DE10008306A1 - Wasch- und Reinigungsmittel - Google Patents

Wasch- und Reinigungsmittel

Info

Publication number
DE10008306A1
DE10008306A1 DE2000108306 DE10008306A DE10008306A1 DE 10008306 A1 DE10008306 A1 DE 10008306A1 DE 2000108306 DE2000108306 DE 2000108306 DE 10008306 A DE10008306 A DE 10008306A DE 10008306 A1 DE10008306 A1 DE 10008306A1
Authority
DE
Germany
Prior art keywords
agent according
cleaning agent
acid
detergent
cationic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE2000108306
Other languages
English (en)
Inventor
Wolf Eisfeld
Ute Krupp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to DE2000108306 priority Critical patent/DE10008306A1/de
Priority to EP01919315A priority patent/EP1257353B1/de
Priority to DE50104385T priority patent/DE50104385D1/de
Priority to ES01919315T priority patent/ES2231467T3/es
Priority to AT01919315T priority patent/ATE281235T1/de
Priority to AU2001246459A priority patent/AU2001246459A1/en
Priority to PCT/EP2001/001887 priority patent/WO2001062376A1/de
Publication of DE10008306A1 publication Critical patent/DE10008306A1/de
Ceased legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/12Processes in which the treating agent is incorporated in microcapsules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/11Encapsulated compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/41Amines
    • A61K8/416Quaternary ammonium compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/494Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with more than one nitrogen as the only hetero atom
    • A61K8/4946Imidazoles or their condensed derivatives, e.g. benzimidazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • A61Q1/04Preparations containing skin colorants, e.g. pigments for lips
    • A61Q1/06Lipsticks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • A61Q1/10Preparations containing skin colorants, e.g. pigments for eyes, e.g. eyeliner, mascara
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/12Face or body powders for grooming, adorning or absorbing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q13/00Formulations or additives for perfume preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q15/00Anti-perspirants or body deodorants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/04Preparations for care of the skin for chemically tanning the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/04Preparations for permanent waving or straightening the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/06Preparations for styling the hair, e.g. by temporary shaping or colouring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/08Preparations for bleaching the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/10Preparations for permanently dyeing the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/12Preparations containing hair conditioners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/62Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0039Coated compositions or coated components in the compositions, (micro)capsules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/413Nanosized, i.e. having sizes below 100 nm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/54Polymers characterized by specific structures/properties
    • A61K2800/542Polymers characterized by specific structures/properties characterized by the charge
    • A61K2800/5426Polymers characterized by specific structures/properties characterized by the charge cationic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/56Compounds, absorbed onto or entrapped into a solid carrier, e.g. encapsulated perfumes, inclusion compounds, sustained release forms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/60Particulates further characterized by their structure or composition
    • A61K2800/61Surface treated
    • A61K2800/612By organic compounds

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Dermatology (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Textile Engineering (AREA)
  • Detergent Compositions (AREA)

Abstract

Es wird ein Wasch- und Reinigungsmittel beansprucht, das übliche Inhaltsstoffe und Mikro- und/oder Nanokapseln, deren Oberfläche kationische Ladungen aufweist, enthält. Die enthaltenen Kapseln weisen eine solche Oberfläche auf, daß sie eine spezifische Substantivität gegenüber Substraten, wie Textilien, zeigen, so daß sie auch nach der Behandlung mit Wasser zumindest bis zu einem gewissen Teil auf diesen Substraten verbleiben.

Description

Die vorliegende Erfindung betrifft Wasch- und Reinigungsmittel enthaltend Tenside und gegebenenfalls weitere übliche Inhaltsstoffe sowie Mikro- und/oder Nanokapseln, deren Oberfläche kationische Ladungen aufweist, sowie Mittel zum Waschen von Textilien und Reinigungsmittelzusammensetzungen zur Reinigung von harten Oberflächen.
Mikro- bzw. Nanokapseln sind Pulver bzw. Teilchen, die aus einem Kern und einem den Kern umgebenden Wandmaterial bestehen, worin der Kern ein fester, flüssiger oder gasförmiger Stoff ist, der von dem festen, in der Regel polymeren, Wandmaterial umhüllt ist. Sie können massiv sein, d. h. aus einem einzigen Material bestehen. Mikrokapseln weisen im Durchschnitt einen Durchmesser von 1 bis 1.000 µm auf, während der Durchmesser der Nanokapseln zwischen 1 und 1000 nm liegt.
Mikro- und Nanokapseln werden insbesondere bei Arzneimitteln eingesetzt, z. B. zur Überführung von flüssigen, insbesondere auch von flüchtigen Verbindungen, in feste, freifließende Pulver, zur Stabilitätserhöhung der Wirkstoffe, zur Retardierung von Wirkstoffen, zum organspezifischen Transport der Wirkstoffe, zur Geschmacksüberdeckung und auch zur Vermeidung von Unverträglichkeiten mit anderen Wirk- und Hilfsstoffen. Ein weiteres Einsatzgebiet von Mikrokapseln ist die Herstellung von kohlefreien Reaktivdurchschreibpapieren.
Durch die Auswahl der Wandmaterialien, wie natürlichen oder synthetischen Polymeren, kann die Wandung dicht, permeabel oder semipermeabel gestaltet werden. Somit ergibt sich eine Fülle von Möglichkeiten, die eingekapselte Substanz gesteuert freizusetzen, z. B. durch Zerstören der Hülle oder durch Permeation oder auch durch chemische Reaktionen, die im Inneren der Kapseln ablaufen können.
Die Zerstörung des Kapselmaterials, d. h. der Wandung, kann mechanisch von außen erfolgen und auch durch Erhitzen über den Siedepunkt des Kernmaterials von innen. Ferner können die Inhaltsstoffe durch Auflösen, Schmelzen oder Verbrennen des Materials freigesetzt werden.
Die Freisetzung des Kernmaterials über semipermeable Kapselwände kann z. B. durch Erhöhung des osmotischen Drucks im Inneren der Kapsel erfolgen, oder, wenn die Kapselwand für das Kernmaterial durchlässig ist, so tritt es langsam durch die Kapselwandung hindurch und wird freigesetzt. Eine weitere Möglichkeit besteht darin, daß die Kapselwandung ihre Eigenschaften durch Verändern der sie umgebenden Phase (Wechsel von Luft zu Wasser, Änderung des pH-Wertes, etc.) semipermeabel wird und die Freisetzung des Kernmaterials wie zuvor beschrieben erfolgen kann.
Pflegekomponenten und auch Duftstoffe, die in Wasch- und Reinigungsmitteln enthalten sind, werden in der Regel nach der entsprechenden Behandlung wieder ausgespült. Im allgemeinen existieren nur geringe Bindungskräfte zwischen der Substratoberfläche (Textilfaser, Haut, Haarfaser) und den Mikro- bzw. Nanokapseln.
Der vorliegenden Erfindung lag die Aufgabe zugrunde, Wasch- und Reinigungsmittel zur Verfügung zu stellen, die Komponenten enthalten, die auch nach Abschluss des Wasch- oder Reinigungsverfahrens noch am gereinigten Substrat haften und dort ihre Wirkung entfalten.
Überraschenderweise wurde festgestellt, dass diese Aufgabe von Mitteln gelöst wird, die Mikro- und/oder Nanokapseln enthalten, deren Oberfläche zumindest teilweise kationische Ladungen aufweist. Diese Kapseln zeigen eine sehr gute Substantivität gegenüber Substraten wie Textilien, insbesondere Wolle, und auch anderen Oberflächen, so daß sie auch nach der Behandlung auf dem entsprechenden Substrat verbleiben. Der Freisetzungsmechanismus kann dann durch Druck, wie Rubbeln etc., oder durch Hitze, wie im Wäschetrockner oder durch das Bügeleisen, erfolgen.
Gegenstand der vorliegenden Erfindung sind demgemäß Wasch- und Reinigungsmittel, die Tenside, gegebenenfalls weitere üblich Inhaltsstoffe und Mikro- und/oder Nanokapseln enthalten, wobei die Oberfläche der Mikro- und/oder Nanokapseln kationische Ladungen aufweist.
Die erfindungsgemäß enthaltenen Kapseln weisen üblicherweise eine Teilchengröße im Nano- bis Mikrobereich auf, insbesondere von 10 nm bis 1000 µm. Kapseln im Nanobereich haben vorzugsweise eine solche Größe, daß sie vom Anwender kaum beziehungsweise gar nicht wahrgenommen werden. Mikrokapseln, insbesondere solche mit einer Teilchengröße von 100 bis 1.000 µm, können eingearbeitet werden, um erfindungsgemäßen Mitteln ästhetische und optische Effekte zu verleihen.
Die Kapseln können aus einem Wand- und Kernmaterial aufgebaut sein, wobei das Kernmaterial eine verkapselte Substanz, z. B. einen Wirkstoff, enthält. Die Kapseln können aber auch kompakt sein bzw. der Kern enthält keine aktive Komponente, ist also ein Hohlkörper, wobei in diesem Fall das Kapselmaterial (Wandmaterial) einen Aktivstoff enthält bzw. daraus besteht.
Die positive Ladung auf der Oberfläche der Kapseln kann entweder im Kapselmaterial selbst begründet sein oder nachträglich aufgebracht werden. So kann das Kapselmaterial beispielsweise ganz oder teilweise aus einem kationischen Polymer bestehen. In einer weiteren Ausgestaltung der vorliegenden Erfindung kann die Kapseloberfläche mit kationischen Verbindungen beschichtet werden. Die Beschichtung mit kationischen Verbindungen kann in einfacher Weise, z. B. durch Aufsprühen von Lösungen oder Suspensionen der Verbindungen oder Eintauchen der Kapseln in Lösungen oder Suspensionen dieser Verbindungen erfolgen.
Das Kapselmaterial, im folgenden auch Wandmaterial genannt, der erfindungsgemäß eingesetzten Mikro- und/oder Nanokapseln kann ein beliebiges, zur Herstellung von derartigen Kapseln geeignetes Material sein, so z. B. aus natürlichen oder synthetischen Polymeren bestehen. Beispiele für derartige Polymere sind polymere Polysaccharide, wie Agarose oder Cellulose, Chitin, Chitosan, Proteine, wie Gelatine, Gummi arabicum, Ethylcellulose, Methylcellulose, Carboxymethylethylcellulose, Hydroxyethylcellulose, Celluloseacetate, Poylamide, Polycyanacrylate, Polylactide, Polyglycolide, Polyanilin, Polypyrrol, Polyvinylpyrrolidon, Polystyrol, Polyvinylalkohol, Copolymere aus Polystyrol und Maleinsäureanhydrid, Epoxidharze, Polyethylenimine, Copolymere aus Styrol und Methylmethacrylat, Polyacrylate und Polymethacrylate, Polycarbonate, Polyester, Silikone, Gemische aus Gelatine und Wasserglas, Gelatine und Polyphosphat, Celluloseacetat und Phthalat, Gelatine und Copolymeren aus Maleinsäureanhydrid und Methylvinylether, Celluloseacetatbutyrat sowie beliebige Gemische der voranstehenden eingesetzt werden, die kationische Gruppen aufweisen können
Das Wandmaterial kann gegebenenfalls vernetzt sein. Übliche Vernetzer sind Glutaraldeyd, Harnstoff/Formaldehyharze, Tanninverbindungen, wie Tanninsäure, und deren Gemische.
Das Wandmaterial sollte eine solche Festigkeit und thermische Stabilität aufweisen, daß die Kapsel unter Lagerbedingungen nicht zerstört wird, aber eine mechanische Freisetzung der verkapselten Substanzen unter leichter Druckeinwirkung oder eine thermische Freisetzung bei Temperaturen von 35 bis 220°C ermöglicht wird.
Ein weiterer Freisetzungsmechanismus besteht darin, daß das Wandmaterial zumindest teilweise als semipermeable Membran ausgestaltet ist und die Freisetzung von gasförmigem Kernmaterial über den Dampfdruck erfolgt.
Die Freisetzung der verkapselten Inhaltsstoffe kann mechanisch erfolgen, z. B. durch Druck. Dieser Druck kann z. B. beim Tragen der Textilien oder auch, wenn die Textilien Handtücher sind, beim Benutzen dieser erfolgen. Die Freisetzung durch Temperaturerhöhung kann beispielsweise im Wäschetrockner oder beim Bügeln geschehen, wo die Kapseln aufgeschmolzen werden beziehungsweise die verkapselten Substanzen einen entsprechend hohen Dampfdruck aufweisen und die Kapseln aufplatzen.
Es ist auch möglich, in das Wandmaterial photokatalytisch aktive Materialien einzuarbeiten, die durch Lichteinwirkung das Wandmaterial langsam zerstören, so daß die verkapselten Inhaltsstoffe freigesetzt werden.
Die verkapselten Substanzen, im folgenden auch Kernmaterial genannt, können aus beliebigen, festen, flüssigen oder gasförmigen Materialien bestehen, die in verkapselter Form in entsprechende Produkte eingearbeitet werden sollen, wie Textilpflegemitteln und Waschmittelinhaltsstoffen. Vorzugsweise werden als Kernmaterialien Parfümöle oder bei dem jeweiligen Einsatzgebiet pflegend wirkende Substanzen verwendet, wie Weichspüler, Appreturmittel, usw. Es können auch Textilhilfsmittel, wie Komponenten zur Textilausrüstung und -veredelung, wie Imprägniermittel, Appretur, Avivagemittel, Komponenten für die Pflegeleichtausrüstung, Griffvariatoren und Soil-Release-Ausrüstung, Antistatika, antimikrobielle und fungizide Mittel usw. als Kernmaterial eingesetzt werden.
Als Parfümöle bzw. Duftstoffe können einzelne Riechstoffverbindungen, z. B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z. B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzyl-carbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenyl-glycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z. B. die linearen Alkanale mit 8-18 C-Atomen, Citral (Geranial), Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z. B. die Jonone, ∝-Isomethylionon und Methyl-cedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Als Duftstoff kann auch Eucalyptol (1,8- Cineol) eingesetzt werden. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z. B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Eukalypstusöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.
Die Herstellung der Kapseln kann in an sich bekannter Weise erfolgen, wie durch Phasentrennverfahren, mechanisch-physikalische Verfahren oder Polymerisationsverfahren, wie Suspensions- und Emulsionspolymerisation, Inverse Suspensionspolymerisation, Micellenpolymerisation, Grenzflächen-Polymerisationsverfahren, Grenzflächen-Ablagerung, in-situ-Polymerisation, Verdampfung von Lösungsmitteln aus Emulsionen, Suspensionsvernetzung, Bildung von Hydrogelen, Vernetzung in Lösung/Suspension, Systeme von Liposomen und in molekularem Maßstab, wobei Phasentrennverfahren, auch Koazervation genannt, besonders bevorzugt sind.
Koazervation bedeutet, daß ein gelöstes Polymer in eine polymerreiche, noch lösungsmittelhaltige Phase mittels Desolvatation, z. B. durch pH-Änderung, Temperaturänderung, Aussalzen, Änderung der Ionenstärke, Zusatz von Komplexbildnern (Komplexkoazervation), Zusatz von Nichtlösungsmitteln, überführt wird. Das Koazervat lagert sich an der Grenzfläche des zu verkapselnden Materials unter Ausbildung einer zusammenhängenden Kapselwand an und wird durch Trocknung oder Polymerisation verfestigt.
Physikalische Verfahren zur Herstellung der erfindungsgemäßen Mikro- bzw. Nanokapseln sind Sprühtrocknung, Wirbelschichtverfahren, oder Extrusionsverfahren (Coextrusion), Schmelzvertropfung bzw. Verprillung (Brace-Verfahren), Sprühgefriertrocknung.
In den genannten Grenzflächen-Polymerisationsverfahren erfolgt die Wandbildung durch Polykondensation oder Polyaddition aus monomeren oder oligomeren Ausgangsstoffen an der Grenzfläche einer Wasser/Öl-Emulsion oder Öl/Wasser-Emulsion.
Sofern das Wandmaterial der Kapseln nicht bereits kationische Ladungen aufweist, werden die Kapseln mit einer kationischen Verbindung beziehungsweise einem kationischen Polymer beschichtet. Dazu werden sie entweder mit einer Lösung oder Suspension dieser Verbindung besprüht oder darin getaucht. Auch hier kann z. B. die Sprühtrocknung eingesetzt werden.
Die kationischen Verbindungen, mit denen die erfindungsgemäßen Kapseln beschichtet sein können, können aus beliebigen kationischen Verbindungen ausgewählt werden, sofern sie eine entsprechende Substantivität gegenüber dem zu behandelnden Substrat aufweisen. Beispiele für solche Verbindungen sind quaternäre Ammoniumverbindungen, kationische Polymere und Emulgatoren, wie sie in Haarpflegemitteln und auch in Mitteln zur Textilavivage eingesetzt werden.
Geeignete Beispiele sind quaternäre Ammoniumverbindungen der Formeln (I) und (II),
wobei R und R1 für einen acyclischen Alkylrest mit 12 bis 24 Kohlenstoffatomen, R2 für einen gesättigten C1-C4 Alkyl- oder Hydroxyalkylrest steht, R3 entweder gleich R, R1 oder R2 ist und COR4 und COR5 jeweils für einen aliphatischen Acylrest mit 12 bis 22 Kohlenstoffatomen mit 0, 1, 2 oder 3 Doppelbindungen steht sowie R5 für H oder OH steht, wobei m, n und o jeweils unabhängig voneinander den Wert 1, 2 oder 3 haben können und X entweder ein Halogenid-, Methosulfat-, Methophosphat- oder Phosphation ist, sowie Mischungen dieser Verbindun­ gen. Besonders bevorzugt sind Verbindungen, die Alkylreste mit 16 bis 18 Kohlenstoffatomen enthalten.
Beispiele für kationische Verbindungen der Formel (I) sind Didecyldimethylammoniumchlorid, Ditalgdimethylammoniumchlorid oder Dihexadecylammoniumchlorid. Beispiele für Verbindun­ gen der Formel (II) sind Methyl-N-(2-hydroxyethyl)-N,N-di(talgacyl-oxyethyl)ammonium-me­ thosulfat, Bis-(palmitoyl)-ethyl-hydroxyethyl-methyl-ammonium-methosulfat oder Methyl-N,N- bis(acyloxyethyl)-N-(2-hydroxyethyl)ammonium-methosulfat. Werden quarternierte Verbin­ dungen der Formel (II) eingesetzt, die ungesättigte Alkylketten aufweisen, sind die Acylgruppen bevorzugt, deren korrespondierenden Fettsäuren eine Jodzahl zwischen 5 und 25, vorzugsweise zwischen 10 und 25 und insbesondere zwischen 15 und 20 aufweisen und die ein cis/trans-Isomerenverhältnis (in Gew.-%) von 30 : 70, vorzugsweise größer als 50 : 50 und insbesondere größer als 70 : 30 haben.
Neben den oben beschriebenen quaternären Verbindungen können auch andere bekannte Verbindungen eingesetzt werden, wie beispielsweise quaternäre Imidazoliniumverbindungen der Formel (III)
wobei R7 und R8 jeweils eine gesättigten Alkylrest mit 12 bis 18 Kohlenstoffatomen, R9 einen Alkylrest mit 1 bis 4 Kohlenstoffatomen oder H bedeutet und Z eine NH-Gruppe oder Sauerstoff bedeutet und A ein Anion ist.
Weitere geeignete quaternäre Verbindungen sind durch Formel (IV) beschrieben,
wobei R10 für eine C1-4 Alkyl-, Alkenyl- oder Hydroxyalkylgruppe steht, R11 und R12 jeweils unabhängig ausgewählt eine C8-28 Alkylgruppe darstellt und p eine Zahl zwischen 0 und 5 ist.
Neben den Verbindungen der Formeln (I) und (II) können auch kurzkettige, wasserlösliche, quaternäre Ammoniumverbindungen eingesetzt werden, wie Trihydroxyethylmethyl­ ammonium-methosulfat oder die Alkyltrimethylammoniumchloride, Dialkyldimethylammonium­ chloride und Trialkylmethylammoniumchloride, z. B. Cetyltrimethylammoniumchlorid, Stearyl­ trimethylammoniumchlorid, Distearyldimethylammoniumchlorid, Lauryldimethylammonium­ chlorid, Lauryldimethylbenzylammoniumchlorid und Tricetylmethylammoniumchlorid.
Auch protonierte Alkylaminverbindungen, die weichmachende Wirkung aufweisen, sowie die nicht quaternierten, protonierten Vorstufen der kationischen Emulgatoren sind geeignet.
Weitere erfindungsgemäß verwendbare kationische Verbindungen stellen die quaternisierten Proteinhydrolysate dar, wie quaterniertes Weizenproteinhydrolysat. Beispiele für Handelsprodukte sind Gluadin® WQ und Gluadin® WQTM von Cognis Deutschland GmbH.
Zu den geeigneten kationischen Polymeren zählen die Polyquaternium-Polymere, wie sie im CTFA Cosmetic Ingredient Dictionary (The Cosmetic, Toiletry und Fragrance, Inc., 1997) beschrieben werden. Beispiele sind insbesondere kationische Cellulosederivate, die auch als Merquats bezeichneten Polymere Polyquaternium-6, Polyquaternium-7; Polyquaternium-10- Polymere (Ucare Polymer JR 400; Amerchol; ), Polyquaternium-4-Copolymere, wie Pfropfcopolymere mit einen Cellulosegerüst und quaternären Ammoniumgruppen, die über Allyldimethylammoniumchlorid gebunden sind, kationische Guarderivate, wie Guar­ hydroxypropyltriammoniumchlorid, z. B. Cosmedia Guar (Hersteller: Cognis Deutschland GmbH), kationische quaternäre Zuckerderivate, z. B. das Handelsprodukt Glucquat®100, ge­ mäß CTFA-Nomenklatur ein "Lauryl Methyl Gluceth-10 Hydroxypropyl Dimonium Chloride", kationische Alkylpolyglucoside (APG-Derivate), kationische Polyacrylate, wie Eudragit(R) RL 30 D (Hersteller: Röhm), Copolymere von PVP und Dimethylaminomethacrylat, Copolymere von Vinylimidazol und Vinylpyrrolidon, Aminosilicon-polymere und -copolymere.
Ebenfalls einsetzbar sind polyquaternierte Polymere (z. B. Luviquat Care von BASF) und auch kationische Biopolymere auf Chitinbasis und deren Derivate, beispielsweise das unter der Handelsbezeichnung Hydagen DCMF, CMFP, HCMG (Hersteller: Cognis Deutschland GmbH) erhältliche Chitosan sowie Chitosan-Derivate.
Erfindungsgemäß ebenfalls geeignet sind kationische Silikonöle wie beispielsweise die im Handel erhältlichen Produkte Q2-7224 (Hersteller: Dow Corning; ein stabilisiertes Trimethyl­ silylamodimethicon), Dow Corning 929 Emulsion (enthaltend ein hydroxyl-amino-modifiziertes Silicon, das auch als Amodimethicone bezeichnet wird), SM-2059 (Hersteller: General Elec­ tric), SLM-55067 (Hersteller: Wacker), Abil®-Quat 3270 und 3272 (Hersteller: Th. Gold­ schmidt; diquaternäre Polydimethylsiloxane, Quaternium-80), sowie Silikonquat Tegopren® 6922 (Hersteller: Th. Goldschmidt).
Ebenfalls einsetzbar sind Alkylamidoamine, insbesondere Fettsäureamidoamine wie das unter der Bezeichnung Tego Amid®S 18 erhältliche Stearylamidopropyldimethylamin, die sich neben einer guten konditionierenden Wirkung speziell durch ihre gute biologische Ab­ baubarkeit auszeichnen.
Weiterhin einsetzbar und ebenfalls sehr gut biologisch abbaubar sind quaternäre Esterverbin­ dungen, sogenannte "Esterquats", wie die unter dem Warenzeichen Stepantex® vertriebenen Methylhydroxyalkyldialkoyloxyalkylammoniummethosulfate oder die unter Dehyquart® bekannten Produkte von Cognis Deutschland GmbH.
Die erfindungsgemäßen Mittel können alle in Wasch- und Reinigungsmitteln übliche Inhaltsstoffe aufweisen. Als weitere Inhaltsstoffe können auch die oben als Kapselmaterialien genannten Substanzen in unverkapselter Form sowie die oben beschriebenen kationischen Verbindungen eingearbeitet werden.
Neben den erfindungsgemäß enthaltenen Kapseln können die erfindungsgemäßen Mittel alle sonstigen in derartigen Mitteln enthaltenen Komponenten enthalten. Dazu zählen insbesondere Tenside, Buildermaterialien (Gerüststoffe), organische Lösungsmittel, Bleichmittel, Bleichaktivatoren, Enzyme, Vergrauungsinhibitoren, Schauminhibitoren, anorganische Salze, Lösungsmittel, pH-Stellmittel, Duftstoffe, Parfümträger, Fluoreszenzmittel, Farbstoffe, Hydrotope, Silikonöle, Soil-release-Verbindungen, optische Aufheller, Vergrauungsinhibitoren, Einlaufverhinderer, Knitterschutzmittel, Farbübertragungsinhibitoren, antimikrobielle Wirkstoffe, Germizide, Fungizide, Antioxidantien, Korrosionsinhibitoren, Antistatika, Bügelhilfsmittel, Phobier- und Imprägmniermittel, Quell- und Schiebefestmittel, UV-Absorber oder deren Gemische.
Die Tenside sind vorzugsweise ausgewählt aus nichtionischen, anionischen, amphoteren und kationischen Tensiden sowie deren beliebigen Gemische.
Die Tenside liegen vorzugsweise in einer Menge von 0,1 bis 50 Gew.-%, vorzugsweise von 0,1 bis 35 Gew.-% und insbesondere von 0,1 bis 15 Gew.-%, bezogen auf die Zusammen­ setzung, vor.
Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbe­ sondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z. B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durch­ schnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-14-Alkohole mit 3 EO bis 7 EO, C9-11-Alkohol mit 7 EO, C13-15-Al­ kohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-18Alkohole mit 3 EO, 5 EO oder 7 EO und Mi­ schungen aus diesen, wie Mischungen aus C12-14-Alkohol mit 3 EO und C12-18-Alkohol mit 7 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO. Auch nichtionische Tenside, die EO- und PO-Gruppen zusammen im Molekül enthalten, sind erfindungsgemäß einsetzbar. Hierbei können Blockcopolymere mit EO-PO- Blockeinheiten bzw. PO-EO-Blockeinheiten eingesetzt werden, aber auch EO-PO-EO-Copo­ lymere bzw. PO-EO-PO-Copolymere. Selbstverständlich sind auch gemischt alkoxylierte Niotenside einsetzbar, in denen EO- und PO-Einheiten nicht blockweise sondern statistisch verteilt sind. Solche Produkte sind durch gleichzeitige Einwirkung von Ethylen- und Propylen­ oxid auf Fettalkohole erhältlich.
Besonders bevorzugte Beispiele für nichtionische Tenside, die ein gutes Ablaufverhalten den Wasser auf harten Oberflächen bewirken, sind die Fettalkoholpolyethylenglycolether, Fettal­ koholpolyethylen/polypropylenglycolether und Mischether, die ggf. endgruppeverschlossen sein können.
Beispiele für Fettalkoholpolyethylenglycolether sind solche mit der Formel (V)
R13O-(CH2CH2O)qH (V)
in der R13 für eine linearen oder verzweigten Alkyl- und/oder Alkenylrest mit 6 bis 22, vorzugs­ weise 12 bis 18 Kohlenstoffatomen und q für Zahlen von 1 bis 5 steht.
Die genannten Stoffe stellen bekannte Handelsprodukte dar. Typische Beispiele sind Anlage­ rungsprodukte von durchschnittlich 2 bzw. 4 Mol Ethylenoxid an technischen C12/14-Kokosfett­ alkohol (Dehydol® LS-2 bzw. LS-4, Fa. Cognis Deutschland GmbH) oder Anlagerungsprodukte von durchschnittlich 4 Mol Ethylenoxid an C14/15-Oxoalkohole (Dobanol®45-4, Fa. Shell). Die Produkte können eine konventionelle oder auch eingeengte Homologenverteilung aufweisen.
Unter Fettalkoholpolyethylen/polypropylenglycolethern sind nichtionische Tenside der Formel (VI) zu verstehen,
in der R14 für einen linearen oder verzweigten Alkyl- und/oder Alkenylrest mit 6 bis 22, vor­ zugsweise 12 bis 18 Kohlenstoffatomen, r für Zahlen von 1 bis 0 und s für Zahlen von 1 bis 4 steht.
Auch diese Stoffe stellen bekannte Handelsprodukte dar. Typische Beispiele sind Anla­ gerungsprodukte von durchschnittlich 5 Mol Ethylenoxid und 4 Mol Propylenoxid an techni­ schen C12/14-Kokosfettalkohol (Dehydol®LS-54, Fa. Cognis Deutschland GmbH), oder 6,4 Mol Ethylenoxid und 1,2 Mol Propylenoxid an technischen C10/14-Kokosfettalkohol (Dehydol®LS- 980, Fa. Cognis Deutschland GmbH).
Unter Mischethern sind endgrupenverschlosssene Fettalkoholpolyglycolether mit der Formel (VII) zu verstehen
in der R15 für einen linearen oder verzweigten Alkyl- und/oder Alkenylrest mit 6 bis 22, vor­ zugsweise 12 bis 18 Kohlenstoffatomen, t für Zahlen von 1 bis 10, u für 0 oder Zahlen von 1 bis 4 und R16 für einen Alkylrest mit 1 bis 4 Kohlenstoffatomen oder einen Benzylrest steht.
Typische Beispiele sind Mischether der Formel (VII), in der R15 für einen technischen C12/14- Kokosalkylrest, t für 5 bzw. 10, u für 0 und R16 für eine Butylgruppe steht (Dehypon®LS-54 bzw. LS-104, Fa. Cognis Deutschland GmbH). Die Verwendung von butyl- bzw. benzylgruppenverschlossenen Mischethern ist aus anwendungstechnischen Gründen besonders bevorzugt.
Unter Hydroxyalkylpolyethylenglykolethern versteht man Verbindungen mit der allgemeinen Formel (VIII)
in der R17 für Wasserstoff oder einen geradkettigen Alkylrest mit 1 bis 16 C-Atomen,
R18 für einen geradkettigen oder verzweigten Alkylrest mit 4 bis 8 C-Atomen,
R19 für Wasserstoff oder einen Alkylrest mit 1 bis 16 C-Atomen und
v für eine Zahl von 7 bis 30
stehen, mit der Maßgabe, daß die Gesamtzahl der in R17 und R19 enthaltenen C-Atome 6 bis 16 beträgt.
Außerdem können als weitere nichtionische Tenside auch Alkylglykoside der allgemeinen Formel RO(G)X eingesetzt werden, in der R einen primären geradkettigen oder methylver­ zweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vor­ zugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl zwi­ schen 1 und 10; vorzugsweise liegt x bei 1,2 bis 1,4.
Eine weitere Klasse nichtionischer Tenside, die insbesondere in festen Mitteln eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fett­ säurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette.
Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N-dime­ thylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel IX,
in der R20CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R21 für Wasser­ stoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linea­ ren oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hy­ droxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Am­ moniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel X,
in der R22 für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoff­ atomen, R23 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R24 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C1-4- Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propxylierte Derivate dieses Restes.
[Z] wird vorzugsweise durch reduktive Aminierung eines Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können dann beispielweise nach der Lehre der inter­ nationalen Anmeldung WO-A-95/07331 durch Umsetzung mit Fettsäuremethylestern in Ge­ genwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide über­ führt werden.
Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise C9-13-Alkylbenzolsul­ fonate, Olefinsulfonate, d. h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disul­ fonaten, wie man sie beispielsweise aus C12-18-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende al­ kalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12-18-Alkanen beispielsweise durch Sulfochlorierung oder Sulf­ oxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden. Ebenso sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), z. B. die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Talgfettsäuren geeignet.
Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäu­ rehalbester der C12-C18-Fettalkohole, beispielsweise aus Kokosfettalkohol, Talgfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C10-C20-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemi­ scher Basis hergestellten geradkettigen Alkylrest enthalten. Aus waschtechnischem Interesse sind die C12-C16-Alkylsulfate und C12-C15-Alkylsulfate sowie C14-C15-Alkylsulfate bevorzugt. Auch 2,3-Alkylsulfate sind geeignete Aniontenside.
Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäureglyce­ rinestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sulfierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Caprinsäure, My­ ristinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.
Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradketti­ gen oder verzweigten C7-21-Alkohole, wie 2-Methyl-verzweigte C9-11-Alkohole mit im Durch­ schnitt 3,5 Mol Ethylenoxid (EO) oder C12-18-Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.
Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8- 18-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.
Als weitere anionische Tenside kommen insbesondere Seifen in Betracht, die insbesondere in pulverförmigen Mitteln und bei höheren pH-Werten eingesetzt werden. Geeignet sind ge­ sättigte und ungesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Pal­ mitinsäure, Stearinsäure, hydrierte Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z. B. Kokos-, Palmkern-, Olivenöl- oder Talgfettsäuren, abgeleitete Seifengemische.
Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Tri­ ethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
Als weitere Tenside kommen sogenannte Gemini-Tenside in Betracht. Hierunter werden im allgemeinen solche Verbindungen verstanden, die zwei hydrophile Gruppen und zwei hydro­ phobe Gruppen pro Molekül besitzen. Diese Gruppen sind in der Regel durch einen soge­ nannten "Spacer" voneinander getrennt. Dieser Spacer ist in der Regel eine Kohlenstoffkette, die lang genug sein sollte, daß die hydrophilen Gruppen einen ausreichenden Abstand ha­ ben, damit sie unabhängig voneinander agieren können. Derartige Tenside zeichnen sich im allgemeinen durch eine ungewöhnlich geringe kritische Micellkonzentration und die Fähigkeit, die Oberflächenspannung des Wassers stark zu reduzieren, aus. In Ausnahmefällen werden jedoch unter dem Ausdruck Gemini-Tenside nicht nur dimere, sondern auch trimere Tenside verstanden.
Geeignete Gemini-Tenside sind beispielsweise sulfatierte Hydroxymischether Dimeralkohol­ bis- und Trimeralkohol-tris-sulfate und -ethersulfate. Endgruppenverschlossene dimere und trimere Mischether zeichnen sich insbesondere durch ihre Bi- und Multifunktionalität aus. So besitzen die genannten endgruppenverschlossenen Tenside gute Netzeigenschaften und sind dabei schaumarm, so daß sie sich insbesondere für den Einsatz in maschinellen Wasch- oder Reinigungsverfahren eignen. Eingesetzt werden können aber auch Gemini- Polyhydroxyfettsäureamide oder Poly-Polyhydroxyfettsäureamide.
Als zwitterionische Tenside werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine -COO(-)- oder -SO3 (-)-Gruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N-dimethylammoniumglycinate, beispielsweise das Kokosalkyl-dimethylammoniumglycinat, N-Acyl-aminopropyl-N,N-dimethylammoniumglycina­ te, beispielsweise das Kokosacylaminopropyl-dimethylammoniumglycinat, und 2-Alkyl-3-car­ boxymethyl-3-hydroxyethyl-imidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylaminoethylhydroxyethylcarboxymethylglycinat. Ein bevor­ zugtes zwitterionisches Tensid ist das unter der CTFA-Bezeichnung Cocamidopropyl Betaine bekannte Fettsäureamid-Derivat.
Unter ampholytischen Tensiden werden solche oberflächenaktiven Verbindungen verstanden, die außer einer C8-18-Alkyl- oder -Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder -SO3H-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N- Alkylpropionsäuren, N-Alkylaminobuttersäuren, N-Alkyliminodipropionsäuren, N-Hydroxy­ ethyl-N-alkylamidopropylglycine, N-Alkyltaurine, N-Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 18 C-Atomen in der Alkylgruppe. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacylaminoethylaminopropionat und das C12-18-Acylsarcosin.
Die erfindungsgemäßen Mikrokapseln können sowohl in Textilwaschmitteln, in Mitteln für die Textilavivage oder in Mittel zur Reinigung von harten Oberflächen eingesetzt werden.
Die erfindungsgemäßen Mittel können in flüssiger bis gelförmiger oder auch in fester Form vorliegen.
Liegen die Mittel in flüssiger bis gelförmiger Form vor, so handelt es sich in der Regel um wäßrige Zubereitungen, die ggf. noch weitere, mit Wasser mischbare organische Lösungs­ mittel sowie Verdickungsmittel enthalten. Zu den mit Wasser mischbaren organischen Lö­ sungsmitteln zählen z. B. die oben Hydrophilierungsmittel genannten Verbindungen. Die Her­ stellung von flüssigen bis gelförmigen Zubereitungen kann kontinuierlich oder batchweise durch einfaches Vermischen der Bestandteile, ggf. bei erhöhter Temperatur erfolgen.
Beispiele für Hydrophilierungsmittel sind ein- oder mehrwertigen Alkohole, Alkanolamine oder Glycolether, sofern sie mit Wasser mischbar sind. Vorzugsweise werden die Hydrophi­ lierungsmittel ausgewählt aus Ethanol, n- oder i-Propanol, Butanolen, Ethylenglykolmethyl­ ether, Ethylenglykolethylether, Ethylenglykolpropylether, Ethylenglykolmono-n-butylether, Di­ ethylenglykol-methylether, Diethylenglykolethylether, Propylenglykolmethyl-, -ethyl- oder -pro­ pyl-ether, Dipropylenglykolmonomethyl-, oder -ethylether, Di-isopropylenglykolmonomethyl-, oder -ethylether, Methoxy-, Ethoxy- oder Butoxytriglykol, 1-Butoxyethoxy-2-propanol, 3-Me­ thyl-3-methoxybutanol, Propylen-glykol-t-butylether Alkohole, insbesondere C1-C4-Alkanole, Glykole, Polyethylenglykole, vorzgusweise mit einem Molekulargewicht zwischen 100 und 100000, insbesondere zwischen 200 und 10000, und Polyole, wie Sorbitol und Mannitol, sowie bei Raumtemperatur flüssiges Polyethylenglykol, Carbonsäureester, Polyvinylalkohole, Ethylenoxid-Propylenoxid-Blockcopolymere sowie beliebige Gemische der voranstehenden.
Zur Einstellung der Viskosität können einer flüssigen erfindungsgemäßen Zusammensetzung ein oder mehrere bzw. Verdickungssysteme zugesetzt werden. Die Viskosität der erfin­ dungsgemäßen Zusammensetzungen kann mit üblichen Standardmethoden (beispielsweise Brookfield-Viskosimeter RVD-VII bei 20 U/min und 20°C, Spindel 3) gemessen werden und liegt vorzugsweise im Bereich von 100 bis 5000 mPas. Bevorzugte Zusammensetzungen haben Viskositäten von 200 bis 4000 mPas, wobei Werte zwischen 400 und 2000 mPas be­ sonders bevorzugt sind.
Geeignete Verdicker sind anorganische oder polymere organische Verbindungen. Diese meist organischen hochmolekularen Stoffe, die auch Quell(ungs)mittel genannt werden, saugen meist die Flüssigkeiten auf und quellen dabei auf, um schließlich in zähflüssige echte oder kolloide Lösungen überzugehen.
Zu den anorganischen Verdickern zählen beispielsweise Polykieselsäuren, Tonmineralien wie Montmorillonite, Zeolithe, Kieselsäuren und Bentonite.
Die organischen Verdicker stammen aus den Gruppen der natürlichen Polymere, der abgewandelten natürlichen Polymere und der vollsynthetischen Polymere.
Aus der Natur stammende Polymere, die als Verdickungsmittel Verwendung finden, sind bei­ spielsweise Agar-Agar, Carrageen, Tragant, Gummi arabicum, Alginate, Pektine, Polyosen, Guar-Mehl, Johannisbrotbaumkernmehl, Stärke, Dextrine, Xanthan, Gelatine und Casein. Abgewandelte Naturstoffe stammen vor allem aus der Gruppe der modifizierten Stärken und Cellulosen, beispielhaft seien hier Carboxymethylcellulose und andere Celluloseether, Hy­ droxyethyl- und -propylcellulose sowie Kernmehlether genannt.
Darüber hinaus können auch tensidische Verdicker eingesetzt werden, z. B. Alkylpolyglycoside, wie C8-10-Alkylpolyglucosid (APG® 220, Hersteller: Cognis Deutschland GmbH); C12-14-Alkylpolyglucosid (APG® 600, Hersteller: Cognis Deutschland GmbH).
Zu den in fester Form vorliegenden Mittel zählen z. B. Pulver, Kompaktate, wie Granulate und Formkörper (Tabletten) Die einzelnen Formen können nach aus dem Stand der Technik be­ kannten Verfahren hergestellt werden, wie durch Sprühtrocknung, Granulation und Verpres­ sen. Die in fester Form vorliegenden Mittel können auch in geeigneten Verpackungssystemen verpackt werden, wobei das Verpackungssystem vorzugsweise eine Feuchtig­ keitsdampfdurchlässigkeitsrate von 0,1 g/m2/Tag bis weniger als 20 g/m2/Tag aufweist, wenn das Verpackungssystem bei 23°C und einer relativen Gleichgewichtsfeuchtigkeit von 85% gelagert wird.
In den erfindungsgemäßen Wasch- und Reinigungsmitteln können alle üblicherweise in solchen Mitteln eingesetzten Gerüststoffe enthalten sein, insbesondere Zeolithe, Silikate, Carbonate, organische Cobuilder und - wo keine ökologischen Vorurteile gegen ihren Einsatz bestehen - auch die Phosphate.
Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSixO2x+1 . H2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch δ-Natriumdisilikate Na2Si2O5 . yH2O bevorzugt.
Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na2O : SiO2 von 1 : 2 bis 1 : 3,3, vorzugsweise von 1 : 2 bis 1 : 2,8 und insbesondere von 1 : 2 bis 1 : 2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber her­ kömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Be­ griff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silikate bei Röntgen­ beugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substan­ zen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrah­ lung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikat­ partikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungs­ maxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.
Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischun­ gen aus A, X und/oder P.
Als weitere bevorzugt eingesetzte und besonders geeignete Zeolithe sind Zeolithe vom Fau­ jasit-Typ zu nennen. Zusammen mit den Zeolithen X und Y gehört das Mineral Faujasit zu den Faujasit-Typen innerhalb der Zeolith-Strukturgruppe 4, die durch die Doppelsechsring- Untereinheit D6R gekennzeichnet ist (Vergleiche Donald W. Breck: "Zeolite Molecular Sieves", John Wiley & Sons, New York, London, Sydney, Toronto, 1974, Seite 92). Zur Zeo­ lith-Strukturgruppe 4 zählen neben den genannten Faujasit-Typen noch die Mineralien Chabazit und Gmelinit sowie die synthetischen Zeolithe R (Chabazit-Typ), S (Gmelinit-Typ), L und ZK-5. Die beiden letztgenannten synthetischen Zeolithe haben keine mineralischen Analoga.
Zeolithe vom Faujasit-Typ sind aus β-Käfigen aufgebaut, die tetrahedral über D6R-Unterein­ heiten verknüpft sind, wobei die β-Käfige ähnlich den Kohlenstoffatomen im Diamanten an­ geordnet sind. Das dreidimensionale Netzwerk der im erfindungsgemäßen Verfahren einge­ setzten Zeolithe vom Faujasit-Typ weist Poren von 2,2 und 7,4 Å auf, die Elementarzelle ent­ hält darüberhinaus 8 Kavitäten mit ca. 13 Å Durchmesser und läßt sich durch die Formel Na86[(AlO2)86(SiO2)106] . 264 H2O beschreiben. Das Netzwerk des Zeolith X enthält dabei ein Hohlraumvolumen von ungefähr 50%, bezogen auf den dehydratisierten Kristall, was den größten Leerraum aller bekannten Zeolithe darstellt (Zeolith Y: ca. 48% Hohlraumvolumen, Faujasit: ca. 47% Hohlraumvolumen). (Alle Daten aus: Donald W. Breck: "Zeolite Molecular Sieves", John Wiley & Sons, New York, London, Sydney, Toronto, 1974, Seiten 145, 176, 177).
Im Rahmen der vorliegenden Erfindung kennzeichnet der Begriff "Zeolith vom Faujasit-Typ" alle drei Zeolithe, die die Faujasit-Untergruppe der Zeolith-Strukturgruppe 4 bilden. Neben dem Zeolith X sind erfindungsgemäß also auch Zeolith Y und Faujasit sowie Mischungen dieser Verbindungen erfindungsgemäß einsetzbar, wobei der reine Zeolith X bevorzugt ist. Auch Mischungen oder Cokristallisate von Zeolithen des Faujasit-Typs mit anderen Zeoli­ then, die nicht zwingend der Zeolith-Strukturgruppe 4 angehören müssen, sind erfindungs­ gemäß einsetzbar, wobei die Vorteile des erfindungsgemäßen Verfahrens besonders deut­ lich zu Tage treten, wenn mindestens 50 Gew.-% der Zeolithe Zeolithe vom vom Faujasit-Typ sind.
Die Aluminiumsilikate, die im erfindungsgemäßen Verfahren eingesetzt werden, sind kom­ merziell erhältlich, und die Methoden zu ihrer Darstellung sind in Standardmonographien be­ schrieben.
Beispiele für kommerziell erhältliche Zeolithe vom X-Typ können durch die folgenden For­ meln beschrieben werden:
Na86[(AlO2)86(SiO2)106] . x H2O,
K86[(AlO2)86(SiO2)106] . x H2O,
Ca40Na6[(AlO2)86(SiO2)106] . x H2O,

Sr21Ba22[(AlO2)86(SiO2)106] . x H2O,
in denen x Werte zwischen 0 und 276 annehmen kann und die Porengrößen von 8,0 bis 8,4 Å aufweisen.
Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S. p. A. unter dem Markennamen VEGOBOND AX® ver­ trieben wird und durch die Formel
nNa2O . (1-n)K2O . Al2O3 . (2-2,5)SiO2 . (3,5-5,5) H2O
beschrieben werden kann. Der Zeolith kann dabei sowohl als Gerüststoff in einem granularen Compound eingesetzt, als auch zu einer Art "Abpuderung" der gesamten zu verpressenden Mischung verwendet werden, wobei üblicherweise beide Wege zur Inkorporation des Zeoliths in das Vorgemisch genutzt werden. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 µm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersub­ stanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Unter der Vielzahl der kommerziell erhältlichen Phosphate haben die Alkali­ metallphosphate unter besonderer Bevorzugung von Pentanatrium- bzw. Pentakaliumtri­ phosphat (Natrium- bzw. Kaliumtripolyphosphat) in der Wasch- und Reinigungsmittel-Indu­ strie die größte Bedeutung. Alkalimetallphosphate ist dabei die summarische Bezeichnung für die Alkalimetall- (insbesondere Natrium- und Kalium-) -Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphorsäuren (HPO3)n und Orthophosphorsäure H3PO4 neben höhermolekularen Vertretern unterscheiden kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken als Alkaliträger, verhindern Kalkbeläge auf Maschinenteilen bzw. Kalkinkrustationen in Geweben und tragen überdies zur Reinigungsleistung bei.
Als organische Cobuilder können in den erfindungsgemäßen Wasch- und Reinigungsmittel­ formkörpern insbesondere Polycarboxylate/Polycarbonsäuren, polymere Polycarboxylate, Asparaginsäure, Polyacetale, Dextrine, weitere organische Cobuilder (siehe unten) sowie Phosphonate eingesetzt werden. Diese Stoffklassen werden nachfolgend beschrieben.
Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren ver­ standen werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citronen­ säure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fu­ marsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derarti­ ger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus die­ sen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.
Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Buil­ derwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Rei­ nigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adi­ pinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
Als Builder sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alka­ limetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol.
Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV-Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäure-Stan­ dard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren reali­ stische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsan­ gaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Po­ lystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in die­ ser Schrift angegebenen Molmassen.
Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 2000 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 2000 bis 10000 g/mol, und besonders bevorzugt von 3000 bis 5000 g/mol, aufweisen, bevorzugt sein.
Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders ge­ eignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.- % Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, be­ zogen auf freie Säuren, beträgt im allgemeinen 2000 bis 70000 g/mol, vorzugsweise 20000 bis 50000 g/mol und insbesondere 30000 bis 40000 g/mol.
Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden. Der Gehalt der Mittel an (co-)polymeren Polycarboxylaten beträgt vor­ zugsweise 0,5 bis 20 Gew.-%, insbesondere 3 bis 10 Gew.-%.
Zur Verbesserung der Wasserlöslichkeit können die Polymere auch Allylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure, als Monomer enthalten.
Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei ver­ schiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acryl­ säure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Mono­ mere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.
Weitere bevorzugte Copolymere sind solche, die als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen.
Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, de­ ren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyaspa­ raginsäuren bzw. deren Salze und Derivate.
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dial­ dehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgrup­ pen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcar­ bonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkataly­ sierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000 g/mol. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysac­ charids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwi­ schen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molma­ ssen im Bereich von 2000 bis 30000 g/mol.
Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungspro­ dukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Ein an C6 des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.
Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindi­ succinat, sind weitere geeignete Cobuilder. Dabei wird Ethylendiamin-N,N'-disuccinat (EDDS) bevorzugt in Form seiner Natrium- oder Magnesiumsalze verwendet. Weiterhin be­ vorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glycerintrisuccinate. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathaltigen Formulierungen bei 3 bis 15 Gew.-%.
Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäu­ ren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und wel­ che mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten.
Eine weitere Substanzklasse mit Cobuildereigenschaften stellen die Phosphonate dar. Dabei handelt es sich insbesondere um Hydroxyalkan- bzw. Aminoalkanphosphonate. Unter den Hydroxyalkanphosphonaten ist das 1-Hydroxyethan-1,1-diphosphonat (HEDP) von besonde­ rer Bedeutung als Cobuilder. Es wird vorzugsweise als Natriumsalz eingesetzt, wobei das Dinatriumsalz neutral und das Tetranatriumsalz alkalisch (pH 9) reagiert. Als Aminoalkan­ phosphonate kommen vorzugsweise Ethylendiamintetramethylenphosphonat (EDTMP), Diethylentriaminpentamethylenphosphonat (DTPMP) sowie deren höhere Homologe in Frage. Sie werden vorzugsweise in Form der neutral reagierenden Natriumsalze, z. B. als Hexanatriumsalz der EDTMP bzw. als Hepta- und Octa-Natriumsalz der DTPMP, eingesetzt. Als Builder wird dabei aus der Klasse der Phosphonate bevorzugt HEDP verwendet. Die Aminoalkanphosphonate besitzen zudem ein ausgeprägtes Schwermetallbindevermögen. Dementsprechend kann es, insbesondere wenn die Mittel auch Bleiche enthalten, bevorzugt sein, Aminoalkanphosphonate, insbesondere DTPMP, einzusetzen, oder Mischungen aus den genannten Phosphonaten zu verwenden.
Darüber hinaus können alle Verbindungen, die in der Lage sind, Komplexe mit Erdalkaliionen auszubilden, als Cobuilder eingesetzt werden.
Als in den Mitteln verwendbare Enzyme kommen solche aus der Klasse der Oxidasen, Pro­ teasen, Lipasen, Cutinasen, Amylasen, Pullulanasen, Cellulasen, Hemicellulasen, Xylanasen und Peroxidasen sowie deren Gemische in Frage, beispielsweise Proteasen wie BLAP®, Optimase®, Opticlean®, Maxacal®, Maxapem®, Alcalase®, Esperase® und/oder Savinase®, Amylasen wie Termamyl®, Amylase-LT®, Maxamyl®, Duramyl® und/oder Purafect® OxAm, Lipasen wie Lipolase®, Lipomax®, Lumafast® und/oder Lipozym®, Cellulasen wie Cellu­ zyme® und oder Carezyme®. Besonders geeignet sind aus Pilzen oder Bakterien, wie Ba­ cillus subtilis, Bacillus licheniformis, Streptomyces griseus, Humicola lanuginosa, Humicola insolens, Pseudomonas pseudoalcaligenes oder Pseudomonas cepacia gewonnene enzy­ matische Wirkstoffe. Die gegebenenfalls verwendeten Enzyme können, wie zum Beispiel in der europäischen Patentschrift EP 0 564 476 oder in der internationalen Patentanmeldungen WO 94/23005 beschrieben, an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen einge­ bettet sein, um sie gegen vorzeitige Inaktivierung zu schützen. Sie sind in den erfindungsge­ mäßen Tensidmischungen vorzugsweise in Mengen bis zu 10 Gew.-%, insbesondere von 0,2 Gew.-% bis 2 Gew.-%, enthalten, wobei besonders bevorzugt gegen oxidativen Abbau stabilisierte Enzyme.
Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natriumperborattetrahydrat, Natriumperboratmonohydrat und das Natriumpercarbonat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Persulfate und Mischsalze mit Persulfaten, wie die unter der Handeltsbezeichnung CAROAT® erhältlichen Salze, Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Diperdodecandisäure oder Phthaloiminopersäuren wie Phthaliminopercapronsäure. Vorzugsweise werden organische Persäuren, Alkaliperborate und/oder Alkalipercarbonate, in Mengen von 0,1 bis 40 Gew.-%, vorzugsweise 3 bis 30 Gew.-%, insbesondere 5 bis 25 Gew.-% eingesetzt.
Um beim Waschen und Reinigen bei Temperaturen von 60°C und darunter, und insbesondere bei der Wäschevorbehandlung eine verbesserte Bleichwirkung zu erreichen, können Bleichaktivatoren in die Wasch- und Reinigungsmittelformkörper eingearbeitet werden. Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glycolurile, insbesondere 1,3,4,6-Tetraacetylglycoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n- Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), acylierte Hydroxycarbonsäuren, wie Triethyl-O-acetylcitrat (TEOC), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, Isatosäureanhydrid und/oder Bernsteinsäureanhydrid, Carbonsäureamide, wie N-Methyldiacetamid, Glycolid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglycoldiacetat, Isopropenylacetat, 2,5-Diacetoxy-2,5- dihydrofuran und Enolester sowie acetyliertes Sorbitol und Mannitol beziehungsweise Gemische, die diese Substanzen enthalten, acylierte Zuckerderivate, insbesondere Pentaacetylglucose (PAG), Pentaacetylfructose, Tetraacetylxylose und Octaacetyllactose sowie acetyliertes, gegebenenfalls N-alkyliertes Glucamin bzw. Gluconolacton, Triazol bzw. Triazolderivate und/oder teilchenförmige Caprolactame und/oder Caprolactamderivate, bevorzugt N-acylierte Lactame, beispielsweise N-Benzoylcaprolactam und N-Acetylcaprolactam. Hydrophil substituierte Acylacetale Acyllactame können ebenfalls bevorzugt eingesetzt werden. Auch Kombinationen konventioneller Bleichaktivatoren können eingesetzt werden. Ebenso können Nitrilderivate wie Cyanopyridine, Nitrilquats, z. B. N- Alkyammoniumacetonitrile, und/oder Cyanamidderivate eingesetzt werden. Bevorzugte Bleichaktivatoren sind Natrium-4-(octanoyloxy)-benzolsulfonat, n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Undecenoyloxybenzolsulfonat (UDOBS), Natriumdodecanoyloxybenzolsulfonat (DOBS), Decanoyloxybenzoesäure (DOBA, OBC 10) und/oder Dodecanoyloxybenzolsulfonat (OBS 12), sowie N-Methylmorpholinum-acetonitril (MMA). Derartige Bleichaktivatoren sind im üblichen Mengenbereich von 0,01 bis 20 Gew.-%, vorzugsweise in Mengen von 0,1 bis 15 Gew.-%, insbesondere 1 Gew.-% bis 10 Gew.-%, bezogen auf die gesamte Zusammensetzung, enthalten.
Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren enthalten sein. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru - oder Mo-Salenkomplexe oder -carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N-haltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru-Amminkomplexe sind als Bleichkatalysatoren geeignet.
Ferner können die oben zur Beschichtung der Kapseln genannten kationischen Verbindungen ebenfalls enthalten sein.
In einer möglichen Ausführungsform der vorliegenden Erfindung werden die Wasch- und Reinigungsmittel zum Reinigen von harten Oberflächen einschließlich zur Geschirrreinigung eingesetzt. Mittel zur Rienigung von harten Oberflächen sind in der Regel flüssig bis gelförmig.
In einer weiteren Ausführungsform der vorliegenden Erfindung werden die Wasch- und Reinigungsmittel zur Textilbehandlung eingesetzt. Beispiele für Mittel zur Textilbehandlung sind Textilwaschmittel, wie Universalwaschmittel und Feinwaschmittel, Textilvorbehandlungsmittel und Fleckenbehandlungsmittel, sowie Nachbehandlungsmittel, wie Weichspüler. In einer weiteren Ausgestaltung sind die Mittel zur Textilbehandlung Kombinationsprodukte, die gleichzeitig die Komponenten für die Textilreinigung und Textilpflege enthalten, z. B. ein Universal- oder Feinwaschmittel, das Komponenten für die Textilpflege, z. B. Weichspüler, in verkapselter Form enthalten.
Die Mittel zur Textilbehandlung können, in Abhängigkeit von ihrem Verwendungszweck, in flüssiger bis gelförmiger oder auch fester Form, als Pulver, Granulate oder Kompaktate, vorliegen.

Claims (15)

1. Wasch- und Reinigungsmittel enthaltend Tenside, ggf. weitere übliche Inhaltsstoffe und Mikro- und/oder Nanokapseln, deren Oberfläche kationische Ladungen aufweist.
2. Wasch- und Reinigungsmittel nach Anspruch 1, dadurch gekennzeichnet, daß Mikro- und/oder Nanokapseln aus einem Kern und einem den Kern umgebendes Wandmaterial aufgebaut sind.
3. Wasch- und Reinigungsmittel nach Anspruch 1, dadurch gekennzeichnet, daß sie kompakt sind oder der Kern keine aktive Komponente enthält.
4. Wasch- und Reinigungsmittel nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Mikro- und/oder Nanokapseln eine Teilchengröße von 10 nm bis 1000 µm aufweisen.
5. Wasch- und Reinigungsmittel nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Freisetzung des Kernmaterials mittels thermischer Energie oder durch Druck erfolgt.
6. Wasch- und Reinigungsmittel nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Oberfläche der Mikro- und/oder Nanokapseln ganz oder teilweise aus einem kationischen Polymer besteht oder mit einer kationischen Verbindung beschichtet ist.
7. Wasch- und Reinigungsmittel nach Anspruch 6, dadurch gekennzeichnet, daß dadurch gekennzeichnet, daß die kationischen Verbindungen ausgewählt sind aus, quaternären Ammoniumverbindungen der Formeln (I) und (II),
wobei R und R1 für einen acyclischen Alkylrest mit 12 bis 24 Kohlenstoffatomen, R2 für einen gesättigten C1-C4 Alkyl- oder Hydroxyalkylrest steht, R3 entweder gleich R, R1 oder R2 ist und COR4 und COR5 jeweils für einen aliphatischen Acylrest mit 12 bis 22 Kohlenstoffatomen mit 0, 1, 2 oder 3 Doppelbindungen steht sowie R6 für H oder OH steht, wobei m, n und o jeweils unabhängig voneinander den Wert 1, 2 oder 3 haben können und X entweder ein Halogenid-, Methosulfat-, Methophosphat- oder Phosphation ist,
quaternären Imidazoliniumverbindungen der Formel (III)
wobei R7 und R8 jeweils eine gesättigten Alkylrest mit 12 bis 18 Kohlenstoffatomen, R9 einen Alkylrest mit 1 bis 4 Kohlenstoffatomen oder H bedeutet und Z eine NH-Gruppe oder Sauerstoff bedeutet und A ein Anion ist, quaternären Verbindungen der Formel (IV)
wobei R10 für eine C1-4 Alkyl-, Alkenyl- oder Hydroxyalkylgruppe steht, R11 und R12 jeweils unabhängig ausgewählt eine C8-28 Alkylgruppe darstellt und p eine Zahl zwischen 0 und 5 ist,
kurzkettigen, wasserlöslichen, quaternären Ammoniumverbindungen, wie Trihydroxyethylmethylammonium-methosulfat oder die Alkyltrimethylammoniumchlo­ ride, Dialkyldimethylammoniumchloriden und Trialkylmethylammoniumchloriden, protonierten Alkylaminverbindungen, quaternisierten Proteinhydrolysate, Polyquaternium-Polymeren, kationischen quaternären Zuckerderivaten, Copolymeren von PVP und Dimethylaminomethacrylat, Copolymeren von Vinylimidazol und Vinylpyrrolidon, Aminosilicon-polymeren und -copolymeren, polyquaternierten Polymeren, kationischen Biopolymeren auf Chitinbasis, kationischen Silikonölen, Alkylamidoaminen, quaternären Esterverbindungen.
8. Wasch- und Reinigungsmittel nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Kapselmaterial ausgewählt ist aus natürlichen oder synthetischen Polymeren, insbesondere polymeren Polysacchariden, wie Agarose oder Cellulose, Chitin, Chitosan, Proteinen, wie Gelatine, Gummi arabicum, Ethylcellulose, Methylcellulose, Carboxymethylethylcellulose, Hydroxyethylcellulose, Celluloseacetaten, Poylamiden, Polycyanacrylaten, Polylactiden, Polyglycoliden, Polyanilin, Polypyrrol, Polyvinylpyrrolidon, Polystyrol, Polyvinylalkohol, Copolymeren aus Polystyrol und Maleinsäureanhydrid, Epoxidharze, Polyethylenimine, Copolymeren aus Styrol und Methylmethacrylat, Polyacrylaten und Polymethacrylaten, Polycarbonaten, Polyestern, Silikonen, Gemischen aus Gelatine und Wasserglas, Gelatine und Polyphosphat, Celluloseacetat und Phthalat, Gelatine und Copolymeren aus Maleinsäureanhydrid und Methylvinylether, Celluloseacetatbutyrat sowie beliebigen Gemischen der voranstehenden, die kationische Gruppen aufweisen können.
9. Wasch- und Reinigungsmittel nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Mikrokapseln ein Kernmaterial ausgewählt aus Textilpflegemitteln und Waschmittelinhaltsstoffen enthalten.
10. Wasch- und Reinigungsmittel nach Anspruch 9, dadurch gekennzeichnet, daß das Kernmaterial ausgewählt ist aus Duftstoffen, textilweichmachenden Substanzen und Appreturmitteln.
11. Wasch- und Reinigungsmittel nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß Buildermaterialien, organische Lösungsmittel, wie Ethanol oder Isopropylalkohol, Bleichmittel, Bleichaktivatoren, Fungizide, Enzyme, beispielsweise Cellulase, Farbstoffe, optische Aufheller, Lecithin, UV-Absorbentin, Konservierungsmittel, Soil-Repellents, Perlglanzmittel oder Duftstoffe, Elektrolyte, pH- Stellmittel sowie beliebige Gemische der voranstehenden enthalten sind.
12. Wasch- und Reinigungsmittel nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass es in flüssiger bis gelförmiger oder fester Form vorliegt.
13. Wasch- und Reinigungsmittel nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß es ein Mittel zur Textilbehandlung, insbesondere ein Universalwaschmittel, Feinwaschmittel, Textilvorbehandlungsmittel, Fleckenbehandlungsmittel, Textilnachbehandlungsmittel, wie ein Weichspüler, ist.
14. Wasch- und Reinigungsmittel nach Anspruch 13, dadurch gekennzeichnet, daß es ein Kombinationsprodukt ist, das Komponenten für die Textilreinigung und Komponenten für die Textilpflege in Form von Mikro- und/oder Nanokapseln enthält.
15. Verwendung des Wasch- und Reinigungsmittels nach einem der Ansprüche 1 bis 14 zum Reinigen von harten Oberflächen.
DE2000108306 2000-02-23 2000-02-23 Wasch- und Reinigungsmittel Ceased DE10008306A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE2000108306 DE10008306A1 (de) 2000-02-23 2000-02-23 Wasch- und Reinigungsmittel
EP01919315A EP1257353B1 (de) 2000-02-23 2001-02-20 Wasch- oder reinigungsmittel mit komponenten in form von mikro- und/oder nanokapseln
DE50104385T DE50104385D1 (de) 2000-02-23 2001-02-20 Wasch- oder reinigungsmittel mit komponenten in form von mikro- und/oder nanokapseln
ES01919315T ES2231467T3 (es) 2000-02-23 2001-02-20 Micro-y/o nanocapsulas.
AT01919315T ATE281235T1 (de) 2000-02-23 2001-02-20 Wasch- oder reinigungsmittel mit komponenten in form von mikro- und/oder nanokapseln
AU2001246459A AU2001246459A1 (en) 2000-02-23 2001-02-20 Microcapsules and/or nanocapsules
PCT/EP2001/001887 WO2001062376A1 (de) 2000-02-23 2001-02-20 Mikro- und/oder nanokapseln

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2000108306 DE10008306A1 (de) 2000-02-23 2000-02-23 Wasch- und Reinigungsmittel

Publications (1)

Publication Number Publication Date
DE10008306A1 true DE10008306A1 (de) 2001-09-06

Family

ID=7632010

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2000108306 Ceased DE10008306A1 (de) 2000-02-23 2000-02-23 Wasch- und Reinigungsmittel

Country Status (1)

Country Link
DE (1) DE10008306A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1359212A1 (de) * 2002-04-23 2003-11-05 Cognis Iberia, S.L. Tensidzubereitungen enthaltend mikroverkapselte Wirkstoffe
EP1499704A1 (de) * 2002-04-26 2005-01-26 Salvona L.L.C. Mehrkomponentiges system zur kontrollierten abgabe von textilpflegemitteln
DE10338882A1 (de) * 2003-08-23 2005-03-24 Henkel Kgaa Waschmittel mit steuerbarer Aktivstofffreisetzung
WO2009137188A1 (en) * 2008-05-07 2009-11-12 3M Innovative Properties Company Antimicrobial nanoparticles

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1359212A1 (de) * 2002-04-23 2003-11-05 Cognis Iberia, S.L. Tensidzubereitungen enthaltend mikroverkapselte Wirkstoffe
EP1499704A1 (de) * 2002-04-26 2005-01-26 Salvona L.L.C. Mehrkomponentiges system zur kontrollierten abgabe von textilpflegemitteln
EP1499704A4 (de) * 2002-04-26 2005-12-07 Salvona Llc Mehrkomponentiges system zur kontrollierten abgabe von textilpflegemitteln
DE10338882A1 (de) * 2003-08-23 2005-03-24 Henkel Kgaa Waschmittel mit steuerbarer Aktivstofffreisetzung
DE10338882B4 (de) * 2003-08-23 2007-08-02 Henkel Kgaa Waschmittel mit steuerbarer Aktivstofffreisetzung
WO2009137188A1 (en) * 2008-05-07 2009-11-12 3M Innovative Properties Company Antimicrobial nanoparticles
US7973096B2 (en) 2008-05-07 2011-07-05 3M Innovative Properties Company Antimicrobial nanoparticles

Similar Documents

Publication Publication Date Title
EP1257353B1 (de) Wasch- oder reinigungsmittel mit komponenten in form von mikro- und/oder nanokapseln
EP1280878B1 (de) Verwendung von nanoskaligen teilchen zur verbesserung der schmutzablösung
WO2006053615A1 (de) Duftstoffkombination enthaltend 3, 7-dymethyl-6-en-nitril (citronellyl nitril) als genanoritril-substitut
DE10010760A1 (de) Mehrphasige Wasch- und Reinigungsmittelformkörper mit nicht-gepreßten Anteilen
EP1224256A1 (de) Wasch- oder reinigungsmittel
EP1660621B1 (de) Auf substratoberflächen aufziehende mittel
WO2001040420A2 (de) Wasch- und reinigungsmittel
DE10021165A1 (de) System für die Freisetzung von Wirkstoffen
WO2008128817A1 (de) Flüssiges textilbehandlungsmittel
DE10008307A1 (de) Nanokapseln
WO2007107191A1 (de) Mehrphasiges wasch-, spül- oder reinigungsmittel mit vertikalen phasengrenzen
DE102005062648A1 (de) Duftstofffixierung aus Wasch- und Reinigungsmitteln an harten und weichen Oberflächen
DE10008306A1 (de) Wasch- und Reinigungsmittel
DE10010759B4 (de) Verfahren zur Herstellung von Formkörpern
EP1802733B1 (de) Aufnahmefähige partikel
WO2003054134A1 (de) Wäschevorbehandllungsmittel
WO2007033731A1 (de) Wasch- und reinigungsmittel mit hautpflegenden inhaltsstoffen
EP1340808B1 (de) Parfümierte Reinigungsmittelformkörper
WO2002008137A2 (de) Teilchenförmiges kompositmaterial zur gesteuerten freisetzung eines wirkstoffs
DE10164137B4 (de) Wasch-, Reinigungs- und/oder Pflegemittel-Formulierung enthaltender Formkörper mit erhöhter Lagerstabilität sowie Verfahren zu seiner Herstellung
DE102012220466A1 (de) Textilpflegemittel
DE102008015110A1 (de) Sprühgetrocknete Wasch- oder Reinigungsmittelprodukte
DE10020332A1 (de) Wasch- und Reinigungsmittel
DE10029185A1 (de) Verfahren zur antimikrobiellen Behandlung von durch mikrobiellen Befallgefährdeten Materialien
WO2002072535A1 (de) Modifizierte cyanacrylatester, daraus hergestellte nano- oder mikrokapseln und deren verwendung in wasch- oder reinigungsmitteln

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8131 Rejection