DE10145765A1 - Halbleiteraufbau mit hoch dotiertem Kanalleitungsgebiet und Verfahren zur Herstellung eines Halbleiteraufbaus - Google Patents

Halbleiteraufbau mit hoch dotiertem Kanalleitungsgebiet und Verfahren zur Herstellung eines Halbleiteraufbaus

Info

Publication number
DE10145765A1
DE10145765A1 DE2001145765 DE10145765A DE10145765A1 DE 10145765 A1 DE10145765 A1 DE 10145765A1 DE 2001145765 DE2001145765 DE 2001145765 DE 10145765 A DE10145765 A DE 10145765A DE 10145765 A1 DE10145765 A1 DE 10145765A1
Authority
DE
Germany
Prior art keywords
region
channel
semiconductor
semiconductor structure
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE2001145765
Other languages
English (en)
Other versions
DE10145765B4 (de
Inventor
Rudolf Elpelt
Heinz Mitlehner
Reinhold Schoerner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
SiCED Electronics Development GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SiCED Electronics Development GmbH and Co KG filed Critical SiCED Electronics Development GmbH and Co KG
Priority to DE2001145765 priority Critical patent/DE10145765B4/de
Publication of DE10145765A1 publication Critical patent/DE10145765A1/de
Application granted granted Critical
Publication of DE10145765B4 publication Critical patent/DE10145765B4/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66416Static induction transistors [SIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/7722Field effect transistors using static field induced regions, e.g. SIT, PBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

Der Halbleiteraufbau zur Steuerung eines Stroms (I) umfasst ein erstes n-leitendes Halbleitergebiet (2), einen innerhalb des ersten Halbleitergebiets (2) verlaufenden Strompfad und ein Kanalgebiet (22). Das Kanalgebiet (22) ist Teil des ersten Halbleitergebiets (2) und hat eine Grunddotierung. Innerhalb des Kanalgebiets (22) ist der Strom (I) mittels wenigstens einer Verarmungszone (23, 24) beeinflussbar. Das Kanalgebiet (22) enthält ein zur Stromführung bestimmtes n-leitendes Kanalleitungsgebiet (225), das eine, verglichen mit der Grunddotierung, höhere Dotierung hat. Das Kanalleitungsgebiet (225) wird mittels Ionenimplantation in eine das Kanalgebiet (22) umfassende Epitaxieschicht (262) hergestellt.

Description

  • Die Erfindung betrifft einen Halbleiteraufbau zur Steuerung eines Stroms, wobei der Halbleiteraufbau mindestens ein erstes Halbleitergebiet eines ersten Leitungstyps (n oder p), einen zumindest teilweise innerhalb des ersten Halbleitergebiets verlaufenden Strompfad und ein Kanalgebiet, das Teil des ersten Halbleitergebiets ist, das eine Grunddotierung aufweist, und innerhalb dessen der Strom mittels wenigstens einer Verarmungszone beeinflussbar ist, umfasst. Ein solcher Halbleiteraufbau ist beispielsweise aus der US 6,034,385 bekannt. Außerdem betrifft die Erfindung ein Verfahren zur Herstellung eines Halbleiteraufbaus.
  • Zum Versorgen eines elektrischen Verbrauchers mit einem elektrischen Nennstrom wird der Verbraucher üblicherweise über ein Schaltgerät an ein elektrisches Versorgungsnetz geschaltet. Beim Einschaltvorgang und auch im Falle eines Kurzschlusses tritt ein Überstrom auf, der deutlich über dem Nennstrom liegt. Zum Schutz des elektrischen Verbrauchers muss das zwischen den Verbraucher und das elektrische Netz geschaltete Schaltgerät diesen Überstrom begrenzen und auch abschalten können. Weiterhin gibt es beispielsweise in der Umrichtertechnik Anwendungen, bei denen der Verbraucher im Falle einer in Sperrrichtung anliegenden Spannung auch sicher vom Versorgungsnetz getrennt werden soll. Für die beschriebenen Funktionen sind strombegrenzende Schalter in Form eines Halbleiteraufbaus bekannt.
  • So wird in der US 6,034,385 und auch in der WO 00/16403 A1 ein Halbleiteraufbau beschrieben, bei dem ein Stromfluss zwischen einer ersten und einer zweiten Elektrode gesteuert wird. Insbesondere kann der Strom ein- und ausgeschaltet oder auf einen maximalen Wert begrenzt werden. Der aktive Teil des Halbleiteraufbaus besteht aus einem ersten Halbleitergebiet eines vorgegebenen Leitungstyps, insbesondere des n-Leitungstyps. Der Leitungstyp wird bestimmt durch den Typ der Ladungsträger, mit denen das Halbleitergebiet dotiert ist. Zur Stromsteuerung ist innerhalb des ersten Halbleitergebiets mindestens ein laterales Kanalgebiet vorgesehen. Unter lateral oder auch horizontal wird hierbei eine Richtung parallel zu einer Hauptoberfläche des ersten Halbleitergebiets verstanden. Vertikal wird dagegen eine senkrecht zur Hauptoberfläche verlaufende Richtung bezeichnet. Das laterale Kanalgebiet wird durch mindestens einen p-n-Übergang, insbesondere durch die Verarmungszone (Zone mit Verarmung an Ladungsträgern und damit hohem elektrischen Widerstand; Raumladungszone) dieses p-n-Übergangs, in vertikaler Richtung begrenzt. Die vertikale Ausdehnung dieser Verarmungszone kann unter anderem durch eine Steuerspannung eingestellt werden. Der p-n- Übergang ist zwischen dem ersten Halbleitergebiet und einem vergrabenen p-leitenden Inselgebiet gebildet. Das vergrabene Inselgebiet übernimmt die Abschirmung der ersten Elektrode gegenüber dem hohen elektrischen Feld in Sperrrichtung oder im ausgeschalteten Zustand. Bei speziellen Ausführungsformen kann das Kanalgebiet auch durch eine weitere Verarmungszone in vertikaler Richtung begrenzt werden. Diese weitere Verarmungszone wird beispielsweise durch einen weiteren p-n-Übergang zwischen einem zweiten p-leitenden Halbleitergebiet und dem ersten n-leitenden Halbleitergebiet hervorgerufen. Auch das zweite p-leitende Halbleitergebiet kann mittels einer Steuerelektrode an eine Steuerspannung angeschlossen sein. Das für die Stromsteuerung maßgebliche Kanalgebiet ist innerhalb einer Epitaxieschicht angeordnet. Bei der Herstellung dieser Epitaxieschicht kann es zu Schwankungen in der Dicke und der Dotierstoffkonzentration kommen. Dies wirkt sich unmittelbar auf die Strom steuernden Eigenschaften des Kanalgebiets aus. Es ist daher möglich, dass der Halbleiteraufbau am Ende des Herstellungsprozesses aufgrund der Toleranzen der Epitaxieschicht nicht das geforderte Stromsteuerungsverhalten, beispielsweise eine bestimmte Abschnürspannung, aufweist. Dadurch sinkt die erzielbare Ausbeute.
  • Ein ähnlicher Halbleiteraufbau wird in der DE 196 29 088 A2 beschrieben. Folglich kann es auch bei diesem Halbleiteraufbau zu einer ähnlich niedrigen technologiebedingten Ausbeute bei der Herstellung kommen.
  • Weiterhin wird mit der US 5,543,637 ein Halbleiteraufbau offenbart, der ein erstes Halbleitergebiet eines ersten Leitungstyps mit einem vergrabenen Inselgebiet eines zum ersten entgegengesetzten Leitungstyps sowie zwei Elektroden und einer Steuerelektrode umfasst. Die durch die Steuerelektrode und das vergrabene Inselgebiet hervorgerufenen jeweiligen Verarmungszonen bilden wieder ein Kanalgebiet, in dem ein zwischen den beiden Elektroden fließender Strom gesteuert wird. Die Steuerelektrode ist entweder als Schottky-Kontakt oder als MOS-Kontakt ausgeführt. Als Halbleitermaterial wird 3C-, 6H oder 4H-Siliciumcarbid (SiC) verwendet. Auch hier ist das Kanalgebiet in einer Epitaxieschicht angeordnet, deren Dicke und Dotierstoffkonzentration Schwankungen unterworfen sind.
  • Weiterhin ist aus der DE 198 33 214 C1 ein insbesondere in SiC realisierter Halbleiteraufbau bekannt, bei dem zur Stromsteuerung ein von zwei p-leitenden Halbleitergebieten begrenztes n-leitendes laterales Kanalgebiet vorgesehen ist. Wiederum befindet sich das Kanalgebiet in einer Epitaxieschicht, so dass auch hier aus den vorstehend genannten Gründen eine reduzierte Ausbeute bei der Herstellung möglich ist.
  • Der Erfindung liegt nun die Aufgabe zu Grunde, einen Halbleiteraufbau der eingangs bezeichneten Art anzugeben, der bei der Herstellung unempfindlich gegenüber technologiebedingten Schwankungen ist und eine hohe Ausbeute ermöglicht. Außerdem soll ein Herstellungsverfahren für einen solchen Halbleiteraufbau angegeben werden.
  • Zur Lösung der den Halbleiteraufbau betreffenden Aufgabe wird ein Halbleiteraufbau entsprechend den Merkmalen des unabhängigen Patentanspruchs 1 angegeben.
  • Bei dem erfindungsgemäßen Halbleiteraufbau zur Steuerung eines Stroms handelt es sich um einen Halbleiteraufbau der eingangs bezeichneten Art, der dadurch gekennzeichnet ist, dass das Kanalgebiet ein zur Stromführung bestimmtes Kanalleitungsgebiet, das den ersten Leitungstyp und eine verglichen mit der Grunddotierung höhere Dotierung aufweist, umfasst.
  • Die Erfindung beruht dabei auf der Erkenntnis, dass durch eine zusätzlich in dem Kanalgebiet vorgesehene Zone mit einer verglichen mit dem restlichen Kanalgebiet höheren Dotierstoffkonzentration die Empfindlichkeit des Halbleiteraufbaus gegenüber technologiebedingten Schwankungen bei der Herstellung erheblich reduziert, wenn nicht sogar vollständig beseitigt werden kann. Die zusätzlich vorgesehene Zone, die hier als Kanalleitungsgebiet bezeichnet wird, ist mit Dotierstoffen vom gleichen Ladungsträgertyp (n oder p) wie auch das Kanalgebiet dotiert. Sie bestimmt im Wesentlichen die elektrischen Eigenschaften des Kanalgebiets. So wird der Strom im Durchlassbetrieb aufgrund der höheren Dotierung und der damit einhergehenden höheren Leitfähigkeit bevorzugt in dem Kanalleitungsgebiet geführt. Das restliche Kanalgebiet bleibt dagegen weitgehend stromfrei, so dass hier etwa vorhandene Schwankungen der Grunddotierung oder der Dicke dann keine oder nur noch eine untergeordnete Rolle spielen. Das Kanalleitungsgebiet kann beispielsweise mittels einer Ionenimplantation mit sehr hoher Genauigkeit und geringen Schwankungen in der Dotierstoffkonzentration sowie der Dicke hergestellt werden. Durch diese so gewonnene neue Unabhängigkeit gegenüber den technologiebedingten Schwankungen ergibt sich eine erhöhte Ausbeute beim Herstellungsprozess des Halbleiteraufbaus.
  • Vorteilhafte Ausgestaltungen des Halbleiteraufbaus gemäß der Erfindung ergeben sich aus den vom Anspruch 1 abhängigen Ansprüchen.
  • Bei einer günstigen Ausführungsform enthält das Kanalleitungsgebiet mindestens 80% der insgesamt in dem Kanalgebiet vorhandenen Gesamtladung des ersten Leitungstyps. Damit sind höchstens nur noch die restlichen 20% der Gesamtladung, die sich außerhalb des Kanalleitungsgebiets im Kanalgebiet befinden, den technologiebedingten Schwankungen unterworfen. Dieser positive Effekt lässt sich weiter steigern, indem sogar mindestens 90% der innerhalb des Kanalgebiets vorhandenen Gesamtladung des ersten Leitungstyps im Kanalleitungsgebiet vorgesehen sind.
  • Günstig ist ein sogenannter vertikaler Halbleiteraufbau, bei dem der Strom im Wesentlichen in vertikaler Richtung durch den Halbleiteraufbau geführt wird. Diese Ausführungsform ist in der Lage, im Sperrfall eine besonders hohe Sperrspannung zu tragen.
  • Die Stromsteuerung erfolgt mittels eines vorzugsweise lateralen Kanalgebiets. In dieser Ausführungsform kann sowohl der zu führende Strom sicher an- und abgeschaltet werden, als auch eine hohe Sperrspannung vom Halbleiteraufbau aufgenommen werden.
  • Bei einer weiteren bevorzugten Variante liegt der Halbleiteraufbau in Form eines Feldeffekttransistors, insbesondere in Form eines Sperrschicht-Feldeffekttransistors (JFET), vor. Diese Transistorart eignet sich besonders gut für die im Zusammenhang mit der vorliegenden Erfindung gewünschte Stromsteuerung.
  • In einer vorteilhaften Ausgestaltung besteht der Halbleiteraufbau teilweise oder auch komplett aus einem Halbleitermaterial, das einen Bandabstand von wenigstens 2 eV aufweist.
  • Geeignete Halbleitermaterialien sind beispielsweise Diamant, Galliumnitrit (GaN), Indiumphosphit (InP) oder vorzugsweise Siliciumcarbid (SiC). Auf Grund der extrem niedrigen intrinsische Ladungsträgerkonzentration (= Ladungsträgerkonzentration ohne Dotierung) und des sehr geringen Durchlassverlusts sind die genannten Halbleitermaterialien, insbesondere SiC, sehr vorteilhaft. Die genannten Halbleitermaterialien weisen außerdem im Vergleich zu dem "Universalhalbleiter" Silicium eine deutlich höhere Durchbruchsfestigkeit auf, so dass der Halbleiteraufbau bei einer höheren Spannung eingesetzt werden kann. Das bevorzugte Halbleitermaterial ist Siliciumcarbid, insbesondere einkristallines Siliciumcarbid vom 3C- oder 4H- oder 6H- oder 15R-Polytyp.
  • Weiterhin ist eine Variante möglich, bei der der Halbleiteraufbau ein innerhalb des ersten Halbleitergebiets zumindest teilweise vergrabenes Inselgebiet umfasst. Dieses Inselgebiet hat einen zweiten gegenüber dem ersten Leitungstyp (n oder p) entgegengesetzten Leitungstyp (p oder n). Das Inselgebiet bildet mit dem ersten Halbleitergebiet einen p-n-Übergang, dessen Verarmungszone zur Steuerung des Kanalgebiets und damit auch des Stromflusses herangezogen werden kann.
  • Bei einer anderen vorteilhaften Ausführungsform ist innerhalb des Kanalleitungsgebiets mindestens ein Kanalkompensationsgebiet angeordnet. Vorzugsweise enthält das Kanalleitungsgebiet mehrere dieser Kanalkompensationsgebiete. Das Kanalkompensationsgebiet weist insbesondere eine Dotierung mit einem zweiten gegenüber dem ersten Leitungstyp (n oder p) entgegengesetzten Leitungstyp (p oder n) auf. Die in den Kanalkompensationsgebieten vorhandene Ladung kompensiert bei anliegender Sperr-Steuerspannung die im Kanalleitungsgebiet vorhandene Ladung, so dass die Dotierstoffkonzentration des ersten Ladungsträgertyps im Kanalleitungsgebiet weiter erhöht werden kann. Dank der Kompensation führt dies nicht zu einer Verschlechterung des elektrischen Verhaltens des Halbleiteraufbaus, insbesondere nicht zu einer unerwünschten Erhöhung der zur vollständigen Abschnürung des Kanalgebiets erforderlichen Steuerspannung (= Abschnürspannung). Dies bietet insbesondere dann Vorteile, wenn eine kleine Abschnürspannung beispielsweise von unter 15 V gefordert ist. Ab einer Erhöhung der Dotierstoffkonzentration des ersten Leitungstyps im Kanalleitungsgebiet um mindestens den Faktor 2 verglichen mit der Ausführungsform ohne Kanalkompensationsgebiete wird der durch die Kompensationsgebiete bedingte Flächenverlust aufgrund der dann erheblich gesteigerten Leitfähigkeit im Kanalleitungsgebiet zumindest wettgemacht, wenn nicht sogar überkompensiert.
  • Vorteilhaft ist es, wenn das mindestens eine Kanalkompensationsgebiet oder, im Fall mehrerer Kanalkompensationsgebiete, die einzelnen Kanalkompensationsgebiete jeweils eine höhere Dotierstoffkonzentration als das Kanalleitungsgebiet hat bzw. haben. Der Flächenanteil des Kanalleitungsgebiets ist dann größer als der aller Kanalkompensationsgebiete. Dies ist günstig, da der Strom innerhalb des Kanalleitungsgebiets geführt werden soll und deshalb auch ein möglichst großer Anteil des Kanalleitungsgebiets hierfür verfügbar sein sollte. Gleichzeitig bleibt die beschriebene vorteilhafte kompensierende Wirkung im Sperrfall erhalten.
  • Bevorzugt ist eine Ausgestaltung, bei der die in dem Kanalleitungsgebiet insgesamt vorhandene Gesamtladung des ersten Leitungstyps in etwa gleich groß ist wie die in allen Kanalkompensationsgebieten vorhandene Gesamtladung des zweiten Leitungstyps. Dann wird eine sehr gute Kompensationswirkung erreicht.
  • Bei einer anderen vorteilhaften Variante ist das Kanalgebiet innerhalb einer Epitaxieschicht angeordnet. Die technologiebedingten Schwankungen der Dotierstoffkonzentration und der Dicke innerhalb der Epitaxieschicht spielen aufgrund des zusätzlich vorhandenen Kanalleitungsgebiets aus den vorstehend genannten Gründen keine Rolle. Weiterhin ist es möglich, dass das erste Halbleitergebiet eine zweite Epitaxieschicht aufweist, die insbesondere als eine im Sperrfall einen wesentlichen Teil der anliegenden Sperrspannung aufnehmende Driftzone ausgebildet ist. Die beiden Epitaxieschichten erfüllen jeweils unterschiedliche Aufgaben. Die eine dient der Stromsteuerung, die andere der Sperrspannungsaufnahme. Günstigerweise können dennoch beide Epitaxieschichten bei einer weiteren Variante eine im Wesentlichen gleiche Grunddotierung aufweisen. Dank des das Stromsteuerungsverhalten maßgeblich bestimmenden Kanalleitungsgebiets kann die Grunddotierung der Epitaxieschicht, in der das Kanalgebiet angeordnet ist, nach anderen Gesichtspunkten ausgelegt werden. Günstig ist es nämlich, wenn es an der Grenzfläche zwischen den beiden Epitaxieschichten zu keinem Dotierungssprung kommt. Der Halbleiteraufbau kann dann eine höhere Sperrspannung tragen.
  • Weiterhin gibt es eine Variante, bei der das erste Halbleitergebiet auf einem Substrat angeordnet ist, das den zum ersten Leitungstyp entgegengesetzten Leitungstyp aufweist. Dann sind an der Stromführung beide Ladungsträgertypen - Elektronen und Löcher - beteiligt. Aufgrund der bipolaren Modulation stellt sich ein sehr günstiges Stromleitungsverhalten ein. Außerdem bedingt der zusätzliche p-n-Übergang zwischen dem ersten Halbleitergebiet und dem Substrat eine Eignung für eine hohe Sperrspannung.
  • Zur Lösung der das Verfahren betreffenden Aufgabe wird ein Verfahren entsprechend den Merkmalen des Anspruchs 17 angegeben. Bei dem erfindungsgemäßen Verfahren zur Herstellung eines Halbleiteraufbaus zur Steuerung eines Stroms handelt es sich um ein Verfahren, bei dem mindestens ein Halbleitersubstrat bereitgestellt wird, eine Epitaxieschicht mit einer Grunddotierung auf das Halbleitersubstrat aufgebracht wird, wobei die Epitaxieschicht ein Kanalgebiet, innerhalb dessen der Strom beeinflussbar ist, beinhaltet, und ein zur Stromführung bestimmtes Kanalleitungsgebiet mit verglichen mit der Grunddotierung höherer Dotierung zumindest im Bereich des Kanalgebiets in die Epitaxieschicht implantiert wird.
  • Dieses Verfahren ist insbesondere deshalb vorteilhaft, da sich mittels eines Epitaxieverfahrens üblicherweise nur eine Grunddotierung mit einer relativ hohen Schwankungsbreite beispielsweise von etwa ±15%, herstellen lässt. Mittels einer Ionenimplantation, die zur Herstellung des Kanalleitungsgebiets eingesetzt wird, lässt sich die Dotierung dagegen wesentlich genauer einstellen. Das Kanalleitungsgebiet, das für die Stromsteuerung maßgeblich ist, hat dann nur eine sehr geringe Schwankung in seiner Dotierstoffkonzentration.
  • Vorteilhaft sind Ausgestaltungen des Verfahrens entsprechend den von Anspruch 17 abhängigen Ansprüchen.
  • Insbesondere vorteilhaft ist eine Verfahrensvariante, bei der eine weitere Epitaxieschicht auf das Halbleitersubstrat aufgebracht wird. Die beiden Epitaxieschichten werden vorzugsweise sukzessive und übereinander auf das Halbleitersubstrat aufgebracht. Günstig ist es außerdem, wenn die beiden Epitaxieschichten im Wesentlichen die gleiche Grunddotierung aufweisen. Die Ionenimplantation des Kanalleitungsgebiets findet nach Abschluss der epitaktischen Verfahrensschritte zum Aufbringen der beiden Epitaxieschichten statt. Dieses Verfahren ermöglicht bei hoher Ausbeute die Herstellung eines zur Stromsteuerung bestimmten Halbleiteraufbaus, der insbesondere die vorstehend genannten Vorzüge aufweist.
  • Bevorzugte, jedoch keinesfalls einschränkende Ausführungsbeispiele der Erfindung werden nunmehr anhand der Zeichnung näher erläutert. Zur Verdeutlichung ist die Zeichnung nicht maßstäblich ausgeführt, und gewisse Merkmale sind schematisiert dargestellt. Im Einzelnen zeigen:
  • Fig. 1 und Fig. 2 einen Halbleiteraufbau mit einem innerhalb eines Kanalgebiets angeordneten hoch dotierten Kanalleitungsgebiet und
  • Fig. 3 Dotierungsprofil des im Halbleiteraufbau von Fig. 1 und 2 vorgesehenen Kanalleitungsgebiets,
  • Fig. 4 einen weiteren Halbleiteraufbau mit Kanalleitungsgebiet und Kanalkompensationsgebieten,
  • Fig. 5 einen Querschnitt durch das Kanalleitungsgebiet und die Kanalkompensationsgebiete des Halbleiteraufbaus von Fig. 4 und
  • Fig. 6 bis Fig. 8 einen weiteren Halbleiteraufbau mit Kanalleitungsgebiet.
  • Einander entsprechende Teile sind in den Fig. 1 bis 8 mit denselben Bezugszeichen versehen.
  • In Fig. 1 ist ein Halbleiteraufbau 100 zur Steuerung eines Stroms I in Form eines vertikalen Sperrschicht-Feldeffekt- Transistors (JFET) dargestellt. Der in Fig. 1 gezeigte Halbleiteraufbau ist lediglich eine Halbzelle. Durch Spiegelung an dem rechten Rand der Halbzelle erhält man eine komplette Zelle. Eine Mehrzellenstruktur ergibt sich entsprechend durch mehrfache Spiegelung.
  • Der aktive Teil, in dem die Stromsteuerung im Wesentlichen stattfindet, ist in einem n-leitenden (Elektronenleitung) ersten Halbleitergebiet 2 enthalten. Innerhalb des ersten Halbleitergebiets 2 ist ein p-leitendes (Löcherleitung) vergrabenes Inselgebiet 3 angeordnet. Das erste Halbleitergebiet 2 weist eine erste Oberfläche 20, das vergrabene Inselgebiet 3 eine zweite Oberfläche 80 auf. Beide Oberflächen 20 und 80 laufen im Wesentlichen parallel zueinander. Das erste Halbleitergebiet 2 setzt sich im Ausführungsbeispiel von Fig. 1 aus einem Halbleitersubstrat 27 und zwei darauf angeordneten, epitaktisch aufgewachsenen Halbleiterschichten 261 und 262 zusammen. Die erste Oberfläche 20 gehört zur zweiten Epitaxieschicht 262 und die zweite Oberfläche 80 zur ersten Epitaxieschicht 261. Die beiden Epitaxieschichten 261 und 262 weisen im Wesentlichen eine gleiche Grunddotierung auf. Sie sind niedriger dotiert (n-) als das Halbleitersubstrat 27 (n+).
  • An der zweiten Oberfläche 80 ist ein innerhalb des Inselgebiets 3 eingebettetes n-leitendes Kontaktgebiet 5 vorgesehen. Es ist hoch dotiert (n+). Das Inselgebiet 3 erstreckt sich in allen Richtungen parallel zur ersten Oberfläche 20 weiter als das Kontaktgebiet 5.
  • Als Halbleitermaterial kommt in dem Halbleiteraufbau 100 Siliciumcarbid (SiC) zum Einsatz. Es eignet sich insbesondere bei hohen Spannungen auf Grund seiner spezifischen Materialeigenschaften besonders gut. Bevorzugte Dotierstoffe sind Bor und Aluminium für eine p-Dotierung sowie Stickstoff und Phosphor für eine n-Dotierung. Die Dotierstoffkonzentration des Kontaktgebiets 5 liegt typischerweise zwischen 1 × 1019 cm-3 und 1 × 1020 cm-3 und die der beiden Epitaxieschichten 261 und 262 typischerweise bei höchstens 5 × 1016 cm-3 . Das Zeichen "x" wird hier als Multiplikationssymbol verwendet. Die Dotierung der ersten Epitaxieschicht 261 hängt insbesondere von der im Sperrfall von dem Halbleiteraufbau 100 aufzunehmenden Sperrspannung ab. Je höher die Sperrspannung ist, desto niedriger liegt diese Dotierung. Die Epitaxieschicht 261 hat im Wesentlichen das zu sperrende elektrische Feld zu tragen. Im gezeigten Beispiel haben beide Epitaxieschichten 261 und 262 eine Grunddotierung von etwa zwischen 5 × 1015 cm-3 und 7 × 1015 cm-3. Die Sperrspannung liegt dann mindestens bei 1200 V.
  • Vorzugsweise werden das vergrabene Inselgebiet 3 und das darin eingebettete Kontaktgebiet 5 nach Aufbringen der ersten Epitaxieschicht 261 hergestellt. Dabei kann insbesondere die in der US 6,204,135 B1 beschriebene selbstjustierende Maskierungstechnik eingesetzt werden. Das Inselgebiet 3 und das Kontaktgebiet 5 werden demgemäß mittels zweier Maskierungsschritte und einer Ionenimplantation von p- bzw. n-Dotierstoffteilchen in die zweite Oberfläche 80 erzeugt. Danach wird in einem zweiten epitaktischen Wachstumsschritt die zweite Epitaxieschicht 262 aufgebracht.
  • Innerhalb der zweiten Epitaxieschicht 262 ist ein Kontaktloch 70 vorgesehen, das sich in vertikaler Richtung bis zu der zweiten Oberfläche 80 erstreckt. Das Kontaktloch 70 legt sowohl einen Teil des vergrabenen Inselgebiets 3 als auch einen Teil des Kontaktgebiets 5 frei, so dass beide Gebiete 3 und 5 mittels einer ersten Elektrode 50 aus einem elektrisch leitenden Material ohmsch kontaktiert werden können. Das Kontaktgebiet 5 und das Inselgebiet 3 sind durch die erste Elektrode 50 kurz geschlossen. Als Material für die erste Elektrode 50 kommt Polysilicium oder ein Metall, vorzugsweise Nickel, Aluminium, Tantal, Titan oder Wolfram, in Frage. Das Kontaktloch 70 wird beispielsweise mittels eines Trockenätzprozesses hergestellt. Um Schwankungen in der Ätztiefe auszugleichen, können gemäß einer nicht dargestellten Ausführungsform auch mehrere Kontaktlöcher 70, die dann jeweils einen kleineren Durchmesser aufweisen, vorgesehen sein.
  • Auf einer von der ersten Oberfläche 20 abgewandten Seite des ersten Halbleitergebiets 2 ist eine zweite Elektrode 60 vorgesehen. Die Zu- und Ableitung des durch den Halbleiteraufbau 100 fließenden Stroms I erfolgt mittels der beiden Elektroden 50 und 60. Auf Grund des im Wesentlichen vertikalen, d. h. senkrecht zur ersten Oberfläche 20 verlaufenden Strompfades wird der Halbleiteraufbau 100 auch als vertikal bezeichnet.
  • Seitlich (= lateral) neben dem Kontaktloch 70 ist eine an die erste Oberfläche 20 angrenzende erste Verarmungszone 24 angeordnet, die sich innerhalb des ersten Halbleitergebiets 2 befindet. Weiterhin ist zwischen dem ersten Halbleitergebiet 2 und dem vergrabenen Inselgebiet 3 ein p-n-Übergang vorhanden, dessen Verarmungszone hier als zweite Verarmungszone 23 bezeichnet wird. Die zweite Verarmungszone 23 umgibt das gesamte vergrabene Inselgebiet 3. Soweit sich die beiden Verarmungszonen 23 und 24 innerhalb des ersten Halbleitergebiets 2erstrecken, sind sie in Fig. 1 gestrichelt eingezeichnet. Die erste und die zweite Verarmungszone 24 bzw. 23 begrenzen in vertikaler Richtung ein laterales Kanalgebiet 22, das innerhalb des ersten Halbleitergebiets 2 liegt und Teil des Strompfads zwischen der ersten und der zweiten Elektrode 50 bzw. 60 ist. Die erste Verarmungszone 24 und das vergrabene Inselgebiet 3 sind so angeordnet, dass sich die beiden Verarmungszonen 23 und 24 in einer Projektion auf die erste Oberfläche 20 an ihren seitlichen Rändern überlappen. Das laterale Kanalgebiet 22 befindet sich gerade innerhalb dieses Überlappungsbereichs.
  • In lateraler Richtung ist das laterale Kanalgebiet 22 auf der dem Kontaktloch 70 zugewandten Seite durch einen Rand 221 begrenzt. Dieser Rand 221 wird durch eine senkrecht zur ersten oder zweiten Oberfläche 20 bzw. 80 vorgenommene Projektion des Kontaktgebiets 5 in das erste Halbleitergebiet 2 gebildet. Die als untere vertikale Begrenzung dienende zweite Verarmungszone 23 erstreckt sich nämlich ab der Stelle, an der das stark n-dotierte Kontaktgebiet 5 innerhalb des Inselgebiets 3 angeordnet ist, nicht mehr in das erste Halbleitergebiet 2. Der für eine solche Verarmungszone maßgebliche p-n- Übergang verläuft ab dieser Stelle zwischen dem n-leitenden Kontaktgebiet 5 und dem p-leitenden Inselgebiet 3. Der laterale Rand 221 wird damit durch die Lage des Kontaktgebiets 5 innerhalb des Inselgebiets 3 bestimmt. Der in Fig. 1 nicht näher bezeichnete zweite laterale Rand des lateralen Kanalgebiets 22 wird dagegen durch die laterale Abmessung des Inselgebiets 3 bestimmt. Diese Geometrieparameter lassen sich durch das in der US 6,204,135 B1 beschriebene Strukturierungsverfahren sehr genau einstellen.
  • Die erste Verarmungszone 24 und das Kontaktgebiet 5 sind in Bezug zueinander so angeordnet, dass sie sich in einer senkrecht zur ersten oder zweiten Oberfläche 20 bzw. 80 vorgenommenen Projektion in eine gemeinsame Ebene an ihren seitlichen Rändern um 1 bis 2 µm überlappen. Durch diese letztgenannte Überlappung wird sichergestellt, dass der laterale Rand 221 bis unmittelbar an das Kontaktgebiet 5 heranreicht.
  • Typischerweise beträgt die Länge (= laterale Ausdehnung) des lateralen Kanalgebiets 22 bei einem aus Siliciumcarbid hergestellten Halbleiteraufbau 100 zwischen 1 µm und 5 µm. Vorzugsweise ist das laterale Kanalgebiet 22 möglichst kurz ausgebildet. Dann ergibt sich ein sehr kompakter Gesamtaufbau mit geringem Platzbedarf. Die vertikale Ausdehnung liegt im spannungs- und stromfreien Zustand typischerweise zwischen 0,5 µm und 2 µm. Die Verarmungszonen 23 und 24 sind durch eine starke Verarmung an Ladungsträgern gekennzeichnet und weisen damit einen wesentlich höheren elektrischen Widerstand auf, als das von ihnen in vertikaler Richtung begrenzte laterale Kanalgebiet 22. Die räumliche Ausdehnung der beiden Verarmungszonen 23 und 24, insbesondere die in vertikaler Richtung, variiert in Abhängigkeit der herrschenden Strom- und Spannungsverhältnisse.
  • Das laterale Kanalgebiet 22 bestimmt damit maßgeblich das (Steuerungs-)Verhalten des gesamten Halbleiteraufbaus 100. Bei einer Ausbildung als Strombegrenzer hängt das Verhalten bei Anliegen einer Betriebsspannung in Durchlassrichtung (= Vorwärtsrichtung) von dem zwischen den beiden Elektroden 50 und 60 durch den Halbleiteraufbau 100 fließenden elektrischen Strom I ab. Mit steigender Stromstärke wächst auf Grund des Bahnwiderstands der Vorwärtsspannungsabfall zwischen den Elektroden 50 und 60. Dies führt zu einer Vergrößerung der Verarmungszonen 23 und 24 und folglich zu einer mit einer entsprechenden Widerstandserhöhung verbundenen Verminderung der stromtragenden Querschnittsfläche im lateralen Kanalgebiet 22. Bei Erreichen eines bestimmten kritischen Stromwerts (= Sättigungsstrom) berühren sich die beiden Verarmungszonen 23 und 24 und schnüren das laterale Kanalgebiet 22 vollständig ab.
  • Eine derartige Kanalabschnürung kann auch erreicht werden, indem eine Steuerspannung an den Halbleiteraufbau 100 insbesondere so angelegt wird, dass die erste Verarmungszone 24 in vertikaler Richtung vergrößert wird. Die Steuerspannung, die bei verschwindender Spannung zwischen der ersten und zweiten Elektrode 50 bzw. 60 angelegt werden muss, um eine Kanalabschnürung zu erreichen, nennt man auch Abschnürspannung.
  • Der Strompfad zwischen der ersten und der zweiten Elektrode 50 bzw. 60 umfasst in Vorwärtsrichtung das Kontaktgebiet 5 das laterale Kanalgebiet 22 ein im ersten Halbleitergebiet 2 angeordnetes vertikales Kanalgebiet 21 sowie eine sich danach anschließende Driftzone, die sich aus dem verbleibenden Teil der ersten Epitaxieschicht 261 und dem Substrat 27 zusammensetzt.
  • Bei Anlegen einer Betriebsspannung in Rückwärtsrichtung erfolgt der Stromfluss dagegen im Wesentlichen über eine Rückwärtsdiode 90, die durch das vergrabene Inselgebiet 3 und den darunter liegenden Teil des ersten Halbleitergebiets 2 gebildet ist.
  • Das für die Stromsteuerung maßgebliche laterale Kanalgebiet 22 wird in seinem Verhalten insbesondere durch die zweite Epitaxieschicht 262 bestimmt. Die Eigenschaften der zweiten Epitaxieschicht 262 beeinflussen insbesondere die Abschnürspannung, eine zur Steuerung der ersten Verarmungszone 24 angelegte Spannung, ab der es zu einem Stromfluss zwischen der Verarmungszone 24 und dem vergrabenen Inselgebiet 3 kommt (= Durchgriffspannung), den maximal zwischen den beiden Elektroden 50 und 60 fließenden Strom I (= Sättigungsstrom), den elektrischen Widerstand im Kanalgebiet 22 und auch in gewissem Umfang die maximal zulässige Sperrspannung. Die Eigenschaften der zweiten Epitaxieschicht 262 können nun aber technologiebedingte Schwankungen aufweisen. So schwankt die Dotierstoffkonzentration in der aufgewachsenen zweiten Epitaxieschicht 262. Diese Schwankungen in der Dotierung können um bis zu ±15% der Grunddotierung ausmachen. Noch höhere Abweichungen sind ebenfalls möglich. Außerdem kann die Dicke der Epitaxieschicht 262 über dem Querschnitt des Halbleiteraufbaus 100 Schwankungen unterworfen sein. Diese technologiebedingten Schwankungen wirken sich gegebenenfalls negativ auf das gewünschte Verhalten des lateralen Kanalgebiets 22 aus.
  • Um diesen Einfluss zu beheben, ist in der zweiten Epitaxieschicht 262 ein n-leitendes Kanalleitungsgebiet 225 angeordnet, das sich auch in das Kanalgebiet 22 erstreckt und das insbesondere eine höhere Dotierung als die Grunddotierung der zweiten Epitaxieschicht 262 und der übrige Teil des Kanalgebiets 22 aufweist. Dadurch hat das Kanalleitungsgebiet 225 eine deutlich höhere elektrische Leitfähigkeit als der restliche Teil des Kanalgebiets 22. Im Durchlassbetrieb wird der Strom I im Wesentlichen innerhalb des Kanalleitungsgebietes 225 geführt. Folglich bestimmt auch das Kanalleitungsgebiet 225 weitgehend das Stromsteuerungsverhalten des Halbleiteraufbaus 100.
  • Das Kanalleitungsgebiet 225 wird mittels Implantation von n-leitenden Dotierstoffteilchen in das zweite Epitaxiegebiet 262 gebildet. Damit lässt sich die Dotierung des Kanalleitungsgebietes 225 sehr exakt einstellen. Insbesondere ergeben sich im Gegensatz zu einer epitaktisch hergestellten Schicht keine vergleichbaren Schwankungen in der Dotierung und der Dicke. Im Kanalleitungsgebiet 225 befindet sich der wesentliche Anteil, d. h. insbesondere mindestens 80%, der innerhalb des Kanalgebiets 22 vorhandenen Gesamtdotierung an n-leitenden Ladungsträgern. Im gezeigten Beispiel wird die implantierte Dotierstoffkonzentration in dem Kanalleitungsgebiet 225 so gewählt, dass im gesamten Kanalgebiet 22 eine durchschnittliche Dotierstoffkonzentration von etwa 2 × 1016 cm-3 vorliegt. Dies entspricht einer gängigen Dotierstoffkonzentration, die bei einem nicht gezeigten Halbleiteraufbau ohne Kanalleitungsgebiet 225 gleichmäßig verteilt innerhalb des Kanalgebiets 22 vorhanden ist. Während bei dieser nicht gezeigten Ausführungsform jedoch die epitaxiebedingten Schwankungen der Dotierstoffkonzentration das Verhalten des Kanalgebiets 22 wesentlich beeinflussen, haben die Schwankungen der nun mit einer Grunddotierung von etwa 7 × 1015 cm-3 versehenen zweiten Epitaxieschicht 262 praktisch keinen Einfluss auf das Stromsteuerungsverhalten des Halbleiteraufbaus 100. Der Hauptteil der im Kanalgebiet 22 vorhandenen Gesamtladung befindet sich im praktisch ohne Dotierungsschwankungen hergestellten Kanalleitungsgebiet 225.
  • Ein weiterer Vorteil des Halbleiteraufbaus 100 verglichen mit der nicht gezeigten Ausführungsform ohne Kanalleitungsgebiet 225 besteht darin, dass das Kanalleitungsgebiet 225 im Sperrfall einen ansonsten möglichen Felddurchgriff in das Kanalgebiet 22 und eine damit einhergehende Verschiebung der Abschnürspannung zumindest weitgehend oder sogar vollständig verhindert.
  • Aufgrund des ionenimplantierten Kanalleitungsgebiets 225 lässt sich der Halbleiteraufbau 100 reproduzierbar mit sehr hoher Ausbeute und sehr genau definierten elektrischen Eigenschaften (z. B. Abschnürspannung, Durchgriffspannung, Kanalwiderstand, Sättigungsstrom, Sperrspannung) herstellen. Bedient man sich bei der Fertigung wie üblich eines Halbleiterwafers, um gleichzeitig viele Halbleiteraufbauten 100 herstellen zu können, so wird aufgrund der eingesetzten Ionenimplantation über den kompletten Halbleiterwafer hinweg eine sehr hohe Homogenität der Dotierungen in allen Kanalleitungsgebieten 225 erreicht.
  • Die Verarmungszone 24, die das Kanalgebiet 22 mit beeinflusst, kann auf verschiedene Weise innerhalb des ersten Halbleitergebiets 2 hervorgerufen werden. Beispielsweise aus der WO 00/16403 A1 bekannte Ausführungsformen hierfür umfassen einen auf der ersten Oberfläche 20 angeordneten Schottky- Kontakt oder MOS(Metal Oxide Semiconductor)-Kontakt.
  • Weiterhin kann auch wie bei einem in Fig. 2 gezeigten Halbleiteraufbau 101 ein zweites Halbleitergebiet 4 an der ersten Oberfläche 20 innerhalb des ersten Halbleitergebiets 2 angeordnet sein. Das Halbleitergebiet 4 hat den gegenüber dem ersten Leitungstyp des ersten Halbleitergebiets 2 entgegengesetzten Leitungstyp, also in dem dargestellten Ausführungsbeispiel den p-Leitungstyp. Es wird vorzugsweise durch Ionenimplantation erzeugt. Das zweite Halbleitergebiet 4 ist insbesondere stark p-dotiert (p+). Zwischen dem ersten Halbleitergebiet 2 und dem zweiten Halbleitergebiet 4 ist ein p-n- Übergang vorhanden, dessen Verarmungszone die in Fig. 1 gezeigte Verarmungszone 24 bildet. Aus Gründen der besseren Übersichtlichkeit sind in dem Halbleiteraufbau 101 von Fig. 2 keine Verarmungszonen eingetragen. Das zweite Halbleitergebiet 4 ist mit einer Steuerelektrode 40 ohmsch kontaktiert, so dass über eine externe Steuerspannung die Ausdehnung der Verarmungszone 24 und damit der Stromfluss im Kanalgebiet 22 und im Kanalleitungsgebiet 252 beeinflusst werden kann.
  • Der Halbleiteraufbau 101 ist eine aktiven Anordnung, da der Stromfluss innerhalb des Halbleiteraufbaus 101 durch eine externe Maßnahme (Steuerspannung) beeinflusst werden kann. Es sind jedoch beispielsweise aus der WO 00/16403 A1 auch andere hier nicht gezeigte Ausführungsformen bekannt, die zu einer passiven Stromsteuerung führen und die grundsätzlich ebenfalls mit dem vorteilhaften Kanalleitungsgebiet 225 zur Stromführung und -steuerung kombiniert werden können.
  • In Fig. 3 ist ein typisches Dotierungsprofil für ein Kanalleitungsgebiet 225 dargestellt. In dem Diagramm ist eine Dotierstoffkonzentration ND über einer auch in Fig. 2 eingetragenen Tiefe T des Kanalgebiets 22 aufgetragen. Man erkennt die Grunddotierung der zweiten Epitaxieschicht 262 und auch die zusätzliche per Ionenimplantation in das Kanalleitungsgebiet 225 eingebrachte Dotierung.
  • Durch das Kanalleitungsgebiet 225 erhält man einen zusätzlichen Freiheitsgrad bei der Auslegung des Halbleiteraufbaus 100 oder 101. Das Stromführungsverhalten wird hauptsächlich durch die Dotierung innerhalb des Kanalleitungsgebietes 225 bestimmt, wohingegen die Grunddotierung des restlichen Kanalgebietes 22 und der zweiten Epitaxieschicht 262 diesbezüglich von untergeordneter Bedeutung ist. Damit kann die Grunddotierung nach anderen Gesichtspunkten ausgewählt werden. Insbesondere ist es günstig, wenn die Grunddotierung der zweiten Epitaxieschicht 262 gleich der im Wesentlichen durch die zu tragende Sperrspannung bestimmte Dotierung der ersten Epitaxieschicht 261 ist. Dann ergibt sich kein Dotierungssprung an der Grenzfläche 80 zwischen den beiden Epitaxieschichten 261 und 262. Ein solcher Dotierungssprung könnte andernfalls im Sperrfall zu unerwünschten Feldverzerrungen im Grenzbereich der beiden Epitaxieschichten 261 und 262 führen, wodurch sich eine Einschränkung der maximal nutzbaren Sperrfeldstärke oder der maximal erreichbaren Sperrspannung ergeben könnte.
  • In Fig. 4 ist ein besonders günstiger Halbleiteraufbau 102 dargestellt, bei dem die hohe Konzentration an n-leitenden Ladungsträgern im Kanalleitungsgebiet 225 durch p-leitende Kanalkompensationsgebiete 226 zumindest teilweise kompensiert werden. Um eine möglichst gute Stromleitfähigkeit im Kanalleitungsgebiet 225 zu erreichen, ist nämlich eine möglichst hohe Ladungsträgerkonzentration wünschenswert. Andererseits führt eine zu hohe Ladungsträgerkonzentration aber zu einer Erhöhung der an der Steuerelektrode 40 anzulegenden Abschnürspannung, die erforderlich ist, um das Kanalgebiet 22 vollständig abzuschnüren. Aufgrund der in das Kanalleitungsgebiet 225 eingebetteten Kanalkompensationsgebiete 226 kommt es zu keiner unerwünschten Erhöhung der Abschnürspannung, selbst wenn eine sehr hohe Dotierstoffkonzentration innerhalb des Kanalleitungsgebiets 225 vorgesehen ist. Günstigerweise ist die Gesamtladung an p-leitenden Ladungsträgern, die sich innerhalb aller Kanalkompensationsgebiete 226 befinden, in etwa gleich groß wie die Gesamtladung aller n-leitenden Ladungsträger des Kanalleitungsgebiets 225. Um dies zu erreichen, ist die Dotierstoffkonzentration in den p-leitenden Kanalkompensationsgebieten 226 höher als in dem n-leitenden Kanalleitungsgebiet 225. Der Grund hierfür liegt in der größeren Grundfläche des Kanalleitungsgebiets 225 verglichen mit der Grundfläche aller Kanalkompensationsgebiete 226.
  • Diese Flächenverhältnisse gehen aus der in Fig. 5 gezeigten Querschnittsdarstellung des Kanalleitungsgebiet 225 und der Kanalkompensationsgebiete 226 deutlich hervor. Der Verlauf des Stroms I innerhalb des Kanalleitungsgebietes 225 ist in Fig. 5 ebenfalls eingezeichnet. Die Querschnittsfläche der Kanalkompensationsgebiete 226 kann außer der dargestellten runden Geometrie auch andere Formen, beispielsweise eine Quadrat- oder eine Streifenform, annehmen.
  • Die vorteilhafte Wirkung des Kanalgebiets 225 kann auch bei anderen grundsätzlich möglichen Ausführungsformen des Halbleiteraufbaus beispielsweise bei einem Halbleiteraufbau 103 gemäß Fig. 6 oder bei einem Halbleiteraufbau 104 gemäß Fig. 7 mit Vorteil zum Einsatz kommen. Abgesehen von dem Kanalleitungsgebiet 225 ist der Halbleiteraufbau 103 aus der WO 00/16403 A1 und der Halbleiteraufbau 104 aus der DE 198 33 214 C1 bekannt. Genau wie bei den in den vorherigen Figuren offenbarten Halbleiteraufbauten 100, 101 und 102 handelt es sich auch bei den Halbleiteraufbauten 103 und 104 jeweils um einen Sperrschicht-Feldeffekttransistor, die insbesondere in dem Halbleitermaterial SiC realisiert sind.
  • Neben den in den Fig. 1, 2, 4, 6 und 7 gezeigten Halbleiteraufbauten 100 bis 104 gibt es auch Ausführungsformen, bei denen anstelle des n-leitenden Substrats 27 ein p-leitendes Substrat 28 verwendet wird. In Fig. 8 ist beispielhaft ein solcher Halbleiteraufbau 105 gezeigt. Es handelt sich um einen vertikalen JFET mit einem rückseitigen bipolaren Emitter (= BiFET). Das erste Halbleitergebiet 2 setzt sich dann nur aus den beiden n-leitenden Epitaxieschichten 261 und 262zusammen und bildet mit dem p-leitenden Substrat 28 einen p-n- Übergang. Dieser zusätzliche p-n-Übergang ist insbesondere bei einem Einsatz bei einer hohen Spannung, die beispielsweise mindestens in der Größenordnung von einigen kV liegt, günstig.
  • Günstig ist weiterhin, dass im Durchlassbetrieb über den Kontakt 60 Löcher und über den Kontakt 50 Elektronen in den Halbleiteraufbau 105 injiziert werden. Dadurch kommt es zu einer starken Erhöhung der Ladungsträgerkonzentration. Diese bipolare Modulation der Ladungsträgerkonzentration führt zu einem besonders guten Stromleitungsverhalten.
  • Um zu verhindern, dass das p-leitende Inselgebiet 3 die von der Elektrode 60 aus injizierten Löcher direkt absaugt und sich infolge dessen die Konzentration der für den Stromtransport insbesondere unterhalb des Kanalleitungsgebiets 225 zur Verfügung stehenden Ladungsträger verringert, ist vorzugsweise ein stark n-leitendes Abschirmgebiet 31 zwischen dem ersten Halbleitergebiet 2 und dem Inselgebiet 3 vorgesehen. Das Abschirmgebiet 31 stellt eine wirksame Barriere gegen einen direkten Abfluss der injizierten Löcher in das Inselgebiet 3 dar. Dadurch bleibt unterhalb des Kanalleitungsgebiets 225 eine günstige hohe bipolare Ladungsträgerkonzentration erhalten.
  • Die Dotierstoffkonzentration des Abschirmgebiets 31 liegt typischerweise ein bis zwei Größenordnungen über der der ersten Epitaxieschicht 261. Im gezeigten Beispiel beträgt sie etwa 1017 cm-3 . Das Abschirmgebiet 31 umgibt das Inselgebiet 3 insbesondere an den dem Substrat 28 und dem vertikalen Kanalgebiet 21 zugewandten Seiten. Diese vollständige Abschirmung ist jedoch nicht unbedingt erforderlich. Das Abschirmgebiet 31 kann auch nur bereichsweise unterhalb des Inselgebiets 3 vorgesehen sein.
  • Einen ähnlich positiven Abschirmeffekt wie das Abschirmgebiet 31 hat auch das Kanalleitungsgebiet 225. Es hindert die Löcher daran, in das p-leitende zweite Halbleitergebiet 4 abzufließen. Neben der verbesserten Modulation der Ladungsträgerkonzentration wird dadurch der Leckstrom über die Steuerelektrode 40 reduziert.
  • Die bei allen gezeigten Halbleiteraufbauten 100 bis 105 in den jeweiligen Gebieten vorgesehenen Leitungstypen können bei alternativen Ausführungsformen auch den jeweils entgegengesetzten Leitungstyp annehmen.
  • Bei jeder Ausführungsform wirkt sich das Kanalleitungsgebiet 225 günstig auf das Stromsteuerungsverhalten aus und führt insbesondere zu einem Herstellungsprozess, der weitgehend unabhängig von technologiebedingten Schwankungen ist. Damit lässt sich jeweils eine sehr hohe Ausbeute bei der Herstellung erzielen.

Claims (18)

1. Halbleiteraufbau zur Steuerung eines Stroms (I) umfassend mindestens:
a) ein erstes Halbleitergebiet (2) eines ersten Leitungstyps,
b) einen zumindest teilweise innerhalb des ersten Halbleitergebiets (2) verlaufenden Strompfad und
c) ein Kanalgebiet (22),
1. das Teil des ersten Halbleitergebiets (2) ist,
2. das eine Grunddotierung aufweist, und
3. innerhalb dessen der Strom (I) mittels wenigstens einer Verarmungszone (23, 24) beeinflussbar ist,
dadurch gekennzeichnet, dass
1. das Kanalgebiet (22) ein zur Stromführung bestimmtes Kanalleitungsgebiet (225), das den ersten Leitungstyp und eine verglichen mit der Grunddotierung höhere Dotierung aufweist, umfasst.
2. Halbleiteraufbau nach Anspruch 1, bei dem der Strompfad im wesentlichen in vertikaler Richtung verläuft.
3. Halbleiteraufbau nach Anspruch 1 oder 2, bei dem das Kanalgebiet (22) als laterales Kanalgebiet ausgebildet ist.
4. Halbleiteraufbau nach einem der vorhergehenden Ansprüche, der als Feldeffekttransistor, insbesondere als Sperrschicht- Feldeffekttransistor ausgebildet ist.
5. Halbleiteraufbau nach einem der vorhergehenden Ansprüche, bei dem Siliciumcarbid als Halbleitermaterial vorgesehen ist.
6. Halbleiteraufbau nach einem der vorhergehenden Ansprüche, bei dem ein innerhalb des ersten Halbleitergebiets (2) zumindest teilweise vergrabenes Inselgebiet (3) eines zweiten gegenüber dem ersten Leitungstyp entgegengesetzten Leitungstyps angeordnet ist.
7. Halbleiteraufbau nach einem der vorhergehenden Ansprüche, bei dem sich die innerhalb des Kanalgebiets (22) vorhandene Gesamtentladung des ersten Leitungstyps zu mindestens 80%, insbesondere zu mindestens 90%, innerhalb des Kanalleitungsgebiets (225) befindet.
8. Halbleiteraufbau nach einem der vorhergehenden Ansprüche, bei dem innerhalb des Kanalleitungsgebiets (225) mindestens ein Kanalkompensationsgebiet (226) angeordnet ist.
9. Halbleiteraufbau nach Anspruch 8, bei dem das mindestens eine Kanalkompensationsgebiet (226) einen zweiten gegenüber dem ersten Leitungstyp entgegengesetzten Leitungstyp hat.
10. Halbleiteraufbau nach Anspruch 8 oder 9, bei dem das mindestens eine Kanalkompensationsgebiet (226) eine höhere Dotierstoffkonzentration hat als das Kanalleitungsgebiet (225).
11. Halbleiteraufbau nach einem der Ansprüche 8 bis 10, bei dem die in das Kanalleitungsgebiet (225) eingebrachte Gesamtladung des ersten Leitungstyps ungefähr gleich groß ist wie die in das eine Kanalkompensationsgebiet (226) oder im Fall mehrerer Kanalkompensationsgebiete (226) in alle Kanalkompensationsgebiete (226) eingebrachte Gesamtladung des zweiten Leitungstyps.
12. Halbleiteraufbau nach einem der vorhergehenden Ansprüche, bei dem das Kanalgebiet (22) in einer Epitaxieschicht (262) angeordnet ist.
13. Halbleiteraufbau nach Anspruch 12, bei dem die Dotierung der Epitaxieschicht (262) gleich der Grunddotierung ist.
14. Halbleiteraufbau nach einem der vorhergehenden Ansprüche, bei dem das erste Halbleitergebiet (2) zwei Epitaxieschichten (261, 262) mit im wesentlichen gleicher Dotierung umfasst.
15. Halbleiteraufbau nach einem der vorhergehenden Ansprüche, bei dem das erste Halbleitergebiet (2) auf einem Substrat (28) eines zweiten gegenüber dem ersten Leitungstyp entgegengesetzten Leitungstyps angeordnet ist und der Strompfad auch durch das Substrat (28) verläuft.
16. Halbleiteraufbau nach Anspruch 15, bei dem ein innerhalb des ersten Halbleitergebiets (2) zumindest teilweise vergrabenes Inselgebiet (3) des zweiten Leitungstyps angeordnet ist und zumindest auf einer dem Substrat (28) zugewandten Seite des Inselgebiets (3) ein Abschirmgebiet (31) des ersten Leitungstyps zwischen dem Inselgebiet (3) und dem ersten Halbleitergebiet (2) angeordnet ist.
17. Verfahren zur Herstellung eines Halbleiteraufbaus zur Steuerung eines Stroms (I), bei dem mindestens:
a) ein Halbleitersubstrat (27) bereitgestellt wird,
b) eine Epitaxieschicht (262) mit einer Grunddotierung auf das Halbleitersubstrat (27) aufgebracht wird, wobei die Epitaxieschicht (262) ein Kanalgebiet (22), innerhalb dessen der Strom (I) beeinflussbar ist, beinhaltet, und
c) ein zur Stromführung bestimmtes Kanalleitungsgebiet (225) mit verglichen mit der Grunddotierung höherer Dotierung zumindest im Bereich des Kanalgebiets (22) in die Epitaxieschicht (262) implantiert wird.
18. Verfahren nach Anspruch 17, bei dem eine weitere im Wesentlichen die Grunddotierung aufweisende Epitaxieschicht (261) auf das Halbleitersubstrat (27) aufgebracht wird, wobei die weitere Epitaxieschicht (261) zwischen dem Halbleitersubstrat (27) und der Epitaxieschicht (262), die das Kanalleitungsgebiet (225) beinhaltet, angeordnet ist und die beiden Epitaxieschichten (261, 262) sukzessive und übereinander auf das Halbleitersubstrat (27) aufgebracht werden.
DE2001145765 2001-09-17 2001-09-17 Halbleiteraufbau mit hoch dotiertem Kanalleitungsgebiet und Verfahren zur Herstellung eines Halbleiteraufbaus Expired - Fee Related DE10145765B4 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE2001145765 DE10145765B4 (de) 2001-09-17 2001-09-17 Halbleiteraufbau mit hoch dotiertem Kanalleitungsgebiet und Verfahren zur Herstellung eines Halbleiteraufbaus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2001145765 DE10145765B4 (de) 2001-09-17 2001-09-17 Halbleiteraufbau mit hoch dotiertem Kanalleitungsgebiet und Verfahren zur Herstellung eines Halbleiteraufbaus

Publications (2)

Publication Number Publication Date
DE10145765A1 true DE10145765A1 (de) 2003-04-10
DE10145765B4 DE10145765B4 (de) 2004-09-02

Family

ID=7699301

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2001145765 Expired - Fee Related DE10145765B4 (de) 2001-09-17 2001-09-17 Halbleiteraufbau mit hoch dotiertem Kanalleitungsgebiet und Verfahren zur Herstellung eines Halbleiteraufbaus

Country Status (1)

Country Link
DE (1) DE10145765B4 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10350160A1 (de) * 2003-10-28 2005-06-09 Infineon Technologies Ag Sperrschicht-Feldeffekttransistor mit hoher Druckbruchspannung und Verfahren zur Herstellung eines Sperrschicht-Feldeffektransistors
CN102339862A (zh) * 2010-07-14 2012-02-01 英飞凌科技奥地利有限公司 包括沟道停止区的半导体器件
US8994078B2 (en) 2012-06-29 2015-03-31 Infineon Technologies Austria Ag Semiconductor device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5543637A (en) * 1994-11-14 1996-08-06 North Carolina State University Silicon carbide semiconductor devices having buried silicon carbide conduction barrier layers therein
JP3158973B2 (ja) * 1995-07-20 2001-04-23 富士電機株式会社 炭化けい素縦型fet
DE19548443A1 (de) * 1995-12-22 1997-06-26 Siemens Ag Halbleiteranordnung zur Strombegrenzung
US5923051A (en) * 1996-04-24 1999-07-13 Abb Research Ltd. Field controlled semiconductor device of SiC and a method for production thereof
US6150671A (en) * 1996-04-24 2000-11-21 Abb Research Ltd. Semiconductor device having high channel mobility and a high breakdown voltage for high power applications
DE19726678A1 (de) * 1997-06-24 1999-01-07 Siemens Ag Passiver Halbleiterstrombegrenzer
DE19832329A1 (de) * 1997-07-31 1999-02-04 Siemens Ag Verfahren zur Strukturierung von Halbleitern mit hoher Präzision, guter Homogenität und Reproduzierbarkeit
DE19833214C1 (de) * 1998-07-23 1999-08-12 Siemens Ag J-FET-Halbleiteranordnung
DE19842488A1 (de) * 1998-09-16 2000-03-30 Siemens Ag Halbleitervorrichtung und Halbleiterstruktur mit Kontaktierung

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10350160A1 (de) * 2003-10-28 2005-06-09 Infineon Technologies Ag Sperrschicht-Feldeffekttransistor mit hoher Druckbruchspannung und Verfahren zur Herstellung eines Sperrschicht-Feldeffektransistors
DE10350160B4 (de) * 2003-10-28 2012-12-06 Infineon Technologies Ag Verfahren zur Herstellung eines Sperrschicht-Feldeffekttransistors mit hoher Durchbruchspannung
CN102339862A (zh) * 2010-07-14 2012-02-01 英飞凌科技奥地利有限公司 包括沟道停止区的半导体器件
CN102339862B (zh) * 2010-07-14 2014-09-24 英飞凌科技奥地利有限公司 包括沟道停止区的半导体器件
US8994078B2 (en) 2012-06-29 2015-03-31 Infineon Technologies Austria Ag Semiconductor device
US10056365B2 (en) 2012-06-29 2018-08-21 Infineon Technologies Austria Ag Semiconductor device

Also Published As

Publication number Publication date
DE10145765B4 (de) 2004-09-02

Similar Documents

Publication Publication Date Title
EP1604404B1 (de) Halbleiteraufbau mit hoch dotiertem kanalleitungsgebiet und verfahren zur herstellung eines halbleiteraufbaus
DE10036208B4 (de) Halbleiteraufbau mit vergrabenem Inselgebiet und Konaktgebiet
EP0868750B1 (de) Halbleiteranordnungen zur strombegrenzung
DE102009047808B4 (de) Bipolares Halbleiterbauelement und Verfahren zur Herstellung einer Halbleiterdiode
DE4001390C2 (de) Halbleitereinrichtung
DE102018103973A1 (de) Siliziumcarbid-halbleiterbauelement
DE102011080258A1 (de) Super-Junction-Schottky-Oxid-PiN-Diode
DE112011100533T5 (de) Halbleitervorrichtung
DE102012201911A1 (de) Super-Junction-Schottky-Oxid-PiN-Diode mit dünnen p-Schichten unter dem Schottky-Kontakt
DE19859502C2 (de) Sperrschicht-Feldeffekttransistor mit höher dotiertem Verbindungsgebiet
EP0992069A1 (de) Halbleiter-strombegrenzer
DE10338259B4 (de) Halbleitereinrichtung
DE10213534B4 (de) Halbleiteraufbau mit Schaltelement und Randelement
DE102005046706B4 (de) JBS-SiC-Halbleiterbauelement
WO2000016403A1 (de) Halbleitervorrichtung und halbleiterstruktur mit kontaktierung
DE10145765B4 (de) Halbleiteraufbau mit hoch dotiertem Kanalleitungsgebiet und Verfahren zur Herstellung eines Halbleiteraufbaus
DE10049354B4 (de) Halbleiterbauelement
DE10161139B4 (de) Halbleiteraufbau mit Schottky-Diode für Rückwärtsbetrieb
DE10147696C2 (de) Halbleiteraufbau mit zwei Kathodenelektroden und Schalteinrichtung mit dem Halbleiteraufbau
CH648693A5 (de) Halbleiteranordnung mit mindestens einem feldeffekttransistor.
DE10350160B4 (de) Verfahren zur Herstellung eines Sperrschicht-Feldeffekttransistors mit hoher Durchbruchspannung
DE102018103836A1 (de) Siliziumcarbid-Halbleiterbauelement und Verfahren zur Herstellung eines Siliziumcarbid-Halbleiterbauelements
DE3632642A1 (de) Halbleiter-leistungs-bauelement
DE2909795A1 (de) Halbleiter-schaltvorrichtung
DE4002653C2 (de)

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8364 No opposition during term of opposition
R081 Change of applicant/patentee

Owner name: INFINEON TECHNOLOGIES AG, DE

Free format text: FORMER OWNER: SICED ELECTRONICS DEVELOPMENT GMBH & CO. KG, 91058 ERLANGEN, DE

Effective date: 20110419

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee