正極、23 負極、24 固体電解質、25 ガスケット、26 封口板。   20 coin type battery, 21 battery case, 22 positive electrode, 23 negative electrode, 24 solid electrolyte, 25 gasket, 26 sealing plate.

Claims (8)

基本組成がLi x y 3-y 2 12 (但し、Aは第2族元素のうちいずれか1以上、Bはランタノイド元素及びY,Scのうちいずれか1以上、yは0以上の正数、x=7+yであるときにMはTi,Zr,Hfのうちいずれか1以上であり、x=5+yであるときにはMはV,Nb,Taのうちいずれか1以上である。)であるリチウム含有ガーネット型酸化物、基本組成が(Na 1-x Li x y 2 Fe 3 12 (但し、Mは酸化数+6の状態をとることができる元素(S,Se,Te,Poのうち1以上)、0.3≦x≦1.0、2.5≦y≦3.0を満たす)であるリチウム含有ガーネット型酸化物、基本組成がCa 3 LiMV 3 12 (但し、MはCo,Ni,Fe,Mnのうち1以上)であるリチウム含有ガーネット型酸化物、又は基本組成がCa 3 Li x Nb (1.5+x) Ga (3.5-2x) 12 (但し、xは0.24≦x≦0.60)であるリチウム含有ガーネット型酸化物、からなるリチウムイオンを伝導する固体電解質の製造方法であって、
所定温度の焼成により状態が変化するものを含む複数種の無機材料を混合する第1混合工程と、
前記所定温度以上且つ成形後に焼成する成形焼成温度よりも低い所定の第1温度で前記混合した無機材料を焼成して第1材料を得る第1焼成工程と、
前記無機材料の焼成に応じて定められる所定の添加量の前記無機材料を前記第1材料へ添加して混合する第2混合工程と、
前記所定温度以上且つ前記成形焼成温度よりも低い所定の第2温度で前記無機材料を添加した第1材料を焼成して第2材料を得る第2焼成工程と、
前記第2材料を成形体へ成形し前記成形焼成温度で焼成する成形焼成工程と、
を含み、
前記第1混合工程では、前記リチウム含有ガーネット型酸化物に含まれる成分を含む複数種の無機材料を混合し、
前記第2混合工程では、Liを含む無機材料を添加する、
固体電解質の製造方法。
Basic composition Li x A y B 3-y M 2 O 12 ( where, A is any one or more of the second group elements, B is a lanthanoid element and Y, any one or more of Sc, y is 0 or more (When x = 7 + y, M is at least one of Ti, Zr, and Hf, and when x = 5 + y, M is at least one of V, Nb, and Ta.) Lithium-containing garnet-type oxide having a basic composition of (Na 1-x Li x ) y M 2 Fe 3 O 12 (wherein M is an element capable of taking an oxidation number of +6 (S, Se, Te, 1 or more of Po), 0.3 ≦ x ≦ 1.0, and 2.5 ≦ y ≦ 3.0)), a lithium-containing garnet-type oxide having a basic composition of Ca 3 LiMV 3 O 12 (provided that M is one or more of Co, Ni, Fe, and Mn), a lithium-containing garnet oxide, Is a lithium ion comprising a lithium-containing garnet-type oxide having a basic composition of Ca 3 Li x Nb (1.5 + x) Ga (3.5-2x) O 12 (where x is 0.24 ≦ x ≦ 0.60). A method for producing a solid electrolyte that conducts heat.
A first mixing step of mixing a plurality of types of inorganic materials including those whose state changes by firing at a predetermined temperature;
A first firing step of firing the mixed inorganic material at a predetermined first temperature that is equal to or higher than the predetermined temperature and lower than a molding firing temperature that is fired after molding, to obtain a first material;
A second mixing step of adding and mixing a predetermined addition amount of the inorganic material determined according to the firing of the inorganic material to the first material;
A second baking step of baking the first material added with the inorganic material at a predetermined second temperature that is equal to or higher than the predetermined temperature and lower than the molding baking temperature to obtain a second material;
A molding and firing step of molding the second material into a molded body and firing at the molding and firing temperature;
Including
In the first mixing step, a plurality of types of inorganic materials including components contained in the lithium-containing garnet-type oxide are mixed,
In the second mixing step, an inorganic material containing Li is added.
A method for producing a solid electrolyte.
前記第1混合工程では前記無機材料を溶媒に入れて混合粉砕し、
前記第2混合工程では前記第1材料を溶媒に入れて混合粉砕し、
前記成形焼成工程では、成形体への成形前には前記第2材料を溶媒に入れた粉砕を行わない、請求項1に記載の固体電解質の製造方法。
In the first mixing step, the inorganic material is mixed and ground in a solvent,
In the second mixing step, the first material is mixed and ground in a solvent,
2. The method for producing a solid electrolyte according to claim 1, wherein in the molding and firing step, the second material is not pulverized in a solvent before being molded into a molded body.
前記第1混合工程では、L7La3Zr212 に含まれる成分を含む複数種の無機材料を混合し、
前記第2混合工程では、前記所定の添加量として前記無機材料中のLi量に対してLi量が4atmic%以上20atmic%以下の範囲に相当するLiを添加する、請求項1又は2に記載の固体電解質の製造方法。
In the first mixing step, mixing a plurality of kinds of inorganic materials including components contained in the L i 7 La 3 Zr 2 O 12,
The said 2nd mixing process adds Li corresponding to the range whose Li amount is 4 atomic% or more and 20 atomic% or less with respect to the Li amount in the said inorganic material as said predetermined | prescribed addition amount. A method for producing a solid electrolyte.
前記第2混合工程では、前記所定の添加量として前記無機材料中のLi量に対してLi量が6atmic%以上14atmic%以下の範囲に相当するLiを添加する、請求項3に記載の固体電解質の製造方法。   4. The solid electrolyte according to claim 3, wherein in the second mixing step, Li corresponding to a Li amount in a range of 6 atomic% or more and 14 atomic% or less is added as the predetermined addition amount with respect to the Li amount in the inorganic material. Manufacturing method. 前記第1混合工程では、L5La3Nb212 に含まれる成分を含む複数種の無機材料を混合し、
前記第2混合工程では、前記所定の添加量として前記無機材料中のLi量に対してLi量が7atmic%以上13atmic%以下の範囲に相当するLiを添加する、請求項1又は2に記載の固体電解質の製造方法。
In the first mixing step, mixing a plurality of kinds of inorganic materials including components contained in the L i 5 La 3 Nb 2 O 12,
The said 2nd mixing process adds Li corresponding to the range whose Li amount is 7 atomic% or more and 13 atomic% or less with respect to the amount of Li in the said inorganic material as said predetermined addition amount. A method for producing a solid electrolyte.
請求項1〜5のいずれかの製造方法により製造され、リチウムイオンを伝導する固体電解質として利用可能でありリチウム二次電池に用いられるリチウム含有ガーネット型酸化物であって、
前記基本組成がLi 7 La 3 Zr 2 12 であり、
理論密度に対する相対密度が93(%)以上であり、
25℃での電気伝導度が3.0×10-4(Scm-1)以上である、
リチウム含有ガーネット型酸化物。
A lithium-containing garnet-type oxide that is produced by the production method according to claim 1 and can be used as a solid electrolyte that conducts lithium ions and is used in a lithium secondary battery,
The basic composition is Li 7 La 3 Zr 2 O 12 ;
The relative density with respect to the theoretical density is 93 (%) or more,
The electrical conductivity at 25 ° C. is 3.0 × 10 −4 (Scm −1 ) or more,
Lithium-containing garnet oxide.
請求項1〜5のいずれかの製造方法により製造され、リチウムイオンを伝導する固体電解質として利用可能でありリチウム二次電池に用いられるリチウム含有ガーネット型酸化物であって、
前記基本組成がLi 5 La 3 Nb 2 12 であり、
理論密度に対する相対密度が90(%)以上であり、
25℃での電気伝導度が1.0×10-5(Scm-1)以上である、
リチウム含有ガーネット型酸化物。
A lithium-containing garnet-type oxide that is produced by the production method according to claim 1 and can be used as a solid electrolyte that conducts lithium ions and is used in a lithium secondary battery,
The basic composition is Li 5 La 3 Nb 2 O 12 ;
The relative density with respect to the theoretical density is 90 (%) or more,
The electrical conductivity at 25 ° C. is 1.0 × 10 −5 (Scm −1 ) or more,
Lithium-containing garnet oxide.
正極活物質を有する正極と、
負極活物質を有する負極と、
前記正極と前記負極との間に介在しリチウムイオンを伝導する請求項6又は7に記載のリチウム含有ガーネット型酸化物からなる固体電解質と、
を備えたリチウム二次電池。
A positive electrode having a positive electrode active material;
A negative electrode having a negative electrode active material;
A solid electrolyte comprising a lithium-containing garnet-type oxide according to claim 6 or 7, which is interposed between the positive electrode and the negative electrode and conducts lithium ions.
Rechargeable lithium battery.
JP2008272985A 2008-10-23 2008-10-23 Lithium-containing garnet-type oxide, lithium secondary battery, and method for producing solid electrolyte Expired - Fee Related JP5262572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008272985A JP5262572B2 (en) 2008-10-23 2008-10-23 Lithium-containing garnet-type oxide, lithium secondary battery, and method for producing solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008272985A JP5262572B2 (en) 2008-10-23 2008-10-23 Lithium-containing garnet-type oxide, lithium secondary battery, and method for producing solid electrolyte

Publications (2)

Publication Number Publication Date
JP2010102929A JP2010102929A (en) 2010-05-06
JP5262572B2 true JP5262572B2 (en) 2013-08-14

Family

ID=42293413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008272985A Expired - Fee Related JP5262572B2 (en) 2008-10-23 2008-10-23 Lithium-containing garnet-type oxide, lithium secondary battery, and method for producing solid electrolyte

Country Status (1)

Country Link
JP (1) JP5262572B2 (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5131854B2 (en) * 2008-12-18 2013-01-30 独立行政法人産業技術総合研究所 Lithium ion conductive oxide, method for producing the same, and solid electrolyte composed of the oxide
CN102308425B (en) 2009-02-04 2014-03-26 株式会社丰田中央研究所 Garnet-type lithium ion-conducting oxide and all-solid-state lithium ion secondary battery containing the same
JP5358522B2 (en) 2010-07-07 2013-12-04 国立大学法人静岡大学 Solid electrolyte material and lithium battery
JP5617417B2 (en) * 2010-08-02 2014-11-05 株式会社豊田中央研究所 Garnet-type lithium ion conductive oxide and process for producing the same
JP5742144B2 (en) * 2010-09-08 2015-07-01 株式会社豊田中央研究所 Composite manufacturing method, composite, and alkali metal secondary battery including the same
JP5290337B2 (en) * 2011-02-24 2013-09-18 国立大学法人信州大学 Garnet-type solid electrolyte, secondary battery containing the garnet-type solid electrolyte, and method for producing the garnet-type solid electrolyte
JP5854045B2 (en) * 2011-06-20 2016-02-09 株式会社豊田中央研究所 All-solid-state lithium secondary battery and manufacturing method thereof
JP6144007B2 (en) * 2011-06-29 2017-06-07 株式会社豊田中央研究所 Garnet-type ion conductive oxide and method for producing the same
JP5851584B2 (en) 2012-03-13 2016-02-03 株式会社東芝 Lithium ion conductive oxide for solid electrolyte secondary battery, solid electrolyte secondary battery and battery pack
TWI448537B (en) * 2012-06-15 2014-08-11 Unity Opto Technology Co Ltd Lithium lanthanum garnet phosphor and light-emitting diode with lithium lanthanum garnet phosphor
JP6028169B2 (en) * 2012-12-28 2016-11-16 国立大学法人信州大学 Solid electrolyte for lithium ion secondary battery and method for producing the same
US9362546B1 (en) 2013-01-07 2016-06-07 Quantumscape Corporation Thin film lithium conducting powder material deposition from flux
JP6200169B2 (en) * 2013-03-12 2017-09-20 一般財団法人ファインセラミックスセンター Method for producing lithium ion conductive oxide
JP6081392B2 (en) * 2013-04-04 2017-02-15 本田技研工業株式会社 Electrolyte-positive electrode structure and lithium ion secondary battery including the same
US9761861B1 (en) 2013-06-25 2017-09-12 Quantumscape Corporation Pulse plating of lithium material in electrochemical devices
JP6028694B2 (en) 2013-08-23 2016-11-16 株式会社豊田中央研究所 Method for producing garnet-type ion conductive oxide and method for producing composite
EP3055269B1 (en) 2013-10-07 2020-09-09 QuantumScape Corporation Garnet materials for li secondary batteries
US9548512B2 (en) 2013-12-12 2017-01-17 Ut-Battelle, Llc High conducting oxide—sulfide composite lithium superionic conductor
JP6394020B2 (en) * 2014-03-20 2018-09-26 株式会社豊田中央研究所 Composite laminate, lithium battery, and method for producing composite laminate
JP6185414B2 (en) * 2014-03-25 2017-08-23 トヨタ自動車株式会社 Method for producing solid electrolyte member for solid battery
JP6341480B2 (en) * 2014-04-16 2018-06-13 株式会社豊田自動織機 Garnet-type oxide, method for producing the same, and solid electrolyte for secondary battery and secondary battery using the same
JP6524089B2 (en) * 2014-07-31 2019-06-05 国立研究開発法人産業技術総合研究所 Method for producing lithium-containing garnet single crystal
JP6399657B2 (en) * 2015-03-04 2018-10-03 国立研究開発法人物質・材料研究機構 Oxide sintered body, manufacturing method thereof, solid electrolyte using the same, and lithium ion battery using the same
KR20240059640A (en) 2015-04-16 2024-05-07 퀀텀스케이프 배터리, 인코포레이티드 Lithium stuffed garnet setter plates for solid electrolyte fabrication
JP6376061B2 (en) * 2015-07-10 2018-08-22 トヨタ自動車株式会社 Method for producing solid electrolyte layer
EP3326223A4 (en) 2015-07-21 2018-12-19 QuantumScape Corporation Processes and materials for casting and sintering green garnet thin films
KR101718880B1 (en) * 2015-12-30 2017-03-23 주식회사 이아이지 Preparing method of lithum-lanthanum-zirconium-based solid electrolyte
US9966630B2 (en) 2016-01-27 2018-05-08 Quantumscape Corporation Annealed garnet electrolyte separators
JP6530785B2 (en) * 2016-06-23 2019-06-12 日本化学工業株式会社 Method for producing alkali niobate compound
WO2018075809A1 (en) 2016-10-21 2018-04-26 Quantumscape Corporation Lithium-stuffed garnet electrolytes with a reduced surface defect density and methods of making and using the same
JP6819860B2 (en) * 2016-11-07 2021-01-27 住友金属鉱山株式会社 A method for producing a positive electrode material for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery using the positive electrode material, and a positive electrode material for a non-aqueous electrolyte secondary battery.
WO2018165606A1 (en) * 2017-03-10 2018-09-13 Quantumscape Corporation Metal negative electrode ultrasonic charging
CN106941190A (en) * 2017-04-14 2017-07-11 中国科学院宁波材料技术与工程研究所 The preparation method of garnet-type solid electrolyte material
EP3642899B1 (en) 2017-06-23 2024-02-21 QuantumScape Battery, Inc. Lithium-stuffed garnet electrolytes with secondary phase inclusions
JP6978887B2 (en) * 2017-10-10 2021-12-08 古河機械金属株式会社 Manufacturing method of inorganic material
US11600850B2 (en) 2017-11-06 2023-03-07 Quantumscape Battery, Inc. Lithium-stuffed garnet thin films and pellets having an oxyfluorinated and/or fluorinated surface and methods of making and using the thin films and pellets
CN108417889B (en) * 2018-02-02 2020-08-28 中国科学院宁波材料技术与工程研究所 Preparation method of lithium lanthanum zirconium oxide based oxide powder
US20220158179A1 (en) * 2019-02-28 2022-05-19 Quantumscape Battery, Inc. Methods of forming and using electrochemical cells comprising a metal sheet
JP7296822B2 (en) * 2019-08-22 2023-06-23 Jx金属株式会社 Solid electrolyte for all-solid-state lithium-ion battery, all-solid-state lithium-ion battery, and method for manufacturing all-solid-state lithium-ion battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004010892B3 (en) * 2004-03-06 2005-11-24 Christian-Albrechts-Universität Zu Kiel Chemically stable solid Li ion conductor of garnet-like crystal structure and high Li ion conductivity useful for batteries, accumulators, supercaps, fuel cells, sensors, windows displays
DE102007030604A1 (en) * 2007-07-02 2009-01-08 Weppner, Werner, Prof. Dr. Ion conductor with garnet structure
JP2010045019A (en) * 2008-07-16 2010-02-25 Tokyo Metropolitan Univ All-solid lithium secondary battery, and method of manufacturing the same

Also Published As

Publication number Publication date
JP2010102929A (en) 2010-05-06

Similar Documents

Publication Publication Date Title
JP5262572B2 (en) Lithium-containing garnet-type oxide, lithium secondary battery, and method for producing solid electrolyte
JP5489723B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
Courtel et al. High capacity anode materials for Li-ion batteries based on spinel metal oxides AMn 2 O 4 (A= Co, Ni, and Zn)
JP5381640B2 (en) Lithium secondary battery
JP5617417B2 (en) Garnet-type lithium ion conductive oxide and process for producing the same
Singhal et al. Synthesis and characterization of Nd doped LiMn2O4 cathode for Li-ion rechargeable batteries
JP5471527B2 (en) Lithium secondary battery and electrode for lithium secondary battery
JP5370937B2 (en) Positive electrode active material, positive electrode and non-aqueous secondary battery
Ghosh et al. Lanthanum-doped LiCoO2 cathode with high rate capability
JP2013193888A (en) Lithium composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2010251060A (en) Lithium ion secondary battery
JP5451671B2 (en) Positive electrode active material, positive electrode and non-aqueous secondary battery
JP2015118742A (en) Nonaqueous electrolyte secondary battery
JP2021005474A (en) Cathode active material for lithium ion secondary battery, manufacturing method of the same, and the lithium ion secondary battery
KR102312684B1 (en) Composite structure, lithium battery, and method of producing composite structure
JP2017050204A (en) Positive electrode material for nonaqueous electrolyte secondary batteries, method for manufacturing the same and nonaqueous electrolyte secondary battery
JP5451681B2 (en) Positive electrode active material, positive electrode and non-aqueous secondary battery
JP5742144B2 (en) Composite manufacturing method, composite, and alkali metal secondary battery including the same
JP5463754B2 (en) Active material for lithium secondary battery, lithium secondary battery, and method for producing active material for lithium secondary battery
WO2022259797A1 (en) Coated positive electrode active substance, positive electrode material, and battery
JP5463222B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
WO2021220580A1 (en) Negative electrode material and battery
JP2008140747A (en) Cathode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JP6340955B2 (en) Method for producing composite laminate, composite laminate and lithium battery
JP5531685B2 (en) Negative electrode active material for non-aqueous secondary battery, non-aqueous secondary battery and method of use

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R151 Written notification of patent or utility model registration

Ref document number: 5262572

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees