DE102004007904A1 - Verfahren zur Bestimmung mindestens einer Kenngröße für den Zustand einer elektrochemischen Speicherbatterie und Überwachungseinrichtung - Google Patents

Verfahren zur Bestimmung mindestens einer Kenngröße für den Zustand einer elektrochemischen Speicherbatterie und Überwachungseinrichtung Download PDF

Info

Publication number
DE102004007904A1
DE102004007904A1 DE102004007904A DE102004007904A DE102004007904A1 DE 102004007904 A1 DE102004007904 A1 DE 102004007904A1 DE 102004007904 A DE102004007904 A DE 102004007904A DE 102004007904 A DE102004007904 A DE 102004007904A DE 102004007904 A1 DE102004007904 A1 DE 102004007904A1
Authority
DE
Germany
Prior art keywords
value
charge
storage battery
state
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102004007904A
Other languages
English (en)
Other versions
DE102004007904B4 (de
Inventor
Ingo Koch
Helmut Laig-Hoerstebrock
Eberhard Meissner
Ursula Teutsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clarios Germany GmbH and Co KGaA
Original Assignee
VB Autobatterie GmbH and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VB Autobatterie GmbH and Co KGaA filed Critical VB Autobatterie GmbH and Co KGaA
Priority to DE102004007904A priority Critical patent/DE102004007904B4/de
Priority to EP05001383A priority patent/EP1566648B1/de
Priority to AT05001383T priority patent/ATE370425T1/de
Priority to DE502005001205T priority patent/DE502005001205D1/de
Priority to ES05001383T priority patent/ES2290794T3/es
Priority to US11/060,637 priority patent/US7423408B2/en
Publication of DE102004007904A1 publication Critical patent/DE102004007904A1/de
Application granted granted Critical
Publication of DE102004007904B4 publication Critical patent/DE102004007904B4/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables

Abstract

Ein Verfahren zur Bestimmung mindestens einer Kenngröße (KS, KL) für den Zustand einer elektrochemischen Speicherbatterie hat die Schritte: DOLLAR A a) Bestimmen des Ladungsdurchsatzes (DELTAQ) der Speicherbatterie pro Zeitschritt (DELTAt); DOLLAR A b) Ermitteln einer ersten Kennzahl (KS) zur Beschreibung der Schichtung der Elektrolytkonzentration in der Speicherbatterie, ausgehend von einem definierten Anfangswert (KS¶o¶) für eine neuwertige Speicherbatterie, und einer zweiten Kennzahl (KL) zur Beschreibung der Schichtung des Ladezustands (SOC) in der Speicherbatterie, ausgehend von einem definierten Anfangswert (KL¶0¶) für eine neuwertige Speicherbatterie im Betrieb der Speicherbatterie, wobei DOLLAR A c) für jeden Zeitschritt (DELTAt) aus dem aktuellen Zustand der Speicherbatterie, der durch den Ladezustand der Elektroden, die Elektrolytkonzentration in der Speicherbatterie und die erste und zweite Kennzahl (KS, KL) gekennzeichnet ist, die erste Kennzahl (KS) und die zweite Kennzahl (KL) in Abhängigkeit von dem Ladungsdurchsatz (DELTAQ) angepasst wird und die mindestens eine Kenngröße aus der ersten und zweiten Kennzahl (KS, KL) bestimmt wird.

Description

  • Die Erfindung betrifft ein Verfahren zur Bestimmung mindestens einer Kenngröße für den Zustand einer elektrochemischen Speicherbatterie mit dem Schritt:
    • a) Bestimmen des Ladungsdurchsatzes ΔQ der Speicherbatterie pro Zeitschritt Δt.
  • Die Erfindung betrifft weiterhin eine Überwachungseinrichtung für eine Speicherbatterie mit einer Einheit zur Bestimmung des Ladungsdurchsatzes der Speicherbatterie und mit Auswertemitteln.
  • Der Verschleiß von Speicherbatterien kann entweder bestimmt werden, indem aus der Betriebshistorie auf einen Zustand oder ein Verhalten der Speicherbatterie geschlossen wird. Es kann aber auch aus Messbefunden auf einen Zustand oder ein Verhalten der Speicherbatterie geschlossen werden.
  • Aus der DE 195 40 827 C1 ist ein Verfahren zur Alterungsbestimmung bekannt, bei dem ein Kennfeld der Batteriealterung in Abhängigkeit von der Entlademenge pro Entladezyklus als Batteriealterungseinflussgröße ausgewertet wird. In dem Verfahren werden die Einflussgrößen „Entladung" und „Entladetiefe" berücksichtigt, so dass die Entlademenge der Ladung zur Alterungsbestimmung herangezogen wird.
  • Weiterhin ist aus dem US-Patent 6,103,408 eine Alterungsuhr beschrieben, deren Frequenz als Funktion mindestens eines charakteristischen Wertes der Speicherbatterie variiert wird. Beispielsweise kann die Frequenz der Alterungsuhr mit ansteigender Elektrolyttemperatur und ansteigender Abweichung der Klemmenspannung von der Ruhespannung angehoben werden.
  • Zur Messung des Ladezustandes und der Bestimmung des Lastverhaltens von Speicherbatterien sind die verschiedensten Verfahren bekannt. So werden beispielsweise integrierende Messgeräte benutzt (Ah-Zähler), wobei der Ladestrom ggf. unter Bewertung mit einem festen Ladefaktor berücksichtigt wird. Da die nutzbare Kapazität einer Speicherbatterie stark von der Größe des Entladestroms und der Temperatur abhängig ist, kann auch mit solchen Verfahren keine zufriedenstellende Aussage über die der Batterie noch entnehmbare nutzbare Kapazität getroffen werden.
  • Aus der DE 22 42 510 C1 ist beispielsweise bekannt, bei einem Verfahren zur Messung des Ladezustandes den Ladestrom mit einem von der Temperatur und dem vom Ladezustand der Batterie selbst abhängigen Faktor zu bewerten.
  • In der DE 40 07 883 A1 ist ein Verfahren beschrieben, bei dem die Startfähigkeit einer Speicherbatterie durch Messung der Batterieklemmenspannung und der Batterietemperatur und Vergleich mit einer für den zu prüfenden Batterietyp geltenden Ladezustandskurvenschar ermittelt wird.
  • Der DE 195 43 874 A1 ist ein Berechnungsverfahren für die Entladungscharakteristik und Restkapazitätsmessung einer Speicherbatterie zu entnehmen, bei dem ebenfalls Strom, Spannung und Temperatur gemessen wird, wobei die Entladungscharakteristik durch eine mathematische Funktion mit gekrümmter Oberfläche angenähert wird.
  • In der DE 39 01 680 C1 ist ein Verfahren zur Überwachung der Kaltstartfähigkeit einer Starterbatterie beschrieben, bei dem die Starterbatterie zeitweise mit einem Widerstand belastet wird. Die am Widerstand abfallende Spannung wird gemessen und daraus im Vergleich mit Erfahrungswerten festgestellt, ob die Kaltstartfähigkeit der Starterbatterie noch ausreicht. Zur Belastung der Starterbatterie dient dabei der Anlassvorgang.
  • Weiterhin ist in der DE 43 39 568 A1 ein Verfahren zur Ermittlung des Ladezustandes einer Kraftfahrzeug-Starterbatterie zu entnehmen, bei dem Batteriestrom und Ruhespannung gemessen werden und aus diesen auf den Ladezustand geschlossen wird. Dabei wird zusätzlich auch die Batterietemperatur berücksichtigt. Die während verschiedener Zeiträume gemessenen Ladeströme werden miteinander verglichen und daraus eine Restkapazität ermittelt.
  • In der DE 198 47 648 A1 ist ein Verfahren zum Erlernen eines Zusammenhangs zwischen der Ruhespannung und dem Ladezustand einer Speicherbatterie zum Zweck der Abschätzung der Speicherfähigkeit beschrieben. Aus der Beziehung der Ruhespannungsdifferenz zur während der Belastungsphase umgesetzten Strommenge wird ein Maß für die Elektrolytkapazität des Elektrolyts der Speicherbatterie ermittelt. Dabei wird ausgenutzt, dass die Ruhespannung bei dem in der für die Praxis relevanten höheren Ladezustandsbereichen annähernd linear mit dem Ladezustand ansteigt.
  • Das Problem bei der Ermittlung des Zustandes einer elektrochemischen Speicherbatterie mit den vorbekannten Verfahren ist, dass insbesondere beim Entlade- und Ladetrieb wieder aufladbarer Speicherbatterien, aber auch bei der lastfreien Lagerung Verschleiß auftritt, wobei nicht alle relevanten Verschleißfaktoren berücksichtigt werden.
  • Im Falle eines Bleiakkumulators besteht der Elektrolyt aus verdünnter Schwefelsäure, d. h. eine Lösung von H2SO4 in Wasser. Typischerweise handelt es sich im vollständig geladenen Zustand um eine ca. 4 bis 5 molare Lösung. Bei der Entladereaktion wird entsprechend der Reaktionsgleichung Positive Elektrode: PbO2 + H2SO4 + 2H+ + 2e → PbSO4 + 2H2O Negative Elektrode: Pb + H2SO4 → Pb + 2H+ + 2e im Elektrolyten H2SO4 an beiden Elektroden verbraucht und zudem H2O einer positiven Elektrode gebildet. Dadurch sinkt bei der Entladung die Konzentration und die spezifische Dichte des Elektrolyten, während sie bei der umgekehrt ablaufenden Ladereaktion wieder ansteigt.
  • Hat bei der Ladereaktion die gebildete Schwefelsäure die Möglichkeit einer Konvektion im Schwerefeld der Erde, so hat sie die Neigung in Schlieren zum Boden des Zellgefäßes der Zellen des Bleiakkumulators zu sinken. Dadurch liegt dann im unteren Bereich des jeweiligen Zellgefäßes ein Elektrolyt mit höherer Konzentration vor, als im oberen Bereich des Zellgefäßes. Dieser Zustand wird im Falle des Bleiakkumulators als Säureschichtung bezeichnet.
  • Da sowohl die Lade-/Entladereaktion als auch die parasitären Reaktionen, wie z. B. Gasentwicklung, Korrosion etc. im Allgemeinen von der Elektrolytkonzentration beeinflusst werden, führt eine Säureschichtung zu einer Verungleichmäßigung des Zustandes der Zelle.
  • Mit den bekannten Verfahren werden allerdings nur sich monoton entwickelnde Alterungskenngrößen bewertet und der Effekt der Schichtung der Elektrolytkonzentration nicht berücksichtigt, die zunehmen und in bestimmten Situationen auch wieder abnehmen kann.
  • Aufgabe der Erfindung ist es daher, ein verbessertes Verfahren zur Bestimmung mindestens einer Kenngröße für den Zustand einer elektrochemischen Speicherbatterie zu schaffen, die den Effekt der Elektrolytschichtung mit berücksichtigt.
  • Die Aufgabe wird mit dem gattungsgemäßen Verfahren erfindungsgemäß gelöst durch die weiteren Schritte von:
    • b) Ermitteln einer ersten Kennzahl KS zur Beschreibung der Schichtung der Elektrolytkonzentration in der Speicherbatterie ausgehend von einem definierten Anfangswert KS0 für eine neuwertige Speicherbatterie und einer zweiten Kennzahl KL zur Beschreibung der Schichtung des Ladezustands SOC in der Speicherbatterie ausgehend von einem definierten Anfangswert KL0 für eine neuwertige Speicherbatterie im Betrieb der Speicherbatterie, wobei
    • c) für jeden Zeitschritt Δt, aus dem aktuellen Zustand der Speicherbatterie, der durch den Ladezustand der Elektroden, die Elektrolytkonzentration in der Speicherbatterie und die erste und zweite Kennzahl KS, KL gekennzeichnet ist, die erste Kennzahl KS und die zweite Kennzahl KL in Abhängigkeit von dem Ladungsdurchsatz ΔQ angepasst wird und mindestens eine Kenngröße aus der ersten und zweiten Kennzahl KS, KL bestimmt wird.
  • Das Verfahren ist insbesondere geeignet für Bleiakkumulatoren mit flüssigen Elektrolyten, ohne dass es jedoch auf solche Typen von Speicherbatterien beschränkt wäre.
  • Durch die Definition einer ersten und zweiten Kennzahl ist es nunmehr möglich, die Leistungsfähigkeit einer elektrochemischen Speicherbatterie, insbesondere die Speicherfähigkeit, den Ladezustand, das Spannungsverhalten bei Belastung mit Strömen, das Spannungsverhalten im lastfreien Zustand (innere Umladung) oder den Verschleißgrad vorherzusagen, indem lediglich der Ladungsdurchsatz für definierte Zeitschritte bestimmt und bewertet wird. Die erhaltenen ersten und zweiten Kennzahlen KS und KL werden hierzu genutzt.
  • Hierzu kann einerseits mindestens eine der erhaltenen Kennzahlen verwendet werden, um eine Maßnahme auszulösen, z. B. einen Wartungshinweis oder Austauschhinweis, die Regelung einer Ladeeinrichtung oder Pumpe oder Temperiereinrichtung. Es kann auch auf bekannt Verfahren zurückgegriffen werden, die mit Hilfe der ersten und zweiten Kennzahlen KS und KL nunmehr um eine Maßzahl für das Ausmaß der Elektrolytschichtung erweitert werden können.
  • Die Erhöhung der ersten Kennzahl bei Nettoladung pro Zeitschritt und die Verminderung der ersten Kennzahl und gleichzeitige Erhöhung der zweiten Kennzahl bei Nettoentladung ist dabei geeignet, den Verschleiß der Speicherbatterie über die Lebensdauer zu beschreiben.
  • Vorzugsweise werden mindestens zwei der folgenden Betriebsphasen bei der Anpassung der ersten und zweiten Kennzahl unterschieden:
    • a) STROMLOS, wenn der Betrag des Ladungsdurchsatzes pro Zeitschritt kleiner als ein Schwellwert ist;
    • b) ENTLADUNG, wenn der Ladungsdurchsatz pro Zeitschritt negativ und betragsmäßig größer als der Schwellwert ist;
    • c) LADUNG, wenn der Ladungsdurchsatz pro Zeitschritt positiv und betragsmäßig größer als der Schwellwert und keine ÜBERLADUNG vorliegt;
    • d) ÜBERLADUNG, wenn der Ladungsdurchsatz pro Zeitschritt positiv und betragsmäßig größer als der Schwellwert ist und gleichzeitig die erste Kennzahl bezogen auf den Wertebereich in der nähe des Anfangswertes liegt, oder wenn aus dem Ladungsdurchsatz und dem Ladezustand der Speicherbatterie eine Gasentwicklung erkannt wird, die einen definierten Gasungs-Schwellwert überschreitet.
  • Hierdurch kann dann der unterschiedliche Einfluss der genannten Betriebsphasen auf die Bildung und Rückbildung von Elektrolytschichtung in Verbindung mit sonstigen Verschleißfaktoren durch Anpassung der Kennzahlen berücksichtigt werden.
  • Der Schwellwert wird vorzugsweise kleiner als der 20-stündige Strom und besonders bevorzugt kleiner als der 100-stündige Strom der Speicherbatterie festgelegt.
  • In Abhängigkeit von den erkannten Betriebszuständen werden die ersten und zweiten Kennzahlen vorzugsweise wie folgt angepasst:
    Im Betriebszustand LADUNG wird die erste Kennzahl erhöht. Die zweite Kennzahl wird dann erhöht, wenn die erste Kennzahl bezogen auf ihren Wertebereich nicht nahe dem Anfangswert ist und die Summe des Wertes für den Ladezustand und der zweiten Kennzahl bezogen auf den Wertebereich einen nicht zu hohen Wert aufweist. Die zweite Kennzahl wird hingegen erniedrigt, wenn die erste Kennzahl bezogen auf Ihren Wertebereich nicht nahe dem Anfangswert ist und die Summe des Wertes für den Ladezustand und der zweiten Kennzahl bezogen auf Ihren Wertebereich einen hohen Wert aufweist.
  • Damit wird berücksichtigt, dass bei Ladung mit bereits eingetretenen Elektrolytschichtung im fortgeschrittenen Stadium auch eine Schichtung des Ladezustandes auftritt. Die Ladezustandsschichtung nimmt allerdings bei Ladung dann wieder ab, wenn der Ladezustandswert und/oder die zweite Kennzahl für die Schichtung des Ladezustandes relativ groß ist.
  • Im Betriebszustand ÜBERLADUNG wird die erste Kennzahl vermindert. Die zweite Kennzahl wird dann vermindert, wenn der Wert der ersten Kennzahl im Bereich des Anfangswertes ist, d. h. noch kaum Elektrolytschichtung vorhanden ist.
  • Durch die bei ÜBERLADUNG auftretenden Gasentwicklung wird das Elektrolyt nämlich verwirbelt, so dass die Elektrolytschichtung reduziert wird.
  • Im Betriebszustand ENTLADUNG wird die zweite Kennzahl für die Ladezustandsschichtung erhöht, wenn die erste Kennzahl bezogen auf ihren Wertebereich einen sehr hohen Wert aufweist, d. h., wenn die Elektrolytschichtung relativ groß ist. Erst dann tritt nämlich bei Entladung eine Ladezustandsschichtung auf.
  • Im Betriebszustand ENTLADUNG wird die erste Kennzahl dann erhöht, wenn die zweite Kennzahl bezogen auf ihren Wertebereich nicht nahe dem Anfangswert ist und der Wert des Ladezustandes vermindert um den Wert der zweiten Kennzahl bezogen auf den Wertebereich klein ist. Dies basiert auf der Erkenntnis, dass die Elektrolytschichtung bei Entladung zunimmt, wenn der aktuelle Ladezustandswert niedriger als der bisher niedrigste Ladezustandswert seit dem letzten Erreichen eines Zustandes der weitgehenden Volladung oder eines Zustandes ist, in dem die erste Kennzahl bezogen auf ihren Maximalwert einen kleinen Wert hat.
  • Im Betriebszustand ENTLADUNG wird die erste Kennzahl dann erniedrigt, wenn die zweite Kennzahl bezogen auf ihren Wertebereich einen erheblichen Wert aufweist und der Wert des Ladezustandes vermindert um den Wert der zweiten Kennzahl bezogen auf den Wertebereich einen Mindestwertebereich überschreitet und nicht zu klein ist. Damit wird berücksichtigt, dass die Elektrolytschichtung bei Entladung bei erheblicher Ladezustandsschichtung oder einem großen Ladezustandswert wieder abnimmt.
  • Im Betriebszustand STROMLOS, bei dem die Speicherbatterie im Ruhezustand ist, wird die erste Kennzahl vermindert und die zweite Kennzahl erhöht, d. h., dass im Ruhezustand die Elektrolytschichtung automatisch abnimmt, die Ladezustandsschichtung jedoch zunimmt.
  • Der Zeitschritt Δt sollte maximal in der Größenordnung einer für den Speicherbatterietyp charakteristischen Zeitkonstanten für den Ausgleich von Säuredichteverteilungen senkrecht zu den Elektroden liegen, vorzugsweise in einem Bereich von einer Sekunde bis 30 Minuten, d. h, dass der Zeitschritt Δt in Abhängigkeit davon gewählt wird, wie schnell eine Elektrolytschichtung von der Speicherbatterie im normalen Betrieb und normalen Betriebszustand wieder abgebaut wird.
  • Die Zeitschritte Δt sollten zudem so gewählt sein, dass während der jeweiligen Zeitschritte Δt der Strom der Speicherbatterie weitgehend konstant ist.
  • Vorzugsweise wird ein Minimalwert und/oder ein Maximalwert für die erste Kennzahl KS bzw. die zweite Kennzahl KL festgelegt. Durch Beschränkung der Werte für die ersten und zweiten Kennzahlen auf die jeweils festgelegten Minimal- und/oder Maximalwerte wird ein Zustand der Speicherbatterie ohne Schichtung der Elektrolytkonzentration, mit maximaler Schichtung der Elektrolytkonzentration, ohne Ladezustandsschichtung und mit maximaler Ladezustandsschichtung berücksichtigt. Der Minimalwert für die erste Kennzahl steht hierbei für einen nie zu unterschreitenden Wert, wenn keine Schichtung der Elektrolytkonzentration vorliegt. Der maximale Wert für die erste Kennzahl KS ist ein nie zu überschreitender Wert bei maximaler Säureschichtung und stellt eine Kenngröße für die Speicherbatterie bei einer maximal ausgeprägten Schichtung der Elektrolytkonzentration dar. Der Minimalwert für die zweite Kennzahl KL ist ein nie zu unterschreitender Wert, wenn keine Ladezustandsschichtung vorliegt. Der Maximalwert für die zweite Kennzahl KL ist ein nie zu überschreitender Wert bei maximaler Ladezustandsschichtung und stellt eine Kenngröße für die Speicherbatterie bei einer maximal ausgeprägten Schichtung des Ladezustandes der Elektroden dar.
  • Vorzugsweise ist der Minimalwert der ersten Kennzahl KS der definierte Anfangswert der ersten Kennzahl KS0 für eine neuwertige Speicherbatterie und beträgt vorzugsweise Null. Entsprechendes gilt für den Minimalwert der zweiten Kennzahl KS.
  • Die Erhöhung der ersten Kennzahl KS für jeden Zeitschritt Δt, in dem eine Ladung erkannt wurde, ist vorzugsweise proportional oder überproportional mit dem Ladungs durchsatz ΔQ in diesem Zeitschritt. D. h., je höher der Ladungsdurchsatz Q in dem Zeitschritt Δt ist, um so höher ist die Erhöhung. Entsprechend kann auch die Erhöhung der ersten Kennzahl KS proportional oder überproportional mit der Ladungsdurchsatzrate ΔQ/Δt mit dem Zeitschritt Δt sein.
  • Weiter ist es vorteilhaft, wenn die Erhöhung der ersten Kennzahl KS für jeden Zeitschritt, in dem eine Ladung erkannt wurde, um so kleiner ist, je höher der Wert der ersten Kennzahl KS ist. Hierdurch wird der Effekt berücksichtigt, dass ab einer bestimmten Schichtung der Elektrolytkonzentration eine Sättigung erreicht wird, bei der eine weitere Schichtung der Elektrolytkonzentration langsamer erfolgt.
  • Weiter ist es vorteilhaft, wenn die erste Kennzahl KS bei einem Ladungsdurchsatz ΔQ in einem Zeitschritt Δt, der unterhalb eines festgelegten unteren Grenzwertes Qmin liegt, nicht erhöht wird. Hierdurch wird berücksichtigt, dass Verschleiß und Schichtung der Elektrolytkonzentration bei Ladungen unterhalb des für den Speicherbatterietyp charakteristischen unteren Grenzwertes für den Ladungsdurchsatz pro Zeitschritt nicht zunehmen. In entsprechender Weise kann auch der Erhöhungswert auf die Erhöhung bei einem oberen Grenzwert für den Ladungsdurchsatz pro Zeitschritt begrenzt werden. Die Schichtung der Elektrolytkonzentration nimmt nämlich bei Ladungsdurchsätzen pro Zeitschritt oberhalb des oberen Grenzwertes nicht weiter zu.
  • Natürlich völlig gleichwertig ist es, wenn die ersten und zweiten Kennzahlen ihren Maximalwert im Ausgangszustand ohne Elektrolytschichtung bzw. ohne Ladezustandsschichtung annehmen und dann bei zunehmenden Verschleiß vermindert werden, bis sie bei maximaler Schichtung einen Minimalwert annehmen.
  • Die erste Kennzahl KS kann vorzugsweise zur Vorhersage der beschleunigten Änderung der Ruhespannung infolge innerer Umladung verwendet werden. Hierzu ist es vorteilhaft, die Steilheit S einer Kennlinie der Ruhespannung über den Ladungsdurchsatz zur Vorhersage der entladbaren Ladungsmenge, der Spannungsänderung bei einer Änderung der elektrischen Last oder der absoluten Spannungslage bei einer auf genommenen elektrischen Last aus einem vorgegebenen oder erlernten Zusammenhang zwischen der Steilheit und der ersten Kennzahl zu berechnen. Ebenso kann die Änderung der Ruhespannung als Funktion der Zeit aufgrund innerer Umladungsprozesse zwischen Bereichen der Speicherbatterie mit unterschiedlichen Säurekonzentrationen mit einem vorgegebenen oder erlernten temperaturabhängigen Zusammenhang der Ruhespannung und der ersten Kennzahl vorhergesagt werden.
  • Weiterhin kann eine dritte Kennzahl KW vorgesehen werden, die im Betriebszustand ÜBERLADUNG erhöht wird. Diese dritte Kennzahl KW dient als Maß für den Verschleiß der Speicherbatterie und kann ausgehend von einem Anfangswert bei jeder Überladung nur ansteigen und wird nie vermindert, d. h., dass Verschleißprozesse durch Überladung als unumkehrbar angesehen werden.
  • Es kann auch auf bekannte Verfahren zurückgegriffen werden, die mit Hilfe der ersten und zweiten Kennzahl KS, KL nunmehr um eine Maßzahl für das Ausmaß der Schichtung erweitert werden können. Die Erhöhung der ersten Kennzahl bei Nettoladung pro Zeitschritt und die Verminderung der ersten Kennzahl und die Erhöhung der zweiten Kennzahl bei Nettoentladung ist dabei geeignet, Veränderungen des Zustandes und des elektrischen Verhaltens sowie den Verschleiß der Speicherbatterie über die Lebensdauer zu beschreiben.
  • Die erhaltenen ersten und zweiten Kennzahlen KS, KL werden verwendet um eine Maßnahme auszulösen, z. B. einen Wartungshinweis oder Austauschhinweis, die Regelung einer Ladeeinrichtung oder Pumpe oder Temperiereinrichtung. Die Kennzahlen können auch für Vorhersagen des Verhaltens des Energiespeichers verwendet werden, insbesondere zur Vorhersage der Speicherfähigkeit, des Ladezustandes, des Spannungsverhaltens bei Belastung mit Strömen, des Spannungsverhaltens im lastfreien Zustand (innere Umladung) oder des Verschleißgrades. Dabei kann auf bekannte Verfahren zurückgegriffen werden, die mit Hilfe der ersten und zweiten Kennzahlen KS, KL nunmehr um eine Maßzahl für das Ausmaß der Schichtung erweitert werden können.
  • Die Erfindung wird nachfolgend anhand der beigefügten Zeichnungen näher erläutert.
  • Es zeigen:
  • 1 ein Flussdiagramm des erfindungsgemäßen Verfahrens zur Bestimmung mindestens einer Kenngröße für die Leistungsfähigkeit einer elektrochemischen Speicherbatterie;
  • 2 ein Flussdiagramm des erfindungsgemäßen Verfahrens im Betriebszustand STROMLOS;
  • 3 ein Flussdiagramm des erfindungsgemäßen Verfahrens im Betriebszustand ENTLADUNG;
  • 4 ein Flussdiagramm des erfindungsgemäßen Verfahrens im Betriebszustand LADUNG;
  • 5 ein Flussdiagramm des erfindungsgemäßen Verfahrens im Betriebszustand ÜBERLADUNG bzw. Gasung;
  • 6 beispielhaftes Diagramm für die Entwicklung der ersten und zweiten Kennzahl während eines langen Betriebszustandes STROMLOS;
  • 7 beispielhaftes Diagramm für die Entwicklung der offenen Batteriespannung während einer langen Phase des Betriebszustandes „STROMLOS".
  • Die 1 lässt ein Flussdiagramm des Verfahrens zur Bestimmung einer ersten Kennzahl KS und einer zweiten Kennzahl KL zur Bewertung der Leistungsfähigkeit einer elektrochemischen Speicherbatterie erkennen.
  • In einem ersten Schritt wird ein Zeitschritt Δt für den Speicherbatterietyp festgelegt. Die Größenordnung des Zeitschritts Δt liegt im Wertebereich der typischen Zeitkon stante für den Ausgleich von Säuredichte senkrecht zu den Elektroden der Speicherbatterie und beträgt einige 10 Sekunden bis zu 30 Minuten. Es ist vorteilhaft, wenngleich nicht dargestellt, wenn der Zeitschritt Δt im Laufe des Verfahrens an die jeweils vorherrschende Temperatur der Speicherbatterie angepasst wird, indem der Zeitschritt Δt bei ansteigenden Temperaturen verkürzt wird.
  • Weiterhin wird für den Speicherbatterietyp ein Minimalwert KSmin für die erste Kennzahl KS, ein Maximalwert KSmax für die erste Kennzahl KS, ein Minimalwert KLmin für die zweite Kennzahl KL und ein Maximalwert KLmax für die zweite Kennzahl KL festgelegt. Die Minimalwerte KSmin und KLmin werden dabei vorzugsweise auf Null gesetzt, um die Kennzahlen KS, KL auf den entsprechenden Wert für die Kennzahlen KS, KL eines neuwertigen elektrochemischen Energiespeichers zu beschränken. Der festgelegte Maximalwert KSmax für die erste Kennzahl wird auf einen maximalen Wert der Kennzahl KS für eine maximal ausgeprägte Schichtung der Elektrolytkonzentration des elektrochemischen Energiespeichers gesetzt. Der Maximalwert KLmax für die zweite Kennzahl KL wird auf einen maximalen Wert für die zweite Kennzahl KL gesetzt, bei dem eine maximal ausgeprägte Schichtung des Ladezustandes der Elektroden des elektrochemischen Energiespeichers vorliegt.
  • Die Minimal- und Maximalwerte können beispielsweise anhand von Versuchen an gleichartigen Speicherbatterien ermittelt und dann für den Speicherbatterietyp vorgegeben werden.
  • Vor der ersten Inbetriebnahme der (noch keine Schichtung der Elektrolytkonzentration aufweisenden) Speicherbatterie wird die erste Kennzahl KS und die zweite Kennzahl KL ihre Anfangswerte KS0 und KL0, vorzugsweise auf den Wert Null gesetzt.
  • Während des Betriebes und der Lebensdauer der Speicherbatterie wird vorzugsweise fortlaufend, ggf. aber auch in Intervallen der Ladungsdurchsatz ΔQ der Speicherbatterie pro festgelegtem Zeitschritt Δt beispielsweise durch Strommessung, Schätzung, Modellierung o. ä. bestimmt. Gegebenenfalls werden obere und untere Schwellwerte (ΔQ/Δt)min und (ΔQ/Δt)max berücksichtigt, die nicht überschritten werden dürfen. Aus dem Ladungsdurchsatz ΔQ pro Zeitschritt Δt wird die Ladedurchsatzrate ΔQ/Δt berechnet. Die Berücksichtigung von Schwellwerten (ΔQ/Δt)min und (ΔQ/Δt)max kann auch anhand der Ladedurchsatzrate ΔQ/Δt erfolgen.
  • In einem nächsten Schritt wird überprüft, ob der Betrag der Ladungsdurchsatzrate kleiner als ein definierter Grenzwert für die Ladungsdurchsatzrate (ΔQ/Δt)min ist. Der Grenzwert kann beispielsweise als 1000-stündiger Strom festgelegt werden. Sofern die Ladungsdurchsatzrate ΔQ/Δt kleiner als der Grenzwert ist, wird ein Ruhezustand erkannt. Optional kann der Ruhezustand auch temperaturabhängig bewertet werden, wobei bei niedrigen Temperaturen der Grenzwert für die Ladungsdurchsatzrate (ΔQ, Δt)min vorzugsweise größer festgelegt wird, als bei höheren Temperaturen.
  • Sofern kein Ruhezustand erkannt wurde, wird geprüft, ob der Ladungsdurchsatz ΔQ größer Null ist. Sofern der Ladungsdurchsatz größer Null ist, wird ein normaler elektrischer Betrieb mit Nettoladung erkannt, d. h. der Betriebszustand LADUNG.
  • Anschließend muss überprüft werden, ob eine ÜBERLADUNG vorliegt, d. h. ob das Kriterium der Gasung gegeben ist. Dies kann beispielsweise durch Bewertung von Ladespannung, Temperatur und Dauer der Ladung und ggf. auch des Ladestroms erfolgen.
  • In Abhängigkeit von den Betriebszuständen STROMLOS, ENTLADUNG, ÜBERLADUNG und LADUNG wird die erste und zweite Kennzahl KS und KL angepasst und die Leistungsfähigkeit der Speicherbatterie als Funktion hieraus bestimmt.
  • Die 2 lässt das Verfahren der Anpassung der ersten und zweiten Kennzahlen KS, KL im Betriebszustand STROMLOS erkennen. Eine Änderung der ersten und zweiten Kennzahl KS und KL erfolgt nur dann, wenn die erste Kennzahl KS größer als der Minimalwert KSmin und die zweite Kennzahl KL kleiner als der Maximalwert KLmax ist.
  • Für den Fall, dass der Ruhezustand erkannt wurde, wird, wie in der 2 skizziert ist, der Wert der aktuellen ersten Kennzahl KSalt um einen Wert ΔKS vermindert, wobei die resultierende erste Kennzahl KS auf den definierten Minimalwert KSmin begrenzt wird. Weiterhin wird die zweite Kennzahl KL um den Wert ΔKL erhöht und die zweite Kennzahl KL ebenfalls auf den definierten Maximalwert KLmax begrenzt, der bei maximaler Ladezustandsschichtung nie überschritten wird.
  • Die Verminderung ΔKS der ersten Kennzahl KS und die Erhöhung ΔKL der zweiten Kennzahl KL pro Zeiteinheit Δt durch Umladung während der Ruhephase ist umso stärker, je länger die Zeiteinheit Δt, je größer der Wert der ersten Kennzahl KS und je höher die Temperatur T sind.
  • Die 3 lässt das Verfahren zur Anpassung der ersten und zweiten Kennzahl KS und KL im Betriebszustand ENTLADUNG erkennen. Sofern die erste Kennzahl KS kleiner oder gleich dem festgelegten Minimalwert KSmin ist und wesentlich kleiner als der festgelegte Maximalwert KSmax ist, wird lediglich die erste Kennzahl KS im einem Zeitschritt Δt um den Wert ΔKS erhöht. Die zweite Kennzahl KL bleibt dann unverändert.
  • Für den Fall, dass die erste Kennzahl KS größer als der Minimalwert KSmin ist, wird überprüft, ob eine Entladung im unteren Bereich der Batterie noch möglich ist.
  • Für den Normalfall, dass die Speicherbatterie auch im unteren Bereich noch weiter entladen werden kann, wird die erste Kennzahl KS um den Wert ΔKS vermindert und dabei auf den festgelegten Minimalwert KSmin nach unten hin begrenzt. Weiterhin wird die zweite Kennzahl KL um den Wert ΔKL erhöht. Die zweite Kennzahl KL wird dabei auf den definierten Maximalwert KLmax begrenzt, der bei maximaler Ladezustandsschichtung nie überschritten wird.
  • Für den Fall, dass keine Entladung im unteren Bereich der Speicherbatterie mehr möglich ist, wird die erste Kennzahl KS um den Wert ΔKS erhöht und die erste Kennzahl KS dabei auf den Maximalwert KSmax begrenzt. In diesem Falle wird bei Entladung ei ne Zunahme der Elektrolytkonzentrationsschichtung angenommen. Der Wert für die zweite Kennzahl KL wird hingegen um den Wert ΔKL vermindert, wobei die resultierende zweite Kennzahl KL auf den definierten Minimalwert KLmin begrenzt wird.
  • Die 4 lässt das Verfahren zur Anpassung der ersten und zweiten Kennzahlen KS, KL für den Fall der Ladung erkennen, wenn keine Überladung bzw. Gasung vorliegt. Für den Fall, dass die erste Kennzahl KS kleiner oder gleich dem festgelegten Minimalwert KSmin ist, wird lediglich die erste Kennzahl für die Elektrolytschichtung um den Wert ΔKS erhöht. Dabei wird die erste Kennzahl KS auf den festgelegten Maximalwert KSmax begrenzt.
  • Anderenfalls wird überprüft, ob eine Ladung im oberen Bereich der Batterie noch möglich ist. Sofern dies der Fall ist und die Speicherbatterie somit ohne Gefahr der Überladung weiter geladen werden kann, wird die zweite Kennzahl KL um den Wert ΔKL erhöht. Dabei wird die zweite Kennzahl KL auf den festgelegten Maximalwert KSmax begrenzt, der bei maximaler Ladezustandsschichtung nie überschritten wird. Zudem wird auch die erste Kennzahl KS um den Wert ΔKS erhöht. Auch die resultierende erste Kennzahl KS wird auf definierten Maximalwert KSmax begrenzt. Für diesen Normalfall der Ladung wird somit eine Verstärkung der Elektrolytkonzentrationsschichtung und der Ladezustandsschichtung der Elektroden angenommen.
  • Für den Fall, dass keine Ladung im oberen Bereich der Speicherbatterie mehr möglich ist, nimmt im Betriebszustand LADUNG die Ladezustandsschichtung wieder ab. Daher wird die zweite Kennzahl KL um den Wert ΔKL vermindert und die resultierende zweite Kennzahl KL auf den definierten Minimalwert KLmin begrenzt. Die erste Kennzahl KS wird hingegen um den Wert ΔKS erhöht und auf den festgelegten Maximalwert KSmax begrenzt.
  • Die 5 lässt das Verfahren im Betriebszustand ÜBERLADUNG bzw. Gasung erkennen. Für den Falls, dass bereits eine Schichtung der Elektrolytkonzentration vorliegt, d. h., dass die erste Kennzahl KS größer als der festgelegte Minimalwert KSmin ist, wird die erste Kennzahl KS um den Wert ΔKS vermindert. Im Falle der Überladung wird die Elektrolytschichtung somit zunächst ausgeglichen. Dabei wird die erste Kennzahl KS wiederum auf den festgelegten Minimalwert KSmin begrenzt.
  • Für den Fall, dass keine nennenswerte Schichtung der Elektrolytkonzentration mehr vorliegt, d. h., dass die erste Kennzahl KS dem festgelegten Minimalwert KSmin nahe ist, wird die Ladezustandsschichtung durch Reduzieren der zweiten Kennzahl KL um den Wert ΔKL ausgeglichen. Wiederum wird die zweite Kennzahl KL auf den Minimalwert KLmin begrenzt. Das Verfahren berücksichtigt somit den Effekt, dass eine Überladung erst die Schichtung der Elektrolytkonzentration und danach die Schichtung des Ladezustands ausgleicht.
  • Grundsätzlich sollten die Verminderung ΔKS der ersten Kennzahl KS pro Zeitschritt Δt umso stärker erfolgen, je größer der Ladungsdurchsatz ΔQ und je größer die Änderungsrate ΔQ/Δt und je größer der Wert der ersten Kennzahl KS und je höher die Temperatur t sind.
  • Ebenso sollen die Verminderung ΔKL der zweiten Kennzahl KL pro Zeitschritt Δt umso stärker erfolgen, je größer der Ladungsdurchsatz ΔQ und je größer die Änderungsrate ΔQ/Δt, und je größer der Wert der zweiten Kennzahl KL und je höher die Temperatur T sind.
  • Die 6 und 7 zeigen beispielhafte Diagramme für die Entwicklung der ersten und zweiten Kennzahl KS und KL sowie der offenen Batteriespannung während einer langen stromlosen Phase. Zu Beginn dieser Phase im Betriebszustand STROMLOS liegt eine deutliche Schichtung der Elektrolytkonzentration in der Speicherbatterie vor, die für die hohe Ruhespannung OCV verantwortlich ist. Durch innere Umladung wird die erste Kennzahl KS abgesenkt, während die zweite Kennzahl KL ansteigt. D. h., dass die Schichtung der Elektrolytkonzentration abnimmt, während die Schichtung des Ladezustands in den Elektroden zunimmt. Die Ruhespannung OCV fällt dementsprechend.
  • Neben den ersten und zweiten Kennzahlen kann auch noch eine weitere dritte Kennzahl KW definiert werden, die im Betriebszustand ÜBERLADUNG erhöht wird. Die dritte Kennzahl KW dient als ein Maß für den Verschleiß der Speicherbatterie und kann ausgehend von einem Anfangswert KWmin, vorzugsweise KWmin gleich Null, nur ansteigen und wird nie vermindert.
  • Nachfolgend werden Beispiele für die Nutzung der erhaltenen ersten, zweiten und dritten Kennzahl KS, KL und KW angegeben.
    • 1) Die erhaltenen Kennzahlen KS, KL und KW können direkt verwendet werden, um eine Maßnahme auszulösen, z. B. einen Wartungshinweis oder Austauschhinweis, die Regelung einer Ladeeinrichtung oder Pumpe oder Temperiereinrichtung, etc. 1a) Der Vergleich einer der Kennzahlen KS, KL und KW mit entsprechenden Schwellwerten kann verwendet werden, um den Betreiber der mit der Speicherbatterie verbundenen Einheit aufzufordern, eine Wartung durchzuführen. Zur Verminderung der ersten und zweiten Kennzahl KS und KL ist z. B. eine gezielte (Über-) Ladung sinnvoll. Aus einem ansteigenden Wert der dritten Kennzahl KW kann eine Aufforderung zum Nachfüllen von Wasser zum Elektrolyten abgeleitet werden. 1b) Der Vergleich einer der Kennzahlen KS, KL und KW mit entsprechenden Schwellwerten kann verwendet werden, um den Betreiber zum Austausch der Speicherbatterie aufzufordern. Dies ist sinnvoll, wenn eine Wartung im Sinne von Punkt 1a) nicht möglich oder gewollt ist, oder bereits vergeblich oder wiederholt durchgeführt worden ist. Wenn z. B. längere Zeit eine Ladezustandsschichtung vorgelegen hat, ist deren Aufhebung unter Umständen nicht mehr möglich oder ein Austausch die kostengünstigere Alternative. 1c) Der Wert der ersten und zweiten Kennzahl KS oder KL kann verwendet werden, um das Laderegime der Speicherbatterie zu regeln. Da die Schichtung der Elektrolytkonzentration und die Schichtung des Ladezustandes durch (Über-) Ladung vermindert oder ihr weiteres Ansteigen vermieden werden kann, ist es sinnvoll die Ladespannung und/oder die Ladedauer zu erhöhen, wenn die ersten und zweiten Kennzahlen KS oder KL ansteigen. Im Falle eines Kraftfahrzeuges ist dies durch Regelung der Generatorspannung möglich. 1d) Der Wert der ersten und zweiten Kennzahl KS oder KL kann verwendet werden, um einen Vorgang zur Durchmischung des Elektrolyten zu regeln. Dies kann z. B. durch eine in die Speicherbatterie eingebaute Pumpe geschehen, die die Schichtung der Elektrolytkonzentration abbaut. Damit wird auch der Abbau der Ladezustandsschichtung erleichtert. 1e) Der wässrige Elektrolyt eines Bleiakkumulators beginnt bei tiefen Temperaturen zu erstarren. Der Gefrierpunkt hängt von der örtlichen Konzentration ab. Ist diese inhomogen über die Bauhöhe, wie bei der Schichtung der Elektrolytkonzentration, so setzt die Erstarrung im oberen Zellbereich früher ein als bei homogener Konzentration. Der Wert der ersten Kennzahl KS kann verwendet werden, um dieses Risiko anzuzeigen und zu quantifizieren.
    • 2) Die erhaltenen ersten und zweiten Kennzahlen KS und KL können auch für Vorhersagen des Verhaltens des Energiespeichers, insbesondere zur Vorhersage der Speicherfähigkeit, des Ladezustands, des Spannungsverhaltens bei Belastung mit Strömen, des Spannungsverhaltens im lastfreien Zustand (innere Umladung) oder des Verschleißgrades genutzt werden. Dabei kann auf bekannte Verfahren zurückgegriffen werden, die mit Hilfe der ersten und zweiten Kennzahlen KS und KL nunmehr um eine Maßzahl für das Ausmaß der Schichtung erweitert werden können. 2a) Die Anwendung von Verfahren, welche nur bei homogener Säuredichte zutreffende Ergebnisse liefern, kann in Abhängigkeit von den Werten der erhaltenden Kennzahlen KS, KL, KW unterdrückt werden. So kann verhindert werden, dass ein Verfahren, welches den Ladezustand einer Speicherbatterie aus der Ruhespannung ableitet, den Ladezustand bei vorliegender Elektrolytschichtung aus der vom unteren Elektrodenbereich mit hoher Elektrolytdichte dominierten Spannungswerten ableitet und fälschlich überschätzt. 2b) Verfahren, welche bei homogener Elektrolytdichte zutreffende Ergebnisse liefern, können in Abhängigkeit von den Werten der erhaltenen Kennzahlen KS, KL, KW korrigiert werden. So kann ein Verfahren, welches den Ladezustand SOC einer Speicherbatterie aus der Ruhespannung U00 ableitet z. B. durch Berücksichtigung der ersten Kennzahl KS erweitert werden. Dazu kann z. B. der vom unteren Elektrodenbereich mit hoher Elektrolytdichte dominierte Spannungswert als Eingangswert des Verfahrens umso stärker abgesenkt werden, je größer der die Elektrolytschichtung kennzeichnende Wert der ersten Kennzahl KS ist. 2c) Die Anwendung von Verfahren, welche nur bei nicht erstarrtem Elektrolyten zutreffende Ergebnisse liefern, kann in Abhängigkeit von den Werten der erhaltenden Kennzahlen KS, KL, KW unterdrückt werden. So kann verhindert werden, dass ein Verfahren, welches den Ladezustand SOC einer Speicherbatterie aus der Ruhespannung U00 ableitet z. B. den Ladezustand SOC bei vorliegender Elektrolytschichtung und eingetretener Erstarrung bei tiefer Temperatur T aus der von der flüssigen Elektrolytphase mit hoher Elektrolytdichte dominierten Spannungswerte ableitet und fälschlich überschätzt. 2d) In Abhängigkeit der erhaltenen Kennzahlen KS, KL, KW kann zwischen verschiedenen Verfahren umgeschaltet werden. So ist bei einem Bleiakkumula tor die speicherbare Ladungsmenge im Allgemeinen durch die Menge und die Konzentration des Elektrolyten bestimmt, weil die ebenfalls an den elektrochemischen Vorgängen beteiligten aktiven Materialien der positiven und negativen Elektroden im Allgemeinen im Überschuss vorliegen. Dies trifft aber nur bei homogener Verteilung des Elektrolyten zu. Bei vorliegender Säureschichtung können unterschiedlich begrenzende Mechanismen wirken, insbesondere können im unteren Bereich die verfügbaren aktiven Elektrodenmaterialien begrenzen. Dieser Effekt wird noch verstärkt, wenn darüber hinaus noch Ladezustandsschichtung vorliegt.
    • 3) Weiterhin kann die erste Kennzahl KS zur Vorhersage der beschleunigten Änderung der Ruhespannung in Folge innerer Umladung verwendet werden, wie in den 6 und 7 gezeigt ist.
    • 4) Weiterhin kann die Zeitdauer eines Zustandes mit hoher erster Kennzahl KS und zweiter Kennzahl KL als Maß für die nicht mehr umkehrbare Sulfatation und als Eingangsgröße für die Bestimmung von irreversiblen Kapazitätsverlust verwendet werden. 4a) Wenn eine irreversible Schädigung angenommen wird, kann auch ein Signal mit der Aufforderung zur Wartung oder zum Austausch der Speicherbatterie gesetzt werden.
  • Mit dem Verfahren werden somit verschiedene Betriebsarten erkannt und ausgewertet:
    • a) Es werden Arten von Zyklen, Betrieb und Batterie-Zuständen erkannt, welche den Aufbau von Elektrolytschichtung begünstigen. Dabei wird eine den Grad der Elektrolytschichtung beschreibende erste Kennzahl KS bestimmt und es kann die Minderung der Speicherfähigkeit durch Elektrolytschichtung Qv(KS) abgeschätzt werden. In dieser Zeit kann zudem die mögliche Verfälschung der aus der Ruhespannung U00 abgeleiteten Bestimmung eines Ladezustandswertes SOC, der aus der Ruhespannung U00 abgeleiteten Spannung unter Last, aus der Ruhespannung U00 abgeleitete Parameter, wie z. B. Innenwiderstand etc., berücksichtigt werden.
    • b) Es können Arten des Betriebes und Batterie-Zustände erkannt werden, in denen eine ggf. vorliegende Elektrolytschichtung über die Bauhöhe wieder abgebaut und eine Ladezustandsschichtung (Sulfatschichtung) über die Bauhöhe der Elektroden umgewandelt wird. Hierbei wird eine den Grad der Ladezustandsschichtung beschreibende zweite Kennzahl KL bestimmt. In dieser Zeit kann auch eine Abschätzung der Minderung und danach ggf. des Verschwindens der Verfälschung der aus der Ruhespannung U00 abgeleiteten Bestimmung eines Ladezustandswertes SOC erfolgen. Dabei bleibt aber noch eine Veränderung der Eigenschaften und des Verhaltens der Speicherbatterie, wie z. B. eine Minderung der Speicherfähigkeit durch Ladezustandsschichtung Qv(KL) bestehen.
    • c) Es können Betriebsarten, die eine ggf. vorher bestehende Elektrolyt- bzw. Sulfatschichtung wieder aufheben, erkannt werden, wie z. B. eine starke Überladung. In dieser Zeit kann der Abbau der ersten und zweiten Kennzahlen KS und KL sowie der durch Elektrolytschichtung Qv(KS) bzw. Ladezustandsschichtung Qv(KL) verursachte Rückgang der Speicherfähigkeit abgeschätzt werden.
    • d) Die Information über das Ausmaß der Elektrolytschichtung in der Säure S und der Schichtung im Ladezustand der Elektroden kann zur Bestimmung der aktuellen Speicherfähigkeit CSC, zur Vorhersage der aktuell entnehmbaren Ladungsmenge, zur Vorhersage des Spannungsverhaltens bei Lastwechsel und zur Abschätzung irreversibler Alterungsvorgänge, z. B. Sulfatierung etc. verwendet werden.
  • Das Verfahren beruht auf folgenden Zusammenhängen des Verhaltens einer Speicherbatterie:
    • 1. Eine Elektrolytschichtung entsteht bei der Ladung, wenn in einem Zeitintervall Δt eine größere Netto-Ladungsmenge ΔQ eingeladen wird. Die Schichtung im Elektrolyten wird erkannt und mit einer ersten Kennzahl KS bewertet. Für den ungeschichteten Neuzustand wird die erste Kennzahl KS im allgemeinen auf den Wert Null gesetzt. Das Ausmaß der Elektrolytschichtung überschreitet einen Maximalwert KSmax nicht. Der Anstieg der Elektrolytschichtung ΔKS wächst mit der Ladungsdurchsatzrate ΔQ/Δt, d. h. mit dem mittleren Strom, wobei ein gewisser Maximalwert des Anstiegs der Schichtung ΔKS pro Zeitschritt Δt nicht überschritten wird. Sehr kleine Ladungsdurchsatzraten ΔQ/Δt führen dagegen zu keiner Verstärkung der Schichtung. Der Anstieg ΔKS der Elektrolytschichtung wächst mit der absoluten Ladungsmenge ΔQ, wobei aber unter Umständen ein gewisser Maximalwert des Anstiegs der Elektrolytschichtung ΔKS pro Zeiteinheit Δt nicht überschritten wird. Sehr kleine Ladungsmengen ΔQ führen dagegen zu keiner Verstärkung der Schichtung.
    • 2. Der Zeitschritt Δt für die Glättung der Ladungsdurchsatzrate ΔQ/Δt und des Ladungsdurchsatzes ΔQ liegt in der Größenordnung der typischen Zeitkonstanten für den Ausgleich von Elektrolytdichte senkrecht zu den Elektroden. Bei ho hen Temperaturen liegt der Zeitschritt Δt z. B. bei etwa einer Minute. Bei sehr tiefen Temperaturen bei etwa zehn Minuten.
    • 3. Bei niedrigem Ladezustand, d. h. niedriger Elektrolytdichte im Plattenzwischenraum, ist eine Ladung mit einer höheren Ladungsdurchsatzrate ΔQ/Δt technisch leichter möglich. Auch die zugeführte Ladungsmenge ΔQ kann höher sein. Beides begünstigt die Ausbildung von Schichtung und wird bereits durch Bestimmung des Ladestroms berücksichtigt.
    • 4. Zusätzlich kann Elektrolytschichtung auch entstehen, wenn dichte Säure aus dem Zellenbereich oberhalb der Elektroden durch den Plattenblock der Speicherbatterie nach unten fällt, ohne dort verbraucht zu werden. Dies tritt aber, ausgehend von einem Zustand mit niedriger ersten Kennzahl KS, nur einmal ein, und zwar wenn erstmalig bei relativ hohem anfänglichen Ladezustandswert SOC mit mindestens mittlerem Strom (z. B. mehr als dem 10-stündigen Strom i10) soviel Ladung ΔQ entladen wird (z. B. mehr als ca. 10% der Kapazität), dass die Überschichtung mit dichterer Säure instabil wird und nach unten durchsackt. Wenn dagegen mit kleinerem Strom entladen wird, so wird die Säure auf ihrem Weg nach unten verbraucht, ohne dass sich die Schichtung verstärkt. Mögliche Kriterien für den Fall der Zunahme der ersten Kennzahl KS bei Entladung sind: (i) die erste Kennzahl KS hat bezogen auf Ihren Maximalwert KSmax einen kleinen Wert; (ii) der Ladezustand SOC fällt aktuell unter den kleinen Ladezustandswert SOCmin, der seit dem letzten Erreichen a) der annähernden Volladung oder b) eines bezogen auf den Maximalwert KSmax der ersten Kennzahl bezogenen kleineren Wertes der ersten Kennzahl angenommen wurde.
    • 5. Bei tiefen Temperaturen ist die Stromverteilung über die Porentiefe homogener und die Viskosität der Säure ist höher, so dass Schichtung der Elektrolytkonzentration dort weniger leicht auftritt bzw. weniger stark verstärkt wird. Deshalb sind die Funktionen ΔKS = f(ΔQ/t), ΔKS = f(ΔQ), ΔKL = f(ΔQ/t), ΔKL = f(ΔQ) etc. vorzugsweise derart temperaturabhängig, dass bei niedrigen Temperaturen geringere Veränderungen erfolgen.
    • 6. Die Schichtung im Elektrolyten wird in der Regel durch Entladung oder durch (stromlose) Ruhezeiten abgebaut. Bei Entladung erfolgt der Abbau der höheren Konzentration im unteren Bereich, wobei die Konzentration dort der Konzentration im oberen Bereich angeglichen wird. In den Ruhezeiten wird die höhere Konzentration im unteren Bereich bei gleichzeitiger Erhöhung im oberen Bereich abgebaut, wodurch ebenfalls eine Angleichung erfolgt. In beiden Fällen wird eine Schichtung im Ladezustand aufgebaut, die durch die zweite Kennzahl KL beschrieben wird. Der Wert der zweiten Kennzahl KL wird vorzugsweise auf einen Maximalwert KLmax begrenzt. Die Schichtung im Ladezustand KL kann jedoch nicht unter den Minimalwert KLmin für eine neuwertige Speicherbatterie fallen, der vorzugsweise KLmin = 0 beträgt.
    • 7. Die Schichtung im Elektrolyten wird ebenfalls durch Überladung mit Gasung abgebaut. Auch hier kann die durch den die erste Kennzahl KS beschriebene Schichtung nicht unter den Minimalwert KSmin für eine neuwertige Speicherbatterie, vorzugsweise KSmin = 0 fallen.
    • 8. Sofern die Schichtung im Elektrolyten durch Überladung mit Gasung den Minimalwert KSmin für eine neuwertige Speicherbatterie zumindest annäherungsweise wieder erreicht hat, so kann auch die mit der zweiten Kennzahl KL be schriebene Schichtung im Ladezustand wieder abgebaut werden. Die Schichtung und der Wert der die Schichtung beschreibenden zweiten Kennzahl KL kann jedoch nicht unter den Minimalwert KLmin für eine neuwertige Speicherbatterie, vorzugsweise KLmin = 0 fallen. Da Gasung auf Elektrolyse zurückzuführen und diese mit Wasserverlust verbunden ist, kann optional eine weitere den Wasserverlust beschreibende Kennzahl KW eingeführt werden. Diese kann von einem festgelegten Minimalwert KWmin für eine neuwertige Speicherbatterie, vorzugsweise KWmin = 0, ausgehend aber nur anwachsen und nicht wieder vermindert werden, es sei denn es erfolgt eine Wartung durch Nachfüllen von Wasser. Die dritte Kennzahl KW ist eine den Verschleiß der Speicherbatterie charakterisierende Größe.

Claims (33)

  1. Verfahren zur Bestimmung mindestens einer Kenngröße für den Zustand einer elektrochemischen Speicherbatterie mit den Schritten: a) Bestimmen des Ladungsdurchsatzes (ΔQ) der Speicherbatterie pro Zeitschritt (Δt); gekennzeichnet durch b) Ermitteln einer ersten Kennzahl (KS) zur Beschreibung der Schichtung der Elektrolytkonzentration in der Speicherbatterie ausgehend von einem definierten Anfangswert (KS0) für eine neuwertige Speicherbatterie und einer zweiten Kennzahl (KL) zur Beschreibung der Schichtung des Ladezustands (SOC) in der Speicherbatterie ausgehend von einem definierten Anfangswert (KL0) für eine neuwertige Speicherbatterie im Betrieb der Speicherbatterie, wobei c) für jeden Zeitschritt (Δt) aus dem aktuellen Zustand der Speicherbatterie, der durch den Ladezustand der Elektroden, die Elektrolytkonzentration in der Speicherbatterie und die erste und zweite Kennzahl (KS, KL) gekennzeichnet ist, die erste Kennzahl (KS) und die zweite Kennzahl (KL) in Abhängigkeit von dem Ladungsdurchsatz (ΔQ) angepasst wird und mindestens eine Kenngröße aus der ersten und zweiten Kennzahl (KS, KL) bestimmt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass mindestens zwei der folgenden Betriebsphasen bei der Anpassung der ersten und zweiten Kennzahl (KS, KL) unterschieden werden: a) STROMLOS, wenn der Betrag des Ladungsdurchsatzes (ΔQ) pro Zeitschritt (Δt) kleiner als ein Schwellwert ((ΔQ/Δt)min) ist; b) ENTLADUNG, wenn der Ladungsdurchsatz (ΔQ) pro Zeitschritt (Δt) negativ und betragsmäßig größer als der Schwellwert ((ΔQ/Δt)min) ist; c) LADUNG, wenn der Ladungsdurchsatz (ΔQ) pro Zeitschritt (Δt) positiv und betragsmäßig größer als der Schwellwert ((ΔQ/Δt)min) ist und keine ÜBERLADUNG vorliegt; d) ÜBERLADUNG, wenn der Ladungsdurchsatz (ΔQ) pro Zeitschritt (Δt) positiv und betragsmäßig größer als der Schwellwert ((ΔQ/Δt)min) ist und gleichzeitig die erste Kennzahl (KS) bezogen auf den Wertebereich in der Nähe des Anfangswertes (KS0) liegt, oder wenn aus dem Ladungsdurchsatz (ΔQ) und dem Ladezustand (SOC) der Speicherbatterie eine Gasentwicklung erkannt wird, die einen definierten Gasungs-Schwellwert überschreitet.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der Schwellwert (ΔQmin) kleiner als der 20-stündige Strom (I20) der Speicherbatterie ist.
  4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der Schwellwert (ΔQmin) kleiner als der 100-stündige Strom (I100) der Speicherbatterie ist.
  5. Verfahren nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass im Betriebszustand LADUNG die erste Kennzahl (KS) erhöht wird.
  6. Verfahren nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass im Betriebszustand LADUNG die zweite Kennzahl (KL) erhöht wird, wenn a) die erste Kennzahl (KS) bezogen auf ihren möglichen Wertebereich nicht nahe dem Anfangswert (KS0) ist und b) die Summe des Wertes für den Ladezustand (SOC) und der zweiten Kennzahl (KL) bezogen auf den möglichen Wertebereich einen nicht zu hohen Wert aufweist.
  7. Verfahren nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass im Betriebszustand LADUNG die zweite Kennzahl (KL) erniedrigt wird, wenn a) die erste Kennzahl (KS) bezogen auf ihren Wertebereich nicht nahe dem Anfangswert (KS0) ist und b) die Summe des Wertes für den Ladezustand (SOC) und der zweiten Kennzahl (KL) bezogen auf Ihren Wertebereich einen hohen Wert aufweist.
  8. Verfahren nach einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, dass im Betriebszustand ÜBERLADUNG die erste Kennzahl (KS) vermindert wird.
  9. Verfahren nach einem der Ansprüche 2 bis 8, dadurch gekennzeichnet, dass im Betriebszustand ÜBERLADUNG die zweite Kennzahl (KL) vermindert wird, wenn der Wert der ersten Kennzahl (KS) im Bereich des Anfangswertes (KS0) ist.
  10. Verfahren nach einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, dass im Betriebszustand ENTLADUNG die zweite Kennzahl (KL) erhöht wird, wenn die erste Kennzahl (KS) bezogen auf ihren Wertebereich einen hohen Wert aufweist.
  11. Verfahren nach einem der Ansprüche 2 bis 10, dadurch gekennzeichnet, dass im Betriebszustand ENTLADUNG die erste Kennzahl (KS) erhöht wird, wenn a) die zweite Kennzahl (KL) bezogen auf ihren Wertebereich nicht nahe dem Anfangswert (KL0) ist und b) der Wert des Ladezustandes (SOC) vermindert um den Wert der zweiten Kennzahl (KL) bezogen auf den Wertebereich klein ist.
  12. Verfahren nach einem der Ansprüche 2 bis 11, dadurch gekennzeichnet, dass im Betriebszustand ENTLADUNG die erste Kennzahl (KS) erniedrigt wird, wenn a) die zweite Kennzahl (KL) bezogen auf ihren Wertebereich einen erheblichen Wert aufweist, und b) der Wert des Ladezustandes (SOC) vermindert um den Wert der zweiten Kennzahl (KL) bezogen auf den Wertebereich einen Mindestwertebereich überschreitet und nicht zu klein ist.
  13. Verfahren nach einem der Ansprüche 2 bis 12, dadurch gekennzeichnet, dass im Betriebszustand STROMLOS die erste Kennzahl (KS) vermindert und die zweite Kennzahl (KL) erhöht wird.
  14. Verfahren nach einem der Ansprüche 2 bis 13, dadurch gekennzeichnet, dass im Betriebszustand ENTLADUNG die erste Kennzahl (KS) erhöht wird, wenn der aktuelle Wert für den Ladezustand (SOC) niedriger als der bisher niedrigste Wert für den Ladezustand (SOC) seit dem letzten Erreichen a) eines Zustandes der weitgehenden Volladung oder b) eines Zustandes ist, in dem die erste Kennzahl (KS) bezogen auf den Wertebereich nahe dem Anfangswert (KS0) ist.
  15. Verfahren nach einem der Ansprüche 2 bis 14, dadurch gekennzeichnet, dass im Betriebszustand ENTLADUNG die erste Kennzahl (KS) erhöht wird, wenn die erste Kennzahl (KS) bezogen auf den Wertebereich nahe dem Anfangswert (KS0) ist.
  16. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Erhöhung (ΔKS) der ersten Kennzahl (KS) für jeden Zeitschritt (Δt), in dem der Betriebszustand LADUNG erkannt wurde, proportional oder überproportional mit dem Ladungsdurchsatz (ΔQ) in diesem Zeitschritt (Δt) ist.
  17. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Betriebszustand LADUNG die Erhöhung (ΔKS) der ersten Kennzahl (KS) für den Zeitschritt (Δt) umso kleiner ist, je höher der Wert der Kennzahl (KS) ist.
  18. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Zeitschritt (Δt) maximal in der Größenordnung einer für den Speicherbatterietyp charakteristischen Zeitkonstanten für den Ausgleich von Elektrolytdichteverteilungen senkrecht zu den Elektroden liegt.
  19. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Zeitschritt (Δt) in einem Bereich von 1 sec bis 30 min liegt.
  20. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass während der jeweiligen Zeitschritte (Δt) der Strom (I) der Speicherbatterie weitgehend konstant ist.
  21. Verfahren nach einem der vorhergehenden Ansprüche, gekennzeichnet durch Festlegen eines unteren Minimalwertes und/oder eines oberen Maximalwertes für die erste Kennzahl (KS) und/oder die zweite Kennzahl (KL) und Beschränken der Werte für die Kennzahlen (KS, KL) auf die jeweils festgelegten Minimal- und/oder Maximalwerte.
  22. Verfahren nach Anspruch 21, dadurch gekennzeichnet, dass der Minimalwert der ersten Kennzahl (KS) der definierte Anfangswert (KS0) für eine neuwertige Speicherbatterie ist und vorzugsweise Null beträgt.
  23. Verfahren nach Anspruch 21 oder 22, dadurch gekennzeichnet, dass der Minimalwert der zweiten Kennzahl (KL) der definierte Anfangswert (KL0) für eine neuwertige Speicherbatterie ist und vorzugsweise Null beträgt.
  24. Verfahren nach einem der Ansprüche 21 bis 23, dadurch gekennzeichnet, dass der Maximalwert für die erste Kennzahl (KS) eine Kenngröße für die Speicherbatterie bei einer maximal ausgeprägten Schichtung der Elektrolytkonzentration ist.
  25. Verfahren nach einem der Ansprüche 21 bis 24, dadurch gekennzeichnet, dass der Maximalwert für die zweite Kennzahl (KL) eine Kenngröße für die Speicherbatterie bei einer maximal ausgeprägten Schichtung des Ladezustandes der Elektroden ist.
  26. Verfahren nach einem der vorhergehenden Ansprüche, gekennzeichnet durch Berechnung einer Kennlinie der Ruhespannung (U00) über den Ladungsdurchsatz (ΔQ) aus der ersten und/oder zweiten Kennzahl (KS, KL) zur Vorhersage des Zustandes, des Verhaltens oder der Leistungsfähigkeit des Energiespeichers, insbesondere zur Vorhersage der entladbaren Ladungsmenge, der Spannungsänderung bei einer Änderung der elektrischen Last oder der absoluten Spannungslage bei einer angenommenen elektrischen Last.
  27. Verfahren nach einem der vorhergehenden Ansprüche, gekennzeichnet durch Vorhersage des Zustandes, des Verhaltens oder der Leistungsfähigkeit des Energiespeichers, insbesondere zur Vorhersage der Speicherfähig keit, des Ladezustands, der entladbaren Ladungsmenge, des Spannungsverhaltens bei Belastung mit Strömen, des Spannungsverhaltens im lastfreien Zustand, des Verschleißgrades, der Spannungsänderung bei einer Änderung der elektrischen Last oder der absoluten Spannungslage bei einer angenommenen elektrischen Last unter Nutzung eines funktionalen Zusammenhanges unter Berücksichtigung des Wertes der ersten Kennzahl (KS) und der zweiten Kennzahl (KL).
  28. Verfahren nach einem der vorhergehenden Ansprüche, gekennzeichnet durch Vorhersagen der Änderung der Ruhespannung (U00) als Funktion der Zeit (t) aufgrund innerer Umladungsprozesse zwischen Bereichen der Speicherbatterie mit unterschiedlichen Elektrolytkonzentrationen mit einem vorgegebenen oder erlernten, vorzugsweise temperaturabhängigen Zusammenhang der Ruhespannung (U00), der ersten Kennzahl (KS) und der zweiten Kennzahl (KL).
  29. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Betriebszustand ÜBERLADUNG eine dritte Kennzahl (KW) erhöht wird, wobei die dritte Kennzahl (KW) ausgehend von einem Anfangswert (KWmin), vorzugsweise KWmin gleich Null, nur ansteigen kann und nie vermindert wird, und wobei die dritte Kennzahl (KW) als ein Maß für den Verschleiß der Speicherbatterie dient.
  30. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens eine der ersten, zweiten und dritten Kennzahlen (KS, KL, KW) angezeigt wird, beispielsweise als Wartungshinweis oder Austauschhinweis oder zur Auslösung einer Maßnahme genutzt wird, wie beispielsweise zur Regelung einer Ladeeinrichtung, Pumpe oder Temperiereinrichtung.
  31. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens eine der erhaltenen Kennzahlen (KS, KL, KW) mit einem anderen Verfahren zur Bestimmung oder Vorhersage des Zustandes und/oder des Verhaltens einer Speicherbatterie, vorzugsweise zur Vorhersage der Speicherfähigkeit, des Ladezustands, des Spannungsverhaltens bei Belastung mit Strömen oder des Verschleißgrades verknüpft wird.
  32. Verfahren nach Anspruch 31, dadurch gekennzeichnet, dass bei der Verknüpfung mit einem anderen Verfahren auch Ergebnisgrößen dieses anderen Verfahrens in die Bestimmung der Kennzahlen (KS, KL, KW) einfließen.
  33. Überwachungseinrichtung für eine Speicherbatterie mit einer Einheit zur Bestimmung des Ladungsdurchsatzes (ΔQ) der Speicherbatterie und mit Auswertemitteln, dadurch gekennzeichnet, dass die Auswertemittel zur Durchführung des Verfahrens nach einem der vorhergehenden Ansprüche vorzugsweise durch Programmierung einer Mikroprozessoreinheit ausgebildet sind.
DE102004007904A 2004-02-18 2004-02-18 Verfahren zur Bestimmung mindestens einer Kenngröße für den Zustand einer elektrochemischen Speicherbatterie und Überwachungseinrichtung Expired - Fee Related DE102004007904B4 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE102004007904A DE102004007904B4 (de) 2004-02-18 2004-02-18 Verfahren zur Bestimmung mindestens einer Kenngröße für den Zustand einer elektrochemischen Speicherbatterie und Überwachungseinrichtung
EP05001383A EP1566648B1 (de) 2004-02-18 2005-01-25 Verfahren zur Bestimmung mindestens einer Kenngrösse für den Zustand einer elektrochemischen Speicherbatterie und Überwachungseinrichtung
AT05001383T ATE370425T1 (de) 2004-02-18 2005-01-25 Verfahren zur bestimmung mindestens einer kenngrösse für den zustand einer elektrochemischen speicherbatterie und überwachungseinrichtung
DE502005001205T DE502005001205D1 (de) 2004-02-18 2005-01-25 Verfahren zur Bestimmung mindestens einer Kenngrösse für den Zustand einer elektrochemischen Speicherbatterie und Überwachungseinrichtung
ES05001383T ES2290794T3 (es) 2004-02-18 2005-01-25 Procedimiento para determinar al menos un parametro caracteristico para el estado de un acumulador electroquimico.
US11/060,637 US7423408B2 (en) 2004-02-18 2005-02-17 Monitoring device and method for determining at least one characteristic variable for the state of a battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004007904A DE102004007904B4 (de) 2004-02-18 2004-02-18 Verfahren zur Bestimmung mindestens einer Kenngröße für den Zustand einer elektrochemischen Speicherbatterie und Überwachungseinrichtung

Publications (2)

Publication Number Publication Date
DE102004007904A1 true DE102004007904A1 (de) 2005-09-15
DE102004007904B4 DE102004007904B4 (de) 2008-07-03

Family

ID=34706834

Family Applications (2)

Application Number Title Priority Date Filing Date
DE102004007904A Expired - Fee Related DE102004007904B4 (de) 2004-02-18 2004-02-18 Verfahren zur Bestimmung mindestens einer Kenngröße für den Zustand einer elektrochemischen Speicherbatterie und Überwachungseinrichtung
DE502005001205T Active DE502005001205D1 (de) 2004-02-18 2005-01-25 Verfahren zur Bestimmung mindestens einer Kenngrösse für den Zustand einer elektrochemischen Speicherbatterie und Überwachungseinrichtung

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE502005001205T Active DE502005001205D1 (de) 2004-02-18 2005-01-25 Verfahren zur Bestimmung mindestens einer Kenngrösse für den Zustand einer elektrochemischen Speicherbatterie und Überwachungseinrichtung

Country Status (5)

Country Link
US (1) US7423408B2 (de)
EP (1) EP1566648B1 (de)
AT (1) ATE370425T1 (de)
DE (2) DE102004007904B4 (de)
ES (1) ES2290794T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007004488A1 (de) 2007-01-19 2008-07-31 Vb Autobatterie Gmbh & Co. Kgaa Batterieüberwachungsgerät und Verfahren zur Bestimmung einer aktuellen Kenngröße für einen aktuellen Zustand einer elektrochemischen Speicherbatterie

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005037821A1 (de) * 2005-08-08 2007-02-22 Vb Autobatterie Gmbh & Co. Kgaa Ladeeinrichtung für Akkumulatoren und Verfahren zur Ermittlung von einer Schichtung von Elektrolyt mit unterschiedlicher Säuredichte und/oder von Sulfatanteilen in der aktiven Masse der positiven Platten in Akkumulatoren
US20070208463A1 (en) * 2006-03-02 2007-09-06 International Business Machines Corporation Learning a predicted voltage to supply an electronic device based on dynamic voltage variation
US7538517B2 (en) * 2006-07-05 2009-05-26 Lear Corporation Method for detecting battery stratification
WO2009003503A1 (en) * 2007-07-02 2009-01-08 Abb Research Ltd State of charge determination
US7919966B2 (en) * 2008-09-23 2011-04-05 Honda Motor Co., Ltd. Method of estimating surface ion density
US20130069660A1 (en) * 2010-02-17 2013-03-21 Julien Bernard Method for in situ battery diagnostic by electrochemical impedance spectroscopy
RU2449302C1 (ru) * 2010-11-10 2012-04-27 Государственное образовательное учреждение высшего профессионального образования "Томский государственный университет систем управления и радиоэлектроники" (ТУСУР) Способ определения составляющих внутреннего сопротивления химических источников тока
JP2013165448A (ja) * 2012-02-13 2013-08-22 Sony Corp 機器管理装置及び機器管理方法
JP6376913B2 (ja) * 2014-09-10 2018-08-22 キヤノン株式会社 電子機器
US10371755B2 (en) * 2014-10-21 2019-08-06 Fairchild Semiconductor Corporation Reported state-of-charge scaling
US11022653B2 (en) * 2015-08-26 2021-06-01 Nissan Motor Co., Ltd. Deterioration degree estimation device and deterioration degree estimation method
KR20190046410A (ko) * 2017-10-26 2019-05-07 삼성전자주식회사 배터리 상태를 측정하는 방법 및 장치
DE102019209037A1 (de) * 2019-06-21 2020-12-24 Robert Bosch Gmbh Verfahren zum Betrieb eines elektrischen Energiespeichersystems
US11221897B2 (en) * 2019-09-11 2022-01-11 International Business Machines Corporation Managing device maintenance via artificial intelligence
CN111707955B (zh) * 2020-08-11 2021-01-12 江苏时代新能源科技有限公司 电池剩余寿命的估算方法、装置和介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10103848A1 (de) * 2001-01-30 2002-08-01 Univ Gesamthochschule Kassel Verfahren und Vorrichtung zur Bestimmung und/oder Beurteilung der Alterung oder zumindest eines vorgewählten Anteils der Alterung einer Batterie

Family Cites Families (122)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1437025A (en) 1972-08-30 1976-05-26 Deutsche Automobilgesellsch Method and device for determining the state of charge of galvanic energy sources
AT346429B (de) 1976-11-16 1978-11-10 Jungfer Akkumulatoren Elektrische anzeigevorrichtung fuer den ladezustand einer sekundaerbatterie
US4193025A (en) 1977-12-23 1980-03-11 Globe-Union, Inc. Automatic battery analyzer
US4207611A (en) 1978-12-18 1980-06-10 Ford Motor Company Apparatus and method for calibrated testing of a vehicle electrical system
US4322685A (en) 1980-02-29 1982-03-30 Globe-Union Inc. Automatic battery analyzer including apparatus for determining presence of single bad cell
US4665370A (en) 1980-09-15 1987-05-12 Holland John F Method and apparatus for monitoring and indicating the condition of a battery and the related circuitry
US4433294A (en) * 1981-06-05 1984-02-21 Firing Circuits, Inc. Method and apparatus for testing a battery
DE3216412A1 (de) * 1982-05-03 1983-11-03 Varta Batterie Ag, 3000 Hannover Verfahren zur ermittlung des ladezustandes von elektrischen akkumulatoren
US4719427A (en) 1983-06-20 1988-01-12 Mitsubishi Denki Kabushiki Kaisha Vehicle battery diagnostic device
US4595880A (en) 1983-08-08 1986-06-17 Ford Motor Company Battery state of charge gauge
DE3414664A1 (de) 1984-04-18 1985-10-24 Varta Batterie Ag, 3000 Hannover Vorrichtung zur anzeige des volladezustandes eines elektrischen akkumulators
US4659977A (en) 1984-10-01 1987-04-21 Chrysler Motors Corporation Microcomputer controlled electronic alternator for vehicles
US5550474A (en) * 1985-05-03 1996-08-27 Dahl; Ernest A. Battery electrolyte-level and electrolyte-stratification sensing system
JPH0650340B2 (ja) 1986-04-14 1994-06-29 株式会社日立製作所 自動車用バツテリの寿命診断装置
US4816736A (en) 1987-03-12 1989-03-28 Globe-Union Inc. Polyphase alternator and dual voltage battery charging system for multiple voltage loads
DE3732339A1 (de) 1987-09-25 1989-04-13 Varta Batterie Ladeverfahren fuer wartungsfreie bleibatterien mit festgelegtem elektrolyten
JP2581571B2 (ja) 1987-10-26 1997-02-12 三信工業株式会社 バツテリ電圧警告装置
US5159272A (en) 1988-07-27 1992-10-27 Gnb Incorporated Monitoring device for electric storage battery and configuration therefor
DE3901680C3 (de) * 1988-09-13 1995-06-14 Duerrwaechter E Dr Doduco Verfahren zur Überwachung der Kaltstartfähigkeit der Starterbatterie eines Verbrennungsmotors und Schaltung zur Durchführung des Verfahrens
US4937528A (en) 1988-10-14 1990-06-26 Allied-Signal Inc. Method for monitoring automotive battery status
US5281919A (en) * 1988-10-14 1994-01-25 Alliedsignal Inc. Automotive battery status monitor
US4876513A (en) 1988-12-05 1989-10-24 Globe-Union Inc. Dynamic state-of-charge indicator for a battery and method thereof
US5193067A (en) * 1988-12-05 1993-03-09 Nippondenso Co., Ltd. Battery condition detecton apparatus
US5162164A (en) 1989-06-12 1992-11-10 Globe-Union Inc. Dual battery system
US5002840A (en) 1989-06-12 1991-03-26 Globe-Union Inc. Switched emergency battery system
JP2726502B2 (ja) * 1989-08-10 1998-03-11 株式会社東芝 半導体装置の製造方法
US5055656A (en) 1989-12-21 1991-10-08 Globe-Union, Inc. Battery heating system using instantaneous excess capacity of a vehicle electrical power generating subsystem
US5032825A (en) 1990-03-02 1991-07-16 Motorola, Inc. Battery capacity indicator
DE4007883A1 (de) * 1990-03-13 1991-09-19 Moto Meter Ag Verfahren und batteriepruefgeraet zum bestimmen des zustands einer bleibatterie
US5079716A (en) 1990-05-01 1992-01-07 Globe-Union, Inc. Method and apparatus for estimating a battery temperature
US5280231A (en) 1990-07-02 1994-01-18 Nippondenso Co., Ltd. Battery condition detecting apparatus and charge control apparatus for automobile
US5563496A (en) 1990-12-11 1996-10-08 Span, Inc. Battery monitoring and charging control unit
US5204610A (en) 1991-02-15 1993-04-20 Globe-Union, Inc. Long lived dual battery with automatic latching switch
US5130699A (en) 1991-04-18 1992-07-14 Globe-Union, Inc. Digital battery capacity warning device
US5223351A (en) 1991-11-14 1993-06-29 Globe-Union Inc. Dual battery system
US5321627A (en) 1992-03-11 1994-06-14 Globe-Union, Inc. Battery monitor and method for providing operating parameters
FR2689986A1 (fr) 1992-04-08 1993-10-15 Aerospatiale Simulateur notamment de piles thermiques.
US5381096A (en) 1992-04-09 1995-01-10 Hirzel; Edgar A. Method and apparatus for measuring the state-of-charge of a battery system
DE69325388T2 (de) 1992-05-01 2000-01-13 Keith S Champlin Elektronischer batterietester mit automatischer kompensation für ungenügenden ladungszustand
US5352968A (en) 1992-05-28 1994-10-04 Apple Computer, Inc. Battery charge state determination
US5316868A (en) 1992-07-21 1994-05-31 Globe-Union, Inc. Dual battery switch circuit
US5364508A (en) 1992-11-12 1994-11-15 Oleh Weres Electrochemical method and device for generating hydroxyl free radicals and oxidizing chemical substances dissolved in water
EP0609101B1 (de) 1993-01-29 2002-06-26 Canon Kabushiki Kaisha Vorrichtung zum Speichern von elektrischer Energie und elektrisches Leistungssystem
US5416402A (en) 1993-03-12 1995-05-16 Globe Union, Inc. State of charge indicator for deep-cycle application
US5404129A (en) 1993-07-27 1995-04-04 Globe-Union Inc. Anti-theft battery system for vehicles
US5488283A (en) 1993-09-28 1996-01-30 Globe-Union, Inc. Vehicle battery system providing battery back-up and opportunity charging
DE4339568A1 (de) * 1993-11-19 1995-05-24 Bosch Gmbh Robert Verfahren zur Ermittlung des Ladezustandes einer Batterie, insbesondere einer Fahrzeug-Starterbatterie
US5680050A (en) 1994-03-07 1997-10-21 Nippondenso Co., Ltd. Battery condition detection method
US5552642A (en) 1994-03-09 1996-09-03 Globe-Union, Inc. Protection system with voltage switching
JPH08284719A (ja) 1995-04-11 1996-10-29 Hitachi Ltd 車両用発電機の制御システム
US5549984A (en) 1994-07-25 1996-08-27 Globe-Union Inc. Control and indicator circuit for a dual battery system
JPH08136626A (ja) * 1994-09-16 1996-05-31 Seiko Epson Corp バッテリー残存容量計及びバッテリー残存容量の演算方法
US5578915A (en) 1994-09-26 1996-11-26 General Motors Corporation Dynamic battery state-of-charge and capacity determination
DE19540827C2 (de) 1994-11-17 1998-07-02 Daimler Benz Ag Verfahren zur Bestimmung des Alterungszustandes einer Batterie
JPH08146105A (ja) * 1994-11-25 1996-06-07 Yazaki Corp 電池の放電特性算出方法及び電池の残存容量測定装置
JPH08240647A (ja) 1995-03-03 1996-09-17 Yazaki Corp 電池残存容量算出方法及び電池残存容量測定装置
IL113477A0 (en) 1995-04-25 1995-07-31 Yaffe Yacob A device for warning when a vehicle battery has almost ended its ability to start the motor
AU724292C (en) 1995-06-21 2001-10-11 Batteryguard Limited Battery monitor
US5656915A (en) 1995-08-28 1997-08-12 Eaves; Stephen S. Multicell battery pack bilateral power distribution unit with individual cell monitoring and control
US5721688A (en) 1996-09-06 1998-02-24 Madill Technologies, Inc. Apparatus and method for electrical system measurements including battery condition, resistance of wires and connections, total electrical system quality and current flow
US5761072A (en) * 1995-11-08 1998-06-02 Ford Global Technologies, Inc. Battery state of charge sensing system
US5698965A (en) 1995-12-01 1997-12-16 Flight Systems, Inc. Apparatus and method for determining the current state of charge of a battery by monitoring battery voltage increases above and decreases below a threshold
US5808445A (en) 1995-12-06 1998-09-15 The University Of Virginia Patent Foundation Method for monitoring remaining battery capacity
JP3610687B2 (ja) 1995-12-12 2005-01-19 トヨタ自動車株式会社 内燃機関の始動制御装置およびその制御方法
US5773977A (en) 1996-04-18 1998-06-30 Johnson Controls Technology Company Method of testing an electric storage battery by determining a bounce-back voltage after a load has been removed
JP3111405B2 (ja) 1996-05-09 2000-11-20 本田技研工業株式会社 電池の残容量推定方法
US6331762B1 (en) 1997-11-03 2001-12-18 Midtronics, Inc. Energy management system for automotive vehicle
US6445158B1 (en) 1996-07-29 2002-09-03 Midtronics, Inc. Vehicle electrical system tester with encoded output
DE19643012B4 (de) 1996-10-18 2008-01-03 Vb Autobatterie Gmbh & Co. Kgaa Verfahren zur Ladung eines elektrischen Akkumulators mit einem Generator
DE69730413T2 (de) 1996-11-21 2005-09-08 Koninklijke Philips Electronics N.V. Batteriesteuerungssystem und batteriesimulator
US5914605A (en) 1997-01-13 1999-06-22 Midtronics, Inc. Electronic battery tester
DE19718781A1 (de) 1997-05-03 1998-11-05 Vb Autobatterie Gmbh Elektrischer Akkumulator
US6103403A (en) 1997-05-15 2000-08-15 University Of Kentucky Research Foundation Intellectual Property Development Clathrate structure for electronic and electro-optic applications
US6057666A (en) 1997-09-17 2000-05-02 Johnson Controls Technology Company Method and circuit for controlling charging in a dual battery electrical system
US6222341B1 (en) 1997-09-17 2001-04-24 Johnson Controls Technology Company Dual battery charge maintenance system and method
US5965954A (en) 1997-09-25 1999-10-12 Johnson Controls Technology Company Anti-theft system for disabling a vehicle engine
US5977654A (en) 1997-09-25 1999-11-02 Johnson Controls Technology Company Anti-theft System for disabling a vehicle engine that includes a multi-contact switch for disconnecting the battery and loading the vehicle electrical system
FR2769095B1 (fr) 1997-10-01 1999-11-26 Siemens Automotive Sa Procede de detection de defaillance d'une batterie de vehicule automobile
DE19750309A1 (de) 1997-11-13 1999-05-20 Vb Autobatterie Gmbh Verfahren zur Bestimmung der Startfähigkeit der Starterbatterie eines Kraftfahrzeugs
DE19803312A1 (de) 1998-01-29 1999-08-05 Varta Batterie Verfahren zur Verbesserung der Lade- und Entladefähigkeit von Akkumulatoren
US6271642B1 (en) 1998-02-13 2001-08-07 Johnson Controls Technology Company Advanced battery controller with state of charge control
US5936383A (en) 1998-04-02 1999-08-10 Lucent Technologies, Inc. Self-correcting and adjustable method and apparatus for predicting the remaining capacity and reserve time of a battery on discharge
KR100262465B1 (ko) 1998-06-25 2000-08-01 박찬구 펄스전류의 전압 응답신호를 이용한 전지용량 측정방법 및 측정장치
US6424157B1 (en) 1998-07-20 2002-07-23 Alliedsignal, Inc. System and method for monitoring a vehicle battery
US6037777A (en) 1998-09-11 2000-03-14 Champlin; Keith S. Method and apparatus for determining battery properties from complex impedance/admittance
DE19847648A1 (de) * 1998-10-15 2000-04-20 Vb Autobatterie Gmbh Verfahren zur Bestimmung des Ladezustandes und der Hochstrombelastbarkeit von Batterien
JP3514142B2 (ja) 1998-11-04 2004-03-31 日産自動車株式会社 車両制御装置
KR100395516B1 (ko) 1998-11-19 2003-12-18 금호석유화학 주식회사 비선형등가회로모형을이용한축전장치의특성인자수치화방법및장치
US6144185A (en) 1999-03-22 2000-11-07 Johnson Controls Technology Company Method and apparatus for determining the condition of a battery through the use of multiple battery tests
US6087808A (en) 1999-04-23 2000-07-11 Pritchard; Jeffrey A. System and method for accurately determining remaining battery life
US6359441B1 (en) * 1999-04-30 2002-03-19 Midtronics, Inc. Electronic battery tester
US6441585B1 (en) 1999-06-16 2002-08-27 Midtronics, Inc. Apparatus and method for testing rechargeable energy storage batteries
DE19936542C2 (de) * 1999-08-03 2003-06-26 Daimler Chrysler Ag Verfahren zur Bestimmung eines Alterungszustandes einer Gebrauchs-Batterie
US6313607B1 (en) 1999-09-01 2001-11-06 Keith S. Champlin Method and apparatus for evaluating stored charge in an electrochemical cell or battery
US6091325A (en) 1999-09-24 2000-07-18 Battery Alert Ltd. Device and method for warning of vehicle battery deterioration
DE19955406A1 (de) 1999-11-18 2001-05-23 Vb Autobatterie Gmbh Verfahren zur Steuerung von mehreren gleichzeitig von einer Stromquelle betriebenen elektrischen Verbrauchern
DE10002473A1 (de) 2000-01-21 2001-07-26 Vb Autobatterie Gmbh Verfahren zur Bestimmung des Ladezusatandes von Akkumulatoren
DE10008354A1 (de) 2000-02-23 2001-08-30 Vb Autobatterie Gmbh Verfahren zur Ermittlung des Ladezustands von Bleiakkumulatoren
JP2001275205A (ja) 2000-03-24 2001-10-05 Nissan Motor Co Ltd 2次電池と発電機の併用システムの制御装置
US6515456B1 (en) 2000-04-13 2003-02-04 Mixon, Inc. Battery charger apparatus
DE10021161A1 (de) * 2000-04-29 2001-10-31 Vb Autobatterie Gmbh Verfahren zur Ermittlung des Ladezustands und der Belastbarkeit eines elektrischen Akkumulators
US20020026252A1 (en) 2000-05-15 2002-02-28 Wruck William J. Computer system for vehicle battery selection based on vehicle operating conditions
US6304059B1 (en) 2000-06-22 2001-10-16 Subhas C. Chalasani Battery management system, method of operation therefor and battery plant employing the same
US20020031700A1 (en) * 2000-08-02 2002-03-14 Johnson Controls Technology Company High current low resistance double latching battery switch
DE10045622A1 (de) 2000-09-15 2002-03-28 Nbt Gmbh Verfahren zur Überwachung der Ladung gasdichter alkalischer Akkumulatoren
US6268712B1 (en) 2000-09-26 2001-07-31 Vb Autobatterie Gmbh Method for determining the starting ability of a starter battery in a motor vehicle
US6300763B1 (en) 2000-11-27 2001-10-09 Delphi Technologies, Inc. Method of calculating dynamic state-of-charge within a battery
KR100395637B1 (ko) 2000-11-27 2003-08-21 삼성전자주식회사 배터리의 잔량보정장치 및 그 제어방법
US6417668B1 (en) 2001-01-31 2002-07-09 International Truck International Property Company, L.L.C. Vehicle battery condition monitoring system
JP4292721B2 (ja) 2001-02-14 2009-07-08 株式会社日本自動車部品総合研究所 ハイブリッド車の電池状態制御方法
DE10107583A1 (de) 2001-02-17 2002-08-29 Vb Autobatterie Gmbh Verfahren zur Bestimmung der Leistungsfähigkeit einer Speicherbatterie
JP4380932B2 (ja) 2001-03-30 2009-12-09 三洋電機株式会社 電池の残容量の演算方法
JP4786058B2 (ja) 2001-05-01 2011-10-05 本田技研工業株式会社 蓄電装置の残容量検出装置
US6369578B1 (en) 2001-06-05 2002-04-09 Delphi Technologies, Inc. State of health for automotive batteries
DE10128033A1 (de) 2001-06-08 2002-12-12 Vb Autobatterie Gmbh Verfahren zur Vorhersage der äquilibierten Ruhespannung eines elektrochemischen Energiespeichers
US20030047366A1 (en) * 2001-07-10 2003-03-13 Johnson Controls Technology Company Module for battery and/or other vehicle components
JP4118035B2 (ja) 2001-08-03 2008-07-16 トヨタ自動車株式会社 電池制御装置
US20030082440A1 (en) * 2001-10-29 2003-05-01 Johnson Controls Technology Company Battery system
US6534954B1 (en) * 2002-01-10 2003-03-18 Compact Power Inc. Method and apparatus for a battery state of charge estimator
US20030142228A1 (en) * 2002-01-25 2003-07-31 Matthew Flach Apparatus and method for power saving and rapid response in a digital imaging device
US20040021468A1 (en) * 2002-05-31 2004-02-05 Johnson Controls Technology Company Battery test system
DE10335930B4 (de) * 2003-08-06 2007-08-16 Vb Autobatterie Gmbh & Co. Kgaa Verfahren zur Bestimmung des Zustands einer elektrochemischen Speicherbatterie

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10103848A1 (de) * 2001-01-30 2002-08-01 Univ Gesamthochschule Kassel Verfahren und Vorrichtung zur Bestimmung und/oder Beurteilung der Alterung oder zumindest eines vorgewählten Anteils der Alterung einer Batterie

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007004488A1 (de) 2007-01-19 2008-07-31 Vb Autobatterie Gmbh & Co. Kgaa Batterieüberwachungsgerät und Verfahren zur Bestimmung einer aktuellen Kenngröße für einen aktuellen Zustand einer elektrochemischen Speicherbatterie
DE102007004488B4 (de) 2007-01-19 2018-03-01 Johnson Controls Autobatterie Gmbh & Co. Kgaa Verfahren zur Bestimmung einer integralen Kenngröße für einen aktuellen Zustand einer elektrochemischen Speicherbatterie nebst zugehöriger Einrichtung, zugehörigem Computerprogramm sowie Batterieüberwachungsgerät

Also Published As

Publication number Publication date
US20050189920A1 (en) 2005-09-01
DE102004007904B4 (de) 2008-07-03
DE502005001205D1 (de) 2007-09-27
EP1566648B1 (de) 2007-08-15
EP1566648A1 (de) 2005-08-24
ATE370425T1 (de) 2007-09-15
US7423408B2 (en) 2008-09-09
ES2290794T3 (es) 2008-02-16

Similar Documents

Publication Publication Date Title
EP1566648B1 (de) Verfahren zur Bestimmung mindestens einer Kenngrösse für den Zustand einer elektrochemischen Speicherbatterie und Überwachungseinrichtung
EP1505402B1 (de) Verfahren zur Vorhersage von elektrischen Eigenschaften einer elektrochemischen Speicherbatterie
DE102004005478B4 (de) Verfahren zur Bestimmung von Kenngrößen für elektrische Zustände einer Speicherbatterie und Überwachungseinrichtung hierzu
EP1150131B1 (de) Verfahren zur Ermittlung des Ladezustands und der Belastbarkeit eines elektrischen Akkumulators
DE69732084T2 (de) Pulsladeverfahren und ladegerät
EP1380849B1 (de) Verfahren zur Ermittlung der entnehmbaren Ladungsmenge einer Speicherbatterie und Überwachungseinrichtung
EP1588176B1 (de) Verfahren und vorrichtung zum ermitteln der aus einem energiespeicher entnehmbaren ladung
EP1128187A2 (de) Verfahren zur Ermittlung des Ladezustandes von Bleiakkumulatoren
DE112009001641T5 (de) Batterieladungs-/Entladungs-Regelvorrichtung und Hybridfahrzeug, das selbige verwendet
DE19847648A1 (de) Verfahren zur Bestimmung des Ladezustandes und der Hochstrombelastbarkeit von Batterien
DE102012010486B4 (de) Verfahren und Vorrichtung zum Feststellen der tatsächlichen Kapazität einer Batterie
EP1505403B1 (de) Verfahren zur Ermittlung einer auf den Ladezustand einer Speicherbatterie bezogenen Kenngrösse
DE102019211913A1 (de) Verfahren zur Bestimmung eines Alterungszustandes einer Batterie sowie Steuergerät und Fahrzeug
DE10126891A1 (de) Verfahren zur Vorhersage der Belastbarkeit eines elektrochemischen Elementes
DE102009046579A1 (de) Verbesserte Parameterbestimmung eines elektrochemischen Energiespeichers
DE102012010487B4 (de) Verfahren und Vorrichtung zum Feststellen der tatsächlichen Kapazität einer Batterie
DE102007037041A1 (de) Verfahren und Vorrichtung zur Batteriezustandserkennung
EP1116958A2 (de) Verfahren zur Messung der Gebrauchstüchtigkeit einer Speicherbatterie bei elektrischer Belastung der Speicherbatterie
DE10103848A1 (de) Verfahren und Vorrichtung zur Bestimmung und/oder Beurteilung der Alterung oder zumindest eines vorgewählten Anteils der Alterung einer Batterie
DE102005037821A1 (de) Ladeeinrichtung für Akkumulatoren und Verfahren zur Ermittlung von einer Schichtung von Elektrolyt mit unterschiedlicher Säuredichte und/oder von Sulfatanteilen in der aktiven Masse der positiven Platten in Akkumulatoren
DE102021104868A1 (de) System zur vorhersage einer batteriealterung
DE102007025993A1 (de) Verfahren zum Erfassen einer Schichtung in einer Batterie
DE69938522T2 (de) Schnellladesteuerungsverfahren für einen industriellen Akkumulator mit alkalischem Elektrolyt
DE102009042194B4 (de) Verfahren zur Bestimmung des Betriebsbereichs eines wiederaufladbaren elektrischen Energiespeichers
EP1793445B1 (de) Verfahren zum Bestimmen der Säureschichtung eines Akkumulators

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8127 New person/name/address of the applicant

Owner name: VB AUTOBATTERIE GMBH & CO. KGAA, 30419 HANNOVER, D

8364 No opposition during term of opposition
8339 Ceased/non-payment of the annual fee