DE10162386A1 - Für das rpsL-Gen kodierende Nukleotidsequenzen - Google Patents

Für das rpsL-Gen kodierende Nukleotidsequenzen

Info

Publication number
DE10162386A1
DE10162386A1 DE10162386A DE10162386A DE10162386A1 DE 10162386 A1 DE10162386 A1 DE 10162386A1 DE 10162386 A DE10162386 A DE 10162386A DE 10162386 A DE10162386 A DE 10162386A DE 10162386 A1 DE10162386 A1 DE 10162386A1
Authority
DE
Germany
Prior art keywords
gene
polynucleotide
amino acid
sequence
coding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10162386A
Other languages
English (en)
Inventor
Bettina Moeckel
Brigitte Bathe
Stephan Hans
Caroline Kreutzer
Thomas Hermann
Walter Pfefferle
Michael Binder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa GmbH filed Critical Degussa GmbH
Priority to DE10162386A priority Critical patent/DE10162386A1/de
Priority to BRPI0207284-0A priority patent/BR0207284B1/pt
Priority to AU2002247644A priority patent/AU2002247644A1/en
Priority to CNB028049713A priority patent/CN100347190C/zh
Priority to PCT/EP2002/000573 priority patent/WO2002066651A2/en
Priority to EP02716672A priority patent/EP1360298A2/de
Priority to US10/075,460 priority patent/US6939695B2/en
Publication of DE10162386A1 publication Critical patent/DE10162386A1/de
Priority to US11/197,380 priority patent/US20060019357A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/34Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Corynebacterium (G)

Abstract

Die Erfindung betrifft ein isoliertes Polynukleotid, enthaltend eine Polynukleotidsequenz, ausgewählt aus der Gruppe DOLLAR A a) Polynukleotid, das mindestens zu 70% identisch ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält, DOLLAR A b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von SEQ ID No. 2, DOLLAR A c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und DOLLAR A d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Nukleotide der Polynukleotidsequenz von a), b) oder c), DOLLAR A und ein Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung von coryneformen Bakterien, in denen zumindest das rpsL-Gen verstärkt vorliegt, und die Verwendung von Polynukleotiden, die die erfindungsgemäßen Sequenzen enthalten, als Hybridisierungssonden.

Description

Gegenstand der Erfindung sind für das rpsL-Gen kodierende Nukleotidsequenzen aus coryneformen Bakterien und ein Verfahren zur fermentativen Herstellung von Aminosäuren unter Verwendung von Bakterien, in denen das rpsL-Gen verstärkt wird.
Stand der Technik
L-Aminosäuren, insbesondere L-Lysin, finden in der Humanmedizin und in der pharmazeutischen Industrie, in der Lebensmittelindustrie und ganz besonders in der Tierernährung, Anwendung.
Es ist bekannt, dass Aminosäuren durch Fermentation von Stämmen coryneformer Bakterien, insbesondere Corynebacterium glutamicum, hergestellt werden. Wegen der großen Bedeutung wird ständig an der Verbesserung der Herstellverfahren gearbeitet. Verfahrensverbesserungen können fermentationstechnische Maßnahmen wie zum Beispiel Rührung und Versorgung mit Sauerstoff, oder die Zusammensetzung der Nährmedien wie zum Beispiel die Zuckerkonzentration während der Fermentation, oder die Aufarbeitung zur Produktform durch zum Beispiel Ionenaustauschchromatographie oder die intrinsischen Leistungseigenschaften des Mikroorganismus selbst betreffen.
Zur Verbesserung der Leistungseigenschaften dieser Mikroorganismen werden Methoden der Mutagenese, Selektion und Mutantenauswahl angewendet. Auf diese Weise erhält man Stämme, die resistent gegen Antimetabolite oder auxotroph für regulatorisch bedeutsame Metabolite sind und Aminosäuren produzieren.
Seit einigen Jahren werden ebenfalls Methoden der rekombinanten DNA-Technik zur Stammverbesserung von L-Aminosäure produzierenden Stämmen von Corynebacterium eingesetzt, indem man einzelne Aminosäure-Biosynthesegene amplifiziert und die Auswirkung auf die Aminosäure-Produktion untersucht.
Aufgabe der Erfindung
Die Erfinder haben sich zur Aufgabe gestellt, neue Maßnahmen zur verbesserten fermentativen Herstellung von Aminosäuren bereitzustellen.
Beschreibung der Erfindung
Werden im folgenden L-Aminosäuren oder Aminosäuren erwähnt, sind damit eine oder mehrere Aminosäuren einschließlich ihrer Salze, ausgewählt aus der Gruppe L-Asparagin, L- Threonin, L-Serin, L-Glutamat, L-Glycin, L-Alanin, L- Cystein, L-Valin, L-Methionin, L-Isoleucin, L-Leucin, L- Tyrosin, L-Phenylalanin, L-Histidin, L-Lysin, L-Tryptophan und L-Arginin gemeint. Besonders bevorzugt ist L-Lysin.
Wenn im folgenden L-Lysin oder Lysin erwähnt werden, sind damit nicht nur die Basen, sondern auch die Salze wie z. B. Lysin-Monohydrochlorid oder Lysin-Sulfat gemeint.
Gegenstand der Erfindung ist ein isoliertes Polynukleotid aus coryneformen Bakterien, enthaltend eine für das rpsL-Gen kodierende Polynukleotidsequenz, ausgewählt aus der Gruppe
  • a) Polynukleotid, das mindestens zu 70% identisch ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,
  • b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von SEQ ID No. 2,
  • c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
  • d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Nukleotide der Polynukleotidsequenz von a), b) oder c),
wobei das Polypeptid bevorzugt die Aktivität des ribosomalen Proteins S12 aufweist.
Gegenstand der Erfindung ist ebenfalls das oben genannte Polynukleotid, wobei es sich bevorzugt um eine replizierbare DNA handelt, enthaltend:
  • a) die Nukleotidsequenz, gezeigt in SEQ ID No. 1, oder
  • b) mindestens eine Sequenz, die der Sequenz (i) innerhalb des Bereichs der Degeneration des genetischen Kodes entspricht, oder
  • c) mindestens eine Sequenz, die mit der zur Sequenz (i) oder (ii) komplementären Sequenz hybridisiert, und gegebenenfalls
  • d) funktionsneutrale Sinnmutationen in (i), die die Aktivität des Proteins/Polypeptides nicht verändern
Ein weiterer Gegenstand der Erfindung sind schließlich Polynukleotide ausgewählt aus der Gruppe
  • a) Polynukleotide enthaltend mindestens 15 aufeinanderfolgende Nukleotide ausgewählt aus der Nukleotidsequenz von SEQ ID No. 1 zwischen den Positionen 1 und 499,
  • b) Polynukleotide enthaltend mindestens 15 aufeinanderfolgende Nukleotide ausgewählt aus der Nukleotidsequenz von SEQ ID No. 1 zwischen den Positionen 500 und 883,
  • c) Polynukleotide enthaltend mindestens 15 aufeinanderfolgende Nukleotide ausgewählt aus der Nukleotidsequenz von SEQ ID No. 1 zwischen den Positionen 884 und 1775.
Weitere Gegenstände sind
ein replizierbares Polynukleotid, insbesondere DNA, enthaltend die Nukleotidsequenz wie in SEQ ID No. 1 dargestellt;
ein Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz, wie in SEQ ID No. 2 dargestellt, enthält;
ein Vektor, enthaltend das erfindungsgemäße Polynukleotid, insbesondere Pendelvektor oder Plasmidvektor, und
coryneforme Bakterien, die den Vektor enthalten oder in denen das rpsL-Gen verstärkt ist.
Gegenstand der Erfindung sind ebenso Polynukleotide, die im wesentlichen aus einer Polynukleotidsequenz bestehen, die erhältlich sind durch Screening mittels Hybridisierung einer entsprechenden Genbank eines coryneformen Bakteriums, die das vollständige Gen oder Teile davon enthält, mit einer Sonde, die die Sequenz des erfindungsgemäßen Polynukleotids gemäß SEQ ID No. 1 oder ein Fragment davon enthält und Isolierung der genannten Polynukleotidsequenz.
Polynukleotide, die die Sequenzen gemäß der Erfindung enthalten, sind als Hybridisierungs-Sonden für RNA, cDNA und DNA geeignet, um Nukleinsäuren beziehungsweise Polynukleotide oder Gene in voller Länge zu isolieren, die für das ribosomale Protein S12 kodieren, oder um solche Nukleinsäuren beziehungsweise Polynukleotide oder Gene zu isolieren, die eine hohe Ähnlichkeit mit der Sequenz des rpsL-Gens aufweisen. Sie können ebenso als Sonde auf sogenannte "arrays", "micro arrays" oder "DNA chips" aufgebracht werden, um die entsprechenden Polynukleotide oder hiervon abgeleitete Sequenzen wie z. B. RNA oder cDNA zu detektieren und zu bestimmen.
Polynukleotide, die die Sequenzen gemäß der Erfindung enthalten, sind weiterhin als Primer geeignet, mit deren Hilfe mit der Polymerase-Kettenreaktion (PCR) DNA von Genen hergestellt werden kann, die für das ribosomale Protein S12 kodieren.
Solche als Sonden oder Primer dienende Oligonukleotide, enthalten mindestens 25, 26, 27, 28, 29 oder 30, bevorzugt mindestens 20, 21, 22, 23 oder 24, ganz besonders bevorzugt mindestens 15, 16, 17, 18 oder 19 aufeinanderfolgende Nukleotide. Geeignet sind ebenfalls Oligonukleotide mit einer Länge von mindestens 31, 32, 33, 34, 35, 36, 37, 38, 39 oder 40, oder mindestens 41, 42, 43, 44, 45, 46, 47, 48, 49 oder 50 Nukleotiden. Gegebenenfalls sind auch Oligonukleotide mit einer Länge von mindestens 100, 150, 200, 250 oder 300 Nukleotiden geeignet.
"Isoliert" bedeutet aus seinem natürlichen Umfeld herausgetrennt.
"Polynukleotid" bezieht sich im allgemeinen auf Polyribonukleotide und Polydeoxyribonukleotide, wobei es sich um nicht modifizierte RNA oder DNA oder modifizierte RNA oder DNA handeln kann.
Die Polynukleotide gemäß Erfindung schließen ein Polynukleotid gemäß SEQ ID No. 1 oder ein daraus hergestelltes Fragment und auch solche ein, die zu wenigstens besonders 70% bis 80%, bevorzugt zu wenigstens 81% bis 85%, besonders bevorzugt zu wenigstens 86% bis 90%, und ganz besonders bevorzugt zu wenigstens 91%, 93%, 95%, 97% oder 99% identisch sind mit dem Polynukleotid gemäß SEQ ID No. 1 oder eines daraus hergestellten Fragmentes.
Unter "Polypeptiden" versteht man Peptide oder Proteine, die zwei oder mehr über Peptidbindungen verbundene Aminosäuren enthalten.
Die Polypeptide gemäß Erfindung schließen ein Polypeptid gemäß SEQ ID No. 2, insbesondere solche mit der biologischen Aktivität des ribosomalen Proteins S12 und auch solche ein, die zu wenigstens 70% bis 80%, bevorzugt zu wenigstens 81% bis 85%, besonders bevorzugt zu wenigstens 86% bis 90%, und ganz besonders bevorzugt zu wenigstens 91%, 93%, 95%, 97% oder 99% identisch sind mit dem Polypeptid gemäß SEQ ID No. 2 und die genannte Aktivität aufweisen.
Die Erfindung betrifft weiterhin ein Verfahren zur fermentativen Herstellung von Aminosäuren, ausgewählt aus der Gruppe L-Asparagin, L-Threonin, L-Serin, L-Glutamat, L- Glycin, L-Alanin, L-Cystein, L-Valin, L-Methionin, L- Isoleucin, L-Leucin, L-Tyrosin, L-Phenylalanin, L-Histidin, L-Lysin, L-Tryptophan und L-Arginin, unter Verwendung von coryneformen Bakterien, die insbesondere bereits Aminosäuren produzieren und in denen die für das rpsL-Gen kodierenden, bevorzugt endogenen, Nukleotidsequenzen verstärkt, insbesondere überexprimiert werden.
Der Begriff "Verstärkung" beschreibt in diesem Zusammenhang die Erhöhung der intrazellulären Aktivität eines oder mehrerer Enzyme bzw. Proteine in einem Mikroorganismus, die durch die entsprechende DNA kodiert werden, indem man beispielsweise die Kopienzahl des Gens bzw. der Gene erhöht, einen starken Promotor verwendet oder ein Gen oder Allel verwendet, das für ein entsprechendes Enzym bzw. Protein mit einer hohen Aktivität kodiert und gegebenenfalls diese Maßnahmen kombiniert.
Durch die Maßnahmen der Verstärkung, insbesondere Überexpression, wird die Aktivität oder Konzentration des entsprechenden Proteins im allgemeinen um mindestens 10%, 25%, 50%, 75%, 100%, 150%, 200%, 300%, 400% oder 500%, maximal bis 1000% oder 2000% bezogen auf die des Wildtyp- Proteins beziehungsweise der Aktivität oder Konzentration des Proteins im Ausgangs-Mikroorganismus erhöht.
Die Mikroorganismen, die Gegenstand der vorliegenden Erfindung sind, können L-Aminosäuren aus Glucose, Saccharose, Laktose, Fructose, Maltose, Melasse, Stärke, Cellulose oder aus Glycerin und Ethanol herstellen. Es kann sich um Vertreter coryneformer Bakterien insbesondere der Gattung Corynebacterium handeln. Bei der Gattung Corynebacterium ist insbesondere die Art Corynebacterium glutamicum zu nennen, die in der Fachwelt für ihre Fähigkeit bekannt ist, L-Aminosäuren zu produzieren.
Geeignete Stämme der Gattung Corynebacterium, insbesondere der Art Corynebacterium glutamicum (C. glutamicum), sind besonders die bekannten Wildtypstämme
Corynebacterium glutamicum ATCC13032
Corynebacterium acetoglutamicum ATCC15806
Corynebacterium acetoacidophilum ATCC13870
Corynebacterium thermoaminogenes FERM BP-1539
Corynebacterium melassecola ATCC17965
Brevibacterium flavum ATCC14067
Brevibacterium lactofermentum ATCC13869 und
Brevibacterium divaricatum ATCC14020
und daraus hergestellte L-Aminosäuren produzierende Mutanten bzw. Stämme, wie beispielsweise die L-Lysin produzierenden Stämme
Corynebacterium glutamicum FERM-P 1709
Brevibacterium flavum FERM-P 1708
Brevibacterium lactofermentum FERM-P 1712
Corynebacterium glutamicum FERM-P 6463
Corynebacterium glutamicum FERM-P 6464
Corynebacterium glutamicum DM58-1
Corynebacterium glutamicum DG52-5
Corynebacterium glutamicum DSM5715 und
Corynebacterium glutamicum DSM12866.
Das neue, für das ribosomale Protein S12 kodierende rpsL- Gen von C. glutamicum wurde isoliert.
Zur Isolierung des rpsL-Gens oder auch anderer Gene von C. glutamicum wird zunächst eine Genbank dieses Mikroorganismus in Escherichia coli (E, coli) angelegt. Das Anlegen von Genbanken ist in allgemein bekannten Lehrbüchern und Handbüchern niedergeschrieben. Als Beispiel seien das Lehrbuch von Winnacker: Gene und Klone, Eine Einführung in die Gentechnologie (Verlag Chemie, Weinheim, Deutschland, 1990), oder das Handbuch von Sambrook et al.: Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1989) genannt. Eine sehr bekannte Genbank ist die des E. coli K-12 Stammes W3110, die von Kohara et al. (Cell 50, 495-508 (1987)) in λ-Vektoren angelegt wurde. Bathe et al. (Molecular and General Genetics, 252: 255-265, 1996) beschreiben eine Genbank von C. glutamicum ATCC13032, die mit Hilfe des Cosmidvektors SuperCos I (Wahl et al., 1987, Proceedings of the National Academy of Sciences USA, 84: 2160-2164) im E. coli K-12 Stamm NM554 (Raleigh et al., 1988, Nucleic Acid Research 16: 1563-1575) angelegt wurde.
Börmann et al. (Molecular Microbiology 6(3), 317-326) (1992)) wiederum beschreiben eine Genbank von C. glutamicum ATCC13032 unter Verwendung des Cosmids pHC79 (Hohn und Collins, Gene 11, 291-298 (1980)).
Zur Herstellung einer Genbank von C. glutamicum in E. coli können auch Plasmide wie pBR322 (Bolivar, Life Sciences, 25, 807-818 (1979)) oder pUC9 (Vieira et al., 1982, Gene, 19: 259-268) verwendet werden. Als Wirte eignen sich besonders solche E. coli Stämme, die restriktions- und rekombinationsdefekt sind. Ein Beispiel hierfür ist der Stamm DH5αmcr, der von Grant et al. (Proceedings of the National Academy of Sciences USA, 87 (1990) 4645-4649) beschrieben wurde. Die mit Hilfe von Cosmiden klonierten langen DNA-Fragmente können anschließend wiederum in gängige, für die Sequenzierung geeignete Vektoren subkloniert und anschließend sequenziert werden, so wie es z. B. bei Sanger et al. (Proceedings of the National Academy of Sciences of the United States of America, 74: 5463-5467, 1977) beschrieben ist.
Die erhaltenen DNA-Sequenzen können dann mit bekannten Algorithmen bzw. Sequenzanalyse-Programmen wie z. B. dem von Staden (Nucleic Acids Research 14, 217-232(1986)), dem von Marck (Nucleic Acids Research 16, 1829-1836 (1988)) oder dem GCG-Programm von Butler (Methods of Biochemical Analysis 39, 74-97 (1998)) untersucht werden.
Die neue für das Gen rpsL kodierende DNA-Sequenz von C. glutamicum wurde gefunden, die als SEQ ID No. 1 Bestandteil der vorliegenden Erfindung ist. Weiterhin wurde aus der vorliegenden DNA-Sequenz mit den oben beschriebenen Methoden die Aminosäuresequenz des entsprechenden Proteins abgeleitet. In SEQ ID No. 2 ist die sich ergebende Aminosäuresequenz des rpsL-Genproduktes dargestellt. Es ist bekannt, dass wirtseigene Enzyme die N-terminale Aminosäure Methionin bzw. Formylmethionin des gebildeten Proteins abspalten können.
Kodierende DNA-Sequenzen, die sich aus SEQ ID No. 1 durch die Degeneriertheit des genetischen Kodes ergeben, sind ebenfalls Bestandteil der Erfindung. In gleicher Weise sind DNA-Sequenzen, die mit SEQ ID No. 1 oder Teilen von SEQ ID No. 1 hybridisieren, Bestandteil der Erfindung. In der Fachwelt sind weiterhin konservative Aminosäureaustausche wie z. B. Austausch von Glycin gegen Alanin oder von Asparaginsäure gegen Glutaminsäure in Proteinen als "Sinnmutationen" ("sense mutations") bekannt, die zu keiner grundsätzlichen Veränderung der Aktivität des Proteins führen, d. h. funktionsneutral sind. Derartige Mutationen werden unter anderem auch als neutrale Substitutionen bezeichnet. Weiterhin ist bekannt, dass Änderungen am N- und/oder C-Terminus eines Proteins dessen Funktion nicht wesentlich beeinträchtigen oder sogar stabilisieren können. Angaben hierzu findet der Fachmann unter anderem bei Ben- Bassat et al. (Journal of Bacteriology 169: 751-757 (1987)), bei O'Regan et al. (Gene 77: 237-251 (1989)), bei Sahin-Toth et al. (Protein Sciences 3: 240-247 (1994)), bei Hochuli et al. (Bio/Technology 6: 1321-1325 (1988)) und in bekannten Lehrbüchern der Genetik und Molekularbiologie. Aminosäuresequenzen, die sich in entsprechender Weise aus SEQ ID No. 2 ergeben, sind ebenfalls Bestandteil der Erfindung.
In gleicher Weise sind DNA-Sequenzen, die mit SEQ ID No. 1 oder Teilen von SEQ ID No. 1 hybridisieren Bestandteil der Erfindung. Schließlich sind DNA-Sequenzen Bestandteil der Erfindung, die durch die Polymerase-Kettenreaktion (PCR) unter Verwendung von Primern hergestellt werden, die sich aus SEQ ID No. 1 ergeben. Derartige Oligonukleotide haben typischerweise eine Länge von mindestens 15 Nukleotiden.
Anleitungen zur Identifizierung von DNA-Sequenzen mittels Hybridisierung findet der Fachmann unter anderem im Handbuch "The DIG System Users Guide for Filter Hybridization" der Firma Boehringer Mannheim GmbH (Mannheim, Deutschland, 1993) und bei Liebl et al. (International Journal of Systematic Bacteriology (1991) 41: 255-260). Die Hybridisierung findet unter stringenten Bedingungen statt, das heißt, es werden nur Hybride gebildet, bei denen Sonde und Zielsequenz, d. h. die mit der Sonde behandelten Polynukleotide, mindestens 70% identisch sind. Es ist bekannt, dass die Stringenz der Hybridisierung einschließlich der Waschschritte durch Variieren der Pufferzusammensetzung, der Temperatur und der Salzkonzentration beeinflusst bzw. bestimmt wird. Die Hybridisierungsreaktion wird vorzugsweise bei relativ niedriger Stringenz im Vergleich zu den Waschschritten durchgeführt (Hybaid Hybridisation Guide, Hybaid Limited, Teddington, UK, 1996).
Für die Hybridisierungsreaktion kann beispielsweise ein 5 × SSC-Puffer bei einer Temperatur von ca. 50°C-68°C eingesetzt werden. Dabei können Sonden auch mit Polynukleotiden hybridisieren, die weniger als 70% Identität zur Sequenz der Sonde aufweisen. Solche Hybride sind weniger stabil und werden durch Waschen unter stringenten Bedingungen entfernt. Dies kann beispielsweise durch Senken der Salzkonzentration auf 2 × SSC und gegebenenfalls nachfolgend 0,5 × SSC (The DIG System User's Guide for Filter Hybridisation, Boehringer Mannheim, Mannheim, Deutschland, 1995) erreicht werden, wobei eine Temperatur von ca. 50°C-68°C eingestellt wird. Es ist gegebenenfalls möglich die Salzkonzentration bis auf 0,1 × SSC zu senken. Durch schrittweise Erhöhung der Hybridisierungstemperatur in Schritten von ca. 1-2°C von 50°C auf 68°C können Polynukleotidfragmente isoliert werden, die beispielsweise mindestens 70% oder mindestens 80% oder mindestens 90% bis 95% Identität zur Sequenz der eingesetzten Sonde besitzen. Weitere Anleitungen zur Hybridisierung sind in Form sogenannter Kits am Markt erhältlich (z. B. DIG Easy Hyb von der Firma Roche Diagnostics GmbH, Mannheim, Deutschland, Catalog No. 1603558).
Anleitungen zur Amplifikation von DNA-Sequenzen mit Hilfe der Polymerase-Kettenreaktion (PCR) findet der Fachmann unter anderem im Handbuch von Gait: Oligonucleotide Synthesis: A Practical Approach (IRL Press, Oxford, UK, 1984) und bei Newton und Graham: PCR (Spektrum Akademischer Verlag, Heidelberg, Deutschland, 1994).
Es wurde gefunden, dass coryneforme Bakterien nach Verstärkung des rpsL-Gens in verbesserter Weise Aminosäuren produzieren.
Zur Erzielung einer Überexpression kann die Kopienzahl der entsprechenden Gene erhöht werden, oder es kann die Promotor- und Regulationsregion oder die Ribosomenbindungsstelle, die sich stromaufwärts des Strukturgens befindet, mutiert werden. In gleicher Weise wirken Expressionskassetten, die stromaufwärts des Strukturgens eingebaut werden. Durch induzierbare Promotoren ist es zusätzlich möglich, die Expression im Verlaufe der fermentativen Aminosäure-Produktion zu steigern. Durch Maßnahmen zur Verlängerung der Lebensdauer der m-RNA wird ebenfalls die Expression verbessert. Weiterhin wird durch Verhinderung des Abbaus des Enzymproteins ebenfalls die Enzymaktivität verstärkt. Die Gene oder Genkonstrukte können entweder in Plasmiden mit unterschiedlicher Kopienzahl vorliegen oder im Chromosom integriert und amplifiziert sein. Alternativ kann weiterhin eine Überexpression der betreffenden Gene durch Veränderung der Medienzusammensetzung und Kulturführung erreicht werden.
Anleitungen hierzu findet der Fachmann unter anderem bei Martin et al. (Bio/Technology 5, 137-146 (1987)), bei Guerrero et al. (Gene 138, 35-41 (1994)), Tsuchiya und Morinaga (Bio/Technology 6, 428-430 (1988)), bei Eikmanns et al. (Gene 102, 93-98 (1991)), in der Europäischen Patentschrift 0 472 869, im US Patent 4,601,893, bei Schwarzer und Pühler (Bio/Technology 9, 84-87 (1991), bei Reinscheid et al. (Applied and Environmental Microbiology 60, 126-132 (1994)), bei LaBarre et al. (Journal of Bacteriology 175, 1001-1007 (1993)), in der Patentanmeldung WO 96/15246, bei Malumbres et al. (Gene 134, 15-24 (1993)), in der japanischen Offenlegungsschrift JP-A-10-229891, bei Jensen und Hammer (Biotechnology and Bioengineering 58, 191-195 (1998)), bei Makrides (Microbiological Reviews 60: 512-538 (1996)) und in bekannten Lehrbüchern der Genetik und Molekularbiologie.
Zur Verstärkung wurde das erfindungsgemäße rpsL-Gen beispielhaft mit Hilfe von episomalen Plasmiden überexprimiert. Als Plasmide eignen sich solche, die in coryneformen Bakterien repliziert werden. Zahlreiche bekannte Plasmidvektoren wie z. B. pZ1 (Menkel et al., Applied and Environmental Microbiology (1989) 64: 549-554), pEKE × 1 (Eikmanns et al., Gene 102: 93-98 (1991)) oder pHS2-1 (Sonnen et al., Gene 107: 69-74 (1991)) beruhen auf den kryptischen Plasmiden pHM1519, pBL1 oder pGA1. Andere Plasmidvektoren wie z. B. solche, die auf pCG4 (US-A 4,489,160), oder pNG2 (Serwold-Davis et al., FEMS Microbiology Letters 66, 119-124 (1990)), oder pAG1 (US-A 5,158,891) beruhen, können in gleicher Weise verwendet werden.
Weiterhin eignen sich auch solche Plasmidvektoren mit Hilfe derer man das Verfahren der Genamplifikation durch Integration in das Chromosom anwenden kann, so wie es beispielsweise von Remscheid et al. (Applied and Environmental Microbiology 60, 126-132 (1994)) zur Duplikation bzw. Amplifikation des hom-thrB-Operons beschrieben wurde. Bei dieser Methode wird das vollständige Gen in einen Plasmidvektor kloniert, der in einem Wirt (typischerweise E. coli), nicht aber in C. glutamicum replizieren kann. Als Vektoren kommen beispielsweise pSUP301 (Simon et al., Bio/Technology 1, 784-791 (1983)), pK18mob oder pK19mob (Schäfer et al., Gene 145, 69-73 (1994)), pGEM-T (Promega Corporation, Madison, WI, USA), pCR2.1-TOPO (Shuman (1994). Journal of Biological Chemistry 269: 32678-84; US-A 5,487,993), pCR®Blunt (Firma Invitrogen, Groningen, Niederlande; Bernard et al., Journal of Molecular Biology, 234: 534-541 (1993)), pEM1 (Schrumpf et al. 1991, Journal of Bacteriology 173: 4510-4516) oder pBGS8 (Spratt et al., 1986, Gene 41: 337-342) in Frage. Der Plasmidvektor, der das zu amplifizierende Gen enthält, wird anschließend durch Konjugation oder Transformation in den gewünschten Stamm von C. glutamicum überführt. Die Methode der Konjugation ist beispielsweise bei Schäfer et al. (Applied and Environmental Microbiology 60, 756-759 (1994)) beschrieben. Methoden zur Transformation sind beispielsweise bei Thierbach et al. (Applied Microbiology and Biotechnology 29, 356-362 (1988)), Dunican und Shivnan (Bio/Technology 7, 1067-1070 (1989)) und Tauch et al. (FEMS Microbiological Letters 123, 343-347 (1994)) beschrieben. Nach homologer Rekombination mittels eines "cross over"- Ereignisses enthält der resultierende Stamm mindestens zwei Kopien des betreffenden Gens.
Es wurde weiterhin gefunden, dass Aminosäureaustausche in dem Abschnitt zwischen Position 38 bis 48 der Aminosäuresequenz des ribosomalen Proteins S12 dargestellt in SEQ ID No. 2 die Lysinproduktion coryneformer Bakterien verbessern.
Vorzugsweise wird L-Lysin an der Position 43 gegen jede andere proteinogene Aminosäure ausgenommen L-Lysin ausgetauscht, wobei der Austausch gegen L-Histidin oder L- Arginin bevorzugt wird. Ganz besonders bevorzugt wird der Austausch gegen L-Arginin.
In SEQ ID No. 3 ist die Basensequenz des in Stamm DM1545 enthaltenen Allels rpsL-1545 dargestellt. Das rpsL-1545 Allel kodiert für ein Protein, dessen Aminosäuresequenz in SEQ ID No. 4 dargestellt ist. Das Protein enthält an Position 43 L-Arginin. Die DNA Sequenz des rpsL-1545 Allels (SEQ ID No. 3) enthält an Position 128 des Kodierbereichs (CDS), das entspricht Position 627 der in SEQ ID No. 3 dargestellten Sequenz, die Base Guanin. Die DNA-Sequenz des Wildtypgens (SEQ ID No. 1) enthält an dieser Position die Base Adenin.
Für die Mutagenese können klassische Mutageneseverfahren unter Verwendung mutagener Stoffe wie beispielsweise N- Methyl-N'-Nitro-N-Nitrosoguanidin oder ultraviolettes Licht verwendet werden. Weiterhin können für die Mutagenese in­ vitro Methoden wie beispielsweise eine Behandlung mit Hydroxylamin (Miller, J. H.: A Short Course in Bacterial Genetics. A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1992) oder mutagene Oligonukleotide (T. A. Brown: Gentechnologie für Einsteiger, Spektrum Akademischer Verlag, Heidelberg, 1993) oder die Polymerase-Kettenreaktion (PCR), wie sie im Handbuch von Newton und Graham (PCR, Spektrum Akademischer Verlag, Heidelberg, 1994) beschrieben ist, verwendet werden.
Die erfindungsgemäßen rpsL-Allele können unter anderem auch durch das Verfahren des Genaustausches ("gene replacement"), wie es bei Schwarzer und Pühler (Bio/Technology 9, 84-87 (1991)) oder Peters-Wendisch et al. (Microbiology 144, 915-927 (1998)) beschrieben ist, in geeignete Stämme überführt werden. Das entsprechende rpsL-Allel wird hierbei in einen für C. glutamicum nicht replikativen Vektor wie beispielsweise pK18mobsacB oder pK19mobsacB (Jäger et al., Journal of Bacteriology 174: 5462-65 (1992)) oder pCR®Blunt (Firma Invitrogen, Groningen, Niederlande; Bernard et al., Journal of Molecular Biology, 234: 534-541 (1993)) kloniert und dieser anschließend durch Transformation oder Konjugation in den gewünschten Wirt von C. glutamicum überführt. Nach homologer Rekombination mittels eines ersten, Integration bewirkenden "cross-over"-Ereignisses und eines geeigneten zweiten, eine Exzision bewirkenden "cross-over"-Ereignisses im Zielgen bzw. in der Zielsequenz erreicht man den Einbau der Mutation.
Zusätzlich kann es für die Produktion von L-Aminosäuren vorteilhaft sein, neben dem rpsL-Gen eines oder mehrere Enzyme des jeweiligen Biosyntheseweges, der Glykolyse, der Anaplerotik, des Zitronensäure-Zyklus, des Pentosephosphat­ zyklus, des Aminosäure-Exports und gegebenenfalls regulatorische Proteine zu verstärken, insbesondere überzuexprimieren. Die Verwendung endogener Gene wird im allgemeinen bevorzugt.
Unter "endogenen Genen" oder "endogenen Nukleotidsequenzen" versteht man die in der Population einer Art vorhandenen Gene beziehungsweise Nukleotidsequenzen und deren Allele.
So kann für die Herstellung von L-Lysin zusätzlich zur Verstärkung des rpsL-Gens eines oder mehrere Gene, ausgewählt aus der Gruppe
das für die Dihydrodipicolinat-Synthase kodierende Gen dapA (EP-B 0 197 335),
das für die Glyceraldehyd-3-Phosphat-Dehydrogenase kodierende Gen gap (Eikmanns (1992), Journal of Bacteriology 174: 6076-6086),
das für die Triosephosphat-Isomerase kodierende Gen tpi (Eikmanns (1992), Journal of Bacteriology 174: 6076-6086),
das für die 3-Phosphoglycerat-Kinase kodierende Gen pgk (Eikmanns (1992), Journal of Bacteriology 174: 6076-6086),
das für die Glucose-6-Phosphat-Dehydrogenase kodierende Gen zwf (JP-A-09224661),
das für die Pyruvat-Carboxylase kodierende Gen pyc (DE-A- 198 31 609),
das für die Malat-Chinon-Oxidoreduktase kodierende Gen mqo (Molenaar et al., European Journal of Biochemistry 254, 395-403 (1998)),
das für eine feed-back resistente Aspartatkinase kodierende Gen lysC (Kalinowski et al., Molecular Microbiologie 5(5), 1197-204 (1991)),
das für das Lysin-Export-Protein kodierende Gen lysE (DE-A-195 48 222),
das für das Zwa1-Protein kodierende Gen zwa1 (DE: 199 59 328.0, DSM 13115), und
das für die β-Untereinheit der RNA-Polymerase B kodierende rpoB-Gen dargestellt in SEQ ID No. 5 und 6
verstärkt, insbesondere überexprimiert werden.
Der Begriff "Abschwächung" beschreibt in diesem Zusammenhang die Verringerung oder Ausschaltung der intrazellulären Aktivität eines oder mehrerer Enzyme (Proteine) in einem Mikroorganismus, die durch die entsprechende DNA kodiert werden, indem man beispielsweise einen schwachen Promotor verwendet oder ein Gen bzw. Allel verwendet, das für ein entsprechendes Enzym mit einer niedrigen Aktivität kodiert bzw. das entsprechende Gen oder Enzym (Protein) inaktiviert und gegebenenfalls diese Maßnahmen kombiniert.
Durch die Maßnahmen der Abschwächung wird die Aktivität oder Konzentration des entsprechenden Proteins im allgemeinen auf 0 bis 75%, 0 bis 50%, 0 bis 25%, 0 bis 10% oder 0 bis 5% der Aktivität oder Konzentration des Wildtyp- Proteins, beziehungsweise der Aktivität oder Konzentration des Proteins im Ausgangs-Mikroorganismus, herabgesenkt.
Weiterhin kann es für die Produktion von L-Aminosäuren vorteilhaft sein, zusätzlich zur Verstärkung des rpsL-Gens eines oder mehrere Gene, ausgewählt aus der Gruppe
das für die Phosphoenolpyruvat-Carboxykinase kodierende Gen pck (DE 199 50 409.1; DSM 13047),
das für die Glucose-6-Phosphat-Isomerase kodierende Gen pgi (US 09/396,478; DSM 12969),
das für die Pyruvat-Oxidase kodierende Gen poxB (DE 199 51 975.7; DSM 13114),
das für das Zwa2-Protein kodierende Gen zwa2 (DE 199 59 327.2, DSM 13113)
abzuschwächen, insbesondere die Expression zu verringern.
Weiterhin kann es für die Produktion von Aminosäuren vorteilhaft sein, neben der Verstärkung des rpsL-Gens unerwünschte Nebenreaktionen auszuschalten (Nakayama: "Breeding of Amino Acid Producing Microorganisms", in: Overproduction of Microbial Products, Krumphanzl, Sikyta, Vanek (eds.), Academic Press, London, UK, 1982).
Die erfindungsgemäß hergestellten Mikroorganismen sind ebenfalls Gegenstand der Erfindung und können kontinuierlich oder diskontinuierlich im batch-Verfahren (Satzkultivierung) oder im fed batch (zulaufverfahren) oder repeated fed batch Verfahren (repetitives zulaufverfahren) zum Zwecke der Produktion von Aminosäuren kultiviert werden. Eine Zusammenfassung über bekannte Kultivierungsmethoden ist im Lehrbuch von Chmiel (Bioprozeßtechnik 1. Einführung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) oder im Lehrbuch von Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)) beschrieben.
Das zu verwendende Kulturmedium muss in geeigneter Weise den Ansprüchen der jeweiligen Stämme genügen. Beschreibungen von Kulturmedien verschiedener Mikroorganismen sind im Handbuch "Manual of Methods for General Bacteriology" der American Society for Bacteriology (Washington D.C., USA, 1981) enthalten.
Als Kohlenstoffquelle können Zucker und Kohlehydrate wie z. B. Glucose, Saccharose, Laktose, Fructose, Maltose, Melasse, Stärke und Cellulose, Öle und Fette wie z. B. Sojaöl, Sonnenblumenöl, Erdnußöl und Kokosfett, Fettsäuren wie z. B. Palmitinsäure, Stearinsäure und Linolsäure, Alkohole wie z. B. Glycerin und Ethanol und organische Säuren wie z. B. Essigsäure verwendet werden. Diese Stoffe können einzeln oder als Mischung verwendet werden.
Als Stickstoffquelle können organische Stickstoffhaltige Verbindungen wie Peptone, Hefeextrakt, Fleischextrakt, Malzextrakt, Maisquellwasser, Sojabohnenmehl und Harnstoff oder anorganische Verbindungen wie Ammoniumsulfat, Ammoniumchlorid, Ammoniumphosphat, Ammoniumcarbonat und Ammoniumnitrat verwendet werden. Die Stickstoffquellen können einzeln oder als Mischung verwendet werden.
Als Phosphorquelle können Phosphorsäure, Kaliumdihydrogen­ phosphat oder Dikaliumhydrogenphosphat oder die entsprechenden Natrium haltigen Salze verwendet werden. Das Kulturmedium muß weiterhin Salze von Metallen enthalten wie z. B. Magnesiumsulfat oder Eisensulfat, die für das Wachstum notwendig sind. Schließlich können essentielle Wuchsstoffe wie Aminosäuren und Vitamine zusätzlich zu den oben genannten Stoffen eingesetzt werden. Dem Kulturmedium können überdies geeignete Vorstufen zugesetzt werden. Die genannten Einsatzstoffe können zur Kultur in Form eines einmaligen Ansatzes hinzugegeben oder in geeigneter Weise während der Kultivierung zugefüttert werden.
Zur pH-Kontrolle der Kultur werden basische Verbindungen wie Natriumhydroxid, Kaliumhydroxid, Ammoniak bzw. Ammoniakwasser oder saure Verbindungen wie Phosphorsäure oder Schwefelsäure in geeigneter Weise eingesetzt. Zur Kontrolle der Schaumentwicklung können Antischaummittel wie z. B. Fettsäurepolyglykolester eingesetzt werden. Zur Aufrechterhaltung der Stabilität von Plasmiden können dem Medium geeignete selektiv wirkende Stoffe wie z. B. Antibiotika hinzugefügt werden. Um aerobe Bedingungen aufrechtzuerhalten, werden Sauerstoff oder Sauerstoff haltige Gasmischungen wie z. B. Luft in die Kultur eingetragen. Die Temperatur der Kultur liegt normalerweise bei 20°C bis 45°C und vorzugsweise bei 25°C bis 40°C. Die Kultur wird solange fortgesetzt, bis sich ein Maximum des gewünschten Produktes gebildet hat. Dieses Ziel wird normalerweise innerhalb von 10 Stunden bis 160 Stunden erreicht.
Methoden zur Bestimmung von L-Aminosäuren sind aus dem Stand der Technik bekannt. Die Analyse kann zum Beispiel so wie bei Spackman et al. (Analytical Chemistry, 30, (1958), 1190) beschrieben durch Ionenaustausch-Chromatographie mit anschließender Ninhydrin-Derivatisierung erfolgen, oder sie kann durch reversed phase HPLC erfolgen, so wie bei Lindroth et al. (Analytical Chemistry (1979) 51: 1167-1174) beschrieben.
Eine Reinkultur des Corynebacterium glutamicum Stammes DM1545 wurde am 16. Januar 2001 bei der Deutschen Sammlung für Mikroorganismen und Zellkulturen (DSMZ, Braunschweig, Deutschland) als DSM 13992 gemäß Budapester Vertrag hinterlegt.
Das erfindungsgemäße Verfahren dient zur fermentativen Herstellung von Aminosäuren, insbesondere L-Lysin.
Die vorliegende Erfindung wird im folgenden anhand von Ausführungsbeispielen näher erläutert.
Die Isolierung von Plasmid-DNA aus Escherichia coli sowie alle Techniken zur Restriktion, Klenow- und alkalische Phosphatasebehandlung wurden nach Sambrook et al. (Molecular Cloning. A Laboratory Manual (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA) durchgeführt. Methoden zur Transformation von Escherichia coli sind ebenfalls in diesem Handbuch beschrieben.
Die Zusammensetzung gängiger Nährmedien wie LB- oder TY- Medium kann ebenfalls dem Handbuch von Sambrook et al. entnommen werden.
Beispiel 1 Herstellung einer genomischen Cosmid-Genbank aus Corynebacterium glutamicum ATCC 13032
Chromosomale DNA aus Corynebacterium glutamicum ATCC 13032 wird wie bei Tauch et al. (1995, Plasmid 33: 168-179) beschrieben isoliert und mit dem Restriktionsenzym Sau3AI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung Sau3AI, Code no. 27-0913-02) partiell gespalten. Die DNA-Fragmente werden mit shrimp alkalischer Phosphatase (Roche Diagnostics GmbH, Mannheim, Deutschland, Produktbeschreibung SAP, Code no. 1758250) dephosphoryliert. Die DNA des Cosmid-Vektors SuperCos1 (Wahl et al. (1987) Proceedings of the National Academy of Sciences USA 84: 2160-2164), bezogen von der Firma Stratagene (La Jolla, USA, Produktbeschreibung SuperCos1 Cosmid Vektor Kit, Code no. 251301) wird mit dem Restriktionsenzym Xbal (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung XbaI, Code no. 27-0948-02) gespalten und ebenfalls mit shrimp alkalischer Phosphatase dephosphoryliert.
Anschließend wird die Cosmid-DNA mit dem Restriktionsenzym BamHI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung BamHI, Code no. 27-0868-04) gespalten. Die auf diese Weise behandelte Cosmid-DNA wird mit der behandelten ATCC13032-DNA gemischt und der Ansatz mit T4- DNA-Ligase (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung T4-DNA-Ligase, Code no. 27-0870-04) behandelt. Das Ligationsgemisch wird anschließend mit Hilfe des Gigapack II XL Packing Extracts (Stratagene, La Jolla, USA, Produktbeschreibung Gigapack II XL Packing Extract, Code no. 200217) in Phagen verpackt.
Zur Infektion des E. coli Stammes NM554 (Raleigh et al. 1988, Nucleic Acid Research 16: 1563-1575) werden die Zellen in 10 mM MgSO4 aufgenommen und mit einem Aliquot der Phagensuspension vermischt. Infektion und Titerung der Cosmidbank werden wie bei Sambrook et al. (1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor) beschrieben durchgeführt, wobei die Zellen auf LB-Agar (Lennox, 1955, Virology, 1 : 190) mit 100 mg/l Ampicillin ausplattiert werden. Nach Inkubation über Nacht bei 37°C werden rekombinante Einzelklone selektioniert.
Beispiel 2 Isolierung und Sequenzierung des rpsL-Gens
Die Cosmid-DNA einer Einzelkolonie wird mit dem Qiaprep Spin Miniprep Kit (Product No. 27106, Qiagen, Hilden, Germany) nach Herstellerangaben isoliert und mit dem Restriktionsenzym Sau3AI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung Sau3AI, Product No. 27- 0913-02) partiell gespalten. Die DNA-Fragmente werden mit shrimp alkalischer Phosphatase (Roche Diagnostics GmbH, Mannheim, Deutschland, Produktbeschreibung SAP, Product No. 1758250) dephosphoryliert. Nach gelelektrophoretischer Auftrennung erfolgt die Isolierung der Cosmidfragmente im Größenbereich von 1500 bis 2000 bp mit dem QiaExII Gel Extraction Kit (Product No. 20021, Qiagen, Hilden, Germany).
Die DNA des Sequenziervektors pZero-1, bezogen von der Firma Invitrogen (Groningen, Niederlande, Produktbeschreibung Zero Background Cloning Kit, Product No. K2500-01), wird mit dem Restriktionsenzym BamHI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung BamHI, Product No. 27-0868-04) gespalten. Die Ligation der Cosmidfragmente in den Sequenziervektor pZero-1 wird wie von Sambrook et al. (1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor) beschrieben durchgeführt, wobei das DNA-Gemisch mit T4-Ligase (Pharmacia Biotech, Freiburg, Deutschland) über Nacht inkubiert wird. Dieses Ligationsgemisch wird anschließend in den E. coli Stamm DH5αMCR (Grant, 1990, Proceedings of the National Academy of Sciences U.S.A., 87: 4645-4649) elektroporiert (Tauch et al. 1994, FEMS Microbiol Letters, 123: 343-7) und auf LB-Agar (Lennox, 1955, Virology, 1 : 190) mit 50 mg/l Zeocin ausplattiert.
Die Plasmidpräparation der rekombinanten Klone erfolgt mit dem Biorobot 9600 (Product No. 900200, Qiagen, Hilden, Deutschland). Die Sequenzierung erfolgt nach der Dideoxy- Kettenabbruch-Methode von Sanger et al. (1977, Proceedings of the National Academy of Sciences U.S.A., 74: 5463-5467) mit Modifikationen nach Zimmermann et al. (1990, Nucleic Acids Research, 18: 1067). Es wird der "RR dRhodamin Terminator Cycle Sequencing Kit" von PE Applied Biosystems (Product No. 403044, Weiterstadt, Deutschland) verwendet. Die gelelektrophoretische Auftrennung und Analyse der Sequenzierreaktion erfolgt in einem "Rotiphorese NF Acrylamid/Bisacrylamid" Gel (29 : 1) (Product No. A124.1, Roth, Karlsruhe, Germany) mit dem "ABI Prism 377" Sequenziergerät von PE Applied Biosystems (Weiterstadt, Deutschland).
Die erhaltenen Roh-Sequenzdaten werden anschließend unter Anwendung des Staden-Programpakets (1986, Nucleic Acids Research, 14: 217-231) Version 97-0 prozessiert. Die Einzelsequenzen der pZero1-Derivate werden zu einem zusammenhängenden Contig assembliert. Die computergestützte Kodierbereichsanalyse wird mit dem Programm XNIP (Staden, 1986, Nucleic Acids Research, 14: 217-231) angefertigt.
Die erhaltene Nukleotidsequenz ist in SEQ ID No. 1 dargestellt. Die Analyse der Nukleotidsequenz ergibt ein offenes Leseraster von 383 Basenpaaren, welches als rpsL- Gen bezeichnet wird. Das rpsL-Gen kodiert für ein Protein von 127 Aminosäuren.
In gleicher Weise wurde der stromaufwärts von SEQ ID No. 1 gelegene DNA-Abschnitt identifiziert, der in SEQ ID No. 7 dargestellt ist. Die um SEQ ID No. 7 erweiterte rpsL- Genregion ist in SEQ ID No. 8 dargestellt.
Beispiel 3 Amplifikation und Sequenzierung der DNA des rpsL-Allels von Stamm DM1545
Der Corynebacterium glutamicum Stamm DM1545 wurde durch mehrfache, ungerichtete Mutagenese, Selektion und Mutantenauswahl aus C. glutamicum ATCC13032 hergestellt. Der Stamm ist Methionin-sensitiv.
Aus dem Stamm DM1545 wird mit den üblichen Methoden (Eikmanns et al., Microbiology 140: 1817-1828 (1994)) chromosomale DNA isoliert. Mit Hilfe der Polymerase- Kettenreaktion wird ein DNA-Abschnitt amplifiziert, welcher das rpsL-Gen bzw. Allel trägt. Aufgrund der aus Beispiel 2 für C. glutamicum bekannten Sequenz des rpsL-Gens werden folgende Primer-Oligonukleotide für die PCR ausgewählt:
rpsL-1 (SEQ ID No. 10):
5' cag ctc tac aag agt gtc ta 3'
rpsL-2 (SEQ ID No. 11):
5' tgg tcg tgg tct tac cag ca 3'
Die dargestellten Primer werden von der Firma MWG Biotech (Ebersberg, Deutschland) synthetisiert und nach der Standard-PCR-Methode von Innis et al. (PCR Protocols. A Guide to Methods and Applications, 1990, Academic Press) die PCR-Reaktion durchgeführt. Die Primer ermöglichen die Amplifizierung eines ca. 1,78 kb langen DNA-Abschnittes, welcher das rpsL-Allel trägt.
Das amplifizierte DNA-Fragment von ca. 1,78 kb Länge, welches das rpsL-Allel des Stammes DM1545 trägt, wird durch Elektrophorese in einem 0,8%igen Agarosegel identifiziert, aus dem Gel isoliert und mit den üblichen Methoden aufgereinigt (QIAquick Gel Extraction Kit, Qiagen, Hilden).
Die Nukleotidsequenz des amplifizierten DNA-Fragmentes bzw. PCR-Produktes wird von der Firma MWG Biotech (Ebersberg, Deutschland) durch Sequenzierung ermittelt. Die Sequenz des PCR-Produktes ist in der SEQ ID No. 3 dargestellt. Die sich mit Hilfe des Programmes Patentin ergebende Aminosäuresequenz des dazugehörigen ribosomalen Proteins S12 ist in der SEQ ID No. 4 dargestellt.
An der Position 128 der Nukleotidsequenz der Kodierregion des rpsL-Allels von Stamm DM1545, also an Position 627 der in SEQ ID No. 3 dargestellten Nukleotidsequenz, befindet sich die Base Guanin. An der entsprechenden Position des Wildtypgens befindet sich die Base Adenin (SEQ ID No. 1).
An der Position 43 der Aminosäuresequenz des ribosomalen Proteins S12 von Stamm DM1545 befindet sich die Aminosäure Arginin (SEQ ID No. 4). An der entsprechenden Position des Wildtyp-Proteins befindet sich die Aminosäure Lysin (SEQ ID No. 2).
Beispiel 4 Austausch des rpsL-Wildtypgens von Stamm DSM5715 gegen das rpsL-1545-Allel 4.1 Gewinnung eines DNA-Fragmentes, welches das rpsL- 1545-Allel trägt
Aus dem Stamm DM1545 wird mit den üblichen Methoden (Eikmanns et al., Microbiology 140: 1817-1828 (1994)) chromosomale DNA isoliert. Mit Hilfe der Polymerase- Kettenreaktion wird ein DNA-Abschnitt amplifiziert, welcher das rpsL-1545-Allel trägt, bei dem an Position 128 des Kodierbereichs (CDS) die Base Guanin anstelle der an dieser Stelle im Wildtypgen enthaltenen Base Adenin enthalten ist.
Aufgrund der aus Beispiel 2 für C. glutamicum bekannten Sequenz des rpsL-Gens werden folgende Primer- Oligonukleotide für die Polymerase-Kettenreaktion ausgewählt:
rpsL_XL-A1 (SEQ ID No. 12):
5' ga tct aga-ggt tgc cgg taa tcc tgt tg 3'
rpsL_XL-E1 (SEQ ID No. 13):
5' ga tct aga-cgc agg ctg cca gct tat tc 3'
Die dargestellten Primer werden von der Firma MWG Biotech (Ebersberg, Deutschland) synthetisiert und nach der Standard-PCR-Methode von Innis et al. (PCR Protocols. A Guide to Methods and Applications, 1990, Academic Press) die PCR Reaktion durchgeführt. Die Primer ermöglichen die Amplifizierung eines ca. 1,59 kb langen DNA-Abschnittes, welcher das rpsL-1545-Allel trägt (SEQ ID No. 9). Außerdem enthalten die Primer die Sequenz für eine Schnittstelle der Restriktionsendonuklease XbaI, die in der oben dargestellten Nukleotidabfolge durch Unterstreichen markiert ist.
Das amplifizierte DNA-Fragment von ca. 1,59 kb Länge, welches das rpsL-1545-Allel trägt, wird mit der Restriktionsendonuklease XbaI gespalten, durch Elektrophorese in einem 0,8%igen Agarosegel identifiziert und anschließend aus dem Gel isoliert und mit den üblichen Methoden aufgereinigt (QIAquick Gel Extraction Kit, Qiagen, Hilden).
4.2 Konstruktion des Austauschvektors pK18mobsacB_rpsL- 1545
Das in Beispiel 4.1 beschriebene ca. 1,58 kb lange, mit der Restriktionsendonuklease XbaI gespaltene DNA-Fragment, welches das rpsL-1545-Allel enthält, wird mittels Austauschmutagenese unter Zuhilfenahme des bei Schäfer et al. (Gene, 14, 69-73 (1994)) beschriebenen sacB-Systems in das Chromosom des C. glutamicum Stammes DSM5715 eingebaut. Dieses System ermöglicht die Herstellung bzw. die Selektion von Allel-Austauschen, die sich durch homologe Rekombination vollziehen.
Der mobilisierbare Klonierungsvektor pK18mobsacB wird mit dem Restriktionsenzym XbaI verdaut und die Enden mit alkalischer Phosphatase (Alkaline Phosphatase, Boehringer Mannheim, Deutschland) dephosphoryliert. Der so vorbereitete Vektor wird mit dem ca. 1,58 kb großen rpsL- 1545-Fragment gemischt und der Ansatz mit T4-DNA-Ligase (Amersham-Pharmacia, Freiburg, Deutschland) behandelt.
Anschließend wird der E. coli Stamm S17-1 (Simon et al., Bio/Technologie 1: 784-791, 1993) mit dem Ligationsansatz transformiert (Hanahan, In: DNA Cloning. A Practical Approach. Vol. 1, ILR-Press, Cold Spring Habor, New York, 1989). Die Selektion der Plasmid-tragenden Zellen erfolgt durch Ausplattieren des Tansformationsansatztes auf LB-Agar (Sambrook et al., Molecular Cloning: A Laboratory Manual. 2nd Ed., Cold Spring Habor, New York, 1989), der mit 25 mg/l Kanamycin supplementiert wurde.
Plasmid-DNA wird aus einer Transformante mit Hilfe des QIAprep Spin Miniprep Kit der Firma Qiagen isoliert und durch Restriktionsspaltung mit dem Enzym PstI und anschließender Agarosegel-Elektrophorese überprüft. Das Plasmid wird pK18mobsacB_rpsL-1545 genannt und ist in Fig. 1 dargestellt.
4.3 Integration des Vektors pK18mobsacB_rpsL-1545 in DSM5715 und Allelaustausch
Der in Beispiel 4.2 genannte Vektor pK18mobsacB_rpsL-1545 wird nach einem Protokoll von Schäfer et al. (Journal of Microbiology 172: 1663-1666 (1990)) in den C. glutamicum Stamm DSM5715 durch Konjugation transferiert. Der Vektor kann in DSM5715 nicht selbständig replizieren und bleibt nur dann in der Zelle erhalten, wenn er als Folge eines Rekombinationsereignisses im Chromosom integriert vorliegt. Die Selektion von Transkonjuganten, d. h. von Klonen mit integriertem pK18mobsacB_rpsL-1545 erfolgt durch Ausplattieren des Konjugationsansatzes auf LB-Agar (Sambrook et al., Molecular Cloning: A Laboratory Manual. 2nd Ed., Cold Spring Habor, New York, 1989), der mit 15 mg/l Kanamycin und 50 mg/l Nalidixinsäure supplementiert wird. Kanamycin-resistente Transkonjuganten werden auf LB- Agarplatten mit 25 mg/l Kanamycin ausgestrichen und für 24 Stunden bei 33°C inkubiert. Eine Kanamycin-resistente Transkonjugante wird als DSM5715: :pK18mobsacB rpsL-1545 bezeichnet. Durch Integration des Vektors trägt sie zusätzlich zum rpsL-Wildtypgen das rpsL-1545-Allel im Chromosom.
Zur Selektion von Mutanten, bei denen als Folge eines zweiten Rekombinationsereignisses die Exzision des Plasmides stattgefunden hat, werden Zellen des Stammes DSM5715: :pK18mobsacB_rpsL-1545 30 Stunden unselektiv in LB- Flüssigmedium kultiviert, anschließend auf LB-Agar mit 10% Sucrose ausgestrichen und 16 Stunden bebrütet.
Das Plasmid pK18mobsacB_rpsL-1545 enthält ebenso wie das Ausgangsplasmid pK18mobsacB neben dem Kanamycin- Resistenzgen eine Kopie des für die Levan-Sucrase aus Bacillus subtilis kodierenden sacB-Gens. Die durch Sucrose induzierbare Expression führt zur Bildung der Levan- Sucrase, die die Synthese des für C. glutamicum toxischen Produktes Levan katalysiert. Auf LB-Agar mit Sucrose wachsen daher nur solche Klone an, bei denen das integrierte pK18mobsacB_rpsL-1545 als Folge eines zweiten Rekombinationsereignisses exzisiert hat. In Abhängigkeit von der Lage des zweiten Rekombinationsereignisses in bezug auf den Mutationsort findet bei der Exzision der Allelaustausch bzw. der Einbau der Mutation statt oder es verbleibt die ursprüngliche Kopie im Chromosom des Wirtes.
Ungefähr 40 bis 50 Kolonien werden auf den Phänotyp "Wachstum in Gegenwart von Sucrose" und "Nicht-Wachstum in Gegenwart von Kanamycin" geprüft. Bei 4 Kolonien, die den Phänotyp "Wachstum in Gegenwart von Sucrose" und "Nicht- Wachstum in Gegenwart von Kanamycin" aufweisen, wird ein die rpsL-1545-Mutation überspannender Bereich des rpsL- Gens, ausgehend von dem Sequenzierprimer rL_1 (SEQ ID No. 14), von der Firma GATC Biotech AG (Konstanz, Deutschland) seguenziert, um nachzuweisen, dass die Mutation des rpsL- 1545-Allels im Chromosom vorliegt. Der verwendete Primer rL_1 wird dazu von der Firma GATC synthetisiert:
rL_1 (SEQ ID No. 14):
5' atg agg ttg tcc gtg aca tg 3'
Auf diese Weise wurde ein Klon identifiziert, der an der Position 128 der Kodierregion (CDS) des rpsL-Gens die Base Guanin enthält und somit das rpsL-1545-Allel besitzt. Dieser Klon wurde als Stamm DSM5715_rpsL-1545 bezeichnet.
Beispiel 5 Herstellung von Lysin
Die in Beispiel 4 erhaltenen C. glutamicum Stämme DSM5715: :pK18mobsacB_rpsL-1545 und DSM5715rpsL-1545 werden in einem zur Produktion von Lysin geeigneten Nährmedium kultiviert und der Lysingehalt im Kulturüberstand bestimmt.
Dazu werden die Stämme zunächst auf Agarplatte für 24 Stunden bei 33°C inkubiert. Ausgehend von dieser Agarplattenkultur wird je eine Vorkultur angeimpft (10 ml Medium im 100 ml Erlenmeyerkolben). Als Medium für die Vorkulturen wird das Medium mm verwendet. Die Vorkulturen werden 24 Stunden bei 33°C bei 240 rpm auf dem Schüttler inkubiert. Von diesen Vorkulturen wird je eine Hauptkultur angeimpft, so dass die Anfangs-OD (660 nm) der Hauptkulturen 0,1 OD beträgt. Für die Hauptkulturen wird ebenfalls das Medium mm verwendet.
Medium MM
CSL 5 g/l
MOPS 20 g/l
Glucose (getrennt autoklaviert) 50 g/l
AL=L<Salze:
(NH4)2SO4 25 g/l
KH2PO4 0,1 g/l
MgSO4.7 H2O 1,0 g/l
CaCl2.2 H2O 10 mg/l
FeSO4.7 H2O 10 mg/l
MnSO4.H2O 5,0 mg/l
Biotin (sterilfiltriert) 0,3 mg/l
Thiamin.HCl (sterilfiltriert) 0,2 mg/l
L-Leucin (sterilfiltriert) 0,1 g/l
CaCO3 25 g/l
CSL (Corn Steep Liquor), MOPS (Morpholinopropansulfonsäure) und die Salzlösung werden mit Ammoniakwasser auf pH 7 eingestellt und autoklaviert. Anschließend werden die sterilen Substrat- und Vitaminlösungen sowie das trocken autoklavierte CaCO3 zugesetzt.
Die Kultivierung erfolgt in 10 ml Volumen in einem 100 ml Erlenmeyerkolben mit Schikanen. Die Kultivierung erfolgt bei 33°C und 80% Luftfeuchte.
Nach 72 Stunden wird die OD bei einer Meßwellenlänge von 660 nm mit dem Biomek 1000 (Beckmann Instruments GmbH, München) ermittelt. Die gebildete Lysinmenge wird mit einem Aminosäureanalysator der Firma Eppendorf-BioTronik (Hamburg, Deutschland) durch Ionenaustauschchromatographie und Nachsäulenderivatisierung mit Ninhydrindetektion bestimmt.
In Tabelle 1 ist das Ergebnis des Versuches dargestellt.
Tabelle 1
SEQUENZPROTOKOLL

Claims (27)

1. Isoliertes Polynukleotid aus coryneformen Bakterien, enthaltend eine für das rpsL-Gen kodierende Polynukleotidsequenz, ausgewählt aus der Gruppe
  • a) Polynukleotid, das mindestens zu 70% identisch ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,
  • b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von SEQ ID No. 2,
  • c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
  • d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Nukleotide der Polynukleotidsequenz von a), b) oder c)
wobei das Polypeptid bevorzugt die Aktivität des ribosomalen Proteins S12 aufweist.
2. Polynukleotid gemäß Anspruch 1, wobei das Polynukleotid eine in coryneformen Bakterien replizierbare, bevorzugt rekombinante DNA ist.
3. Polynukleotid gemäß Anspruch 1, wobei das Polynukleotid eine RNA ist.
4. Polynukleotid gemäß Anspruch 2, enthaltend die Nukleinsäuresequenz wie in SEQ ID No. 1 dargestellt.
5. Replizierbare DNA gemäß Anspruch 2, enthaltend
  • a) die Nukleotidsequenz, gezeigt in SEQ ID No. 1, oder
  • b) mindestens eine Sequenz, die der Sequenz (i) innerhalb des Bereichs der Degeneration des genetischen Kodes entspricht, oder
  • c) mindestens eine Sequenz, die mit der zur Sequenz (i) oder (ii) komplementären Sequenz hybridisiert, und gegebenenfalls
  • d) funktionsneutrale Sinnmutationen in (i).
6. Replizierbare DNA gemäß Anspruch 5, dadurch gekennzeichnet, dass die Hybridisierung unter einer Stringenz entsprechend höchstens 2 × SSC durchgeführt wird.
7. Polynukleotidsequenz gemäß Anspruch 1, die für ein Polypeptid kodiert, das die in SEQ ID No. 2 dargestellte Aminosäuresequenz enthält.
8. Coryneforme Bakterien, in denen das rpsL-Gen verstärkt, insbesondere überexprimiert wird.
9. Corynebacterium glutamicum Stamm DM1545 hinterlegt als DSM 13992 bei der Deutschen Sammlung für Mikroorganismen und Zellkulturen (DSMZ, Braunschweig, Deutschland).
10. Verfahren zur fermentativen Herstellung von L- Aminosäuren, insbesondere L-Lysin, dadurch gekennzeichnet, dass man folgende Schritte durchführt:
  • a) Fermentation der die gewünschte L-Aminosäure produzierenden coryneformen Bakterien, in denen man zumindest das rpsL-Gen oder dafür kodierende Nukleotidsequenzen verstärkt, insbesondere überexprimiert;
  • b) Anreicherung der L-Aminosäure im Medium oder in den Zellen der Bakterien, und
  • c) Isolierung der L-Aminosäure.
11. Verfahren gemäß Anspruch 10, dadurch gekennzeichnet, dass man Bakterien einsetzt, in denen man zusätzlich weitere Gene des Biosyntheseweges der gewünschten L-Aminosäure verstärkt.
12. Verfahren gemäß Anspruch 10, dadurch gekennzeichnet, dass man Bakterien einsetzt, in denen die Stoffwechselwege zumindest teilweise ausgeschaltet sind, die die Bildung der gewünschten L-Aminosäure verringern.
13. Verfahren gemäß Anspruch 10, dadurch gekennzeichnet, dass man einen mit einem Plasmidvektor transformierten Stamm einsetzt, und der Plasmidvektor die für das rpsL-Gen kodierende Nukleotidsequenz trägt.
14. Verfahren gemäß Anspruch 10, dadurch gekennzeichnet, dass man die Expression des (der) Polynukleotids (e), das (die) für das rpsL- Gen kodiert (kodieren) verstärkt, insbesondere überexprimiert.
15. Verfahren gemäß Anspruch 10, dadurch gekennzeichnet, dass man die regulatorischen/katalytischen Eigenschaften des Polypeptids (Enzymprotein) erhöht, für das das Polynukleotid rpsL kodiert.
16. Verfahren gemäß Anspruch 10, dadurch gekennzeichnet, dass man zur Herstellung von L-Aminosäuren coryneforme Mikroorganismen fermentiert, in denen man gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe
  • 1. 16.1 das für die Dihydrodipicolinat-Synthase kodierende Gen dapA,
  • 2. 16.2 das für die Glyceraldehyd-3-Phosphat- Dehydrogenase kodierende Gen gap,
  • 3. 16.3 das für die Triosephosphat-Isomerase kodierende Gen tpi,
  • 4. 16.4 das für die 3-Phosphoglycerat-Kinase kodierende Gen pgk,
  • 5. 16.5 das für die Glucose-6-Phosphat-Dehydrogenase kodierende Gen zwf,
  • 6. 16.6 das für die Pyruvat-Carboxylase kodierende Gen pyc,
  • 7. 16.7 das für die Malat-Chinon-Oxidoreduktase kodierende Gen mqo,
  • 8. 16.8 das für eine feed-back resistente Aspartatkinase kodierende Gen lysC,
  • 9. 16.9 das für das Lysin-Export-Protein kodierende Gen lysE,
  • 10. 16.10 das für das Zwa1-Protein kodierende Gen zwa1,
  • 11. 16.11 das für die RNA-Polymerase B kodierende rpoB- Gen
verstärkt bzw. überexprimiert.
17. Verfahren gemäß Anspruch 10, dadurch gekennzeichnet, dass man zur Herstellung von L-Aminosäuren coryneforme Mikroorganismen fermentiert, in denen man gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe
  • 1. 17.1 das für die Phosphoenolpyruvat-Carboxykinase kodierende Gen pck,
  • 2. 17.2 das für die Glucose-6-Phosphat Isomerase kodierende Gen pgi,
  • 3. 17.3 das für die Pyruvat-Oxidase kodierende Gen poxB
  • 4. 17.4 das für das Zwa2-Protein kodierende Gen zwa2
abschwächt.
18. Coryneforme Bakterien, die einen Vektor enthalten, der ein Polynukleotid gemäß Anspruch 1 trägt.
19. Verfahren gemäß einem oder mehreren der Ansprüche 10-­ 17, dadurch gekennzeichnet, dass man Mikroorganismen der Art Corynebacterium glutamicum einsetzt.
20. Verfahren zum Auffinden von RNA, cDNA und DNA, um Nukleinsäuren, beziehungsweise Polynukleotide oder Gene zu isolieren, die für das ribosomale Protein S12 kodieren oder eine hohe Ähnlichkeit mit der Sequenz des rpsL-Gens aufweisen, dadurch gekennzeichnet, dass man das Polynukleotid, enthaltend die Polynukleotidsequenzen gemäß den Ansprüchen 1, 2, 3 oder 4, als Hybridisierungssonden einsetzt.
21. Verfahren gemäß Anspruch 18, dadurch gekennzeichnet, das man arrays, micro arrays oder DNA-chips einsetzt.
22. Aus coryneformen Bakterien stammende DNA, kodierend für ribosomale S12 Proteine, wobei die zugehörigen Aminosäuresequenzen zwischen den Positionen 38 bis 48 in der SEQ ID No. 2 durch Aminosäureaustausch verändert sind.
23. Aus coryneformen Bakterien stammende DNA, kodierend für ribosomale S12 Proteine, wobei die zugehörigen Aminosäuresequenzen an Position 43 in der SEQ ID No. 2 jede andere proteinogene Aminosäure ausgenommen L-Lysin enthalten.
24. Aus coryneformen Bakterien stammende DNA, kodierend für ribosomale S12 Proteine, wobei die zugehörigen Aminosäuresequenzen an Position 43 in der SEQ ID No. 2 L-Histidin oder L-Arginin enthalten.
25. DNA gemäß Anspruch 24 dadurch gekennzeichnet, dass diese für das ribosomale Protein S12 kodiert, dessen Aminosäuresequenz an Position 43 L-Arginin enthält, dargestellt in SEQ ID No. 4.
26. DNA gemäß Anspruch 25 dadurch gekennzeichnet, dass diese an Position 128 des Kodierbereichs, entsprechend der Position 627 der in SEQ ID No. 3 dargestellten Sequenz, die Nukleobase Guanin enthält.
27. Coryneforme Bakterien die eine DNA gemäß Anspruch 22, 23, 24, 25 oder 26 enthalten.
DE10162386A 2001-02-16 2001-12-19 Für das rpsL-Gen kodierende Nukleotidsequenzen Withdrawn DE10162386A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE10162386A DE10162386A1 (de) 2001-02-16 2001-12-19 Für das rpsL-Gen kodierende Nukleotidsequenzen
BRPI0207284-0A BR0207284B1 (pt) 2001-02-16 2002-01-22 BACTÉRIAS CORINEFORMES COM GENE rpsL SUPEREXPRESSO E PROCESSO PARA A PREPARAÇÃO FERMENTADORA DE L-LISINA
AU2002247644A AU2002247644A1 (en) 2001-02-16 2002-01-22 Nucleotide sequences of the ribosomal protein s12 gene (rpsl) from corynebacterium glutamicum
CNB028049713A CN100347190C (zh) 2001-02-16 2002-01-22 编码rpsL基因的核苷酸序列
PCT/EP2002/000573 WO2002066651A2 (en) 2001-02-16 2002-01-22 Nucleotide sequences of the ribosomal protein s12 gene (rpsl) from corynebacterium glutamicum
EP02716672A EP1360298A2 (de) 2001-02-16 2002-01-22 Nukleotidsequenzen des ribosomalen protein s12 gens (rpsl) aus corynebacterium glutamicum
US10/075,460 US6939695B2 (en) 2001-02-16 2002-02-15 Nucleotide sequences which code for the rpsL gene
US11/197,380 US20060019357A1 (en) 2001-02-16 2005-08-05 Nucleotide sequences which code for the rpsL gene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10107230 2001-02-16
DE10162386A DE10162386A1 (de) 2001-02-16 2001-12-19 Für das rpsL-Gen kodierende Nukleotidsequenzen

Publications (1)

Publication Number Publication Date
DE10162386A1 true DE10162386A1 (de) 2002-08-29

Family

ID=7674260

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10162386A Withdrawn DE10162386A1 (de) 2001-02-16 2001-12-19 Für das rpsL-Gen kodierende Nukleotidsequenzen

Country Status (2)

Country Link
US (1) US20020119549A1 (de)
DE (1) DE10162386A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10154246A1 (de) * 2001-11-05 2003-05-08 Basf Ag Gene die für DNA-Replikations-und Pathogenese-Proteine codieren
US8647642B2 (en) 2008-09-18 2014-02-11 Aviex Technologies, Llc Live bacterial vaccines resistant to carbon dioxide (CO2), acidic PH and/or osmolarity for viral infection prophylaxis or treatment
JP2013074795A (ja) 2010-02-08 2013-04-25 Ajinomoto Co Inc 変異型rpsA遺伝子及びL−アミノ酸の製造法
US11180535B1 (en) 2016-12-07 2021-11-23 David Gordon Bermudes Saccharide binding, tumor penetration, and cytotoxic antitumor chimeric peptides from therapeutic bacteria
US11129906B1 (en) 2016-12-07 2021-09-28 David Gordon Bermudes Chimeric protein toxins for expression by therapeutic bacteria
CN112080534B (zh) * 2020-08-14 2022-03-22 廊坊梅花生物技术开发有限公司 高产l-氨基酸的工程菌及其构建方法与应用

Also Published As

Publication number Publication date
US20020119549A1 (en) 2002-08-29

Similar Documents

Publication Publication Date Title
DE60022612T2 (de) Tal gen nukleotidsequenzen
EP1111062A1 (de) Für das zwa1-Gen codierende Nukleotidsequenzen
DE10162387A1 (de) Für das rpoB-Gen kodierende Nukleotidsequenzen
DE10044681A1 (de) Neue für das lldD2-Gen kodierende Nukleotidsequenzen
EP1239040A2 (de) Mutationen im rpoB-Gen L-Lysin produzierender Corynebacterium glutamicum-Stämme und Verfahren zur Herstellung von L-Lysin
DE60132341T2 (de) Isolierung und sequenzierung vom gen ptsi aus c. glutamicum
DE10162386A1 (de) Für das rpsL-Gen kodierende Nukleotidsequenzen
DE10045497A1 (de) Neue für das ppsA-Gen kodierende Nukleotidsequenzen
DE10063314A1 (de) Neue für das ilvE-Gen kodierende Nukleotidsequenzen
DE10045487A1 (de) Neue für das ccsB-Gen kodierende Nukleotidsequenzen
DE10110760A1 (de) Neue für das otsA-Gen kodierende Nukleotidsequenzen
DE10046623A1 (de) Neue für das dps-Gen kodierende Nukleotidsequenzen
DE10045579A1 (de) Neue für das atr61-Gen kodierende Nukleotidsequenzen
DE10047403A1 (de) Neue für das ppgK-Gen kodierende Nukleotidsequenzen
DE10043331A1 (de) Neue für das sigD-Gen kodierende Nukleotidsequenzen
DE10045486A1 (de) Neue für das pstC2-Gen kodierende Nukleotidsequenzen
DE10047864A1 (de) Neue für das truB-Gen kodierende Nukleotidsequenzen
DE10047866A1 (de) Neue für das dep67-Gen kodierende Nukleotidsequenzen
DE10047404A1 (de) Neue für das msik-Gen kodierende Nukleotidsequenzen
DE60127422T2 (de) Für das citB-Gen kodierende Nukleotidsequenzen
DE10046625A1 (de) Neue für das ndkA-Gen kodierende Nukleotidsequenzen
DE60115913T2 (de) Nukleotid sequenzen kodierend für das csta gen aus corynebacterium glutamicum
DE60127972T2 (de) Nukleotidsequenzen die für das dep34-gen kodieren
DE60120724T2 (de) Rekombinante coryneformbakterie die glyceraldehyde-3-phosphate dehydrogenase -2 überexprimieren , und verfahren zur herstellung von l-lysine
DE10132947A1 (de) Für das rodA-Gen kodierte Nukleotidsequenzen

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee