DE10141958A1 - Röntgen-Diffraktometer - Google Patents

Röntgen-Diffraktometer

Info

Publication number
DE10141958A1
DE10141958A1 DE10141958A DE10141958A DE10141958A1 DE 10141958 A1 DE10141958 A1 DE 10141958A1 DE 10141958 A DE10141958 A DE 10141958A DE 10141958 A DE10141958 A DE 10141958A DE 10141958 A1 DE10141958 A1 DE 10141958A1
Authority
DE
Germany
Prior art keywords
ray
sample
beam paths
ray diffractometer
diffractometer according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE10141958A
Other languages
English (en)
Other versions
DE10141958B4 (de
Inventor
Detlef Bahr
Norbert Kuhnmuench
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bruker AXS GmbH
Original Assignee
Bruker AXS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bruker AXS GmbH filed Critical Bruker AXS GmbH
Priority to DE10141958A priority Critical patent/DE10141958B4/de
Priority to US10/202,905 priority patent/US6665372B2/en
Priority to EP02017884A priority patent/EP1288652B1/de
Publication of DE10141958A1 publication Critical patent/DE10141958A1/de
Application granted granted Critical
Publication of DE10141958B4 publication Critical patent/DE10141958B4/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials

Abstract

Ein Röntgen-Diffraktometer mit einer Röntgen-Quelle (10), von der Röntgen-Strahlung auf eine zu untersuchende Probe (11) geführt wird, mit einem Röntgen-Detektor (12) zum Empfang von an der Probe (11) gebeugter oder gestreuter oder von der Probe (11) reflektierter Röntgen-Strahlung, sowie mit einem Goniometer zum sequentiellen Einstellen aufeinander folgender relativer Winkelpositionen zwischen Röntgen-Quelle (10), Probe (11) und Röntgen-Detektor (12) für die Erfassung von Röntgen-Beugungslinien, Röntgen-Streusignalen oder Röntgen-Reflektogrammen der zu untersuchenden Probe (11), wobei die Röntgen-Strahlung zumindest abschnittsweise auf unterschiedlichen Strahlpfaden geführt werden kann, ist dadurch gekennzeichnet, dass die Röntgen-Strahlung von einer Position 1 zu einer Position 2 entlang von n >= 2 unterschiedlichen, umschaltbaren Strahlpfaden geführt werden kann, wobei die unterschiedlichen Strahlpfade zwischen der Position 1 und der Position 2 relativ zueinander fest justiert sind und eine Einheit (13) bilden, wobei die Probe (11) entweder die Position 1 oder die Position 2 einnimmt und wobei die Umschaltung zwischen den unterschiedlichen Strahlpfaden durch relative Verdrehung der Einheit (13) gegen die Probe (11) um die Probenposition bewirkt werden kann. Aufgrund ihrer gegenüber bekannten Anordnungen erheblich kompakteren Aufbauweise benötigt die erfindungsgemäße Anordnung bei voller relativer Beweglichkeit der Teile einen wesentlich geringeren Platz, wobei die ...

Description

  • Die Erfindung betrifft ein Röntgen-Diffraktometer mit einer Röntgen- Quelle, von der Röntgen-Strahlung auf eine zu untersuchende Probe geführt wird, mit einem Röntgen-Detektor zum Empfang von an der Probe gebeugter oder gestreuter oder von der Probe reflektierter Röntgen-Strahlung, sowie mit einem Goniometer zum sequentiellen Einstellen aufeinander folgender relativer Winkelpositionen zwischen Röntgen-Quelle, Probe und Röntgen-Detektor für die Erfassung von Röntgen-Beugungslinien, Röntgen-Streusignalen oder Röntgen- Reflektogrammen der zu untersuchenden Probe, wobei die Röntgen- Strahlung zumindest abschnittsweise auf unterschiedlichen Strahlpfaden geführt werden kann.
  • Eine solche Röntgen-Diffraktometer-Anordnung ist beispielsweise bekannt aus der Firmendruckschrift "X'Pert-MRD" der Firma Philips Analytical X-Ray B. V., Almelo, The Netherlands.
  • Die prinzipielle Funktionsweise eines Röntgen-Diffraktometers ist ausführlich in dem Firmenprospekt "DIFFRACTION SOLUTIONS D8 ADVANCE" der Firma Bruker AXS Analytical X-Ray Systems GmbH aus dem Jahre 1997 beschrieben. Derartige Diffraktometer können breit gefächerte analytische Aufgabenstellungen auf den unterschiedlichsten Gebieten bewältigen, wie zum Beispiel in der Polymerchemie, der Glasherstellung, der Beschichtungstechnik, der Keramikherstellung, der Pharmazie, Mineralogie, der Geologie, der Halbleiter- und Supraleitertechnik, der Kraftwerkstechnik, aber auch in der Archäologie, der Umweltanalytik oder beispielsweise der Kriminalistik. Sowohl Routineeinsätze als auch anspruchsvolle Sonderanwendungen in der Pulverdiffraktometrie, wie beispielsweise qualitative und quantitative Phasenanalyse, Kristallitgrößenbestimmung und kristallographische Untersuchungen sind mit hoher Genauigkeit mit einem derartigen Röntgen-Diffraktometer möglich. Im Gegensatz zu einem Mehrkanal- Spektrometer enthält ein derartiges Röntgen-Diffraktometer ein Goniometer zum Einstellen aufeinander folgender relativer Winkelpositionen zwischen Quelle, Probe und Detektor. Damit können beispielsweise "Step Scans" oder kontinuierliche Scans durchgeführt werden. Sämtliche auf dem Goniometer befestigte Komponenten können schnell, einfach und reproduzierbar ausgetauscht werden.
  • In dem oben zitierten Firmenprospekt "X'Pert-MRD" der Firma Phillips ist ein Röntgen-Diffraktometer abgebildet, bei dem die Röntgenstrahlung auf unterschiedlichen Strahlpfaden geführt werden kann. Dadurch wird allerdings auch ein deutlich größerer Aufwand an einzusetzenden Komponenten, nämlich mehrere Detektoren und anschließende Messelektroniken, erforderlich. Die komplexe Anordnung hat überdies aufgrund ihres geometrischen Aufbaus einen erheblichen Platzbedarf. Dies hat eine Einschränkung des jeweils analytisch erfassbaren Winkelbereiches zur Folge.
  • Aufgabe der Erfindung ist es demgegenüber, eine Diffraktometer- Anordnung mit den eingangs genannten Merkmalen vorzustellen, die topologisch möglichst einfach aufgebaut ist, und aufgrund einer erheblich kompakteren Aufbauweise bei voller relativer Beweglichkeit der Teile einen wesentlich geringeren Platzbedarf aufweist, wobei die Anordnung auch die Einsparung von teuren Komponenten, insbesondere Detektoren und zugehöriger Messelektronik oder ggf. mehrerer Röntgen-Röhren einschließlich Hochspannungs- und Kühlwasserzuführungen ermöglichen soll.
  • Erfindungsgemäß wird diese Aufgabe auf ebenso überraschend einfache wie wirkungsvolle Art und Weise dadurch gelöst, dass die Röntgen-Strahlung von einer Position 1 zu einer Position 2 entlang von n ≥ 2 unterschiedlichen, umschaltbaren Strahlpfaden geführt werden kann, wobei die unterschiedlichen Strahlpfade zwischen der Position 1 und der Position 2 relativ zueinander fest justiert sind und eine Einheit bilden, wobei die Probe entweder die Position 1 oder die Position 2 einnimmt und wobei die Umschaltung zwischen den unterschiedlichen Strahlpfaden durch relative Verdrehung der Einheit gegen die Probe um die Probenposition bewirkt werden kann.
  • Damit gelingt es mit technisch leicht zu realisierenden Mitteln, ein gattungsgemäßes Röntgen-Diffraktometer so aufzubauen, dass der nutzbare Winkelbereich bei allen durch die unterschiedlichen Strahlpfade ermöglichten Applikationen gegenüber der bekannten Anordnung erheblich erweitert wird. Dabei können die Strahlpfade so geführt werden, dass primärseitig zur Probe lediglich eine einzige Röntgen-Quelle, sekundärseitig zur Probe nur ein einziger Detektor erforderlich ist.
  • Bei einer besonders vorteilhaften Ausführungsform des erfindungsgemäßen Röntgen-Diffraktometers ist die Probe auf der Position 1 und der Detektor auf der Position 2 angeordnet. Das von der Probe ausgehende Röntgen-Licht kann hierbei auf unterschiedlichen Strahlpfaden mit unterschiedlichen physikalischen Eigenschaften durch einen einzigen Detektor und eine einzige Nachweiselektronik aufgenommen werden, so dass ganz erhebliche Einsparungen bei den teuren Komponenten möglich sind.
  • Bei einer alternativen Ausführungsform der Erfindung ist die Quelle auf der Position 1 und die Probe auf der Position 2 angeordnet. Die Probe kann bei dieser Ausführungsform mit unterschiedlich aufbereiteter bzw. selektierter Röntgen-Strahlung beleuchtet werden, um unterschiedliche Arten von Messungen durchführen zu können, ohne dass zwischen den Messungen Umbauten und Neujustagen erforderlich werden.
  • Ganz besonders bevorzugt ist eine Ausführungsform der erfindungsgemäßen Anordnung, bei der mindestens einer der Strahlpfade ein dispersives oder reflektierendes Röntgen-optisches Element enthält, wie z. B. einen Kristall, einen Channelcut-Kristall, einen Mosaik-Kristall, eine Multilayer-Struktur, einen Röntgen-Spiegel, ein Beugungsgitter, oder ein anderes dispersives oder reflektierendes Röntgen-optisches Element. Mit Hilfe dieser Elemente lässt sich aus einem einfallenden, polychromatischen Röntgenstrahl im wesentlichen monochromatisches Röntgenlicht erzeugen, was sowohl eine Behandlung des auf die Probe auftreffenden Röntgenlichtes als auch eine Selektion bzw. Verarbeitung der von der Probe ausgehenden Röntgen-Strahlung ermöglicht.
  • Besonders bevorzugt ist auch eine Ausführungsform des erfindungsgemäßen Röntgen-Diffraktometers, bei der mindestens einer der Strahlpfade weder ein dispersives noch ein reflektierendes Röntgen-optisches Element enthält. In der Regel wird dieser besondere Strahlpfad den direkten Durchgang der Röntgenstrahlung zwischen Position 1 und Position 2 ermöglichen, um eine besonders hohe Strahlungsintensität durch die direkte Strahlführung bereitzustellen.
  • Bei einer vorteilhaften Weiterbildung dieser Ausführungsform enthält dieser direkte Strahlpfad eine Röntgenlinse, die entweder als Sammellinse, als Zerstreuungslinse oder als parallelisierende Halblinse ausgestaltet sein kann.
  • Besonders vorteilhaft ist auch eine Ausführungsform der Erfindung, bei der mindestens einer der Strahlpfade eine einstellbare und/oder austauschbare Blende enthält. Damit sind nahezu beliebige Intensitätsanpassungen der auf dem jeweiligen Strahlpfad durchgehenden Röntgen-Strahlung sowie das Ausblenden von unerwünschtem Streulicht möglich.
  • Vorteilhaft ist auch eine Ausführungsform, bei der mindestens einer der Strahlpfade eine Verschlussblende (= Shutter) enthält. Auch hierdurch lässt sich Störlicht vermeiden. Zudem können gezielt bestimmte Strahlpfade von der Messung ausgeblendet werden.
  • Ganz besonders einfach ist eine Ausführungsform des erfindungsgemäßen Röntgen-Diffraktometers, bei der lediglich n = 2 unterschiedliche, umschaltbare Strahlpfade vorgesehen sind.
  • Bei etwas komplexeren Ausführungsformen werden n > 2 unterschiedliche, umschaltbare Strahlpfade vorgesehen. Diese können bei einfacheren Varianten koplanar verlaufen, so dass die Strahlführung im wesentlichen in einer Ebene konzentriert ist.
  • Bei komplexeren Varianten liegen nicht alle Strahlpfade in einer gemeinsamen Ebene, sondern es findet eine Ablenkung in räumliche Winkelbereiche statt, wobei diese Varianten allerdings hauptsächlich für Punktfokusapplikationen sinnvoll sind.
  • Eine besonders vorteilhafte Weiterbildung dieser Ausführungsformen des erfindungsgemäßen Röntgen-Diffraktometers zeichnet sich dadurch aus, dass mehrere Strahlpfade gegenüber demjenigen Strahlpfad, der die Position 1 direkt mit der Position 2 verbindet, abgeknickt verlaufen und aus jeweils zwei geraden Teilpfaden zusammengesetzt sind, wobei im Knickpunkt ein dispersives oder reflektierendes Röntgen-optisches Element angeordnet ist, und dass die Abknickpunkte zumindest einiger dieser Teilpfade auf einem gemeinsamen Kreis um den direkten Strahlpfad zwischen Position 1 und Position 2 angeordnet sind.
  • Die Hauptapplikation dieser Weiterbildung der Erfindung dürfte bei Fällen zu suchen sein, bei denen mit einem einzigen bestimmten Kristallmaterial unter Verwendung der gleichen Netzebenenschar jeweils die gleiche Wellenlänge selektiert werden soll. Es kann dann auf den verschiedenen Strahlpfaden die Auflösung, die Divergenz, die Intensität und die Monochromasie je nach Bedarf und spezieller Anforderung unterschiedlich eingestellt werden, ohne dass unterschiedliche Kristallmaterialien verwendet werden müssten.
  • Bei speziellen Ausführungsformen der Erfindung können die Einheiten mit den relativ zueinander fest justierten unterschiedlichen Strahlpfaden sowohl quellenseitig als auch detektorseitig vorgesehen sein. Diese Ausführungsformen zeichnen sich dadurch aus, dass die Quelle auf der Position 1 und die Probe auf der Position 2, die einer Position 1' entspricht, angeordnet sind, und dass der Detektor auf einer der Position 1' zugeordneten Position 2' angeordnet ist. Auf diese Weise lassen sich die Vorteile der Erfindung gewissermaßen "beiderseits der Probe" ausnutzen.
  • Im Gegensatz zu den erfindungsgemäßen Röntgen-Diffraktometern enthalten Mehrkanal-Röntgen-Spektrometer keine Goniometer mit bewegten Strahlenpfaden. In der WO 97/05474 A1 ist beispielsweise ein Mehrkanal-Röntgen-Spektrometer beschrieben, in dem zwar eine Umschaltung der Strahlengänge vorgesehen ist, die aber durch Rotation einer Kristalltrommel bewirkt wird, wobei der einzelne Strahlenpfad als solcher nicht bewegt werden kann, sondern starr immer an dem gleichen Ort innerhalb der Apparatur vorgesehen ist.
  • Ein Mehrkanal-Röntgen-Spektrometer, bei dem zwei Strahlengänge vorgesehen sind, für die lediglich ein Detektor und eine einzige Messelektronik erforderlich sind, ist in der DE 198 20 861 A1 beschrieben. Auch hier gibt es aber wiederum keinerlei Bewegung der Strahlengänge, die als solche starr in der Apparatur angeordnet sind, insbesondere ist hierzu kein Goniometer vorgesehen.
  • Weitere Vorteile ergeben sich aus den Zeichnungen und der Beschreibung. Ebenso können die vorstehend genannten und die noch weiter aufgeführten Merkmale erfindungsgemäß einzeln für sich und zu mehreren in beliebigen Kombinationen Verwendung finden. Die gezeigten und beschriebenen Ausführungsformen sind nicht als abschließende Aufzählung zu verstehen, sondern haben vielmehr beispielhaften Charakter für die Schilderung der Erfindung.
  • Die Erfindung ist in Zeichnungen dargestellt und wird anhand von Ausführungsbeispielen näher erläutert. Es zeigen:
  • Fig. 1 eine schematische Darstellung einer relativ zur Probenposition verschwenkbaren Einheit mit zwei unterschiedlichen Strahlpfaden und einem Detektor als Teil des erfindungsgemäßen Röntgen-Diffraktometers;
  • Fig. 2 wie Fig. 1, wobei die verschwenkbare Einheit mit anderen röntgenoptischen Elementen bestückt ist;
  • Fig. 3 eine Einheit mit zwei Strahlpfaden und der zusammen mit der Einheit relativ zur Probe verschwenkbaren Röntgen-Quelle; und
  • Fig. 4 einen Teil eines Diffraktometers nach dem Stand der Technik mit zwei Strahlenpfaden, an deren Ende jeweils ein Detektor angeordnet ist.
  • Der in Fig. 1 schematisch dargestellte Nachweisteil eines erfindungsgemäßen Röntgen-Diffraktometers umfasst eine Probe 11 auf der Position 1, einen Detektor 12 an der Position 2 sowie zwei relativ zueinander starr justierte Strahlpfade, von denen der eine geradlinig von der Position 1, an der die Probe 11 angeordnet ist, durch ein als Kästchen dargestelltes Blendensystem 18 mit einstellbaren und/oder austauschbaren Blenden zur Position 2 am Eingang des Röntgen-Detektors 12 verläuft, während der andere Strahlpfad demgegenüber zunächst unter einem Winkel α von der Probenposition in einem ersten geraden Teilstück zu einem dispersiven oder reflektierenden Röntgen-optischen Element 15 verläuft, und von dort in einem zweiten geraden Teilstück unter einem Winkel β zum ersten Strahlpfad auf die Position 2 am Eingang des Röntgen-Detektors 12 geführt ist. Mittels einer Verschlussblende 19 kann der abgeknickte Strahlpfad gegenüber dem Detektor 12 ausgeblendet werden oder umgekehrt.
  • Beide Strahlpfade sowie der Detektor 12, das Röntgen-optische Element 15 sowie das Blendensystem 18 sind relativ zueinander starr justiert und können in einer Einheit 13 um die Position 1 relativ zur Probe 11 gemeinsam verschwenkt werden, wobei hierfür entweder die Einheit 13 oder die Probe 11 bewegt wird.
  • Die in Fig. 2 schematisch dargestellte Einheit 13', die wiederum relativ zur Position 1 der Probe 11 verschwenkt werden kann, enthält neben den beiden unterschiedlichen, ebenfalls relativ zueinander starr justierten Strahlpfaden von der Position 1 der Probe 11 zur Position 2 am Eingang des Detektors 12 ein dispersives Röntgen-optisches Element 15' in Form eines Channelcut-Kristalles. Der abgeknickte Strahlpfad kann wiederum mittels einer Verschlussblende 19', deren elektrische Ansteuerung ebenfalls schematisch angedeutet ist, gegenüber dem Detektor 12 ausgeblendet werden. Die elektrische Ansteuerung kann beispielsweise in Form eines Mikroschalters verwirklicht sein. Außerdem umfasst die Einheit 13' auf dem geradlinigen Strahlpfad eine variable Blendeneinheit 18', mit der das Röntgenlicht auf dem geradlinigen Strahlpfad stufenlos abgeblendet werden kann.
  • In Fig. 3 ist die Quellenseite eines erfindungsgemäßen Röntgen- Diffraktometers schematisch gezeigt, wobei eine Röntgen-Quelle 10 mit ihrem Ausgangspunkt, in der Regel ihrem Elektronenfokus auf der Position 1 angeordnet ist, während die Probe 11 auf der Position 2 sitzt. Auch hier wiederum ist eine relativ zum Probenort verschwenkbare Einheit 14 vorgesehen, in der zwei unterschiedliche Strahlengänge, nämlich wiederum ein geradliniger und ein abgeknickter relativ zueinander starr justiert relativ zum Probenort auf der Position 2 verschwenkbar sind. Die Einheit 14 umfasst ein röntgen-optisches Element 16, das beispielsweise eine Einrichtung zur Monochromatisierung des auf dem abgeknickten Strahlpfad verlaufenden Röntgenlichtes enthalten kann.
  • Auf dem geradlinigen Strahlpfad ist in diesem Ausführungsbeispiel eine schematisch als Kästchen dargestellte Röntgen-Linse 17 angeordnet, mit der unter einem gewissen Divergenz-Winkel aus der Röntgen- Quelle 10 austretendes Röntgenlicht auf den Ort der Probe 11 fokussiert werden kann. Um den abgeknickten oder geradlinigen Strahlpfad gegenüber der Probe 11 auszublenden, ist auch eine Verschlussblende 19" nach dem Ausgang aus der Röntgen-Quelle 10 vorgesehen.
  • Zum Vergleich ist in Fig. 4 schematisch die Nachweisseite eines Röntgen-Diffraktometers nach dem Stand der Technik gezeigt, bei der von der Probe 11 ausgehend zwei fest justierte Strahlpfade vorgesehen sind, von denen einer direkt in einen Detektor 12 und der andere über ein Röntgen-optisches Element 15 in einen weiteren Detektor 12' verläuft. Bei einer Verschwenkung der beiden Strahlpfade um den Ort der Probe 11 schränkt jeweils der eine der beiden Detektoren den geometrisch überfahrbaren Bereich des anderen Detektors ein.
  • In der Zeichnung nicht dargestellt sind weitere Ausführungsformen der Erfindung, bei denen beispielsweise sowohl quellenseitig als auch detektorseitig jeweils eine oder mehrere verschwenkbare Einheiten mit relativ zueinander fest justierten Strahlpfaden vorgesehen sein können. In diesem Falle wird dann die Quelle 10 auf der Position 1, die Probe 11 auf der Position 2, die einer Position 1' entspricht, und der Detektor 12 auf einer Position 2' angeordnet, wobei die Positionen 1' und 2' einander zugeordnet sind und die Funktion der oben diskutierten Positionen 1 und 2 übernehmen, so dass die Erfindung gewissermaßen beiderseits der Probe 11, um die sich die entsprechenden Einheiten drehen können, verwirklicht ist.
  • Weitere, ebenfalls in der Zeichnung nicht näher dargestellte Ausführungsformen können auch Einheiten mit mehr als zwei unterschiedlichen Strahlpfaden enthalten. Diese können entweder in einer Ebene verlaufen, aber auch unter Raumwinkeln von der Position 1 weg und auf die Position 2 zu verlaufen.

Claims (13)

1. Röntgen-Diffraktometer mit einer Röntgen-Quelle (10), von der Röntgen- Strahlung auf eine zu untersuchende Probe (11) geführt wird, mit einem Röntgen-Detektor (12, 12') zum Empfang von an der Probe (11) gebeugter oder gestreuter oder von der Probe (11) reflektierter Röntgen- Strahlung, sowie mit einem Goniometer zum sequentiellen Einstellen aufeinander folgender relativer Winkelpositionen zwischen Röntgen- Quelle (10), Probe (11) und Röntgen-Detektor (12, 12') für die Erfassung von Röntgen-Beugungslinien, Röntgen-Streusignalen oder Röntgen- Reflektogrammen der zu untersuchenden Probe (11), wobei die Röntgen-Strahlung zumindest abschnittsweise auf unterschiedlichen Strahlpfaden geführt werden kann, dadurch gekennzeichnet, dass die Röntgen-Strahlung von einer Position 1 zu einer Position 2 entlang von n ≥ 2 unterschiedlichen, umschaltbaren Strahlpfaden geführt werden kann, wobei die unterschiedlichen Strahlpfade zwischen der Position 1 und der Position 2 relativ zueinander fest justiert sind und eine Einheit (13; 13'; 14) bilden, wobei die Probe (11) entweder die Position 1 oder die Position 2 einnimmt und wobei die Umschaltung zwischen den unterschiedlichen Strahlpfaden durch relative Verdrehung der Einheit (13; 13'; 14) gegen die Probe (11) um die Probenposition bewirkt werden kann.
2. Röntgen-Diffraktometer nach Anspruch 1, dadurch gekennzeichnet, dass die Probe (11) auf der Position 1 und der Detektor (12) auf der Position 2 angeordnet ist.
3. Röntgen-Diffraktometer nach Anspruch 1, dadurch gekennzeichnet, dass die Quelle (10) auf der Position 1 und die Probe (11) auf der Position 2 angeordnet ist.
4. Röntgen-Diffraktometer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens einer der Strahlpfade ein dispersives oder reflektierendes Röntgen-optisches Element (15; 15'; 16) enthält, wie z. B. einen Kristall, einen Channelcut-Kristall, einen Mosaik- Kristall, eine Multilayer-Struktur, einen Röntgen-Spiegel, ein Beugungsgitter, oder ein anderes dispersives oder reflektierendes Röntgen-optisches Element.
5. Röntgen-Diffraktometer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens einer der Strahlpfade weder ein dispersives noch ein reflektierendes Röntgen-optisches Element enthält.
6. Röntgen-Diffraktometer nach Anspruch 5, dadurch gekennzeichnet, dass mindestens einer der Strahlpfade eine Röntgen-Linse (17) enthält.
7. Röntgen-Diffraktometer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens einer der Strahlpfade eine einstellbare und/oder austauschbare Blende (18; 18') enthält.
8. Röntgen-Diffraktometer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens einer der Strahlpfade eine Verschlussblende (= Shutter) (19; 19'; 19") enthält.
9. Röntgen-Diffraktometer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass n = 2 unterschiedliche, umschaltbare Strahlpfade vorgesehen sind.
10. Röntgen-Diffraktometer nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass n > 2 unterschiedliche, umschaltbare Strahlpfade vorgesehen sind, und dass die Strahlpfade koplanar verlaufen.
11. Röntgen-Diffraktometer nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass n > 2 unterschiedliche, umschaltbare Strahlpfade vorgesehen sind, und dass nicht alle Strahlpfade in einer gemeinsamen Ebene liegen.
12. Röntgen-Diffraktometer nach Anspruch 11, dadurch gekennzeichnet, dass mehrere Strahlpfade gegenüber demjenigen Strahlpfad, der die Position 1 direkt mit der Position 2 verbindet, abgeknickt verlaufen und aus jeweils zwei geraden Teilpfaden zusammengesetzt sind, wobei im Knickpunkt ein dispersives oder reflektierendes Röntgen-optisches Element (15; 15'; 16) angeordnet ist, und dass die Abknickpunkte zumindest einiger dieser Teilpfade auf einem gemeinsamen Kreis um den direkten Strahlpfad zwischen Position 1 und Position 2 angeordnet sind.
13. Röntgen-Diffraktometer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Quelle (10) auf der Position 1 und die Probe (11) auf der Position 2, die einer Position 1' entspricht, angeordnet sind, und dass der Detektor (12) auf einer der Position 1' zugeordneten Position 2' angeordnet ist.
DE10141958A 2001-08-28 2001-08-28 Röntgen-Diffraktometer Expired - Fee Related DE10141958B4 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE10141958A DE10141958B4 (de) 2001-08-28 2001-08-28 Röntgen-Diffraktometer
US10/202,905 US6665372B2 (en) 2001-08-28 2002-07-26 X-ray diffractometer
EP02017884A EP1288652B1 (de) 2001-08-28 2002-08-09 Röntgenstrahlen-Diffraktometer mit röntgenoptischen Elementen zur Ausbildung mehrerer Strahlpfade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10141958A DE10141958B4 (de) 2001-08-28 2001-08-28 Röntgen-Diffraktometer

Publications (2)

Publication Number Publication Date
DE10141958A1 true DE10141958A1 (de) 2003-04-03
DE10141958B4 DE10141958B4 (de) 2006-06-08

Family

ID=7696765

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10141958A Expired - Fee Related DE10141958B4 (de) 2001-08-28 2001-08-28 Röntgen-Diffraktometer

Country Status (3)

Country Link
US (1) US6665372B2 (de)
EP (1) EP1288652B1 (de)
DE (1) DE10141958B4 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009047672A1 (de) 2009-12-08 2011-06-09 Bruker Axs Gmbh Röntgenoptischer Aufbau mit zwei fokussierenden Elementen
DE102018211320A1 (de) * 2018-07-09 2020-01-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Monochromator und Monochromatische Röntgenquelle
US11906448B2 (en) 2019-10-21 2024-02-20 Anton Paar Gmbh X-ray device having multiple beam paths

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3548556B2 (ja) * 2001-12-28 2004-07-28 株式会社リガク X線回折装置
US6917667B2 (en) * 2002-09-03 2005-07-12 Rigaku Corporation Method and apparatus for making parallel X-ray beam and X-ray diffraction apparatus
US20050014653A1 (en) * 2003-07-16 2005-01-20 Superpower, Inc. Methods for forming superconductor articles and XRD methods for characterizing same
WO2005010512A1 (en) * 2003-07-22 2005-02-03 X-Ray Optical Systems, Inc. Method and system for x-ray diffraction measurements using an aligned source and detector rotating around a sample surface
JP2005257349A (ja) * 2004-03-10 2005-09-22 Sii Nanotechnology Inc 超伝導x線分析装置
US7120228B2 (en) * 2004-09-21 2006-10-10 Jordan Valley Applied Radiation Ltd. Combined X-ray reflectometer and diffractometer
DE102008060070B4 (de) * 2008-12-02 2010-10-14 Bruker Axs Gmbh Röntgenoptisches Element und Diffraktometer mit einer Sollerblende
US8243878B2 (en) * 2010-01-07 2012-08-14 Jordan Valley Semiconductors Ltd. High-resolution X-ray diffraction measurement with enhanced sensitivity
US8687766B2 (en) 2010-07-13 2014-04-01 Jordan Valley Semiconductors Ltd. Enhancing accuracy of fast high-resolution X-ray diffractometry
US8437450B2 (en) 2010-12-02 2013-05-07 Jordan Valley Semiconductors Ltd. Fast measurement of X-ray diffraction from tilted layers
US8781070B2 (en) 2011-08-11 2014-07-15 Jordan Valley Semiconductors Ltd. Detection of wafer-edge defects
US9269468B2 (en) 2012-04-30 2016-02-23 Jordan Valley Semiconductors Ltd. X-ray beam conditioning
US9726624B2 (en) 2014-06-18 2017-08-08 Bruker Jv Israel Ltd. Using multiple sources/detectors for high-throughput X-ray topography measurement
DE102015226101A1 (de) * 2015-12-18 2017-06-22 Bruker Axs Gmbh Röntgenoptik-Baugruppe mit Umschaltsystem für drei Strahlpfade und zugehöriges Röntgendiffraktometer
CZ307169B6 (cs) * 2016-10-21 2018-02-14 Fyzikální Ústav Av Čr, V. V. I. Kompaktní systém pro charakterizaci spektra a profilu intenzity svazku krátkovlnného záření
JP6937025B2 (ja) 2018-03-20 2021-09-22 株式会社リガク X線回折装置
RU189108U1 (ru) * 2018-04-17 2019-05-13 Зёнин Алексей Юрьевич Цифровой аналитический блок для рентгенофлуоресцентных спектрометров
JP2019191169A (ja) 2018-04-23 2019-10-31 ブルカー ジェイヴィ イスラエル リミテッドBruker Jv Israel Ltd. 小角x線散乱測定用のx線源光学系
JP6871629B2 (ja) * 2018-06-29 2021-05-12 株式会社リガク X線分析装置及びその光軸調整方法
US11181490B2 (en) 2018-07-05 2021-11-23 Bruker Technologies Ltd. Small-angle x-ray scatterometry
US11781999B2 (en) 2021-09-05 2023-10-10 Bruker Technologies Ltd. Spot-size control in reflection-based and scatterometry-based X-ray metrology systems
CN114720496B (zh) * 2022-06-08 2022-08-26 四川大学 实现全场x射线荧光成像分析的衍射分析装置及方法
CN117092145B (zh) * 2023-10-16 2024-01-05 苏州佳谱科技有限公司 一种单色聚焦x射线光谱分析仪

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0183043A1 (de) * 1984-10-22 1986-06-04 Siemens Aktiengesellschaft Einrichtung zur Röntgenanalyse
WO1997005474A1 (en) * 1995-07-25 1997-02-13 Philips Electronics N.V. X-ray spectrometer comprising a plurality of fixed measuring channels
DE19820861A1 (de) * 1998-05-09 1999-11-25 Bruker Axs Analytical X Ray Sy Simultanes Röntgenfluoreszenz-Spektrometer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL41592A (en) * 1973-02-20 1976-02-29 Tech Res & Dev Found Ltd X-ray spectrodiffractometer
DE2907160C2 (de) * 1979-02-23 1986-09-25 Siemens AG, 1000 Berlin und 8000 München Röntgen-Pulverdiffraktometer
JP2973566B2 (ja) * 1991-04-25 1999-11-08 株式会社島津製作所 X線回折装置
WO2000026649A2 (en) * 1998-10-29 2000-05-11 Koninklijke Philips Electronics N.V. X-ray diffraction apparatus with an x-ray optical reference channel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0183043A1 (de) * 1984-10-22 1986-06-04 Siemens Aktiengesellschaft Einrichtung zur Röntgenanalyse
WO1997005474A1 (en) * 1995-07-25 1997-02-13 Philips Electronics N.V. X-ray spectrometer comprising a plurality of fixed measuring channels
DE19820861A1 (de) * 1998-05-09 1999-11-25 Bruker Axs Analytical X Ray Sy Simultanes Röntgenfluoreszenz-Spektrometer

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JP-Abstr. & JP 04324348 A *
Prospekt Diffraction Solutions D8 Advance der Fa. Bruker axs *
Prospekt X-Pert Materials Research Diffractometer System der Fa. Philips *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009047672A1 (de) 2009-12-08 2011-06-09 Bruker Axs Gmbh Röntgenoptischer Aufbau mit zwei fokussierenden Elementen
EP2339332A2 (de) 2009-12-08 2011-06-29 Bruker AXS GmbH Röntgenoptischer Aufbau mit zwei fokussierenden Elementen
EP2339332A3 (de) * 2009-12-08 2013-05-29 Bruker AXS GmbH Röntgenoptischer Aufbau mit zwei fokussierenden Elementen
DE102018211320A1 (de) * 2018-07-09 2020-01-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Monochromator und Monochromatische Röntgenquelle
US11906448B2 (en) 2019-10-21 2024-02-20 Anton Paar Gmbh X-ray device having multiple beam paths

Also Published As

Publication number Publication date
EP1288652B1 (de) 2012-05-02
US20030043965A1 (en) 2003-03-06
DE10141958B4 (de) 2006-06-08
US6665372B2 (en) 2003-12-16
EP1288652A2 (de) 2003-03-05
EP1288652A3 (de) 2004-03-03

Similar Documents

Publication Publication Date Title
EP1288652B1 (de) Röntgenstrahlen-Diffraktometer mit röntgenoptischen Elementen zur Ausbildung mehrerer Strahlpfade
DE4042117B4 (de) Optisches System und Verfahren zur Analyse von Proben
DE3843876C2 (de)
DE19963331B4 (de) Röntgenfluoreszenzanalysator zur Verwendung als wellenlängendispersiver Analysator und energiedispersiver Analysator
DE2364069C3 (de) Spektralphotometer
EP3532885B1 (de) Optische anordnung, multispot-scanning-mikroskop und verfahren zum betreiben eines mikroskops
DE10004191A1 (de) Hochleistungs-Grossfeld-Rastermikroskop
DE2727265A1 (de) Optische mikroskop-laser-mikrosonde fuer raman-spektroskopie
EP3411680B1 (de) Miniaturspektrometer und verfahren zum schalten eines miniaturspektrometers zwischen abbildungsmodus und spektrometermodus
EP1754032A1 (de) Echelle-spektrometer mit verbesserter detektorausnutzung durch die verwendung zweier spektrometeranordnungen
DE19803106A1 (de) Konfokales Mikrospektrometer-System
DE19632040C2 (de) Konfokales Mikroskop
DE60014944T2 (de) Vorrichtung zur bestimmung der räumlichen verteilung der spektralen emission eines objekts
EP4325208A2 (de) Verfahren und vorrichtung zum erfassen von verlagerungen einer probe gegenüber einem objektiv
WO1992021948A1 (de) Echelle-polychromator
DE10125454A1 (de) Gerät zur Röntgenanalyse mit einem Mehrschichtspiegel und einem Ausgangskollimator
WO2011066936A1 (de) Phasenfilter für ein rastermikroskop
EP2339332B1 (de) Röntgenoptischer Aufbau mit zwei fokussierenden Elementen
DE102016224828B4 (de) Fourier-Transform-Spektrometer und Verfahren zum Betreiben eines Fourier-Transform-Spektrometers
DE19962503B4 (de) Röntgenfluoreszenzanalysator mit Wegumschaltvorrichtung
DE2320937B2 (de) Optische Vorrichtung zum Aufnehmen der Lichtabsorption in einem Objekt, das außerdem einen veränderlichen Brechungskoeffizienten aufweist
DE2604666A1 (de) Monochromator zur nutzung zweier wellenlaengen
DE202004020695U1 (de) Röntgen-optisches System zum kombinatorischen Screening einer Probenbibliothek
DE102005031180B4 (de) Strukturanalyseverfahren für geordnete Strukturen und Verwendung des Verfahrens
DE2036165B2 (de) Infrarotspektrometer

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8364 No opposition during term of opposition
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20130301