JP6028169B2 - Solid electrolyte for lithium ion secondary battery and method for producing the same - Google Patents

Solid electrolyte for lithium ion secondary battery and method for producing the same Download PDF

Info

Publication number
JP6028169B2
JP6028169B2 JP2012286842A JP2012286842A JP6028169B2 JP 6028169 B2 JP6028169 B2 JP 6028169B2 JP 2012286842 A JP2012286842 A JP 2012286842A JP 2012286842 A JP2012286842 A JP 2012286842A JP 6028169 B2 JP6028169 B2 JP 6028169B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
plate
lithium ion
secondary battery
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012286842A
Other languages
Japanese (ja)
Other versions
JP2014130700A (en
Inventor
手嶋 勝弥
勝弥 手嶋
元 我田
元 我田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Original Assignee
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC filed Critical Shinshu University NUC
Priority to JP2012286842A priority Critical patent/JP6028169B2/en
Publication of JP2014130700A publication Critical patent/JP2014130700A/en
Application granted granted Critical
Publication of JP6028169B2 publication Critical patent/JP6028169B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Description

本発明は、リチウムイオン二次電池用固体電解質の製造方法に関するものである。 The present invention relates to a method for producing a solid electrolyte for a lithium ion secondary battery.

リチウムイオン二次電池等の全固体二次電池は正極・固体電解質・負極の3層構造からなる。この構造体は、正負各電極活物質表面に成膜、あるいは基材の表面に活物質を形成することにより作製される。通常、固体電解質材料は、原材料の調整、成形(粉末成形、あるいは塗布など)、焼成というプロセスを経て作製されている(例えば特許文献1)。   An all-solid secondary battery such as a lithium ion secondary battery has a three-layer structure of a positive electrode, a solid electrolyte, and a negative electrode. This structure is produced by forming a film on the surface of each positive and negative electrode active material or by forming an active material on the surface of a substrate. Usually, the solid electrolyte material is manufactured through processes of adjustment of raw materials, molding (powder molding or coating, etc.), and firing (for example, Patent Document 1).

特開2012−94378号公報JP 2012-94378 A

特許文献1におけるリチウムイオン二次電池の固体電解質の製造方法は、ガラス状のLi1.5Al0.5Ge1.5(PO43とBaTiO3とを混合し、この混合物を所要形状に圧縮成形し、これを焼成して固体電解質焼結体とするものである。
特許文献1における固体電解質は、固体電解質材料の調整・成形、焼成という2段階プロセスで作製される。このように、固体電解質材料を焼成して得られる固体電解質は、結晶粒子が多結晶となり、結晶粒界が生じ、リチウムイオンの良好なパス(通路)が得られず、また、薄く形成し難いので、良好なイオン伝導性が得られないという課題がある。また、焼成時に、結晶粒子を強固に固化、固定化しにくいという課題がある。
本発明は、上記課題に鑑みてなされたものであり、単結晶の結晶粒子が強固に結合した板状体をなし、正負極への密着性が良好で、良好なリチウムイオン伝導性が得られるリチウムイオン二次電池用固体電解質の製造方法を提供することを目的とする。
In the method of manufacturing a solid electrolyte of a lithium ion secondary battery in Patent Document 1, glassy Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 and BaTiO 3 are mixed, and the mixture is compression-molded into a required shape. Is fired to obtain a solid electrolyte sintered body.
The solid electrolyte in Patent Document 1 is produced by a two-stage process of adjusting / molding and firing a solid electrolyte material. Thus, in the solid electrolyte obtained by firing the solid electrolyte material, the crystal particles become polycrystalline, a crystal grain boundary is generated, a good path (passage) of lithium ions cannot be obtained, and it is difficult to form a thin film. Therefore, there is a problem that good ion conductivity cannot be obtained. In addition, there is a problem that it is difficult to solidify and fix the crystal particles firmly during firing.
The present invention has been made in view of the above problems, and has a plate-like body in which single crystal crystal particles are firmly bonded, has good adhesion to positive and negative electrodes, and provides good lithium ion conductivity. It aims at providing the manufacturing method of the solid electrolyte for lithium ion secondary batteries.

本発明に係るリチウムイオン二次電池用固体電解質の製造方法は、Li源をフラックス成分として含む複数の金属材料を、基体金属板と共に加熱して、該金属材料および前記基体金属板を基体金属板の融点よりも低い温度で溶解し、次いで冷却して結晶化することにより、Liおよび前記基体金属板の金属を構成金属に含む複数の金属の酸化物からなる単結晶粒子が複数結合した板状をなす固体電解質に形成することを特徴とする。   The method for producing a solid electrolyte for a lithium ion secondary battery according to the present invention comprises heating a plurality of metal materials containing a Li source as a flux component together with a base metal plate, and the base metal plate and the base metal plate. By melting at a temperature lower than the melting point of, and then cooling to crystallize, and a plurality of single crystal particles composed of a plurality of metal oxides containing Li and the metal of the base metal plate as a constituent metal are combined. It forms in the solid electrolyte which makes | forms.

また、前記板状をなす固体電解質を、表面が、前記単結晶粒子の結晶面が露出する凹凸面をなす板状体に形成することを特徴とする。
前記基体金属板にNb板を用いることができる。
あるいは、前記基体金属板にZr板を用いることができる。
前記金属材料および前記基体金属板をルツボ内に収容して加熱するようにしてもよいし、前記基体金属板にペースト状にした前記金属材料を塗布した後加熱するようにしてもよい。
Further, the plate-like solid electrolyte is formed into a plate-like body having an uneven surface on which a crystal face of the single crystal particle is exposed.
An Nb plate can be used as the base metal plate.
Alternatively, a Zr plate can be used for the base metal plate.
The metal material and the base metal plate may be housed in a crucible and heated, or the paste may be applied to the base metal plate and heated.

本発明によれば、単結晶の結晶粒子が強固に結合した板状体をなし、正負極への密着性が良好で、良好なリチウムイオン伝導性が得られるリチウムイオン二次電池用固体電解質の製造方法を提供できる。 According to the present invention, a solid electrolyte for a lithium ion secondary battery that has a plate-like body in which single crystal crystal particles are firmly bonded, has good adhesion to positive and negative electrodes, and has good lithium ion conductivity can be obtained . A manufacturing method can be provided.

LiLaNb012の単結晶粒子が結合した板状体のSEM写真である。 2 is an SEM photograph of a plate-like body in which single crystal particles of Li 5 La 3 Nb 2 0 12 are bonded. 図1の拡大写真である。It is an enlarged photograph of FIG. 図1の結晶粒子の模式図である。It is a schematic diagram of the crystal grain of FIG. 図1の結晶粒子のXRD解析データを示すグラフである。It is a graph which shows the XRD analysis data of the crystal grain of FIG. 単結晶粒子におけるリチウムイオンの移動経路を示す説明図である。It is explanatory drawing which shows the movement path | route of the lithium ion in a single crystal particle. 多結晶粒子におけるリチウムイオンの移動経路を示す説明図である。It is explanatory drawing which shows the movement path | route of the lithium ion in a polycrystalline particle. リチウムイオン二次電池用固体電解質の他の一例である、LiLaZr012の単結晶粒子が結合した板状体のSEM写真である。It is another example of a lithium ion secondary battery for a solid electrolyte, an SEM photograph of the plate-like body to which the single crystal grains are bonded in Li 7 La 3 Zr 2 0 12 . 図7の拡大写真である。It is an enlarged photograph of FIG. 図7の結晶粒子の模式図である。It is a schematic diagram of the crystal grain of FIG. 図7の結晶粒子のXRD解析データのグラフである。It is a graph of the XRD analysis data of the crystal grain of FIG. リチウムイオン二次電池用固体電解質のさらに他の一例である、Li1+xAlxGe2-x(PO)の単結晶粒子のSEM写真である。Is yet another example of a lithium ion secondary battery for a solid electrolyte, an SEM photograph of the single crystal particles of Li 1 + x AlxGe 2-x (PO 4) 3. リチウムイオン二次電池用固体電解質のまたさらに他の一例である、Li3xLa2/3-xTi0の単結晶粒子のSEM写真である。4 is an SEM photograph of Li 3x La 2 / 3-x Ti0 3 single crystal particles, which is still another example of a solid electrolyte for a lithium ion secondary battery.

以下本発明の好適な実施の形態を添付図面を参照して詳細に説明する。
本実施の形態に係るリチウムイオン二次電池用固体電解質は、上記のように、Liを構成金属の1つとする複数の金属の酸化物からなる単結晶粒子が複数結合して、表面が、前記単結晶粒子の結晶面が露出する凹凸面をなす板状体に形成されていることを特徴とする。
単結晶粒子を構成する金属は、Li以外には、La、Nb、Zr、Tiなどの遷移金属、AlやGeなどの金属が有効である。
図1は、リチウムイオン二次電池用固体電解質(以下単に固体電解質ということがある)の一例である、Li5La3Nb2012の単結晶粒子が結合した板状体のSEM写真である。図2はその拡大写真、図3はその1つの結晶粒子の模式図である。また図4はその結晶粒子のXRD解析データを示すグラフである。
Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
As described above, the solid electrolyte for a lithium ion secondary battery according to the present embodiment is a combination of a plurality of single crystal particles made of a plurality of metal oxides having Li as one of the constituent metals, and the surface is It is formed in the plate-shaped body which makes the uneven surface which the crystal plane of a single crystal particle exposes.
In addition to Li, transition metals such as La, Nb, Zr, and Ti, and metals such as Al and Ge are effective as the metal constituting the single crystal particles.
FIG. 1 is an SEM photograph of a plate-like body in which single crystal particles of Li 5 La 3 Nb 2 0 12 are bonded, which is an example of a solid electrolyte for a lithium ion secondary battery (hereinafter sometimes simply referred to as a solid electrolyte). . FIG. 2 is an enlarged photograph thereof, and FIG. 3 is a schematic diagram of one of the crystal grains. FIG. 4 is a graph showing XRD analysis data of the crystal particles.

図1に示すように、固体電解質は、多数の単結晶粒子(LiLaNb012)が密に結合した板状体をなしている。この板状体の表面は、単結晶粒子が密に複数(多数)結合して、単結晶粒子の結晶面が露出する凹凸面をなしている。このように、板状をなす固体電解質の表面が凹凸状をなしていることから、アンカー効果により、正極材、負極材との密着性は良好である。また、正極材との接合面積が大きいから、この点からもリチウムイオンの伝導性に優れる。なお、Li:La:Nbの原子比率は上記に限られず、単結晶構造が保たれる限り、多少変動してもよい。 As shown in FIG. 1, the solid electrolyte has a plate-like body in which a large number of single crystal particles (Li 5 La 3 Nb 2 0 12 ) are closely bonded. The surface of the plate-like body has an uneven surface where a single crystal particle is closely coupled (plural) and a crystal plane of the single crystal particle is exposed. As described above, since the surface of the solid electrolyte in the form of a plate is uneven, adhesion with the positive electrode material and the negative electrode material is good due to the anchor effect. In addition, since the bonding area with the positive electrode material is large, the lithium ion conductivity is excellent also in this respect. Note that the atomic ratio of Li: La: Nb is not limited to the above, and may vary somewhat as long as the single crystal structure is maintained.

全体の結晶構造は複雑であるが、図3に示すように、結晶粒子は、表面に(220)面、および(211)面の結晶面が現れる八面体をなす単結晶粒子となっている。
固体電解質は、このように結晶粒子が単結晶構造をなしていることから、結晶粒境界が生じず、図5に模式的に示すように、リチウムイオンのパス(空隙、通路)が良好に形成され、リチウムイオンの伝導性が良好となる。
一方、結晶粒子が多結晶となるときは、図6に模式的に示すように、結晶の界面に粒界が形成され、リチウムイオンのパスが折れ曲がったり、遮断されることから、リチウムイオンの伝導性が低下することになる。
Although the entire crystal structure is complex, as shown in FIG. 3, the crystal grains are single crystal grains that form an octahedron in which crystal faces of (220) plane and (211) plane appear on the surface.
In the solid electrolyte, since the crystal particles have a single crystal structure as described above, there is no crystal grain boundary, and lithium ion paths (voids, passages) are well formed as schematically shown in FIG. As a result, the lithium ion conductivity is improved.
On the other hand, when the crystal grains become polycrystalline, as schematically shown in FIG. 6, a grain boundary is formed at the interface of the crystal, and the lithium ion path is bent or blocked. The sex will be reduced.

図7は、リチウムイオン二次電池用固体電解質の他の一例である、LiLaZr012の単結晶粒子が結合した板状体のSEM写真である。図8はその拡大写真、図9はその1つの結晶粒子の模式図である。また図10はその結晶粒子のXRD解析データのグラフである。
図7に示すように、本実施の形態においても、固体電解質は、多数の単結晶粒子(LiLaZr012)が密に結合した板状体をなしている。この板状体の表面は、単結晶粒子が密に複数(多数)結合して、単結晶粒子の結晶面が露出する凹凸面をなしている。このように、板状をなす固体電解質の表面が凹凸状をなしていることから、アンカー効果により、正極材、負極材との密着性は良好である。また、正極材との接合面積が大きいから、この点からもリチウムイオンの伝導性に優れる。なお、Li:La:Nbの原子比率は上記に限られず、単結晶構造が保たれる限り、多少変動してもよい。
FIG. 7 is an SEM photograph of a plate-like body in which single crystal particles of Li 7 La 3 Zr 2 0 12 are bonded, which is another example of the solid electrolyte for a lithium ion secondary battery. FIG. 8 is an enlarged photograph thereof, and FIG. 9 is a schematic view of one crystal particle thereof. FIG. 10 is a graph of XRD analysis data of the crystal particles.
As shown in FIG. 7, also in the present embodiment, the solid electrolyte is a plate-like body in which a large number of single crystal particles (Li 7 La 3 Zr 2 0 12 ) are closely bonded. The surface of the plate-like body has an uneven surface where a single crystal particle is closely coupled (plural) and a crystal plane of the single crystal particle is exposed. As described above, since the surface of the solid electrolyte in the form of a plate is uneven, adhesion with the positive electrode material and the negative electrode material is good due to the anchor effect. In addition, since the bonding area with the positive electrode material is large, the lithium ion conductivity is excellent also in this respect. Note that the atomic ratio of Li: La: Nb is not limited to the above, and may vary somewhat as long as the single crystal structure is maintained.

全体の結晶構造は複雑であるが、図9に示すように、結晶粒子は、表面に(110)面、および(211)面の結晶面が現れる単結晶粒子となっている。
本実施の形態においても、固体電解質は、結晶粒子が単結晶構造をなし、結晶粒界が生じず、リチウムイオンのパス(通路)が良好に形成され、リチウムイオンの伝導性が良好となる。
Although the entire crystal structure is complex, as shown in FIG. 9, the crystal grains are single crystal grains in which the (110) plane and (211) plane crystal planes appear on the surface.
Also in the present embodiment, in the solid electrolyte, the crystal particles have a single crystal structure, no crystal grain boundary is generated, a lithium ion path (passage) is well formed, and the lithium ion conductivity is good.

図11は、リチウムイオン二次電池用固体電解質のさらに他の一例である、Li1+xAlxGe2-x(POの単結晶粒子が結合した板状体のSEM写真である。なお、Xは0.1〜0.5が良好である。
図11に示すように、本実施の形態においても、固体電解質は、多数の単結晶粒子が密に結合した板状体をなしている。この板状体の表面は、単結晶粒子が密に複数(多数)結合して、単結晶粒子の結晶面が露出する凹凸面をなしている。このように、板状をなす固体電解質の表面が凹凸状をなしていることから、アンカー効果により、正極材、負極材との密着性は良好である。また、正極材との接合面積が大きいから、この点からもリチウムイオンの伝導性に優れる。
FIG. 11 is an SEM photograph of a plate-like body in which Li 1 + x AlxGe 2−x (PO 4 ) 3 single crystal particles are combined, which is still another example of a solid electrolyte for a lithium ion secondary battery. X is preferably 0.1 to 0.5.
As shown in FIG. 11, also in the present embodiment, the solid electrolyte is a plate-like body in which a large number of single crystal particles are tightly coupled. The surface of the plate-like body has an uneven surface where a single crystal particle is closely coupled (plural) and a crystal plane of the single crystal particle is exposed. As described above, since the surface of the solid electrolyte in the form of a plate is uneven, adhesion with the positive electrode material and the negative electrode material is good due to the anchor effect. In addition, since the bonding area with the positive electrode material is large, the lithium ion conductivity is excellent also in this respect.

全体の結晶構造は複雑であるが、図11に示すように、結晶粒子は、表面に(110)面、(012)面および(104)面の結晶面が現れる単結晶粒子となっている。
本実施の形態においても、固体電解質は、結晶粒子が単結晶構造をなすことから、結晶粒界が生じず、リチウムイオンのパス(通路)が良好に形成され、リチウムイオンの伝導性が良好となる。
Although the entire crystal structure is complex, as shown in FIG. 11, the crystal grains are single crystal grains in which crystal planes of (110) plane, (012) plane and (104) plane appear on the surface.
Also in the present embodiment, since the solid electrolyte has a single crystal structure, the crystal grain boundary is not generated, the lithium ion path (passage) is well formed, and the lithium ion conductivity is good. Become.

図12は、リチウムイオン二次電池用固体電解質のまたさらに他の一例である、Li3xLa2/3-xTi0の単結晶粒子が結合した板状体のSEM写真である。なお、Xは0.03〜0.167が良好である。
図12に示すように、本実施の形態においても、固体電解質は、多数の単結晶粒子が密に結合した板状体をなしている。この板状体の表面は、単結晶粒子が密に複数(多数)結合して、単結晶粒子の結晶面が露出する凹凸面をなしている。このように、板状をなす固体電解質の表面が凹凸状をなしていることから、アンカー効果により、正極材、負極材との密着性は良好である。また、正極材との接合面積が大きいから、この点からもリチウムイオンの伝導性に優れる。
FIG. 12 is an SEM photograph of a plate-like body in which single crystal particles of Li 3x La 2 / 3-x Ti0 3 are bonded, which is still another example of a solid electrolyte for a lithium ion secondary battery. X is preferably 0.03 to 0.167.
As shown in FIG. 12, also in the present embodiment, the solid electrolyte is a plate-like body in which a large number of single crystal particles are closely bonded. The surface of the plate-like body has an uneven surface where a single crystal particle is closely coupled (plural) and a crystal plane of the single crystal particle is exposed. As described above, since the surface of the solid electrolyte in the form of a plate is uneven, adhesion with the positive electrode material and the negative electrode material is good due to the anchor effect. In addition, since the bonding area with the positive electrode material is large, the lithium ion conductivity is excellent also in this respect.

図12に示すように、結晶粒子は、表面に(100)面の結晶面が現れる単結晶粒子となっている。
本実施の形態においても、固体電解質は、結晶粒子が単結晶構造をなすことから結晶粒界が生じず、リチウムイオンのパス(通路)が良好に形成され、リチウムイオンの伝導性が良好となる。
As shown in FIG. 12, the crystal grains are single crystal grains in which a (100) crystal plane appears on the surface.
Also in this embodiment, since the solid electrolyte has a single crystal structure, the crystal grain boundary is not generated, the lithium ion path (passage) is well formed, and the lithium ion conductivity is good. .

本実施の形態のリチウムイオン二次電池用固体電解質は、いわゆるフラックス法(例えば特開2001−63452)によって製造される。
このフラックス法は、結晶性化合物の結晶成長方法の1つであり、結晶成分となる溶質(結晶原材料)と、目的である結晶性化合物を融点以下の温度で溶解するフラックス(融剤)とを混合して結晶性化合物を得るものである。
すなわち、本実施の形態に係るリチウムイオン二次電池用固体電解質の製造方法は、Li源をフラックス成分として含む複数の金属材料を、基体金属板と共に加熱して、該金属材料および前記基体金属板を基体金属板の融点よりも低い温度で融解し、次いで冷却することにより、Liおよび前記基体金属板の金属を構成金属に含む複数の金属の酸化物からなる単結晶粒が複数結合して、表面が、前記単結晶粒の結晶面が露出する凹凸面をなす板状体に形成することを特徴とする。
The solid electrolyte for a lithium ion secondary battery according to the present embodiment is manufactured by a so-called flux method (for example, JP 2001-63452 A).
This flux method is one of crystal growth methods for a crystalline compound, and includes a solute (crystal raw material) that becomes a crystal component and a flux (flux) that dissolves the target crystalline compound at a temperature below the melting point. A crystalline compound is obtained by mixing.
That is, in the method for producing a solid electrolyte for a lithium ion secondary battery according to the present embodiment, a plurality of metal materials containing a Li source as a flux component are heated together with a base metal plate, and the metal material and the base metal plate Are melted at a temperature lower than the melting point of the base metal plate, and then cooled, so that a plurality of single crystal grains composed of a plurality of metal oxides including Li and the metal of the base metal plate are combined, It is characterized in that the surface is formed in a plate-like body having an uneven surface from which the crystal face of the single crystal grain is exposed.

基体金属板、例えばNb板とともに、フラックス成分であるLi源、および他の金属材料、例えば、La源をルツボ内に入れ、加熱する。フラックス成分であるLi源は、他の金属源よりも当量的に多めに用いる。所要速度で昇温して加熱することにより、フラックス成分であるLi源が存在することから、Nb板およびLa源はその融点よりも低い温度で溶解し始める。Nb板は、所要の間、板状を保ったまま溶解する。この溶解温度を所要時間維持して後、所要速度で冷却することにより、結晶化する。   A base metal plate, such as an Nb plate, together with a Li source that is a flux component, and another metal material, such as a La source, are placed in a crucible and heated. The Li source, which is a flux component, is used in an amount equivalent to that of other metal sources. By heating at a required speed and heating, since the Li source that is the flux component exists, the Nb plate and the La source start to melt at a temperature lower than the melting point. The Nb plate dissolves while maintaining the plate shape for as long as required. This melting temperature is maintained for a required time, and then cooled at a required speed to crystallize.

基体金属板が板状を保った状態で徐々に昇温することにより、基体金属板がその表面から他の金属源と反応しつつ溶解し、次いで徐々に冷却することにより、結晶面を形成しつつ単結晶粒に成長すると考えられる。このように結晶粒子は単結晶に成長し、LiLaNb012などの単結晶粒子が結合した板状体をなす固体電解質が得られる。この板状体を温水で洗浄して、残留した余分な成分を洗い流し、次いで乾燥することによって所要の固体電解質が得られる。この板状をなす固体電解質の表面は、単結晶粒子が密に複数(多数)結合して、単結晶粒子の結晶面が露出する凹凸面をなしている。 By gradually raising the temperature of the base metal plate while maintaining the plate shape, the base metal plate melts while reacting with other metal sources from its surface, and then gradually cools to form a crystal plane. However, it is thought to grow into single crystal grains. In this way, the crystal particles grow into a single crystal, and a solid electrolyte that forms a plate-like body in which single crystal particles such as Li 5 La 3 Nb 2 0 12 are bonded is obtained. The plate-like body is washed with warm water to wash away excess components, and then dried to obtain the required solid electrolyte. The surface of the solid electrolyte in the form of a plate is an uneven surface in which a plurality of (a large number) of single crystal particles are closely bonded to expose the crystal plane of the single crystal particles.

なお、ルツボを用いるのでなく、基体金属板に、他の金属源をペースト状に調整したものを塗布し、加熱するようにしてもよい。
Li以外の他の金属源としては、前記したように、La、Nb、Zr、Tiなどの遷移金属、AlやGeなどの金属源を用いる。これらの場合、基体金属板として、それぞれZr板、Ti板、Al板、Ge板を用いるとよい。
Instead of using a crucible, a base metal plate prepared by applying another metal source in a paste form may be applied and heated.
As the metal source other than Li, as described above, a transition metal such as La, Nb, Zr, or Ti, or a metal source such as Al or Ge is used. In these cases, a Zr plate, a Ti plate, an Al plate, and a Ge plate may be used as the base metal plate, respectively.

実施例1
1)ルツボ内に次の原料を収納した(原料仕込み)。
Li源:LiOH・HO 4.902〜8.757g
La源:LaO 0.981〜3.005g
Nb源:Nb基板 0.130〜0.140g
2)加熱、保持、冷却。ルツボを加熱炉に入れ、次の条件で結晶化した。
加熱速度:1000℃/h
保持温度:500℃
保持時間:30min
冷却速度:200℃/h
300℃まで冷却後、ヒーター電源をオフし、室温まで自然冷却
3)水洗、洗浄
約80℃の温水で洗浄し、100℃の温風で乾燥した。
これにより、図1、図4に示す、板状の固体電解質を得た。
4)Li源は、LiOH・HOに限られず、Li2CO3、LiNO3、Li2O、LiCl等も用いることができる。
また、La源も、LaOに限られず、La(NO3)3・6HO、La(OH)3、LaCl3・7HO等も用いることができる。
Example 1
1) The following raw materials were stored in the crucible (raw material preparation).
Li source: LiOH · H 2 O 4.902 ~ 8.757g
La source: La 2 O 3 0.981 to 3.005 g
Nb source: Nb substrate 0.130 ~ 0.140g
2) Heating, holding and cooling. The crucible was placed in a heating furnace and crystallized under the following conditions.
Heating rate: 1000 ℃ / h
Holding temperature: 500 ℃
Holding time: 30min
Cooling rate: 200 ℃ / h
After cooling to 300 ° C, the heater power was turned off, and natural cooling to room temperature was performed.
Thus, a plate-like solid electrolyte shown in FIGS. 1 and 4 was obtained.
4) The Li source is not limited to LiOH.H 2 O, and Li 2 CO 3 , LiNO 3 , Li 2 O, LiCl, and the like can also be used.
The La source is not limited to La 2 O 3 , and La (NO 3 ) 3 .6H 2 O, La (OH) 3 , LaCl 3 .7H 2 O, and the like can also be used.

実施例2
1)原料塗布
Li源:LiOH・HO 1.182〜1.705g
La源:La(NO)3・6HO 0.053〜0.113g
Zr源:Zr(基板) 0.900〜0.100g
Li源、La源を蒸留水と混合してペースト状にし、このペーストをZr基板に塗布した。
2)加熱、保持、冷却。Zr基板を加熱炉に入れ、次の条件で結晶化した。
加熱速度:500℃/h
保持温度:500℃
保持時間:60min
冷却速度:50℃/h
300℃まで冷却後、ヒーター電源をオフし、室温まで自然冷却
3)水洗、洗浄
約80℃の温水で洗浄し、100℃の温風で乾燥した。
これにより、図7、図10に示す、板状の固体電解質を得た。
4)Li源は、LiOH・HOに限られず、Li2CO3、LiNO3、Li2O、LiCl等も用いることができる。
また、La源も、La(NO)3・6HOに限られず、La2O3、La(OH)3、LaCl3・7HO等も用いることができる。
Example 2
1) Raw material application
Li source: LiOH ・ H 2 O 1.182 ~ 1.705g
La source: La (NO 3 ) 3 · 6H 2 O 0.053 to 0.113 g
Zr source: Zr (substrate) 0.900 to 0.100 g
Li source and La source were mixed with distilled water to make a paste, and this paste was applied to a Zr substrate.
2) Heating, holding and cooling. The Zr substrate was placed in a heating furnace and crystallized under the following conditions.
Heating rate: 500 ℃ / h
Holding temperature: 500 ℃
Holding time: 60min
Cooling rate: 50 ℃ / h
After cooling to 300 ° C, the heater power was turned off, and natural cooling to room temperature was performed.
As a result, a plate-like solid electrolyte shown in FIGS. 7 and 10 was obtained.
4) The Li source is not limited to LiOH.H 2 O, and Li 2 CO 3 , LiNO 3 , Li 2 O, LiCl, and the like can also be used.
The La source is not limited to La (NO 3 ) 3 .6H 2 O, and La 2 O 3 , La (OH) 3 , LaCl 3 .7H 2 O, and the like can also be used.

実施例3
1)ルツボ内に次の原料を収納した(原料仕込み)。
Li源:LiOH・HO 0.394〜0.6839g
Al源:AlO 0.160〜0.277g
Ge源:GeO2 0.982〜1.706g
PO4源:NH4H2PO4 2.159〜3.750g
フラックス:LiCl 0.461〜2.387g
2)加熱、保持、冷却。ルツボを加熱炉に入れ、次の条件で結晶化した。
加熱速度:900℃/h
保持温度:900℃
保持時間:10h
冷却速度:200℃/h
500℃まで冷却後、ヒーター電源をオフし、室温まで自然冷却
3)水洗、洗浄
約80℃の温水で洗浄し、100℃の温風で乾燥した。
これにより、図11に示す、直方体の固体電解質を得た。
4)Li源は、LiOH・HOに限られず、Li2CO3、LiNO3、Li2O、LiCl等も用いることができる。
また、Al源も、AlOに限られず、Al(OH)3、AlCl3・6HO、Al(NO)3・9HO等も用いることができる。
また、Ge源も、GeO2に限られず、Al(OH)3、AlCl3・6HO、Al(NO)3・9HO等も用いることができる。
また、PO4源も、NH4H2PO4に限られず、(NH4)2HPO4、NH3PO4等も用いることができる。
Example 3
1) The following raw materials were stored in the crucible (raw material preparation).
Li source: LiOH ・ H 2 O 0.394-0.6839g
Al source: Al 2 O 3 0.160 to 0.277 g
Ge source: GeO 2 0.982〜1.706g
PO 4 source: NH 4 H 2 PO 4 2.159-3.750 g
Flux: LiCl 0.461 ~ 2.387g
2) Heating, holding and cooling. The crucible was placed in a heating furnace and crystallized under the following conditions.
Heating rate: 900 ℃ / h
Holding temperature: 900 ℃
Holding time: 10h
Cooling rate: 200 ℃ / h
After cooling to 500 ° C, the heater power was turned off, and natural cooling to room temperature was performed.
As a result, a cuboid solid electrolyte shown in FIG. 11 was obtained.
4) The Li source is not limited to LiOH.H 2 O, and Li 2 CO 3 , LiNO 3 , Li 2 O, LiCl, and the like can also be used.
Also, the Al source is not limited to Al 2 O 3 , and Al (OH) 3 , AlCl 3 .6H 2 O, Al (NO 3 ) 3 .9H 2 O, and the like can also be used.
The Ge source is not limited to GeO 2 , and Al (OH) 3 , AlCl 3 .6H 2 O, Al (NO 3 ) 3 · 9H 2 O, and the like can also be used.
Further, the PO 4 source is not limited to NH 4 H 2 PO 4 , and (NH 4 ) 2 HPO 4 , NH 3 PO 4 and the like can also be used.

実施例4
1)ルツボ内に次の原料を収納した(原料仕込み)。
Li源:Li2CO3 0.056〜1.119g
La源:LaO 0.415〜8.327g
Ti源:TiO2 0.365〜7.330g
フラックス:NaCl: 0〜10.870g
NaF: 0〜3.899g
2)加熱、保持、冷却。ルツボを加熱炉に入れ、次の条件で結晶化した。
加熱速度:900℃/h
保持温度:900℃
保持時間:10h
冷却速度:200℃/h
500℃まで冷却後、ヒーター電源をオフし、室温まで自然冷却
3)水洗、洗浄
約80℃の温水で洗浄し、100℃の温風で乾燥した。
これにより、図12に示す、直方体の固体電解質を得た。
4)Li源は、LiOH・HOに限られず、Li2CO3、LiNO3、Li2O、LiCl等も用いることができる。
また、La源も、LaOに限られず、La(NO3)3・6HO、La(OH)3、LaCl3・7HO等も用いることができる。
また、Ti源も、TiO2に限られず、TiO、TiCl4、Ti(OCH3)4等も用いることができる。
Example 4
1) The following raw materials were stored in the crucible (raw material preparation).
Li source: Li 2 CO 3 0.056 to 1.119 g
La source: La 2 O 3 0.415-8.327 g
Ti source: TiO 2 0.365-7.330 g
Flux: NaCl: 0-10.870g
NaF: 0 ~ 3.899g
2) Heating, holding and cooling. The crucible was placed in a heating furnace and crystallized under the following conditions.
Heating rate: 900 ℃ / h
Holding temperature: 900 ℃
Holding time: 10h
Cooling rate: 200 ℃ / h
After cooling to 500 ° C, the heater power was turned off, and natural cooling to room temperature was performed.
As a result, a cuboid solid electrolyte shown in FIG. 12 was obtained.
4) The Li source is not limited to LiOH.H 2 O, and Li 2 CO 3 , LiNO 3 , Li 2 O, LiCl, and the like can also be used.
The La source is not limited to La 2 O 3 , and La (NO 3 ) 3 .6H 2 O, La (OH) 3 , LaCl 3 .7H 2 O, and the like can also be used.
Further, the Ti source is not limited to TiO 2 , and TiO, TiCl 4 , Ti (OCH 3 ) 4 and the like can also be used.

Claims (6)

Li源をフラックス成分として含む複数の金属材料を、基体金属板と共に加熱して、該金属材料および前記基体金属板を基体金属板の融点よりも低い温度で溶解し、次いで冷却して結晶化することにより、Liおよび前記基体金属板の金属を構成金属に含む複数の金属の酸化物からなる単結晶粒子が複数結合した板状をなす固体電解質に形成することを特徴とするリチウムイオン二次電池用固体電解質の製造方法。   A plurality of metal materials containing a Li source as a flux component are heated together with the base metal plate to melt the metal material and the base metal plate at a temperature lower than the melting point of the base metal plate, and then cooled to crystallize. Lithium ion secondary battery, characterized in that a lithium-ion secondary battery is formed into a plate-like solid electrolyte in which a plurality of single crystal particles comprising a plurality of metal oxides containing Li and the metal of the base metal plate as a constituent metal are combined For manufacturing a solid electrolyte. 前記板状をなす固体電解質を、表面が、前記単結晶粒子の結晶面が露出する凹凸面をなす板状体に形成することを特徴とする請求項1記載のリチウムイオン二次電池用固体電解質の製造方法。 2. The solid electrolyte for a lithium ion secondary battery according to claim 1, wherein the plate-like solid electrolyte is formed into a plate-like body having a concavo-convex surface on which a crystal plane of the single crystal particle is exposed. Manufacturing method. 前記基体金属板にNb板を用いることを特徴とする請求項1または2記載のリチウムイオン二次電池用固体電解質の製造方法。 The method for producing a solid electrolyte for a lithium ion secondary battery according to claim 1, wherein an Nb plate is used as the base metal plate. 前記基体金属板にZr板を用いることを特徴とする請求項1または2記載のリチウムイオン二次電池用固体電解質の製造方法。 3. The method for producing a solid electrolyte for a lithium ion secondary battery according to claim 1, wherein a Zr plate is used as the base metal plate. 前記金属材料および前記基体金属板をルツボ内に収容して加熱することを特徴とする請求項1〜4いずれか1項記載のリチウムイオン二次電池用固体電解質の製造方法。 The method for producing a solid electrolyte for a lithium ion secondary battery according to any one of claims 1 to 4, wherein the metal material and the base metal plate are accommodated in a crucible and heated. 前記基体金属板にペースト状にした前記金属材料を塗布した後加熱することを特徴とする請求項1〜4いずれか1項記載のリチウムイオン二次電池用固体電解質の製造方法。 The method for producing a solid electrolyte for a lithium ion secondary battery according to any one of claims 1 to 4 , wherein the metal material in paste form is applied to the base metal plate and then heated.
JP2012286842A 2012-12-28 2012-12-28 Solid electrolyte for lithium ion secondary battery and method for producing the same Active JP6028169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012286842A JP6028169B2 (en) 2012-12-28 2012-12-28 Solid electrolyte for lithium ion secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012286842A JP6028169B2 (en) 2012-12-28 2012-12-28 Solid electrolyte for lithium ion secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014130700A JP2014130700A (en) 2014-07-10
JP6028169B2 true JP6028169B2 (en) 2016-11-16

Family

ID=51408941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012286842A Active JP6028169B2 (en) 2012-12-28 2012-12-28 Solid electrolyte for lithium ion secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP6028169B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6462343B2 (en) * 2014-12-04 2019-01-30 国立大学法人信州大学 Method for producing Li-containing composite oxide

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010045019A (en) * 2008-07-16 2010-02-25 Tokyo Metropolitan Univ All-solid lithium secondary battery, and method of manufacturing the same
JP5262572B2 (en) * 2008-10-23 2013-08-14 株式会社豊田中央研究所 Lithium-containing garnet-type oxide, lithium secondary battery, and method for producing solid electrolyte
JP5131854B2 (en) * 2008-12-18 2013-01-30 独立行政法人産業技術総合研究所 Lithium ion conductive oxide, method for producing the same, and solid electrolyte composed of the oxide
JP2011195372A (en) * 2010-03-19 2011-10-06 National Institute Of Advanced Industrial Science & Technology Single crystal of lithium ion conductive oxide and method for producing the same, and electrochemical device using the same as member
JP5290337B2 (en) * 2011-02-24 2013-09-18 国立大学法人信州大学 Garnet-type solid electrolyte, secondary battery containing the garnet-type solid electrolyte, and method for producing the garnet-type solid electrolyte

Also Published As

Publication number Publication date
JP2014130700A (en) 2014-07-10

Similar Documents

Publication Publication Date Title
Chen et al. Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces
US11876208B2 (en) Thin film lithium conducting powder material deposition from flux
JP6462343B2 (en) Method for producing Li-containing composite oxide
CN105849307B (en) For manufacturing the vapor deposition method of the thin film laminated structures containing lithium
Xia et al. All‐solid‐state thin film lithium/lithium‐ion microbatteries for powering the Internet of things
JP6464556B2 (en) Electrode composite manufacturing method, electrode composite, and battery
CN108604665A (en) Solid state battery, partition board, electrode and manufacturing method
Yang et al. Advances in materials design for all-solid-state batteries: from bulk to thin films
CN102299295A (en) Cathode of lithium secondary battery and lithium secondary battery
WO2013031507A1 (en) Method for producing lithium-ion conductive solid electrolyte, and lithium-ion secondary battery
JP6386224B2 (en) All solid battery
JP6660766B2 (en) Manufacturing method of all solid state battery
CN102299296A (en) Cathode of lithium secondary battery and lithium secondary battery
JP2019518311A5 (en)
Tan et al. Controllable crystalline preferred orientation in Li–Co–Ni–Mn oxide cathode thin films for all-solid-state lithium batteries
TW201518243A (en) Lithium orthophosphate glasses, corresponding glass-ceramics and lithium ion-conducting NZP glass ceramics
CN108134049B (en) Negative electrode layer, preparation method thereof, lithium battery cell and lithium battery
KR20140031313A (en) Solid electrolyte for lithium battery, comprising at least one zone of lithium-containing glass ceramic material and method of production.
WO2020151143A1 (en) Prelithiation material, preparation method thereof, and lithium battery
JP6028169B2 (en) Solid electrolyte for lithium ion secondary battery and method for producing the same
JP6624892B2 (en) Method for producing electrode composite, electrode composite and battery
Chung et al. Structural and electrochemical properties of LiNi 0.7 Co 0.15 Mn 0.15 O 2 thin film prepared by high frequency hybrid direct current and radio frequency magnetron sputtering
JP6356403B2 (en) Method for manufacturing electrode body
JP2017033801A (en) Manufacturing method of garnet type oxide solid electrolyte
Akatsuka et al. Surface crystallization and gas bubble formation during conventional heat treatment in Na2MnP2O7 glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160908

R150 Certificate of patent or registration of utility model

Ref document number: 6028169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250