WO2008128817A1 - Flüssiges textilbehandlungsmittel - Google Patents

Flüssiges textilbehandlungsmittel Download PDF

Info

Publication number
WO2008128817A1
WO2008128817A1 PCT/EP2008/052698 EP2008052698W WO2008128817A1 WO 2008128817 A1 WO2008128817 A1 WO 2008128817A1 EP 2008052698 W EP2008052698 W EP 2008052698W WO 2008128817 A1 WO2008128817 A1 WO 2008128817A1
Authority
WO
WIPO (PCT)
Prior art keywords
textiles
textile treatment
treatment agent
oil
preferred
Prior art date
Application number
PCT/EP2008/052698
Other languages
English (en)
French (fr)
Inventor
Konstanze Mayer
Georg Meine
Original Assignee
Henkel Ag & Co. Kgaa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Ag & Co. Kgaa filed Critical Henkel Ag & Co. Kgaa
Publication of WO2008128817A1 publication Critical patent/WO2008128817A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/1213Oxides or hydroxides, e.g. Al2O3, TiO2, CaO or Ca(OH)2
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/62Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0063Photo- activating compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06LDRY-CLEANING, WASHING OR BLEACHING FIBRES, FILAMENTS, THREADS, YARNS, FABRICS, FEATHERS OR MADE-UP FIBROUS GOODS; BLEACHING LEATHER OR FURS
    • D06L4/00Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/04Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/06Inorganic compounds or elements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/46Oxides or hydroxides of elements of Groups 4 or 14 of the Periodic Table; Titanates; Zirconates; Stannates; Plumbates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M16/00Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic

Definitions

  • the present invention relates to a liquid fabric treatment composition containing photocatalytic material and cationic surfactant. Furthermore, it relates to a method for applying photocatalytic material to textiles, as well as a method for cleaning, care, equipment, finishing and / or conditioning of textiles.
  • Textile treatment agents e.g. Detergents for cleaning textiles. Textile treatment agents are therefore provided by the industry in the most varied embodiments for commercial and technical needs as well as for private household needs.
  • the object of the present invention was therefore to provide a means which helps to ensure a good laundry hygiene.
  • the subject of the invention is a liquid textile treatment agent, preferably textile aftertreatment agent, in particular fabric softener containing photocatalytic material and cationic surfactant.
  • the contained photocatalytic material which is preferably fine particulate, that is preferably has particle sizes ⁇ 500 nm, makes use of electromagnetic radiation of a suitable wavelength range, by virtue of which a general cleaning performance is provided, by virtue of which e.g. Soils or microbes by photocatalytic or photochemical reaction, e.g. by oxidation or reduction, degradable, deactivatable or reducible.
  • the photocatalytic material is in particular a daylight-active material, in particular a daylight-active bleach, thus uses the electromagnetic radiation of daylight.
  • a daylight-active material in particular a daylight-active bleach
  • uses the electromagnetic radiation of daylight For a preferred development of the effectiveness of the photocatalytic material requires the presence of preferably oxygen and / or water.
  • oxygen and / or water for this purpose, for example, the dissolved oxygen present in water or the water contained in the air (air humidity) is sufficient.
  • the photocatalytic activity of the photocatalytic material advantageously relates to natural or artificial light in the wavelength range of 10-1200 nm, preferably of 300-1200 nm, in particular between 380 and 800 nm. If the photocatalytic material in particular visible to the human eye radiation of the visible range of the spectrum with wavelengths between 380 and 800 nm for the above mentioned Exploits the purpose of degradation, deactivation or reduction of impurities, then there is a preferred embodiment of the invention. Even UV light is very beneficial.
  • the photocatalytic material can be effective in several ways during and after the textile treatment.
  • the effect in the textile treatment bath is called. If you e.g. the textiles to be treated are placed in a tub containing a wash liquor into which the fabric treatment agent according to the invention has been previously added, and then exposing this fabric treatment bath, for example, to light, e.g. in the sun, then the photocatalytic material in the textile treatment bath develops a general cleaning performance.
  • the textile treatment in an automatic washing machine which has a viewing window (porthole), as is customary at least in front loaders and / or in washing machine with internal light source.
  • the photocatalytic material applied to the textiles to be dried as part of the textile treatment can develop a general cleaning performance in conjunction with light irradiation, for example by sunlight when drying on a line outdoors. Such is also possible in the textile drying in an automatic clothes dryer with internal light source.
  • the effect after drying of the textile should be mentioned.
  • the dried textiles are not really dry in the true sense, but contain a residual moisture, which is in balance with the ambient humidity (room humidity, body moisture). These conditions are sufficient to develop a general cleaning performance, caused by the deposited on the textiles photocatalytic material under light irradiation, for example by sunlight. This latter effect is particularly advantageous because the treated garments are provided with a long-term protection as it were, so that the clothing is equipped with a self-cleaning ability.
  • This self-cleaning ability is e.g. advantageous to counteract the development of fetid odors which may be present on clothing e.g. make swift after sweaty activities (such as sports activities).
  • This self-cleaning ability is e.g. advantageous to prevent or at least complicate the colonization of microbes on textiles.
  • This self-cleaning ability is e.g. advantageous to ward off or complicate the mounting and sticking of particular colored stains on fibers.
  • the Wiederauswaschles color stains from textiles that have been washed with the textile treatment agent according to the invention facilitated.
  • quick action is the top priority, because the fresher a stain is, the easier it is to remove.
  • a drying of stains or other soiling, such as blood, coffee, tea, pen, fruit, red wine or tar stains, especially over several days should usually be avoided, so as not to give a possibly irreversible fiber adhesion.
  • the present invention provides relief because fabrics treated with fabric treatment agents of the present invention demonstrated that the fiber adhesion of stains or other contaminants was mitigated so that they could be more easily washed out.
  • the photocatalytically active material is thus advantageous in order to improve the Wiederauswaschberry of colored stains.
  • the photocatalytically active material is able namely under the action of light, the structure of particular colored stains (dyes) z. B by oxidation to destroy.
  • the conjugated double bonds which are responsible for the absorption of visible light in the dyes and thus for the coloring, are cleaved or hydroxylated.
  • the dye loses its coloring properties and also its strong fiber adhesion. At the same time the water solubility is increased. It can thus be prevented that a colored stain "eats into the textile" and destroys it permanently.
  • the application of the textile treatment agent according to the invention in the textile treatment also allows a uniform mounting of the photocatalytic material on the textiles to be treated.
  • cationic surfactant especially in the form of esterquat
  • the cationic surfactant, in particular esterquat also leads to an increased adhesion of the photocatalytic material to the textiles and thus prolongs its duration of action. Overall, this makes it possible to improve the cleaning performance.
  • the textile treatment agent according to the invention also makes possible a very textile-sparing textile treatment, e.g. Stain treatment.
  • Another advantage of the textile treatment agent according to the invention is that it contributes to the reduction, elimination or neutralization of fetid odors.
  • the fetid odor can advantageously be reduced so that a previously existing odor nuisance is no longer present.
  • the development of fetid odors can be prevented for a longer period of time.
  • This is also a great advantage since, overall, a general cleaning performance can be combined with the elimination of harmful microbes in one treatment step and, in addition, a blocking or prevention of foul odors with long-term effect is provided. This goes beyond the function of previous textile treatment means significantly. The formation of bad odors can thus be reduced.
  • Noxa is understood to mean factors that can damage the human organism, or at least impair people's well-being. These are in particular the just mentioned factors, especially microbiological factors such as viruses, bacteria, fungi, etc.
  • the development of the general cleaning effect which can be observed in the application of the textile treatment agent according to the invention is particularly effective with regard to colored impurities, which in particular originate from red to blue anthocyanin dyes, e.g. Cyanidin, e.g. from cherries or blueberries, red betanidine from beetroot, orange-red carotenoids, e.g. Lycopene, beta-carotene, e.g. from tomatoes or carrots, yellow curcuma dyes, e.g. Curcumin, e.g. curry and mustard, brown tannins, e.g. from tea, fruit, red wine, deep brown humic acid, e.g.
  • red to blue anthocyanin dyes e.g. Cyanidin, e.g. from cherries or blueberries, red betanidine from beetroot, orange-red carotenoids, e.g. Lycopene, beta-carotene, e.g. from tomatoes or carrots, yellow curcuma dyes
  • the textile treatment agent according to the invention also meets today's washing habits of consumers. This increasingly prefer washing at lower temperatures, eg ⁇ 4O 0 C. A clear death of germs but only starts at temperatures> 4O 0 C, only above a temperature of 55 0 C, most bacteria are killed. Therefore, if washed for a long time only at 3O 0 C, under certain circumstances can no longer guarantee sufficient hygienic purity.
  • the application of the textile treatment agent present invention allows the consumer the consistent washing at T ⁇ 4O 0 C with improved hygiene effect.
  • a textile treatment agent according to the invention preferably combines the advantages of a hygiene rinser and a softener in a supply form and thereby facilitates the textile care and treatment, since instead of two different aftertreatment agents, it must use only one, namely the textile treatment agent according to the invention, if it is a softening and hygiene-promoting Aftertreatment of his laundry considers necessary.
  • the softness performance is advantageously provided by the cationic surfactant.
  • the textile treatment agents of the invention contain cationic surfactant as a mandatory ingredient. Cationic surfactants are known to the person skilled in the art.
  • surface-active compounds usually from an optionally substituted hydrocarbon skeleton, with one or more cationic (positively charged) groups which preferentially dissociate in aqueous solution, advantageously adsorb at interfaces, and preferably positively charged above the critical micelle concentration Micellen agg rule.
  • cationic surfactants are in particular quaternary ammonium compounds having one or two hydrophobic alkyl radicals.
  • cationic surfactants having two hydrophobic groups which are linked via ester bonds with a quaternized di (tri) ethanolamine or an analogous compound
  • esterquats are particularly preferred according to the invention.
  • Other examples of cationic surfactants are e.g. quaternary phosphonium salts, tertiary sulfonium salts, imidazolinium salts or N-alkylpyridinium salts.
  • Cationic surfactants can also be obtained by protonation of primary fatty amines or fatty amine N-oxides.
  • quaternary ammonium compounds such as monoalk (en) yltrimethylammonium compounds, dialk (en) yldimethylammonium compounds, mono-, di- or triesters of fatty acids with alkanolamines are most preferred according to the invention.
  • quaternary ammonium compounds are shown, for example, in the formulas (I) and (II):
  • R is an acyclic alkyl radical having 12 to 24 carbon atoms
  • R 1 is a saturated C 1 -C 4 alkyl or hydroxyalkyl radical
  • R 2 and R 3 are either R or R 1 or are an aromatic radical
  • X ⁇ represents either a halide, methosulfate, methophosphate or phosphate ion and mixtures of these.
  • Examples of cationic compounds of the formula (I) are monotaltrimethylammonium chloride, monostearyltrimethylammonium chloride, didecyldimethylammonium chloride, ditallowdimethylammonium chloride or dihexadecylammonium chloride.
  • R 4 is an aliphatic alk (en) yl radical having 12 to 22 carbon atoms with 0, 1, 2 or 3 double bonds and / or optionally with substituents
  • R 5 is H, OH or O (CO) R 7
  • R 6 is, independently of R 5, H, OH or O (CO) R 8
  • R 7 and R 8 are each independently an aliphatic alk (ene) ylrest having 12 to 22 carbon atoms with O, 1, 2 or 3 double bonds
  • m, n and p may each independently have the value 1, 2 or 3 have.
  • X can be either a halide, methosulfate, methophosphate or phosphate ion, as well as mixtures of these anions.
  • R 5 represents the group 0 (CO) R 7 .
  • R 5 is the group 0 (CO) R 7 and R 4 and R 7 are alk (en) yl radicals having 16 to 18 carbon atoms.
  • R 6 is also OH.
  • Examples of compounds of the formula (I) are methyl N- (2-hydroxyethyl) -N, N-di (tallowacyloxyethyl) ammonium methosulfate, bis (palmitoyloxyethyl) hydroxyethyl methyl ammonium methosulfate, 1, 2-bis [tallowloxy] -3-trimethylammonium propane chloride or methyl N, N-bis (stearoyloxyethyl) -N- (2-hydroxyethyl) ammonium methosulphate.
  • the acyl groups are preferred whose corresponding fatty acids have an iodine number between 1 and 100, preferably between 5 and 80, more preferably between 10 and 60 and in particular between 15 and 45 and which have a cis / trans isomer ratio (in% by weight) of greater than 30:70, preferably greater than 50:50 and in particular equal to or greater than 60:40.
  • Stepan under the tradename Stepantex ® methylhydroxyalkyldialkoyloxyalkylammonium or those known under Dehyquart ® Cognis products, known under Rewoquat ® products from Degussa or those known under Tetranyl® products of Kao.
  • Further preferred compounds are the diester quats of the formula (III) which are obtainable under the name Rewoquat® W 222 LM or CR 3099.
  • R 21 and R 22 are each independently an aliphatic radical having 12 to 22 carbon atoms with 0, 1, 2 or 3 double bonds.
  • ester group 0 (CO) R where R is a long-chain alk (en) yl radical
  • softening compounds which have the following groups: RO (CO), N (CO) R or RN (CO), where of these groups, N (CO) R groups are preferred.
  • Suitable cationic surfactants are, for example, also quaternary imidazolinium compounds of the formula (IV)
  • R 9 is H or a saturated alkyl radical having 1 to 4 carbon atoms
  • R 10 and R 11 independently of one another may each be an aliphatic, saturated or unsaturated alkyl radical having 12 to 18 carbon atoms
  • R 10 may alternatively also be 0 (CO) R 20 where R 20 is an aliphatic, saturated or unsaturated alkyl radical having 12 to 18 carbon atoms, and Z is an NH group or oxygen and X - is an anion.
  • q can take integer values between 1 and 4.
  • R 12, R 13 and R 14 independently represents a C- ⁇ _ 4 alkyl, alkenyl or hydroxyalkyl group, R 15 and R 16 are each independently selected a C. 8 28 represents alkyl, X ⁇ is an anion, and r is a number between O and 5.
  • a preferred example of a cationic deposition aid according to formula (V) is 2,3-bis [tallowacyloxy] -3-trimethylammoniumpropane chloride.
  • cationic surfactants which can be used according to the invention are the quaternized protein hydrolyzates or protonated amines.
  • cationic polymers can also be used according to the invention as cationic surfactant.
  • Suitable cationic polymers include the polyquaternium polymers as described in the CTFA Cosmetic Ingredient Dictionary (The Cosmetic, Toiletry and Fragrance, Inc., 1997), in particular the Polyquaternium-6, Polyquaternium-7, Polyquaternium, also referred to as Merquats.
  • cationic surfactants are polyquaternized polymers (e.g., Luviquat® Care from BASF) and also chitin-based cationic biopolymers and their derivatives, for example, the polymer available under the trade name Chitosan® (manufactured by Cognis).
  • polyquaternized polymers e.g., Luviquat® Care from BASF
  • Chitosan® manufactured by Cognis
  • Some of the cited cationic polymers additionally have skin and / or textile care properties, which is advantageous.
  • cationic surfactants are compounds of the formula (VI),
  • R 17 can be an aliphatic alk (en) yl radical having 12 to 22 carbon atoms with 0, 1, 2 or 3 double bonds, s can assume values between 0 and 5.
  • R 18 and R 19 are each independently H, C- ⁇ _ 4 alkyl or hydroxyalkyl and X ⁇ is an anion.
  • Suitable cationic surfactants include protonated or quaternized polyamines.
  • Particularly preferred cationic surfactants are alkylated quaternary ammonium compounds, of which at least one alkyl chain is interrupted by an ester group and / or amido group.
  • alkylated quaternary ammonium compounds of which at least one alkyl chain is interrupted by an ester group and / or amido group.
  • Very particular preference is given to N-methyl-N- (2-hydroxyethyl) -N, N- (ditallowacyloxyethyl) ammonium methosulphate or bis (palmitoyloxyethyl) -hydroxyethylmethylammonium methosulphate.
  • a textile treatment agent according to the invention contains as cationic surfactant a quaternary ammonium compound, in particular esterquat, preferably in amounts of> 0.1% by weight, advantageously 1 to 40% by weight, in particular 3 to 30% by weight. %, Wt .-% based on the total fabric treatment agent.
  • Sensible upper limits for the amount of cationic surfactant used can also be obtained at 25% by weight
  • Sensible lower limits for the amount of cationic surfactant used can also be obtained at 4% by weight
  • the photocatalytic material comprises titanium dioxide, in particular a modified titanium dioxide, preferably a carbon-modified titanium dioxide.
  • the photocatalytic material in particular the (preferably modified) titanium dioxide, according to a preferred embodiment of the invention in the textile treatment agent according to the invention in amounts of advantageously 0.0001 to 30 wt .-%, preferably 0.001 to 20 wt .-%, advantageously 0.01 to 15 wt .-%, in a further advantageous manner 0.1 to 10 wt .-%, more preferably 1 to 5 wt .-%, wt .-% based on the total fabric treatment agent.
  • the titanium dioxide (preferably modified) is a carbon-modified titanium dioxide.
  • titanium dioxides for example nitrogen-modified titanium dioxide or e.g. Titanium dioxide doped with rhodium and / or platinum ions.
  • the carbon content of the advantageously carbon-modified titanium dioxide may in a preferred embodiment in the range of 0.01 to 10 wt .-%, preferably from 0.05 to 5.0 wt .-%, advantageously from 0.3 to 1, 5 wt. %, in particular from 0.4 to 0.8% by weight.
  • the TiO 2 content of the carbon-modified titanium dioxide is, for example, more than 95% by weight, 96% by weight, 97% by weight, 98% by weight or 99% by weight, based on the total with carbon modified titanium dioxide. If the carbon is incorporated only in a surface layer of the titanium dioxide particles, so is a preferred embodiment.
  • the modified titanium dioxide may advantageously additionally contain nitrogen.
  • the specific surface of the titanium dioxide preferably of the modified titanium dioxide, according to BET (BET advantageously determined according to DIN ISO 9277: 2003-05, preferably also simplified according to DIN 66132: 1975-07) preferably 50 to 500 m 2 / g, advantageously 100 to 400 m 2 / g, in a further advantageous manner 200 to 350 m 2 / g, in particular 250 to 300 m 2 / g, so is also a preferred embodiment.
  • the carbon-modified titanium dioxide can be obtained according to a preferred embodiment, for example, by intimately mixing a titanium compound having a specific surface area of preferably at least 50 m 2 / g according to BET, with an organic carbon compound and the mixture at a temperature of up to is thermally treated to 35O 0 C.
  • the carbonaceous substance which can be used in this case can, according to a preferred embodiment, be a carbon compound which contains at least one functional group, preferably selected from OH, CHO, COOH, NHx, SHx.
  • the carbon compound may be a compound selected from ethylene glycol, glycerol, succinic acid, pentaerythritol, carbohydrates, sugars, starch, alkyl polyglucosides, organoammonium hydroxides or mixtures thereof. It is also possible for carbon black or activated carbon to be used as the carbonaceous substance.
  • the carbonaceous substance which is advantageously mixed with the titanium compound to arrive after the thermal treatment to the modified titanium dioxide, a decomposition temperature of at most 400 0 C preferably ⁇ 35O 0 C and particularly preferably ⁇ 300 0 C. having.
  • the titanium compound which is preferably used for producing the modified titanium dioxide and intimately mixed with an organic carbon compound according to the aforementioned preferred embodiment may be an amorphous, partially crystalline or crystalline titanium oxide or hydrous titanium oxide or a titanium hydrate or a titanium oxyhydrate, which in turn corresponds to a preferred embodiment ,
  • the thermal treatment of the mixture of the titanium compound and the carbon compound can, according to a preferred embodiment, advantageously be carried out in a continuously operated calcining unit, preferably a rotary kiln.
  • the modified titanium dioxide can be obtained, in particular in the context of what has been described above, preferably by adding a titanium dioxide (eg having a particle size in the range from 2 to 500 nm or eg 3 to 150 nm or eg 4 to 100 nm or eg 5 to 75 nm or, for example, 10 to 30 nm or, for example, 200 to 400 nm), such as commercially available in powder or slurry form, and from this produces a suspension in a liquid, such as preferably water.
  • a titanium dioxide eg having a particle size in the range from 2 to 500 nm or eg 3 to 150 nm or eg 4 to 100 nm or eg 5 to 75 nm or, for example, 10 to 30 nm or, for example, 200 to
  • a carbonaceous substance is then advantageously added to the suspension.
  • Mixing can be assisted by the use of ultrasound.
  • the mixing process (eg stirring) may preferably last several hours, preferably 2, 4, 6, 8, 10 or 12 hours or even longer.
  • the amount of the carbon compound is advantageously 1-40% by weight, accordingly, the amount of the titanium compound is preferably 60-99% by weight.
  • the liquid is removed, for example by filtration, evaporation in vacuo or decantation, and the residue is preferably dried (eg, preferably at temperatures of 70-200 0 C, advantageously over several hours, for example at least 12 hours) and then calcined, for example a temperature of at least 26O 0 C, preferably for example at 300 0 C, preferably over a period of several hours, preferably 1-4 hours, in particular 3 hours.
  • the calcination may advantageously take place in a closed vessel.
  • the calcination temperature for example 300 0 C, is reached within one hour (slow heating to 300 0 C).
  • a color change of the powder from white to dark brown to beige or slightly yellowish-brownish is preferably observed. Too long a heating leads to inactive, colorless powders. The expert can estimate this with a few routine experiments.
  • the calcination may e.g. advantageously take place until after a color change of the powder from white to dark brown another color change takes place on beige or slightly yellowish-brownish.
  • a maximum temperature of 35O 0 C should preferably not be exceeded.
  • decomposition of the organic carbon compound occurs on the surface of the titanium compound, so that it is preferable to form a modified titanium dioxide containing preferably 0.005-4% by weight of carbon.
  • the product is advantageously deagglomerated by known methods, for example in a pin mill, jet mill or counter-jet mill.
  • the grain fineness to be achieved depends on the grain size of the starting titanium compound.
  • the particle size or specific surface of the product is only slightly lower, but in the same Order of magnitude like that of the educt.
  • the desired grain fineness of the photocatalyst depends on the field of application of the photocatalyst. It is usually in the range as in TiO 2 - pigments, but may also be below or above.
  • the photocatalytic material, preferably modified titanium dioxide, contained in the textile treatment agent according to the invention may advantageously have a particle size in the range between 2 and 500 nm, e.g. 3 to 150 nm or e.g. 4 to 100 nm or e.g. 5 to 75 nm or e.g. 10 to 30 nm or e.g. 200 to 400 nm.
  • the particle size of the photocatalytic material, preferably modified titanium dioxide may preferably be in the range of 100-500 nm, advantageously 200-400 nm. It may also be preferred that the particle size is very small, e.g.
  • nm in the range of 2-150 nm, preferably 3-100 nm, advantageously 4-80 nm or e.g. 5-50 nm or e.g. 8-30 nm or e.g. 10-20 nm.
  • Very small particles e.g. with a particle size of in particular 2, 3, 4, 5 or 10 nm are preferably included, these can also form together agglomerates, which are then correspondingly larger, e.g. up to 600 nm or up to 500 nm or up to 400 nm or up to 300 nm in size, etc.
  • the particle size may e.g. advantageously at values such as 5 nm, 10 nm, 15 nm, 20 nm, 25 nm, 30 nm, 35 nm, 40 nm, 45 nm, 50 nm or 60 nm.
  • very small particle sizes below 50 nm, below 40 nm, below 30 nm or below 20 nm may be preferred.
  • the particle size can then be e.g.
  • the bulk density of the preferably modified titanium dioxide is preferably in the range from 100 to 800 g / l, advantageously from 200 to 600 g / l, in particular from 300 to 500 g / l.
  • the bulk density may be 350 g / l, 400 g / l or 500 g / l.
  • the (preferably modified) titanium dioxide is present in the anatase crystal modification.
  • the modified titanium dioxide described above is characterized by a very good photocatalytic activity, in particular with the use of daylight.
  • visible to the human eye radiation of the visible region of the spectrum with wavelengths between 380 and 800 nm are used very well for the purposes of degradation, deactivation or reduction of impurities from the described modified titanium dioxide.
  • the UV radiation between 10-380 nm can also be used very well.
  • the textile treatment agent according to the invention comprises a humectant, preferably glycerol, dimers and trimers of glycerol, ethylene glycol, propylene glycol, sugar alcohols, preferably glucitol, xylitol, mannitol, alkyl polyglucosides, fatty acid glucamides, sucrose esters, sorbitans, polysorbates, polydextrose, polyethylene glycol, preferably having average molecular weights of from 200 to 8000, propanediols, butanediols, triethylene glycol, hydrogenated glucose syrup and / or mixtures of the abovementioned, preferably in amounts of from 0.01 to 10% by weight, advantageously from 0.1 to 5% by weight, in particular 0.5 to 2 wt .-%, wt .-% in each case based on the entire textile treatment agent.
  • a humectant preferably glycerol, dimers and trimers of glycerol
  • humectant when included, further improved deposition of the finely divided photoactive material has resulted in conventional textile treatment on the fabrics.
  • a particularly suitable humectant is glycerin as well as its dimers and trimers and / or mixtures thereof.
  • the textile treatment agent according to the invention comprises a) photocatalytic material, preferably such as described above, in particular in amounts as described above.
  • optionally solvents preferably monohydric alcohols, in particular 2-propanol, advantageously in amounts of 0.05 to 5% by weight, preferably 0.1 to 4% by weight, in particular 0.3-3% by weight, f) optionally humectants, preferably those as described above, in particular in amounts as described above, g) optionally emulsifiers, preferably nonionic surfactants, advantageously
  • Thickeners, skin-care active substances, electrolyte, pH adjusters, solvents, fragrances and / or nonionic surfactants which can preferably be used in a textile treatment agent according to the invention according to the above embodiment are described below.
  • the textile treatment agents may also preferably contain nonionic softening components, especially polyoxyalkylene glycol alkanoates, polybutylenes, long-chain fatty acids, ethoxylated fatty acid ethanolamides, alkyl polyglucosides, especially sorbitan mono, di- and triesters, and fatty acid esters of polycarboxylic acids.
  • nonionic softening components especially polyoxyalkylene glycol alkanoates, polybutylenes, long-chain fatty acids, ethoxylated fatty acid ethanolamides, alkyl polyglucosides, especially sorbitan mono, di- and triesters, and fatty acid esters of polycarboxylic acids.
  • a softening clay eg bentonite
  • nonionic surfactants it is possible to use preferably alkoxylated, advantageously ethoxylated, in particular primary, alcohols having preferably 8 to 18 carbon atoms and on average 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol residue is linear or preferably methyl-branched in the 2-position may be or contain linear and methyl-branched radicals in the mixture, as they are usually present in Oxoalkoholresten.
  • alcohol ethoxylates with linear radicals of alcohols of native origin having 12 to 18 carbon atoms, for example of coconut, palm, tallow or oleyl alcohol, and on average 2 to 8 EO per mole of alcohol are preferred.
  • the preferred ethoxylated alcohols include, for example C 12 -i 4 -alcohols with 3 EO, 4 EO or 7 EO, C ⁇ -alcohol with 7 EO, C 13 . 15 alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C 12 -i 8 -alcohols with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of C 12 -i 4 -alcohol with 3 EO and C 12 -i 8 -alcohol with 7 EO.
  • the degrees of ethoxylation given represent statistical means which, for a particular product, may be an integer or a fractional number.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow rank ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples of these are tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • Nonionic surfactants containing EO and PO groups together in the molecule can also be used according to the invention. This block copolymers with EO-PO block units or PO-EO block units are used, but also EO-PO-EO copolymers or PO-EO-PO copolymers.
  • mixed alkoxylated nonionic surfactants in which EO and PO units are not distributed in blocks, but randomly. Such products are available by the simultaneous action of ethylene and propylene oxide on fatty alcohols.
  • nonionic surfactants and alkyl glycosides of the general formula RO (G) x can be used in which R is a primary straight-chain or methyl-branched, especially in the 2-position methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18 carbon atoms and G is the symbol representing a glycose moiety having 5 or 6 C atoms, preferably glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is any number between 1 and 10; preferably x is 1, 2 to 1, 4.
  • Alkyl glycosides are known, mild surfactants and are therefore preferably used in the surfactant mixture.
  • nonionic surfactants which can be employed either as the sole nonionic surfactant or in combination with other nonionic surfactants are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably having from 1 to 4 carbon atoms in the alkyl chain, especially fatty acid methyl esters.
  • Nonionic surfactants of the amine oxide type for example N-cocoalkyl-N, N-dimethylamine oxide and N-tallowalkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides may also be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, especially not more than half thereof.
  • surfactants are polyhydroxy fatty acid amides of the formula (VII)
  • RCO is an aliphatic acyl radical having 6 to 22 carbon atoms
  • R 1 is hydrogen, an alkyl or hydroxyalkyl radical having 1 to 4 carbon atoms
  • [Z] is a linear or branched polyhydroxyalkyl radical having 3 to 10 carbon atoms and 3 to 10 hydroxyl groups.
  • the polyhydroxy fatty acid amides are known substances which can usually be obtained by reductive amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine and subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula (VIII)
  • R is a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms
  • R 1 is a linear, branched or cyclic alkyl radical or an aryl radical having 2 to 8 carbon atoms
  • R 2 is a linear, branched or cyclic alkyl radical or an aryl radical or an oxyalkyl radical having 1 to 8 carbon atoms
  • C- ⁇ _ 4 alkyl or phenyl radicals are preferred
  • [Z] is a linear polyhydroxyalkyl radical whose alkyl chain is substituted with at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propoxylated Derivatives of this residue.
  • [Z] is preferably obtained by reductive amination of a sugar, for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a sugar for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy- or N-aryloxy-substituted compounds can then be converted into the desired polyhydroxy fatty acid amides by reaction with fatty acid methyl esters in the presence of an alkoxide as catalyst.
  • the nonionic surfactants may be present in the textile treatment agents according to the invention, in particular fabric softeners, preferably in amounts of 0-8% by weight.
  • the textile treatment agents are liquid Washing agent should act, that they may contain, for example, 5 to 30 wt .-%, preferably 7 to 20 wt .-% and in particular 9 to 15 wt .-% of nonionic surfactant, wt .-% each based on the total fabric treatment agent. This is less preferred.
  • skin care agents or skin-care active substances are also present in the textile treatment agent according to the invention, in particular in amounts of> 0.01% by weight, based on the total textile treatment agent.
  • Skin care agents may in particular be those which give the skin a sensory benefit, e.g. by delivering lipids and / or moisturizing factors.
  • Skin care agents may e.g. Proteins, amino acids, lecithins, lipids, phosphatides, plant extracts, vitamins; Likewise, fatty alcohols, fatty acids, fatty acid esters, waxes, petrolatum, paraffins can act as skin care agents.
  • Skin-care active substances are all those active substances which give the skin a sensory and / or cosmetic advantage.
  • Skin-care active substances are preferably selected from the following substances: a) waxes such as, for example, carnauba, spermaceti, beeswax, lanolin and / or derivatives thereof and others.
  • Hydrophobic plant extracts c) Hydrocarbons such as squalene and / or squalanes
  • Hydrocarbons such as squalene and / or squalanes
  • Higher fatty acids preferably those having at least 12 carbon atoms, for example lauric acid, stearic acid, behenic acid, myristic acid, palmitic acid, oleic acid, linoleic acid, linolenic acid, isostearic acid and / or polyunsaturated fatty acids and other.
  • Higher fatty alcohols preferably those having at least 12 carbon atoms, for example, lauryl alcohol, cetyl alcohol, stearyl alcohol, oleyl alcohol, behenyl alcohol, cholesterol and / or 2-hexadecanol and others.
  • esters preferably such as cetyloctanoates, lauryl lactates, myristyl lactates, cetyl lactates, isopropyl myristates, myristyl myristates, isopropyl palmitates, isopropyl adipates, butyl stearates, decyl oleates, cholesterol stearates, glycerol monostearates, glycerol distearates, glycerol tristearates, alkyl lactates, alkyl citrates and / or alkyl tartrates and others.
  • lipids such as cholesterol, ceramides and / or sucrose esters and other h) vitamins such as vitamins A and E, vitamin C esters, including vitamin
  • Preferred skin care active substances are preferably also essential oils, in particular selected from the group of Angelica fine - Angelica archangelica, Anis - Pimpinella anisum, Benzoin siam - Styrax tokinensis, Cabreuva - Myrocarpus fastigiatus, Cajeput - Melaleuca leucadendron, Cistrose - Cistrus ladaniferus, Copaiba - Balsam - Copaifera reticulata, Costus root - Saussurea discolor, Edeltann needle - Abies alba, Elemi - Canarium luzonicum, Fennel - Foeniculum dulce Spruce needle - Picea abies, Geranium - Pelargonium graveolens, Ho- leaves - Cinnamonum camphora, Immortelle Helichrysum ang., Ginger Extra - Zingiber off., St.
  • essential oils in particular selected from the group of Angelica fine - Angelica ar
  • Preferred skin care active ingredients are preferably also skin-protecting oils, in particular selected from the group algae oil Oleum Phaeophyceae, Aloe vera oil Aloe vera brasiliana, apricot kernel oil Prunus armeniaca, arnica montana Arnica, avocado Persea americana, borage Borago officinalis, Calendulaoil Calendula officinalis, camellia oil Camellia oleifera , Safflower oil Carthamus tinctorius, peanut oil Arachis hypogaea, hemp oil Cannabis sativa, hazelnut oil Corylus avellana, hypericum perforatum, Jojoba oil Simondsia chinensis, caraway oil Daucus carota, coconut oil Cocos nucifera, pumpkin seed oil Curcubita pepo, kukui nut oil Aleurites moluccana, macadamia nut oil Macadamia ternifolia, almond oil Pru
  • the optional skin-care active ingredients may be applied to the textile during textile treatment and then transferred from the textile to the skin when the textile contacts the skin, e.g. while wearing clothes.
  • skin-care active ingredients in the textile treatment agents according to the invention are beneficial to the skin of the consumer.
  • textile treatment agents according to the invention which optionally contain skin-care active substances
  • the skin-care active ingredients of the skin of the consumer are of immediate advantage, namely when the hand is in contact with the wash liquor.
  • the use of skin-care active ingredients is purely optional.
  • the textile treatment agent according to the invention is contained in an opaque packaging. This corresponds to a preferred embodiment of the invention. Preference is also given to disposable portions, z.b. in the form of pouches.
  • Another object of the invention is a method for applying photocatalytic material to textiles by treating these textiles in a textile treatment bath containing a textile treatment agent according to the invention. It is also possible to contact the textile directly with the textile treatment agent.
  • the invention further provides a process for the cleaning, care, finishing, softening and / or conditioning of textiles by treating these textiles in a textile treatment bath comprising a textile treatment agent according to the invention, at and / or following exposure of the textiles to light in the wavelength range of 10 -1200 nm. It is also possible to contact textile directly with the textile treatment agent.
  • the method according to the invention is directed to the removal, deactivation or reduction of microorganisms, in particular bacteria and germs, in textiles using light in the wavelength range of 10-1200 nm, then a preferred embodiment of the invention is present.
  • An inventive method for the prophylaxis of textiles in the form of an anticipatory defense and inhibition of stains and stains using light in the wavelength range of 10-1200 nm in turn represents a preferred embodiment of the invention.
  • An inventive method for finishing textiles with photocatalytic material to facilitate the removability of colored soil (colored spots) of textiles using light in the wavelength range of 10-1200 nm is also a preferred embodiment of the invention.
  • An inventive method for finishing textiles with photocatalytic material to reduce the fiber adhesion of dirt, preferably colored spots, on textiles using light imt wavelength range of 10-1200 nm also represents a preferred embodiment of the invention.
  • An inventive method for finishing textiles with photocatalytic material to increase the water solubility of dirt, preferably colored spots, on textiles, using light imt wavelength range of 10-1200 nm in turn represents a preferred embodiment of the invention.
  • An inventive method for finishing textiles with photocatalytic material to prevent the formation of fetid odors on the textiles, using light in the wavelength range of 10-1200 nm corresponds to a further preferred embodiment of the invention.
  • An inventive method for finishing textiles with photocatalytic material to equip the textiles with a self-cleaning ability, using light in the wavelength range of 10-1200 nm is also a preferred embodiment of the invention.
  • a method according to the invention for the removal or reduction of colored soils or stains on textiles which in particular originate from: red to blue anthocyanin dyes, such as e.g. Cyanidin, e.g. from cherries or
  • Red betanidine from beetroot orange-red carotenoids such as lycopene, beta-carotene, eg from tomatoes or carrots
  • yellow curcuma dyes such as curcumin, eg from curry and mustard, brown tannins, eg from tea, fruit, red wine, deep brown humic acid , eg from coffee, tea, cocoa, green chlorophyll, eg, from green grasses, technical dyes from cosmetics, inks, color pencils Colored metabolites and / or excretions from molds or other micro flora or microbial growths or microbes, using light in the wavelength range of 10-1200 nm, again represents a preferred embodiment of the invention.
  • a method according to the invention which is a manual process carried out in an open tub, in particular hand washing and / or soaking, wherein the tub, after the textiles to be treated have penetrated with the wash liquor, light in the wavelength range of 10 -1200 nm, in particular sunlight, preferably for a period> 5 minutes, is also a preferred embodiment of the invention.
  • the textile treatment compositions according to the invention may contain, in addition to the mandatory constituents cationic surfactant and photocatalytic material, further optional ingredients. These are z.T. described in more detail.
  • An inventive textile treatment agent may optionally also comprise anionic surfactant, although this is less preferred. It is more preferred if a textile treatment agent according to the invention is free of anionic surfactant, that is to say comprising less than 5% by weight, 2% by weight or 1% by weight of anionic surfactant, but in particular 0% by weight of anionic surfactant, Wt .-% based on the total textile treatment agent.
  • anionic surfactant for example, those of the sulfonate type and sulfates can be used.
  • the surfactants of the sulfonate type are preferably C 9 . 13- Alkylbenzolsulfonate, olefinsulfonates, ie mixtures of alkene and hydroxyalkanesulfonates and disulfonates, as obtained for example from C 12 -i 8 monoolefins with terminal or internal double bond by sulfonation with gaseous sulfur trioxide and subsequent alkaline or acidic hydrolysis of the sulfonation, in consideration.
  • alkanesulfonates which are composed of C 12 -i 8 - Alkanes can be obtained, for example, by sulfochlorination or sulfoxidation with subsequent hydrolysis or neutralization.
  • esters of ⁇ -sulfo fatty acids esters of ⁇ -sulfo fatty acids (ester sulfonates), for example the ⁇ -sulfonated methyl esters of hydrogenated coconut, palm kernel or tallow fatty acids.
  • sulfated fatty acid glycerol esters are to be understood as meaning the mono-, di- and triesters and mixtures thereof, as obtained in the preparation by esterification of a monoglycerol with 1 to 3 moles of fatty acid or in the transesterification of triglycerides with 0.3 to 2 moles of glycerol.
  • Preferred sulfated fatty acid glycerol esters are the sulfonation products of saturated fatty acids having 6 to 22 carbon atoms, for example caproic acid, caprylic acid, capric acid, myristic acid, lauric acid, palmitic acid, stearic acid or behenic acid.
  • Alk (en) ylsulfates are the alkali metal salts and in particular the sodium salts of the sulfuric monoesters of C 12 -C 18 fatty alcohols, for example coconut fatty alcohol, tallow fatty alcohol, lauryl, myrilecyl, cetyl or stearyl alcohol or the C 10 -C 2 o-oxo alcohols and those half-esters of secondary alcohols of these chain lengths are preferred. Also preferred are alk (en) ylsulfates of said chain length, which contain a synthetic, produced on a petrochemical basis straight-chain alkyl radical, which have an analogous degradation behavior as the adequate compounds based on oleochemical raw materials.
  • the C 12 -C 16 -alkyl sulfates and C 12 -C 15 -alkyl sulfates and also C 14 -C 15 -alkyl sulfates are preferred.
  • 2,3-alkyl sulfates which can be obtained as commercial products from Shell Oil Company under the name DAN ®, are suitable anionic surfactants.
  • sulfuric acid monoesters of straight-chain or branched C 7 ethoxylated with 1 to 6 moles of ethylene oxide 21 -alcohols, such as 2-methyl-branched C ⁇ -alcohols with an average of 3.5 moles of ethylene oxide (EO) or C 12 . 18 fatty alcohols with 1 to 4 EO are suitable.
  • Suitable anionic surfactants are also the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters and the monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • alcohols preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain C 8 . 18- fatty alcohol residues or mixtures of these.
  • Particularly preferred sulfosuccinates contain one Fatty alcohol residue derived from ethoxylated fatty alcohols, which in themselves constitute nonionic surfactants (see description below).
  • Sulfosuccinates whose fatty alcohol residues are derived from ethoxylated fatty alcohols with a narrow homolog distribution, are again particularly preferred.
  • alk (en) ylsuccinic acid having preferably 8 to 18 carbon atoms in the alk (en) yl chain or salts thereof.
  • Particularly preferred anionic surfactants are soaps.
  • Suitable are saturated and unsaturated fatty acid soaps, such as the salts of lauric acid, myristic acid, palmitic acid, stearic acid, (hydrogenated) erucic acid and behenic acid and, in particular, soap mixtures derived from natural fatty acids, for example coconut, palm kernel, olive oil or tallow fatty acids.
  • the anionic surfactants may be in the form of their sodium, potassium or ammonium salts and as soluble salts of organic bases, such as mono-, di- or triethanolamine.
  • the anionic surfactants are preferably present in the form of their sodium or potassium salts, in particular in the form of the sodium salts.
  • anionic surfactants in particular embodiments could e.g. 2 to 30 wt .-%, preferably 4 to 25 wt .-% and in particular 5 to 22 wt .-%, each based on the total textile treatment agent, amount.
  • no anionic surfactants are present in the textile treatment agents according to the invention, which corresponds to a preferred embodiment of the invention.
  • amphoteric surfactants comprising ampholytes and betaines
  • Suitable amphoteric surfactants are e.g. N- (acylamidoalkyl) betaines, N-alkyl-.beta.-aminopropionates, N-alkyl-.beta.-iminopropionates and the amphoteric surfactants usually used in connection with detergents.
  • the textile treatment agent according to the invention is completely free of amphoteric surfactant.
  • gemini surfactants are surfactants, each containing two hydrophobic and hydrophilic groups in the molecule. They are characterized by an unusually high Interfacial activity. In a preferred embodiment of the invention, however, the textile treatment agent according to the invention is completely free of gemini surfactants.
  • the textile treatment agents according to the invention may optionally contain further ingredients which are present in some cases. have already been mentioned, such. Humectants containing, in particular, those optional ingredients which further improve the performance and / or aesthetic properties of the textile treatment agent.
  • preferred textile treatment agents additionally comprise one or more builders, bleaches, bleach activators, enzymes, electrolytes, humectants, non-aqueous solvents, pH adjusters, perfumes, perfume carriers, fluorescers, dyes, hydrotopes, Foam inhibitors, silicone oils, anti-redeposition agents, optical brighteners, grayness inhibitors, anti-shrinkage agents, anti-crease agents, color transfer inhibitors, antimicrobial agents, germicides, fungicides, antioxidants, preservatives, corrosion inhibitors, antistatic agents, bittering agents, ironing auxiliaries, repellents and impregnating agents, swelling and anti-slip agents, neutral filler salts and, if necessary UV absorber.
  • Suitable builders which may optionally be present in the textile treatment compositions are, for example, silicates, aluminum silicates (in particular zeolites), carbonates, salts of organic di- and polycarboxylic acids and mixtures of these substances.
  • Suitable crystalline, layered sodium silicates have the general formula NaMSi x O 2x + I H 2 O, where M is sodium or hydrogen, x is a number from 1, 9 to 4 and y is a number from 0 to 20 and preferred values for x 2 , 3 or 4 are.
  • Preferred crystalline layered silicates of the formula given are those in which M is sodium and x assumes the values 2 or 3. In particular, both ⁇ - and ⁇ -sodium disilicates Na 2 Si 2 O 5 .yH 2 O are preferred.
  • the textile treatment agent according to the invention is free of crystalline, layered sodium silicates, ie preferably contains less than 3 wt .-%, 2 wt .-% or 1 wt .-% of crystalline, layered sodium silicates, in particular is no crystalline, layered sodium silicate, ie 0 wt .-%, wt .-%, based on the total textile treatment agent.
  • amorphous sodium silicates with a Na 2 O: SiO 2 modulus of from 1: 2 to 1: 3.3, preferably from 1: 2 to 1: 2.8 and in particular from 1: 2 to 1: 2.6, which Delayed are and secondary wash properties.
  • the dissolution delay compared to conventional amorphous sodium silicates may be caused in various ways, for example by surface treatment, compounding, grain pakt réelle / compression or by overdrying.
  • the term "amorphous" is also understood to mean "X-ray amorphous”.
  • the silicates do not yield sharp X-ray reflections typical of crystalline substances in X-ray diffraction experiments, but at most one or more maxima of the scattered X-rays which have a width of several degrees of diffraction angle. However, it may well even lead to particularly good builder properties if the silicate particles provide blurred or even sharp diffraction maxima in electron diffraction experiments. This is to be interpreted as meaning that the products have microcrystalline regions of size 10 to a few hundred nm, with values of up to a maximum of 50 nm and in particular up to a maximum of 20 nm being preferred. Particularly preferred are compacted / compacted amorphous silicates, compounded amorphous silicates and overdried X-ray amorphous silicates.
  • the textile treatment agent according to the invention is preferably free from amorphous sodium silicates, ie preferably contains less than 3% by weight, 2% by weight or 1% by weight of amorphous sodium silicates, in particular no, ie 0% by weight of amorphous sodium silicate contained, wt .-% based on the total textile treatment agent
  • a usable fine crystalline, synthetic and bound water-containing zeolite is preferably zeolite A and / or P.
  • zeolite P zeolite MAP® (commercial product from Crosfield) is particularly preferred.
  • zeolite X and mixtures of A, X and / or P are particularly preferred.
  • Commercially available and preferably usable in the context of the present invention is, for example, a cocrystal of zeolite X and zeolite A (about 80% by weight of zeolite X) which is sold by SASOL under the brand name VEGOBOND AX ® and by the formula),
  • the zeolite can be used as a spray-dried powder or else as an undried, stabilized suspension which is still moist from its production. In the event that the zeolite is used as a suspension, this may be minor additions nonionic surfactants as stabilizers, for example 1 to 3 wt .-%, based on zeolite, of ethoxylated C 12 -C 18 fatty alcohols having 2 to 5 ethylene oxide groups, C 12 -C 14 - fatty alcohols having 4 to 5 ethylene oxide or ethoxylated isotridecanols.
  • Suitable zeolites have an average particle size of less than 10 ⁇ m (volume distribution, measuring method: Coulter Counter) and preferably contain 18 to 22% by weight, in particular 20 to 22% by weight, of bound water.
  • the textile treatment agent according to the invention is preferably free of zeolite, that is to say preferably contains less than 3% by weight, 2% by weight or 1% by weight of zeolite, in particular no zeolite, ie 0% by weight, contains zeolite, Wt .-% based on the total textile treatment agent.
  • phosphates as builders are possible, unless such use should not be avoided for environmental reasons.
  • the textile treatment agent according to the invention is preferably free of phosphate, ie it preferably contains less than 3% by weight, 2% by weight or 1% by weight of phosphate, in particular no, ie 0% by weight, phosphate, Wt .-% based on the total textile treatment agent.
  • Organic builders which may be present in the fabric treatment agent include polycarboxylate polymers such as polyacrylates and acrylic acid / maleic acid copolymers, polyaspartates and monomeric polycarboxylates such as citrates, gluconates, succinates or malonates, which are preferably used as the sodium salts. If builders are to be used then organic builders are to be preferred.
  • bleaches in water H 2 O 2 , sodium perborate tetrahydrate and sodium perborate monohydrate are of particular importance.
  • Other useful bleaching agents are, for example, sodium percarbonate, peroxypyrophosphates, citrate perhydrates and H 2 O 2 -producing peracidic salts or peracids, such as perbenzoates, peroxophthalates, diperazelaic acid, phthalo-iminopoic acid or diperdodecanedioic acid.
  • the textile treatment agent according to the invention is free of additional bleaching agent, thus preferably contains less than 3 wt .-%, 2 wt .-% or 1 wt .-% of additional bleaching agent, in particular is no, so 0 wt .-%, additional Bleach containing, wt .-% based on the total fabric treatment agent.
  • bleach activators can be incorporated into the textile treatment agent.
  • bleach activators it is possible to use compounds which, under perhydrolysis conditions, give aliphatic peroxycarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid.
  • Suitable substances are those which carry O- and / or N-acyl groups of the stated C atom number and / or optionally substituted benzoyl groups.
  • polyacylated alkylenediamines in particular tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), N- Acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular n-nonanoyl or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic anhydrides, in particular phthalic anhydride, acylated polyhydric alcohols, in particular triacetin, ethylene glycol diacetate and 2,5-diacetoxy- 2,5-dihydrofuran.
  • the textile treatment agents in particular phthalic
  • bleach catalysts can also be incorporated into the fabric treatment agents.
  • These substances are bleach-enhancing transition metal salts or transition metal complexes such as Mn, Fe, Co, Ru or Mo saline complexes or carbonyl complexes.
  • Mn, Fe, Co, Ru, Mo, Ti, V and Cu complexes with nitrogen-containing tripod ligands and Co, Fe, Cu and Ru ammine complexes can also be used as bleach catalysts.
  • the textile treatment agents according to the invention preferably contain no bleach catalysts at all.
  • a textile treatment agent according to the invention may contain a thickener.
  • the thickener may include, for example, a polyacrylate thickener, xanthan gum, gellan gum, guar gum, alginate, carrageenan, carboxymethyl cellulose, bentonites, wellan gum, locust bean gum, agar-agar, Tragacanth, gum arabic, pectins, polyoses, starch, dextrins, gelatin and casein.
  • modified natural substances such as modified starches and celluloses, examples which may be mentioned here include carboxymethylcellulose and other cellulose ethers, hydroxyethyl and -propylcellulose and core flour ethers, can be used as thickeners.
  • polyacrylic and polymethacrylic thickeners include the high molecular weight homopolymers of acrylic acid crosslinked with a polyalkenyl polyether, in particular an allyl ether of sucrose, pentaerythritol or propylene (INCI name according to the International Dictionary of Cosmetic Ingredients of The Cosmetic, Toiletry and Fragrance Association (CTFA) ": carbomer), also referred to as carboxyvinyl polymers.
  • CFA Cosmetic, Toiletry and Fragrance Association
  • Such polyacrylic acids are available, inter alia, from 3V Sigma under the trade name Polygel®, for example Polygel DA, and from BF Goodrich under the trade name Carbopol®, for example Carbopol 940 (molecular weight about 4,000,000), Carbopol 941 (molecular weight about 1,250,000) or Carbopol 934 (molecular weight about 3,000,000).
  • acrylic acid copolymers are included: (i) Copolymers of two or more monomers from the group of acrylic acid, methacrylic acid and their simple, preferably with C- ⁇ _ 4 -alkanols formed esters (INCI acrylates copolymer), to which about the copolymers of methacrylic acid, butyl acrylate and methyl methacrylate (CAS designation according to Chemical Abstracts Service: 25035-69-2) or of butyl acrylate and methyl methacrylate (CAS 25852-37-3) and the example of Rohm & Haas under the trade name Aculyn® and Acusol® as well as from the company Degussa (Goldschmidt) under the trade name Tego® polymer, eg the anionic non-associative polymers Aculyn 22, Aculyn 28, Aculyn 33 (cross-linked), Acusol 810, Acusol 820, Acusol 823 and Acusol 830 (CAS 25852-37-3);
  • Carbopol® for example, the hydrophobized Carbopol ETD 2623 and Carbopol 1382 (INCI Acrylates / Ci O - 3O Alkyl Acrylate Crosspolymer) and Carbopol Aqua 30 (formerly Carbopol EX 473).
  • xanthan gum a microbial anionic heteropolysaccharide derived from Xanthomonas campestris and some other species is produced under aerobic conditions and has a molecular mass of 2 to 15 million daltons.
  • Xanthan is formed from a chain of ⁇ -1,4-linked glucose (cellulose) with side chains.
  • the structure of the subgroups consists of glucose, mannose, glucuronic acid, acetate and pyruvate, the number of pyruvate units determining the viscosity of the xanthan gum.
  • a fatty alcohol is also suitable as thickener.
  • Fatty alcohols may be branched or unbranched, of native origin or of petrochemical origin.
  • Preferred fatty alcohols have a C chain length of 10 to 20 C atoms, preferably 12 to 18. Preference is given to using mixtures of different C chain lengths, such as tallow fatty alcohol or coconut oil fatty alcohol. Examples are Lorol ® Special (C 12 -i 4 -ROH) or Lorol® Technical (C 12-18 -ROH) (both ex Cognis).
  • Preferred textile treatment agents according to the invention advantageously contain from 0.01 to 3% by weight, and preferably from 0.1 to 1% by weight, of thickening agent, based on the total textile treatment agent.
  • the amount of thickener used depends on the type of thickener and the desired degree of thickening.
  • the fabric treatment agent may contain enzymes in encapsulated form and / or directly in the fabric treatment agent.
  • Suitable enzymes include in particular those from the classes of hydrolases such as proteases, esterases, lipases or lipolytic enzymes, amylases, cellulases or other Glykosylhydrolasen, hemicellulase, cutinases, ß-glucanases, oxidases, peroxidases, perhydrolases and / or laccases and mixtures the enzymes mentioned in question. All of these hydrolases in the wash contribute to the removal of stains such as proteinaceous, greasy or starchy stains and graying.
  • cellulases and other glycosyl hydrolases may contribute to color retention and to enhancing the softness of the fabric by removing pilling and microfibrils.
  • Oxireductases can also be used for bleaching or inhibiting color transfer.
  • Particularly suitable are bacterial strains or fungi such as Bacillus subtilis, Bacillus licheniformis, Streptomyceus griseus and Humicola insolens derived enzymatic agents.
  • subtilisin-type proteases and in particular proteases derived from Bacillus lentus are used.
  • enzyme mixtures for example from protease and amylase or protease and lipase or lipolytic enzymes or protease and Cellulase or from cellulase and lipase or lipolytic enzymes or from protease, amylase and lipase or lipolytic enzymes or protease, lipase or lipolytic enzymes and cellulase, but in particular protease and / or lipase-containing mixtures or mixtures with lipolytic acting enzymes of particular interest.
  • lipolytic enzymes are the known cutinases. Peroxidases or oxidases have also proved suitable in some cases.
  • Suitable amylases include in particular ⁇ -amylases, iso-amylases, pullulanases and pectinases.
  • As cellulases are preferably cellobiohydrolases, endoglucanases and ß-glucosidases, which are also called cellobiases, or mixtures thereof used. Since different cellulase types differ by their CMCase and avicelase activities, the desired activities can be set by targeted mixtures of the cellulases. It is particularly advantageous if the textile treatment agents according to the invention comprise mannanase, in particular incorporated in micro-chips and / or speckles.
  • mannanase in combination with the photocatalytic material has a particularly good effect on the soil release of galactomannan ambiencen residues on textiles yielded.
  • tannase is also preferred.
  • the enzymes may be adsorbed to carriers to protect against premature degradation.
  • the proportion of the enzymes, the enzyme liquid formulation (s) or the enzyme granules directly in the textile treatment agent may, for example, be about 0.01 to 5% by weight, preferably 0.12 to about 2.5% by weight.
  • the textile treatment agent contains no enzymes at all. This corresponds to a preferred embodiment.
  • electrolyte ⁇ from the group of inorganic salts, a wide number of different salts can be used. Preferred cations are the alkali and alkaline earth metals, preferred anions are the halides and sulfates. From a production point of view, the use of NaCl or MgCl 2 in the textile treatment agents is preferred. The proportion of electrolytes in the textile treatment agent may, for example, usually be from 0.1 to 5% by weight.
  • Non-aqueous solvents which can be used in the textile treatment agents according to the invention are derived, for example, from the group of monohydric or polyhydric alcohols, alkanolamines or glycol ethers.
  • the solvents are selected from ethanol, n- or i-propanol, butanols, glycol, propane or butanediol, glycerol, diglycol, propyl or butyldiglycol, hexylene glycol, ethylene glycol methyl ether, ethylene glycol ethyl ether, ethylene glycol propyl ether, ethylene glycol mono-n-butyl ether, diethylene glycol methyl ether, diethylene glycol ethyl ether Propylene glycol methyl, ethyl or propyl ether, dipropylene glycol monomethyl or ethyl ether, di-isopropylene glycol monomethyl or ethyl ether, methoxy, ethoxy or Butoxytriglykol, 1-butoxyethoxy-2-propanol, 3-methyl-3-methoxybutanol , Propylene glycol t-butyl ether and mixtures of these
  • the viscosity of the fabric treatment compositions of the invention can be measured using standard methods (e.g., Brookfield viscometer LVT-II at 20 U / min and 2O 0 C, spindle 3) can be measured and is in particular for liquid detergent is preferably in the Range from 500 to 5000 mPas.
  • Preferred textile treatment agents in the form of liquid detergents have viscosities of preferably 700 to 4000 mPas, values between 1000 and 3000 mPas being particularly preferred.
  • the viscosity of textile treatment agents according to the invention in the form of fabric softeners is preferably 20 to 4000 mPas, with values between 40 and 2000 mPas being particularly preferred.
  • the viscosity of fabric softeners is particularly preferably from 40 to 1000 mPas.
  • pH adjusting agents may be indicated.
  • Can be used here are all known acids or alkalis, unless their use is not for technical application or environmental reasons or for reasons of consumer protection prohibited.
  • the amount of these adjusting agents does not exceed 7% by weight or preferably 5% by weight of the total formulation.
  • the pH of the textile treatment agent according to the invention in the form of a liquid detergent is preferably between 4 and 10 and preferably between 5.5 and 8.5.
  • the textile treatment agent according to the invention in the form of a fabric conditioner, which is preferred according to the invention, is preferably between 1 and 6, and preferably between 1, 5 and 3.5.
  • the textile treatment agent optionally contains one or more perfumes (perfume oils, fragrances) in an amount of usually up to 10% by weight, preferably 0.01 to 5% by weight, in particular 0.05 to 3% by weight. , particularly preferably 0.1 to 2 wt .-% and most preferably 0.4 to 0.8 wt .-%.
  • perfumes perfume oils, fragrances
  • the amount of perfume used is also dependent on the type of textile treatment agent.
  • perfume oils fragments, fragrances
  • individual fragrance compounds e.g. the synthetic products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type are used.
  • mixtures of different fragrances are used, which together produce an attractive fragrance.
  • perfume oils may also contain natural fragrance mixtures as are available from plant sources.
  • perfume oil is meant preferably self-contained perfume compositions which are commonly used for product scenting and are fragrant in particular at the human discretion. This will be explained with an example. If an expert wants to To make a cleanser fragrant, he usually adds to it not only a (well) smelling substance but a collective (well) smelling substance. Such a collective usually consists of a plurality of individual fragrances, e.g. more than 10 or 15, preferably up to 100 or more. These fragrances cooperatively form a desired fragrant, harmonious odor image.
  • a usable perfume oil may contain individual fragrance compounds, for example the synthetic products of the ester type, ethers, aldehydes, ketones, alcohols and hydrocarbons. Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinyl acetate (DMBCA), phenylethyl acetate, benzyl acetate, ethylmethylphenylglycinate, allylcyclohexylpropionate, styrallylpropionate, benzylsalicylate, cyclohexylsalicylate, floramate, melusate and jasmecyclate.
  • DMBCA dimethylbenzylcarbinyl acetate
  • the ethers include, for example, benzyl ethyl ether and ambroxane, to the aldehydes, for example, the linear alkanals with 8 - 18 carbon atoms, citral, citronellal, citronellyloxy-acetaldehyde, cyclamen aldehyde, lilial and bourgeonal, to the ketones such as the ionone, oc-
  • the hydrocarbons mainly include the terpenes such as limonene and pinene. However, mixtures of different fragrances are preferably used, which together produce an attractive fragrance of the perfume oil formed.
  • the perfume oils may also contain natural fragrance mixtures, such as are available from vegetable sources, e.g. Pine, citrus, jasmine, patchouly, rose or ylang-ylang oil. Also suitable are Muskateller sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, lime blossom oil, juniper berry oil, vetiver oil, olibanum oil, galbanum oil and labdanum oil and orange blossom oil, neroliol, orange peel oil and sandalwood oil.
  • a fragrance must be volatile, with molecular weight also playing an important role in addition to the nature of the functional groups and the structure of the chemical compound.
  • odorants have molecular weights up to about 200 daltons, while molecular weights of 300 daltons and above are more of an exception. Due to the different volatility of fragrances, the smell of a fragrance composed of several fragrances changes during evaporation, whereby the odor impressions in "top note”, “middle note or body” and “base note “(end note or dry out) divided.
  • Adhesive-resistant fragrances which are advantageously usable in the context of the present invention are, for example, the essential oils such as angelica root oil, aniseed oil, arnica blossom oil, basil oil, Bayöl, Champacablütenöl, Edeltannenöl, Edeltannenzapfenöl, Elemiöl, eucalyptus oil, fennel oil, spruce alder oil, galbanum oil, geranium oil, ginger grass oil, guaiac wood oil , Gurjunbalsamöl, Helichrysumöl, Ho oil, ginger oil, iris oil, Kajeputöl, calamus oil, chamomile oil, camphor oil, Kanagaöl, cardamom oil, cassia oil, pine oil, Kopa ⁇ vabalsamöl, coriander oil, spearmint oil, caraway oil, cumin oil, lemongrass oil, musk oil, myrrh oil, clove oil, neroliol, niaouli oil , Olibanum
  • fragrances of natural or synthetic origin can be used in the context of the present invention advantageously as adherent fragrances or fragrance mixtures.
  • These compounds include the following compounds and mixtures thereof: ambrettolide, ⁇ -amylcinnamaldehyde, anethole, anisaldehyde, anisalcohol, anisole, methyl anthranilate, acetophenone, benzylacetone, benzaldehyde, ethyl benzoate, benzophenone, benzyl alcohol, borneol, bornyl acetate, ⁇ -bromostyrene, n Decyl aldehyde, n-dodecyl aldehyde, eugenol, eugenol methyl ether, eucalyptol, farnesol, fenchone, fenchyl acetate, geranyl acetate, geranyl formate, heliotro
  • the lower-boiling fragrances include natural or synthetic origin, which can be used alone or in mixtures.
  • Examples of more readily volatile fragrances are alkyl isothiocyanates (alkyl mustard oils), butanedione, limonene, linalool, linayl acetate and propionate, menthol, menthone, methyl-n-heptenone, phellandrene, phenylacetaldehyde, terpinyl acetate, citral, citronellal.
  • the textile treatment agent according to the invention contains certain minimum values of perfume oil (fragrances), namely at least 0.00001% by weight, advantageously at least 0.0001% by weight, most advantageously at least 0.001% by weight, more advantageously at least 0.01 wt .-%, more preferably at least 0.1 wt .-%, more preferably at least 0.2 wt .-%, in a very advantageous manner at least 0.3 wt .-%, in particularly advantageously at least 0.4 wt .-%, in a particularly advantageous manner at least 0.45 wt .-%, in a significantly advantageous manner at least 0.5 wt .-%, in a very advantageous manner, at least 0.55 wt.
  • perfume oil fragments
  • the perfume oils contain less than 8, advantageously less than 7, more preferably less than 6, more preferably less than 5, more preferably less than 4, even more preferably less than 3, preferably less as 2, in particular no fragrances from the list Amylcinnamal, Amylcinnamylalkohol, Benzylalkohol, Benzylsalicylat, Cinnamylalkohol, Cinnamal, Citral, Cumarin, Eugenol, Geraniol, Hydroxycitronellal, Hydroxymethylpentylcyclohexencarboxaldehyde, Isoeugenol, Anisylalkohol, Benzylbenzoat, Benzylcinnamat, Citronellol, Farnesol, Hexylcinnamaldehyd, Lilial, d Limes, linalool, methylheptincarbonate, 3-methyl-4- (2,6,6-trimethyl-2-cyclohexen-1-yl) -3
  • the textile treatment agent according to the invention can be completely free of perfume oil (fragrances). However, it is much more preferred that fragrances are included.
  • the textile treatment agents can be dyed with suitable dyes.
  • Preferred dyes the selection of which presents no difficulty to the skilled person, have a high storage stability and insensitivity to the other ingredients of the textile treatment agents and to light and no pronounced substantivity to textile fibers so as not to stain them.
  • Suitable foam inhibitors which can be used in the textile treatment compositions are, for example, soaps, paraffins or silicone oils, which may optionally be applied to support materials.
  • Suitable soil release polymers also referred to as "anti-redeposition agents" include, for example, nonionic cellulose ethers such as methyl cellulose and methyl hydroxypropyl cellulose having a methoxy group content of 15 to 30 wt% and hydroxypropyl groups of 1 to 15 wt%, respectively based on the nonionic cellulose ether and the known from the prior art polymers of phthalic acid and / or terephthalic acid or derivatives thereof, in particular polymers of ethylene terephthalates and / or polyethylene and / or polypropylene glycol terephthalates or anionic and / or nonionic modified derivatives thereof.
  • Suitable derivatives include the sulfonated derivatives of the phthalic and terephthalic acid polymers.
  • Optical brighteners may be added to textile treatment agents to eliminate graying and yellowing of the treated textile fabrics which will attract the fiber causing lightening and fake bleaching. Effect by converting invisible ultraviolet radiation into visible longer wavelength light, emitting the ultraviolet light absorbed from the sunlight as a faint bluish fluorescence and giving the whiteness of the bruised or yellowed wash pure white.
  • Suitable compounds originate from the substance classes of the 4,4 '2,2 -Diamino- stilbenedisulfonic acids (flavonic), 4,4'-biphenylene -Distyryl, Methylumbelliferone, coumarins, dihydroquinolinones, 1, 3-diaryl pyrazolines, naphthalimides, benzoxazole , Benzisoxazole and benzimidazole systems as well as heterocyclic substituted pyrene derivatives.
  • the optical brighteners are usually used in amounts of between 0% and 0.3% by weight, based on the total textile treatment agent. According to a further preferred embodiment, the textile treatment agent according to the invention is completely free of optical brightener.
  • Grayness inhibitors have the task of keeping the dirt detached from the fiber suspended in the liquor and thus preventing the dirt from being rebuilt.
  • Water-soluble colloids of mostly organic nature are suitable for this purpose, for example glue, gelatine, salts of ether sulfonic acids or cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
  • water-soluble polyamides containing acidic groups are suitable for this purpose. It is also possible to use soluble starch preparations and starch products other than those mentioned above, for example degraded starch, aldehyde starches, etc. Polyvinylpyrrolidone is also useful.
  • cellulose ethers such as carboxymethylcellulose (Na salt), methylcellulose, hydroxyalkylcellulose and mixed ethers such as methylhydroxyethylcellulose, methylhydroxypropylcellulose, methylcarboxymethylcellulose and mixtures thereof in amounts of from 0.1 to 5% by weight, based on the textile treatment agents.
  • the textile treatment agent according to the invention is completely free from graying inhibitors.
  • the fabric treatment agent may contain a color transfer inhibitor.
  • the dye transfer inhibitor is a polymer or copolymer of cyclic amines such as vinylpyrrolidone and / or vinylimidazole.
  • Suitable color transfer inhibiting polymers include polyvinylpyrrolidone (PVP), polyvinylimidazole (PVI), copolymers of vinylpyrrolidone and vinylimidazole (PVP / PVI), polyvinylpyridine-N-oxide, poly-N-carboxymethyl-4-vinylpyridium chloride and mixtures thereof.
  • polyvinylpyrrolidone PVP
  • polyvinylimidazole PVI
  • copolymers of vinylpyrrolidone and vinylimidazole PVP / PVI
  • the polyvinylpyrrolidones (PVP) used preferably have an average molecular weight of 2,500 to 400,000 and are commercially available from ISP Chemicals as PVP K 15, PVP K 30, PVP K 60 or PVP K 90 or from BASF as Sokalan® HP 50 or Sokalan® HP 53 available.
  • the copolymers of vinylpyrrolidone and vinylimidazole (PVP / PVI) used preferably have a molecular weight in the range from 5,000 to 100,000.
  • a PVP / PVI copolymer for example from BASF under the name Sokalan® HP 56th
  • the amount of usable color transfer inhibitor based on the total amount of the fabric treatment agent ranges e.g. preferably from 0.01 to 2% by weight, preferably from 0.05 to 1% by weight and more preferably from 0.1 to 0.5% by weight.
  • the textile treatment agent according to the invention is completely free from color transfer inhibitors.
  • enzymatic systems comprising a peroxidase and hydrogen peroxide or a substance which removes hydrogen peroxide in water as a color transfer inhibitor.
  • a mediator compound for the peroxidase for example an acetosyringone, a phenol derivative or a phenotiazine or phenoxazine, is preferred in this case, wherein additionally the above-mentioned polymeric dye transfer inhibitors can be used.
  • the fabric treatment agents may contain synthetic crease inhibitors. These include, for example, synthetic products based on fatty acids, fatty acid esters, fatty acid amides, alkylol esters, -alkylolamides or fatty alcohols, which are usually reacted with ethylene oxide, or products based on lecithin or modified phosphoric acid ester.
  • the textile treatment agents may additionally contain antimicrobial agents.
  • antimicrobial agents one differentiates depending on the antimicrobial spectrum and mechanism of action between bacteriostats and bactericides, fungistats and fungicides, etc.
  • Important substances from these groups are, for example, benzalkonium chlorides, alkylarylsulfonates, halophenols and Phenolmercuriacetat, wherein in the inventive textile treatment agents can be completely dispensed with these compounds.
  • the textile treatment agents according to the invention may contain preservatives, it being preferred to use only those which have no or only a low skin-sensitizing potential.
  • preservatives examples are sorbic acid and its salts, benzoic acid and its salts, salicylic acid and its salts, phenoxyethanol, 3-iodo-2-propynyl butylcarbamate, sodium N- (hydroxymethyl) glycinate, biphenyl-2-ol and mixtures thereof.
  • a suitable preservative is the solvent-free, aqueous combination of diazolidinyl urea, sodium benzoate and potassium sorbate (available as Euxyl® K 500 ex Schuelke & Mayr), which can be used in a pH range up to 7.
  • preservatives based on organic acids and / or their salts are suitable for preserving the skin-friendly textile treatment agents according to the invention.
  • the fabric treatment agents may contain antioxidants.
  • This class of compounds includes, for example, substituted phenols, hydroquinones, pyrocatechols and aromatic amines, as well as organic sulfides, polysulfides, dithiocarbamates, phosphites, phosphonates and vitamin E.
  • the textile treatment agent according to the invention is completely free from antioxidants.
  • Antistatic agents increase the surface conductivity and thus allow an improved drainage of formed charges.
  • External antistatic agents are generally substances with at least one hydrophilic molecule ligand and give a more or less hygroscopic film on the surfaces. These mostly surface-active antistatic agents can be subdivided into nitrogen-containing (amines, amides, quaternary ammonium compounds), phosphorus-containing (phosphoric acid esters) and sulfur-containing (alkyl sulfonates, alkyl sulfates) antistatic agents.
  • Lauryl (or stearyl) dimethylbenzyl Ammonium chlorides are suitable as antistatics for textile fabrics or as an additive to textile treatment agents, wherein additionally a softening effect is achieved.
  • silicone derivatives may be used in the fabric treatment agents. These additionally improve the rinsing behavior of the textile treatment agents by their foam-inhibiting properties.
  • Preferred silicone derivatives are, for example, polydialkyl or alkylaryl siloxanes in which the alkyl groups have one to five carbon atoms and are completely or partially fluorinated.
  • Preferred silicones are polydimethylsiloxanes, which may optionally be derivatized and are then amino-functional or quaternized or have Si-OH, Si-H and / or Si-Cl bonds.
  • the viscosities of the preferred silicones at 25 0 C in the range between 100 and 100,000 mPas, wherein the silicones can be added in amounts between 0.2 and 5 wt .-%, based on total fabric treatment composition preferably.
  • the textile treatment agents may also contain UV absorbers which are applied to the treated fabrics and improve the light fastness of the fibers.
  • Compounds having these desired properties include, for example, the non-radiative deactivating compounds and derivatives of benzophenone having substituents in the 2- and / or 4-position.
  • Also suitable are substituted benzotriazoles, phenyl-substituted acrylates (cinnamic acid derivatives) in the 3-position, optionally with cyano groups in the 2-position, salicylates, organic Ni complexes and natural substances such as umbelliferone and the body's own urocanic acid.
  • the textile treatment agent according to the invention is completely free of such UV absorbers.
  • Suitable heavy metal complexing agents are, for example, the alkali metal salts of ethylenediaminetetraacetic acid (EDTA) or nitrilotriacetic acid (NTA) and alkali metal salts of anionic polyelectrolytes such as polymaleates and polysulfonates.
  • EDTA ethylenediaminetetraacetic acid
  • NTA nitrilotriacetic acid
  • anionic polyelectrolytes such as polymaleates and polysulfonates.
  • a preferred class of complexing agents are the phosphonates, which are preferred in textile treatment agents in amounts of advantageously 0.01 to 2.5 wt .-%, preferably 0.02 to 2 wt .-% and in particular from 0.03 to 1, 5 wt .-% may be contained.
  • These preferred compounds include in particular organophosphonates such as 1-hydroxyethane-1, 1-diphosphonic acid (HEDP), Aminotri (nnethylenphosphonklare) (ATMP), diethylenetriamine penta (methylenephosphonic acid) (DTPMP or DETPMP) and 2-phosphonobutane-1, 2 , 4-tricarboxylic acid (PBS-AM), which are used mostly in the form of their ammonium or alkali metal salts.
  • organophosphonates such as 1-hydroxyethane-1, 1-diphosphonic acid (HEDP), Aminotri (nnethylenphosphonklare) (ATMP), diethylenetriamine penta (methylenephosphonic acid) (D
  • Preferred complexing agents are tertiary amines, in particular tertiary alkanolamines (amino alcohols).
  • the alkanolamines have both amino and hydroxy and / or ether groups as functional groups.
  • Particularly preferred tertiary alkanolamines are tri-ethanolamine and tetra-2-hydroxypropyl-ethylenediamine (N, N, N ', N'-tetrakis (2-hydroxy-propyl) ethylenediamine).
  • Particularly preferred combinations of tertiary amines with Zinkricinoleat and one or more ethoxylated fatty alcohols as nonionic solubilizers and optionally solvents are described in the prior art.
  • a particularly preferred complexing agent is etidronic acid (1-hydroxyethylidene-1, 1- diphosphonic acid, 1-hydroxyethane-1, 1-diphosphonic acid, HEDP, acetophosphonic acid, INCI Etidronic Acid) including their salts.
  • the textile treatment agent according to the invention accordingly contains etidronic acid and / or one or more of its salts as complexing agent.
  • the textile treatment agent according to the invention comprises a complexing agent combination of one or more tertiary amines and one or more further complexing agents, preferably one or more complexing acids or salts thereof, in particular triethanolamine and / or tetra-2-hydroxypropylethylenediamine and etidronic acid and / or one or more several of their salts.
  • the preparation of the textile treatment agents according to the invention can be carried out according to all techniques known to those skilled in the art for the preparation of liquid textile treatment agents.
  • the preparation of a softener according to the invention can thus be obtained by techniques familiar to the person skilled in the art for the preparation of fabric softeners. This can be done for example by mixing the raw materials, optionally using high-shear mixing equipment. It is recommended to melt the softening component (s) and then to disperse the melt in a solvent, preferably water.
  • the other ingredients including e.g. of the photocatalytic material can be integrated into the softener by simply adding.
  • a liquid detergent according to the invention as a textile treatment agent takes place beipsiellust by conventional methods and methods in which, for example, the components are simply mixed in stirred tanks, water, optionally non-aqueous solvents and surfactants are conveniently presented and the other ingredients including, for example, the photocatalytic material be added in portions. Separate heating in the production is not necessary if it is desired, the temperature of the mixture should not exceed 8O 0 C. Examples
  • Formic acid 0.05% by weight
  • Formic acid 0.05% by weight
  • Polyacrylate 0.1% by weight
  • the photocatalytic material used was a fine particulate, carbon-modified titanium dioxide with a particle size ⁇ 50 nm, with a TiO 2 content of about 97% by weight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Detergent Compositions (AREA)

Abstract

Es werden flüssiges Textilbehandlungsmittel beschrieben, welche photokatalytisches Material und Kationtensid enthalten. Diese ermöglichen eine Reinigung, Pflege, Ausrüstung, Avivage und/oder Konditionierung von Textilien unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm. Sie ermöglichen u.a. eine Beseitigung, Deaktivierung oder Verminderung von Mikroorganismen in Textilien auf ein gesundheitlich unbedenkliches Maß sowie eine Reduzierung des Faserhaftungsvermögens von Schmutz. Ferner können sie dem Entstehen fötider Gerüche auf den Textilien vorbeugen und diese mit einem Selbstreinigungsvermögen ausstatten.

Description

Flüssiges Textilbehandlungsmittel
Die vorliegende Erfindung betrifft ein flüssiges Textilbehandlungsmittel, enthaltend photokatalytisches Material und Kationtensid. Ferner betrifft sie ein Verfahren zum Aufbringen photokatalytischen Materials auf Textilien, ferner ein Verfahren zur Reinigung, Pflege, Ausrüstung, Avivage und/oder Konditionierung von Textilien.
Durch Sauberkeit und Hygiene konnte die Lebensqualität und -erwartung der Menschen entscheidend verbessert werden. Einen wichtigen Beitrag hierzu liefern Textilbehandlungsmittel, wie z.B. Waschmittel zur Reinigung von Textilien. Textilbehandlungsmittel werden daher in den vielfältigsten Ausführungsformen für den gewerblichen und technischen Bedarf wie auch für den Privatbedarf der Haushalte von der Industrie bereitgestellt.
Während die Entfernung des Schmutzes und unangenehmer Gerüche aus den Textilien für den Verbraucher mit seinen Sinnen wahrnehmbar ist, kann er die Beseitigung von Mikroorganismen im Regelfall nicht überprüfen. Der Verbraucher hat aber dennoch ein starkes Interesse daran, bei der Textilbehandlung eine Keimverminderung auf ein gesundheitlich unbedenkliches Maß zu erreichen. Er ist daher generell an Textilbehandlungsmitteln interessiert, welche eine gute Wäschehygiene ermöglichen.
Die Aufgabe der vorliegenden Erfindung bestand daher darin, ein Mittel bereit zustellen, welches dazu beiträgt, eine gute Wäschehygiene zu ermöglichen.
Der Gegenstand der Erfindung ist ein flüssiges Textilbehandlungsmittel, vorzugsweise Textilnachbehandlungsmittel, insbesondere Weichspüler, enthaltend photokatalytisches Material und Kationtensid.
Das enthaltene photokatalytische Material, welches vorzugsweise feinpartikulär ist, also vorzugsweise Teilchengrößen < 500 nm aufweist, bedient sich elektromagnetischer Strahlung eines geeigneten Wellenlängenbereichs, vermöge welcher eine allgemeine Reinigungsleistung erbracht wird, vermöge welcher z.B. Verschmutzungen oder Mikroben durch photokatalytische oder photochemische Reaktion, z.B. durch Oxidation oder durch Reduktion, abbaubar, deaktivierbar oder reduzierbar sind.
Das photokatalytische Material ist insbesondere ein tageslichtaktives Material, insbesondere ein tageslichtaktives Bleichmittel, nutzt also die elektromagnetische Strahlung des Tageslichts. Für eine bevorzugte Entfaltung der Wirksamkeit des photokatalytischen Materials ist die Anwesenheit von vorzugsweise Sauerstoff und/oder Wasser erforderlich. Dazu genügt z.B. der in Wasser anwesende, gelöste Sauerstoff bzw. das in der Luft enthaltene Wasser (Luftfeuchte).
Die photokatalytische Aktivität des photokatalytischen Materials bezieht sich vorteilhafterweise auf natürliches oder künstliches Licht im Wellenlängenbereich von 10-1200 nm, vorzugsweise von 300-1200 nm, insbesondere zwischen 380 und 800 nm. Wenn das photokatalytische Material insbesondere die vom menschlichen Auge wahrnehmbare Strahlung des sichtbaren Bereichs des Spektrums mit Wellenlängen zwischen 380 und 800 nm für die o.g. Zwecke des Abbaus, der Deaktivierung oder der Reduzierung von Verunreinigungen ausnutzt, dann liegt eine bevorzugte Ausführungsform der Erfindung vor. Auch UV-Licht ist sehr vorteilhaft.
Vorteilhafterweise reicht sogar das Licht, welches durch Glasfenster in geschlossene Wohnräume einfällt (diffuses Tageslicht) aus, um die gewünschte photokatalytische Aktivität des photokatalytischen Materials zu gewährleisten. Selbst Licht aus technischen Lichtquellen (Kunstlicht), wie z.B. aus handelsüblichen Glühlampen (Glühbirnen), Halogenlampen, Leuchtstoffröhren, Kompaktleuchtstofflampen (Energiesparlampen) sowie aus Lichtquellen auf Basis von Leuchtdioden, reicht aus, um die gewünschte Wirkung zu bewirken. Insbesondere das natürliche Sonnenlicht führt zu sehr guten Effekten.
Das photokatalytischen Material kann auf mehreren Wegen bei und nach der Textilbehandlung seine Wirkung entfalten.
Zuerst sei die Wirkung im Textilbehandlungsbad genannt. Wenn man z.B. die zu behandelnden Textilien in einen Bottich gibt, der eine Waschlauge enthält, in welche zuvor das erfindungsgemäße Textilbehandlungsmittel gegeben wurden, und dieses Textilbehandlungsbad dann beispielsweise Licht aussetzt, z.B. in die Sonne stellt, dann entfaltet das photokatalytische Material in dem Textilbehandlungsbad eine allgemeine Reinigungsleistung. Solches ist auch möglich bei der Textilbehandlung in einer automatischen Waschmaschine welche ein Sichtfenster (Bullauge) aufweist, wie es zumindest bei Frontladern üblich ist und/oder in Waschmaschine mit interner Lichtquelle.
Zum zweiten sei die Wirkung bei der Textiltrocknung genannt. Das im Rahmen der Textilbehandlung auf die zu trocknenden Textilien aufgezogene photokatalytische Material vermag im Zusammenspiel mit einer Lichteinstrahlung, z.B. durch Sonnenlicht bei der Trocknung auf der Leine im Freien, eine allgemeine Reinigungsleistung zu entfalten. Solches ist auch möglich bei der Textiltrocknung in einem automatischen Wäschetrockner mit interner Lichtquelle. Zum dritten ist die Wirkung nach der Textiltrocknung zu nennen. Die getrockneten Textilien sind im eigentlichen Sinne nicht wirklich trocken, sondern beinhalten eine Restfeuchte, welche im Gleichgewicht mit der Umgebungsfeuchte steht (Raumfeuchte, Körperfeuchte). Diese Bedingungen reichen aus, um bei Lichteinstrahlung, z.B. durch Sonnenlicht, eine allgemeine Reinigungsleistung, hervorgerufen durch das auf den Textilien abgelagerte photokatalytische Material, zu entfalten. Diese letztgenannte Wirkung ist besonders vorteilhaft, weil die behandelten Kleidungsstücke gleichsam mit einem Langzeitschutz versehen werden, so dass die Kleidung mit einem Selbstreinigungsvermögen ausstattet wird.
Dieses Selbstreinigungsvermögen ist z.B. vorteilhaft, um dem Entstehen fötider Gerüche entgegenzuwirken, welche sich auf der Kleidung z.B. nach schweißtreibenden Aktivitäten (z.B. sportliche Aktivitäten) schnell bilden. Dieses Selbstreinigungsvermögen ist z.B. vorteilhaft, um die Ansiedlung von Mikroben auf Textilien zu verhindern oder zumindest zu erschweren. Dieses Selbstreinigungsvermögen ist z.B. vorteilhaft, um ein Aufziehen und festes Anhaften von insbesondere farbigen Anschmutzungen auf Fasern abzuwehren oder zu erschweren.
Vorteilhafterweise ist auch die Wiederauswaschbarkeit farblicher Anschmutzungen aus Textilien, die mit dem erfindungsgemäßen Textilbehandlungsmittel gewaschen wurden, erleichtert. Gewöhnlich ist bei der Entfernung von Flecken auf Textilien schnelles Handeln das oberste Gebot, denn je frischer ein Fleck ist, desto leichter läßt er sich entfernen. Ein Antrocknen von Flecken oder anderen Verschmutzungen, beispielsweise Blut-, Kaffe-, Tee-, Kugelschreiber-, Obst-, Rotweinoder Teerflecken, insbesondere über mehrere Tage soll üblicherweise vermieden werden, damit es nicht zu einer möglicherweise irreversiblen Faserhaftung kommt. Die vorliegende Erfindung bringt hier Erleichterung, denn Textilien, die mit erfindungsgemäßen Textilbehandlungsmitteln behandelt wurden, zeigten, dass die Faserhaftung von Flecken oder anderen Verschmutzungen so abgeschwächt wurde, dass sie leichter wieder ausgewaschen werden konnten.
Das photokatalytisch aktive Material ist also vorteilhaft, um die Wiederauswaschbarkeit von farbigen Anschmutzungen zu verbessern. Das photokatalytisch aktive Material vermag nämlich unter Einwirkung von Licht die Struktur von insbesondere farbigen Anschmutzungen (Farbstoffen) z. B durch Oxidation zu zerstören. Die konjugierten Doppelbindungen, die bei den Farbstoffen für die Absorption von sichtbarem Licht und damit für die Farbgebung verantwortlich sind, werden gespalten oder hydroxyliert. Der Farbstoff verliert seine farbgebenden Eigenschaften und auch seine starkes Faserhaftungsvermögen. Gleichzeitig wird die Wasserlöslichkeit erhöht. So kann verhindert werden, dass sich ein farbiger Fleck gleichsam ins Textil „hineinfrißt" und dieses auf Dauer entwertet.
Außerdem wird durch die Anwendung des erfindungsgemäßen Textilbehandlungsmittels bei der Textilbehandlung auch ein gleichmäßiges Aufziehen des photokatalytischen Materials auf die zu behandelnden Textilien ermöglicht. Wir konnten finden, dass die Anwesenheit von Kationtensid, insbesondere in Gestalt von Esterquat, in den Textilbehandlungsmitteln zu einem sehr guten und gleichmäßigen Aufziehverhalten des photokatalytischen Materials auf die zu behandelnden Textilien führt. Das Kationtensid, insbesondere Esterquat, führt auch zu einer vergrößerten Haftung des photokatalytischen Materials auf den Textilien und verlängert so seinen Wirkungszeitraum. Insgesamt wird dadurch eine Verbesserung der Reinigungsleistung ermöglicht.
Das erfindungsgemäße Textilbehandlungsmittel ermöglicht ferner eine sehr textilschonende Textilbehandlung, z.B. Fleckenbehandlung.
Ein weiterer Vorteil des erfindungsgemäßen Textilbehandlungsmittels liegt, wie schon angesprochen, darin, dass es zur Verminderung, Beseitigung oder Neutralisierung fötider Gerüche beiträgt. Der fötide Geruch kann dabei vorteilhafterweise so gemindert werden, dass eine vormals existierende Geruchsbelästigung nicht mehr vorliegt. Das Entstehen fötider Gerüche kann für einen längeren Zeitraum verhindert werden. Dies ist auch ein großer Vorteil, da insgesamt eine allgemeine Reinigungsleistung mit der Beseitigung schädlicher Mikroben in einem Behandlungsschritt kombiniert werden kann und zusätzlich ein Blocken bzw. Verhindern fötider Gerüche mit Langzeitwirkung erbracht wird. Dies geht über die Funktion bisheriger Textilbehandlungsmittel deutlich hinaus. Die Entstehung von Schlechtgerüchen kann also vermindert werden.
Vorteilhafterweise wird nicht nur die Beseitigung herkömmlicher Verschmutzungen, sondern auch die Beseitigung, Deaktivierung, Denaturierung oder Verminderung von Mikroben, insbesondere von Keimen, Pilzen, Hefen, Milben, vorzugsweise Hausstaubmilben, bzw. ganz allgemein von (lnnenraum-)Noxen mit allergenem Potential ermöglicht. Unter Noxen werden hier Faktoren verstanden, die den menschlichen Organismus schädigen, zumindest aber den Menschen in seinem Wohlbefinden beeinträchtigen können. Dies sind insbesondere die gerade genannten Faktoren, vor allem mikrobiologische Faktoren wie Viren, Bakterien, Pilze usw.
Die Entfaltung der allgemeinen Reinigungswirkung, welche bei der Anwendung des erfindungsgemäßen Textilbehandlungsmittels beobachtet werden kann, ist besonders effektiv hinsichtlich farbiger Verunreinigungen bzw. Anschmutzungen, die insbesondere zurückgehen auf rote bis blaue Anthocyanfarbstoffe, wie z.B. Cyanidin, z.B. aus Kirschen oder Heidelbeeren, rotes Betanidin aus der roten Beete, orangerote Carotinoide wie z.B. Lycopin, beta-Carotin, z.B. aus Tomaten oder Möhren, gelbe Curcumafarbstoffe, wie z.B. Curcumin, z.B. aus Curry und Senf, braune Gerbstoffe, z.B. aus Tee, Obst, Rotwein tiefbraune Huminsäure, z.B. aus Kaffee, Tee, Kakao, grünes Chlorophyll, z.B, aus grünen Gräsern, technische Farbstoffe aus Kosmetika, Tinten, Farbstiften, farbige Stoffwechsel produkte und/oder Ausscheidungsprodukte von Schimmelpilzen oder anderer Mirkoflora oder mikrobiellem Bewuchs oder Mikroben.
Das erfindungsgemäße Textilbehandlungsmittel kommt auch den heutigen Waschgewohnheiten der Verbraucher entgegen. Diese bevorzugen zunehmend ein Waschen bei niedrigeren Temperaturen, z.B. < 4O0C. Ein deutliches Absterben von Keimen beginnt allerdings erst bei Temperaturen > 4O0C, erst oberhalb einer Temperatur von 550C werden die meisten Bakterien abgetötet. Wird also längere Zeit nur bei 3O0C gewaschen, läßt sich unter Umständen keine ausreichende hygienische Reinheit mehr garantieren. Die Anwendung des erfindungsgemäßen Textilbehandlungsmittels ermöglicht dem Verbraucher das konsequente Waschen bei T < 4O0C bei verbesserter Hygienewirkung.
Ein erfindungsgemäßes Textilbehandlungsmittel vereinigt außerdem vorzugsweise die Vorzüge eines Hygienespülers und eines Weichspülers in einer Angebotsform und erleichtert dem Verbraucher dadurch die Textilpflege und -behandlung, da er statt zwei verschiedener Nachbehandlungsmittel nur ein einziges, nämlich das erfindungsgemäße Textilbehandlungsmittel einsetzen muß, wenn er eine weichmachende und hygienefördernde Nachbehandlung seiner Wäsche für geboten hält. Die Weichheitsleistung wird vorteilhafterweise von dem Kationtensid erbracht. Die erfindungsgemäßen Textilbehandlungsmittel enthalten nämlich als zwingenden Bestandteil Kationtensid. Kationtenside sind dem Fachmann bekannt. Es handelt sich dabei um grenzflächenaktive Verbindungen, in der Regel aus einem gegebenenfalls substituierten Kohlenwasserstoff-Gerüst, mit einer oder mehreren kationischen (positiv geladenen) Gruppen, die in wäßriger Lösung vorzugsweise dissoziieren, vorteilhafterweise an Grenzflächen adsorbieren und vorzugsweise oberhalb der kritischen Micellbildungskonzentration zu positiv geladenen Micellen agg regieren.
Bekannte Beispiele für Kationtenside sind insbesondere quartäre Ammonium-Verbindungen mit einem oder zwei hydrophoben Alkyl-Resten.
Bei Kationtensiden mit zwei hydrophoben Gruppen, die über Ester-Bindungen mit einem quaternierten Di(Tri-)ethanolamin oder einer analogen Verbindung verknüpft sind, spricht man von Esterquats. Diese sind erfindungsgemäß besonders bevorzugt. Andere Beispiele für Kationtenside sind z.B. quartäre Phosphonium-Salze, tertiäre Sulfonium-Salze, Imidazolinium-Salze oder N- Alkylpyridinium-Salze. Kationtenside können auch durch Protonierung von primären Fettaminen oder Fettamin-N-oxiden erhalten werden.
Am meisten bevorzugt sind erfindungsgemäß jedoch quaternäre Ammoniumverbindungen wie Monoalk(en)yltrimethylammonium-Verbindungen, Dialk(en)yldimethylammonium-Verbindungen, Mono-, Di- oder Triester von Fettsäuren mit Alkanolaminen.
Geeignete Beispiele für quaternäre Ammoniumverbindungen sind beispielsweise in den Formeln (I) und (II) gezeigt:
Figure imgf000007_0001
wobei in (I) R für einen acyclischen Alkylrest mit 12 bis 24 Kohlenstoffatomen, R1 für einen gesättigten C1-C4 Alkyl- oder Hydroxyalkylrest steht, R2 und R3 entweder gleich R oder R1 sind oder für einen aromatischen Rest stehen. X~ steht entweder für ein Halogenid-, Methosulfat-, Methophosphat- oder Phosphation sowie Mischungen aus diesen. Beispiele für kationische Verbindungen der Formel (I) sind Monotalgtrimethylammoniumchlorid, Monostearyltrimethylammoniumchlorid, Didecyldimethylammoniumchlorid, Ditalgdimethyl- ammoniumchlorid oder Dihexadecylammoniumchlorid. Verbindungen der Formel (II), (IM) und (IV) sind so genannte Esterquats. Esterquats zeichnen sich durch eine hervorragende biologische Abbaubarkeit aus. In Formel (II) steht R4 für einen aliphatischen Alk(en)ylrest mit 12 bis 22 Kohlenstoffatomen mit 0, 1 , 2 oder 3 Doppelbindungen und/oder gegebenenfalls mit Substituenten; R5 steht für H, OH oder 0(CO)R7, R6 steht unabhängig von R5 für H, OH oder 0(CO)R8, wobei R7 und R8 unabhängig voneinander jeweils für einen aliphatischen Alk(en)ylrest mit 12 bis 22 Kohlenstoffatomen mit O, 1 , 2 oder 3 Doppelbindungen steht, m, n und p können jeweils unabhängig voneinander den Wert 1 , 2 oder 3 haben. X kann entweder ein Halogenid-, Methosulfat-, Methophosphat- oder Phosphation sowie Mischungen aus diesen Anionen sein. Bevorzugt sind Verbindungen, bei denen R5 die Gruppe 0(CO)R7 darstellt. Besonders bevorzugt sind Verbindungen, bei denen R5 die Gruppe 0(CO)R7 darstellt und R4 und R7 Alk(en)ylreste mit 16 bis 18 Kohlenstoffatomen sind. Insbesondere bevorzugt sind Verbindungen, bei denen R6 zudem für OH steht. Beispiele für Verbindungen der Formel (I) sind Methyl-N-(2-hydroxyethyl)-N,N-di(talgacyloxyethyl)ammonium-methosulfat, Bis-(palmitoyloxyethyl)- hydroxyethyl-methyl-ammonium-methosulfat, 1 ,2-Bis-[talgacyloxy]-3-trimethylammoniumpro- panchlorid oder Methyl-N,N-bis(stearoyloxyethyl)-N-(2-hydroxyethyl)ammonium-methosulfat.
Werden quaternierte Verbindungen der Formel (II) eingesetzt, die ungesättigte Alkylketten aufweisen, sind die Acylgruppen bevorzugt, deren korrespondierenden Fettsäuren eine Jodzahl zwischen 1 und 100, bevorzugt zwischen 5 und 80, mehr bevorzugt zwischen 10 und 60 und insbesondere zwischen 15 und 45 aufweisen und die ein cis/trans-lsomerenverhältnis (in Gew.-%) von größer als 30 : 70, vorzugsweise größer als 50 : 50 und insbesondere gleich oder größer als 60 : 40 haben. Handelsübliche Beispiele sind die von Stepan unter dem Warenzeichen Stepantex® vertriebenen Methylhydroxyalkyldialkoyloxyalkylammoniummethosulfate oder die unter Dehyquart® bekannten Produkte von Cognis, die unter Rewoquat® bekannten Produkte von Degussa bzw. die unter Tetranyl® bekannten Produkte von Kao. Weitere bevorzugte Verbindungen sind die Diesterquats der Formel (III), die unter dem Namen Rewoquat® W 222 LM bzw. CR 3099 erhältlich sind.
Figure imgf000008_0001
R21 und R22 stehen dabei unabhängig voneinander jeweils für einen aliphatischen Rest mit 12 bis 22 Kohlenstoffatomen mit 0, 1 , 2 oder 3 Doppelbindungen. Anstelle der Estergruppe 0(CO)R, wobei R für einen langkettigen Alk(en)ylrest steht, können weichmachende Verbindungen eingesetzt werden, die folgende Gruppen aufweisen: RO(CO), N(CO)R oder RN(CO) weisen, wobei von diesen Gruppen N(CO)R-Gruppen bevorzugt sind.
Geeignete Kationtenside sind beispielsweise auch quaternäre Imidazoliniumverbindungen der Formel (IV),
Figure imgf000009_0001
wobei R9 für H oder einen gesättigten Alkylrest mit 1 bis 4 Kohlenstoffatomen, R10 und R11 unabhängig voneinander jeweils für einen aliphatischen, gesättigten oder ungesättigten Alkylrest mit 12 bis 18 Kohlenstoffatomen, R10 alternativ auch für 0(CO)R20 stehen kann, wobei R20 einen aliphatischen, gesättigten oder ungesättigten Alkylrest mit 12 bis 18 Kohlenstoffatomen bedeutet, und Z eine NH-Gruppe oder Sauerstoff bedeutet und X~ ein Anion ist. q kann ganzzahlige Werte zwischen 1 und 4 annehmen.
Weitere besonders bevorzugte Kationtenside sind durch Formel (V) beschrieben, R13 H
R12 N-(CH2V C 0(C0)R15 X" (V);
R14 CH2 — 0(C0)R16
wobei R12, R13 und R14 unabhängig voneinander für eine C-ι_4-Alkyl-, Alkenyl- oder Hydroxyalkyl- gruppe steht, R15 und R16 jeweils unabhängig ausgewählt eine C8.28-Alkylgruppe darstellt, X~ ein Anion ist und r eine Zahl zwischen O und 5 ist. Ein bevorzugtes Beispiel einer kationischen Abscheidungshilfe gemäß Formel (V) ist 2,3-Bis[talgacyloxy]-3-trimethylammoniumpropanchlorid.
Weitere erfindungsgemäß verwendbare Kationtenside stellen die quaternisierten Proteinhydrolysate oder protonierte Amine dar.
Weiterhin sind auch kationische Polymere erfindungsgemäß als Kationtensid einsetzbar. Zu den geeigneten kationischen Polymeren zählen die Polyquaternium-Polymere, wie sie im CTFA Cosmetic Ingredient Dictionary (The Cosmetic, Toiletry and Fragrance, Inc., 1997), insbesondere die auch als Merquats bezeichneten Polyquaternium-6-, Polyquaternium-7-, Polyquaternium-10- Polymere (Polymer JR, LR und KG Reihe von Amerchol), Polyquaternium-4-Copolymere, wie Pfropfcopolymere mit einen Cellulosegerüst und quartären Ammoniumgruppen, die über Allyldimethylammoniumchlorid gebunden sind, kationische Cellulosederivate, wie kationisches Guar, wie Guarhydroxypropyltriammoniumchlorid, und ähnliche quaternierte Guar-Derivate (z.B. Cosmedia Guar von Cognis oder die Jaguar Reihe von Rhodia), kationische quaternäre Zuckerderivate (kationische Alkylpolyglucoside), z.B. das Handelsprodukt Glucquat® 100, gemäß CTFA-Nomenklatur ein "Lauryl Methyl Gluceth-10 Hydroxypropyl Dimonium Chloride", Copolymere von PVP und Dimethylaminomethacrylat, Copolymere von Vinylimidazol und Vinylpyrrolidon, Aminosiliconpolymere und Copolymere.
Ebenfalls als erfindungsgemäße Kationtenside einsetzbar sind polyquaternierte Polymere (z.B. Luviquat® Care von BASF) und auch kationische Biopolymere auf Chitinbasis und deren Derivate, beispielsweise das unter der Handelsbezeichnung Chitosan® (Hersteller: Cognis) erhältliche Polymer.
Einige der genannten kationischen Polymere weisen zusätzlich haut- und/oder textilpflegende Eigenschaften auf, was vorteilhaft ist.
Ebenfalls einsetzbare Kationtenside sind Verbindungen der Formel (VI),
Figure imgf000010_0001
R17 kann ein aliphatischer Alk(en)ylrest mit 12 bis 22 Kohlenstoffatomen mit 0, 1 , 2 oder 3 Doppelbindungen sein, s kann Werte zwischen 0 und 5 annehmen. R18 und R19 stehen unabhängig voneinander jeweils für H, C-ι_4-Alkyl oder Hydroxyalkyl und X~ ist ein Anion.
Weitere geeignete Kationtenside umfassen protonierte oder quaternierte Polyamine.
Besonders bevorzugte Kationtenside sind alkylierte quaternäre Ammoniumverbindungen, von denen mindestens eine Alkylkette durch eine Estergruppe und/oder Amidogruppe unterbrochen ist. Ganz besonders bevorzugt sind N-Methyl-N-(2-hydroxyethyl)-N,N-(ditalgacyloxyethyl)ammonium- methosulfat oder Bis-(palmitoyloxyethyl)-hydroxyethyl-methyl-ammonium-methosulfat. Nach einer bevorzugte Ausführungsform der Erfindung enthält ein erfindungsgemäßes Textilbehandlungsmittel als Kationtensid eine quartäre Ammonium-Verbindung, insbesondere Esterquat, vorzugsweise in Mengen von > 0,1 Gew.-%, vorteilhafterweise 1 bis 40 Gew.-%, insbesondere 3 bis 30 Gew.-%, Gew.-% bezogen auf das gesamte Textilbehandlungsmittel.
Sinnvolle Obergrenzen für die Menge des eingesetzten Kationtensids können auch bei 25 Gew.-%,
20 Gew.-%, 15 Gew.-% oder 10 Gew.-% liegen.
Sinnvolle Untergrenzen für die Menge des eingesetzten Kationtensids können auch bei 4 Gew.-%,
5 Gew.-% oder 10 Gew.-% liegen, Gew.-% jeweils bezogen auf das gesamte
Textilbehandlungsmittel.
Als photokatalytisches Material ist nach einer bevorzugten Ausführungsform der Erfindung Titandioxid enthalten, insbesondere ein modifiziertes Titandioxid, vorzugsweise ein mit Kohlenstoff modifiziertes Titandioxid.
Das photokatalytische Material, insbesondere das (vorzugsweise modifizierte) Titandioxid, ist nach einer bevorzugten Ausführungsform der Erfindung in dem erfindungsgemäßen Textilbehandlungsmittel in Mengen von vorteilhafterweise 0,0001 bis 30 Gew.-%, vorzugsweise 0,001 bis 20 Gew.-%, vorteilhafterweise 0,01 bis 15 Gew.-% enthalten, in weiter vorteilhafter Weise 0,1 bis 10 Gew.-%, noch vorteilhafter 1 bis 5 Gew.-% enthalten, Gew.-% bezogen auf das gesamte Textilbehandlungsmittel.
Nach einer bevorzugten Ausführungsform handelt es sich bei dem (vorzugsweise modifizierten) Titandioxid um ein mit Kohlenstoff modifiziertes Titandioxid. Es können aber auch anders modifizierte Titandioxide eingesetzt werden, beispielsweise mit Stickstoff modifiziertes Titandioxid oder z.B. mit Rhodium und/oder Platinionen dotiertes Titandioxids. Es ist aber erfindungsgemäß besonders bevorzugt, dass es sich um mit Nichtmetallen modifiziertes Titandioxid handelt.
Der Kohlenstoffgehalt des vorteilhafterweise mit Kohlenstoff modifizierten Titandioxids kann nach einer bevorzugten Ausführungsform im Bereich von 0,01 bis 10 Gew.-% vorzugsweise von 0,05 bis 5,0 Gew.-%, vorteilhafterweise von 0,3 bis 1 ,5 Gew.%, insbesondere von 0,4 bis 0,8 Gew.% liegen. Vorteilhafterweise liegt der TiO2-Gehalt des mit Kohlenstoff modifizierten Titandioxids z.B. über 95 Gew.-%, 96 Gew.-%, 97 Gew.-%, 98 Gew.-% oder 99 Gew.-%, bezogen auf das gesamte mit Kohlenstoff modifizierte Titandioxid. Wenn der Kohlenstoff nur in einer Oberflächenschicht der Titandioxid-Partikel eingelagert ist, so liegt eine bevorzugte Ausführungsform vor. Das modifizierte Titandioxid kann vorteilhafterweise zusätzlich Stickstoff enthalten.
Wenn die spezifische Oberfläche des Titandioxids, vorzugsweise des modifizierten Titandioxids, nach BET (BET vorteilhafterweise nach DIN ISO 9277: 2003-05 bestimmt, vorzugsweise vereinfacht auch nach DIN 66132: 1975-07) vorzugsweise 50 bis 500 m2/g, vorteilhafterweise 100 bis 400 m2/g, in weiter vorteilhafter Weise 200 bis 350 m2/g, insbesondere 250 bis 300 m2/g beträgt, so liegt ebenfalls eine bevorzugte Ausführungsform vor.
Das mit Kohlenstoff modifizierte Titandioxid kann nach einer bevorzugten Ausführungsform z.B. dadurch erhalten werden, dass man eine Titanverbindung, welche eine spezifische Oberfläche von vorzugsweise mindestens 50 m2/g nach BET aufweist, mit einer organischen Kohlenstoffverbindung innig vermischt und die Mischung bei einer Temperatur von bis zu 35O0C thermisch behandelt wird.
Die dabei einsetzbare kohlenstoffhaltige Substanz kann nach einer bevorzugten Ausführungsform eine Kohlenstoffverbindung sein, welche zumindest eine funktionell Gruppe enthält, vorzugsweise ausgewählt aus OH, CHO, COOH, NHx, SHx. Insbesondere kann es sich bei der Kohlenstoffverbindung um eine Verbindung aus der Gruppe Ethylenglykol, Glycerin, Bernsteinsäure, Pentaerythrit, Kohlehydrate, Zucker, Stärke, Alkylpolyglucoside, Organoammoniumhydroxide oder Mischungen davon handeln. Es ist auch möglich, dass als kohlenstoffhaltige Substanz Ruß oder Aktivkohle eingesetzt wird.
Es kann auch bevorzugt sein, dass die kohlenstoffhaltige Substanz, welche mit der Titanverbindung vorteilhafterweise gemischt wird, um nach der thermischen Behandlung zu dem modifizierten Titandioxid zu gelangen, eine Zersetzungstemperatur von höchstens 4000C bevorzugt < 35O0C und insbesondere bevorzugt < 3000C aufweist.
Die zur Herstellung des modifizierten Titandioxids vorzugsweise einsetzbare Titanverbindung, welche gemäß zuvor genannter bevorzugter Ausführungsform mit einer organischen Kohlenstoffverbindung innig vermischt wird, kann ein amorphes, teilkristallines oder kristallines Titanoxid bzw. wasserhaltiges Titanoxid oder ein Titanhydrat oder ein Titanoxyhydrat sein, was wiederum einer bevorzugten Ausführungsform entspricht.
Die thermische Behandlung der Mischung aus der Titanverbindung und der Kohlenstoffverbindung kann nach einer bevorzugten Ausführungsform vorteilhafterweise in einem kontinuierlich zu betreibenden Calcinieraggregat, vorzugsweise einem Drehrohrofen durchgeführt werden. Das modifizierte Titandioxid läßt sich, insbesondere im Kontext des zuvor Beschriebenen, vorzugsweise z.B. dadurch erhalten, dass man ein Titandioxid (z.B. mit einer Teilchengröße im Bereich zwischen 2 bis 500 nm oder z.B. 3 bis 150 nm oder z.B. 4 bis 100 nm oder z.B. 5 bis 75 nm oder z.B. 10 bis 30 nm oder z.B. 200 bis 400 nm ), wie etwa handelsüblich erhältlich in Pulveroder Schlammform, hernimmt und aus diesem eine Suspension in einer Flüssigkeit, wie vorzugsweise Wasser, herstellt. Zu der Suspension wird dann vorteilhafterweise eine kohlenstoffhaltige Substanz zugegeben und es wird gemischt. Das Mischen kann unterstützt werden durch den Einsatz von Ultraschall. Der Mischvorgang (z.B. Rühren) kann vorzugsweise mehrere Stunden andauern, vorzugsweise 2, 4, 6, 8, 10 oder 12 Stunden oder sogar länger. Bezogen auf die Feststoffe der Suspension beträgt die Menge der Kohlenstoffverbindung vorteilhafterweise 1-40 Gew.-%, dementsprechend die Menge der Titanverbindung vorzugsweise 60-99 Gew.-%.
Danach wird die Flüssigkeit entfernt, beispielsweise durch Filtration, Abdampfen im Vakuum oder Dekantieren, und der Rückstand wird vorzugsweise getrocknet (z.B. vorzugsweise bei Temperaturen von 70-2000C, vorteilhafterweise über mehrere Stunden, beispielsweise mindestens 12 Stunden) und anschließend calziniert, beispielsweise bei einer Temperatur von mindestens 26O0C, vorzugsweise z.B. bei 3000C, vorzugsweise über einen Zeitraum von mehreren Stunden, vorzugsweise 1-4 Stunden, insbesondere 3 Stunden. Die Calcinierung kann vorteilhafterweise in einem geschlossenen Gefäß stattfinden.
Es kann vorteilhaft sein, dass die Calcinierungstemperatur, z.B. 3000C, innerhalb einer Stunde erreicht wird (langsames Aufheizen auf 3000C).
Dabei ist vorzugsweise ein Farbwechsel des Pulvers von weiß über dunkelbraun nach beige bzw. leicht gelb-bräunlich festzustellen. Zu langes Erhitzen führt zu inaktiven, farblosen Pulvern. Der Fachmann kann dies mit wenigen Routineversuchen abschätzen. Die Calcinierung kann z.B. vorteilhafterweise so lange erfolgen, bis nach einem Farbwechsel des Pulvers von weiß über dunkelbraun ein weiterer Farbwechsel auf beige bzw. leicht gelb-bräunlich stattfindet.
Eine maximale Temperatur von 35O0C sollte dabei vorzugsweise nicht überschritten werden. Bei der thermischen Behandlung kommt es zu einer Zersetzung der organischen Kohlenstoffverbindung an der Oberfläche der Titanverbindung, so dass vorzugsweise ein modifiziertes Titandioxid entsteht, das vorzugsweise 0,005-4 Gew.-% Kohlenstoff enthält.
Nach der thermischen Behandlung wird das Produkt mit bekannten Verfahren vorteilhafterweise deagglomeriert, beispielsweise in einer Stiftmühle, Strahlmühle oder Gegenstrahlmühle. Die zu erzielende Kornfeinheit hängt von der Korngöße der Ausgangstitanverbindung ab. Die Kornfeinheit oder spezifische Oberfläche des Produkts liegt nur geringfügig niedriger, aber in der gleichen Größenordnung wie die des Edukts. Die angestrebte Kornfeinheit des Photokatalysators hängt von dem Einsatzbereich des Photokatalysators ab. Sie liegt üblicherweise im Bereich wie bei TiO2- Pigmenten, kann aber auch darunter oder darüber liegen.
Das im erfindungsgemäßen Textilbehandlungsmittel enthaltene photokatalytische Material, vorzugsweise modifizierte Titandioxid kann vorteilhafterweise eine Teilchengröße im Bereich zwischen 2 bis 500 nm aufweisen, also z.B. 3 bis 150 nm oder z.B. 4 bis 100 nm oder z.B. 5 bis 75 nm oder z.B. 10 bis 30 nm oder z.B. 200 bis 400 nm . Die Teilchengröße des photokatalytischen Materials, vorzugsweise modifizierten Titandioxids, kann zwar vorzugsweise im Bereich von 100- 500 nm, vorteilhafterweise 200-400 nm liegen. Es kann auch bevorzugt sein, dass die Teilchengröße sehr klein ist, z.B. im Bereich von 2-150 nm, vorzugsweise 3-100 nm, vorteilhafterweise 4-80 nm oder z.B. 5-50 nm oder z.B. 8-30 nm oder z.B. 10-20 nm liegt. Sehr kleine Teilchen, z.B. mit einer Teilchengröße von insbesondere 2, 3, 4, 5 oder 10 nm sind bevorzugt enthalten, diese können auch miteinander Agglomerate bilden, die dann entsprechend größer sind, z.B. bis zu 600 nm oder bis zu 500 nm oder bis zu 400 nm oder bis zu 300 nm groß, usw.
Die Teilchengröße kann z.B. vorteilhafterweise bei Werten wie 5 nm, 10 nm, 15 nm, 20 nm, 25 nm, 30 nm, 35 nm, 40 nm, 45 nm, 50 nm oder 60 nm liegen. Insbesondere sehr kleine Teilchengrößen unter 50 nm, unter 40 nm, unter 30 nm oder unter 20 nm können bevorzugt sein. Es kann vorteilhaft sein, bei der Herstellung des modifizierten Titandioxids von mikronisiertem Titandioxid auszugehen, also von Titandioxid mit sehr geringer Teilchengröße, z.B. zwischen 2 und 150 nm oder z.b. zwischen 5 und 100 nm. Die Teilchengröße kann dann z.B. vorteilhafterweise bei Werten wie 2 nm, 3 nm, 4 nm, 5 nm, 10 nm, 15 nm, 20 nm, 25 nm, 30 nm, 35 nm, 40 nm, 45 nm, 50 nm oder 60 nm liegen. Solche Werte sind bevorzugt.
Die Schüttdichte des vorzugsweise modifizierten Titandioxids liegt vorzugsweise im Bereich von 100 bis 800 g/l, vorteilhafterweise von 200 bis 600 g/l, insbesondere von 300-500 g/l. Beispielsweise kann die Schüttdichte 350 g/l, 400 g/l oder 500 g/l betragen. Nach einer bevorzugten Ausführungsform liegt das (vorzugsweise modifizierte) Titandioxid in der Kristallmodifikation Anatas vor.
Das vorstehend beschriebene modifizierte Titandioxid zeichnet sich durch eine sehr gute photokatalytische Aktivität, insbesondere unter Nutzung von Tageslicht, aus. Insbesondere die vom menschlichen Auge wahrnehmbare Strahlung des sichtbaren Bereichs des Spektrums mit Wellenlängen zwischen 380 und 800 nm werden für die Zwecke des Abbaus, der Deaktivierung oder der Reduzierung von Verunreinigungen von dem beschriebenen modifizierten Titandioxid sehr gut genutzt. Auch die UV-Strahlung zwischen 10-380 nm kann sehr gut genutzt werden. Nach einer bevorzugten Ausführungsform der Erfindung enthält das erfindungsgemäße Textilbehandlungsmittel ein Feuchthaltemittel, vorzugsweise Glycerin, Dimere und Trimere von Glycerin, Ethylenglykol, Propylenglykol, Zuckeralkohole, wie vorzugsweise Glucitol, Xylitol, Mannitol, Alkylpolyglucoside, Fettsäureglucamide, Saccharoseester, Sorbitane, Polysorbate, Polydextrose, Polyethylenglykol, vorzugsweise mit mittleren Molekulargewichten von 200 bis 8000, Propandiole, Butandiole, Triethylenglycol, hydrierter Glucosesirup und/oder Gemische aus vorgenannten, vorzugsweise in Mengen von 0,01 bis 10 Gew.-%, vorteilhafterweise 0,1 bis 5 Gew.- %, insbesondere 0,5 bis 2 Gew.-%, Gew.-% jeweils bezogen auf das gesamte Textilbehandlungsmittel.
Es konnte gefunden, dass, wenn Feuchthaltemittel enthalten ist, eine weiter verbesserte Ablagerung des feinteiligen photoaktiven Materials im Rahmen einer herkömmlichen Textilbehandlung auf den Textilien resultierte. Ein besonders geeignetes Feuchthaltemittel ist Glycerin sowie seine Dimere und Trimere und/oder Gemischen hievon. Wir konnten finden, dass bei Anwesenheit des, vorzugsweise organischen, Feuchthaltemittels eine ganz besonders gute Wirkung des Mittels gegen Verunreinigungen resultierte, insbesondere bei Einsatz von Glycerin.
Nach einer bevorzugten Ausführungsform enthält das erfindungsgemäße Textilbehandlungsmittel a) photokatalytisches Material, vorzugsweise solches, wie zuvor beschrieben, insbesondere in Mengen wie zuvor beschrieben b) Kationtensid, vorzugsweise solches, wie zuvor beschrieben, insbesondere in Mengen wie zuvor beschrieben c) optional Riechstoffe, vorzugsweise in Mengen > 0,01 Gew.-%, vorteilhafterweise 0,05 bis 10 Gew.-%, insbesondere 0,1 bis 5 Gew.-%, d) Wasser, vorzugsweise in Mengen > 50 Gew.-%, vorteilhafterweise > 60 Gew.-%, insbesondere > 70 Gew.-% e) optional Lösungsmittel, vorzugsweise einwertige Alkohole, insbesondere 2-Propanol, vorteilhafterweise in Mengen von 0,05 bis 5 Gew.-%, vorzugsweise 0,1 bis 4 Gew.-%, insbesondere 0,3 - 3 Gew.-%, f) optional Feuchthaltemittel, vorzugsweise solches, wie zuvor beschrieben, insbesondere in Mengen wie zuvor beschrieben, g) optional Emulgatoren, vorzugsweise Niotenside, vorteilhafterweise in Mengen von 0 bis 8 Gew.- %, insbesondere 0,1 bis 5 Gew.-% h) optional pH-Stellmittel, vorzugsweise 0,01 bis 5 Gew.-%, insbesondere 0,02 bis 1 Gew.-% i) optional Elektrolyte, vorzugsweise aus der Gruppe der anorganischen Salze, vorteilhafterweise MgCI2 oder NaCI, 0,01 bis 5 Gew.-%, insbesondere 0,05 bis 2 Gew.-%, j) optional hautpflegende Aktivstoffe, vorzugsweise in einer Menge von 0 bis 15 Gew.-%, vorteilhafterweise 0,1 - 10 Gew.-%, insbesondere 0,5 bis 5 Gew.-%, j) optional Verdicker, z.B. auf Polyacrylat-Basis, vorzugsweise in Mengen von 0,01 bis 3 Gew.-%, insbesondere 0,1 bis 1 Gew.-%,
Gew.-% jeweils bezogen auf das gesamte Textilbehandlungsmittel.
Vorzugsweise in einem erfindungsgemäßen Textilbehandlungsmittel nach vorstehender Ausführungsform einsetzbare Verdicker, hautpflegende Aktivstoffe, Elektrolyt^, pH-Stellmittel, Lösungsmittel, Riechstoffe und/oder Niotenside werden im weiteren Verlauf noch beschrieben.
Die Textilbehandlungsmittel, vorzugsweise Nachbehandlungsmittel, insbesondere Weichspüler, können vorzugsweise auch nichtionische weichmachende Komponenten enthalten, wie vor allem Polyoxyalkylenglycerolalkanoate, Polybutylene, langkettige Fettsäuren, ethoxylierte Fettsäureethanolamide, Alkylpolyglucoside, insbesondere Sorbitanmono,-di- und -triester, und Fettsäureester von Polycarbonsäuren enthalten. Aber auch ein weichmachender Ton (beispielsweise Bentonit) kann enthalten sein.
Als optionale nichtionische Tenside können vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt werden, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, zum Beispiel aus Kokos-, Palm-, Taigfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-i4-Alkohole mit 3 EO, 4 EO oder 7 EO, C^-Alkohol mit 7 EO, C13.15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-i8-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-i4-Alkohol mit 3 EO und C12-i8-Alkohol mit 7 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow ränge ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Taigfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO. Auch nichtionische Tenside, die EO- und PO-Gruppen zusammen im Molekül enthalten, sind erfindungsgemäß einsetzbar. Hierbei können Blockcopolymere mit EO-PO-Blockeinheiten bzw. PO-EO-Blockeinheiten eingesetzt werden, aber auch EO-PO-EO-Copolymere bzw. PO-EO-PO- Copolymere. Selbstverständlich sind auch gemischt alkoxylierte Niotenside einsetzbar, in denen EO- und PO-Einheiten nicht blockweise, sondern statistisch verteilt sind. Solche Produkte sind durch gleichzeitige Einwirkung von Ethylen- und Propylenoxid auf Fettalkohole erhältlich.
Außerdem können als weitere optionale nichtionische Tenside auch Alkylglykoside der allgemeinen Formel RO(G)x eingesetzt werden, in der R einen primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1 ,2 bis 1 ,4. Alkylglykoside sind bekannte, milde Tenside und werden deshalb bevorzugt in dem Tensidgemisch eingesetzt.
Eine weitere Klasse bevorzugt einsetzbarer, optionaler nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden einsetzbar sind, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester.
Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N- dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel (VII),
R1 R-CO-N-[Z] (VII)
in der RCO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R1 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (VIII),
R1-O-R2
R-CO-N-[Z] (VIII)
in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R1 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R2 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C-ι_4-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propoxylierte Derivate dieses Restes.
[Z] wird vorzugsweise durch reduktive Aminierung eines Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N-Aryloxy- substituierten Verbindungen können dann durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.
Die nichtionischen Tensiden können in den erfindungsgemäßen Textilbehandlungsmitteln, insbesondere Weichspülern, vorzugsweise in Mengen von 0-8 Gew.-% enthalten sein. Jedoch ist es auch möglich, insbesondere wenn es sich bei den Textilbehandlungsmitteln um flüssige Waschmittel handeln sollte, dass diese beispielsweise 5 bis 30 Gew.-%, vorzugsweise 7 bis 20 Gew.-% und insbesondere 9 bis 15 Gew.-% Niotensid enthalten können, Gew.-% jeweils bezogen auf das gesamte Textilbehandlungsmittel. Dies ist aber weniger bevorzugt.
Nach einer bevorzugten Ausführungsform der Erfindung sind auch Hautpflegemittel bzw. hautpflegende Aktivstoffe in dem erfindungsgemäßen Textilbehandlungsmittel enthalten, insbesondere in Mengen > 0,01 Gew.-%, Gew.-% bezogen auf das gesamte Textilbehandlungsmittel.
Hautpflegemittel (hautpflegende Aktivstoffe ) können insbesondere solche Mittel sein, welche der Haut einen sensorischen Vorteil verleihen, z.B. indem sie Lipide und/oder Feuchthaltefaktoren zuführen. Hautpflegemittel können z.B. Proteine, Aminosäuren, Lecithine, Lipoide, Phosphatide, Pflanzenextrakte, Vitamine sein; ebenso können Fettalkohole, Fettsäuren, Fettsäureester, Wachse, Vaseline, Paraffine als Hautpflegemittel wirken.
Hautpflegende Aktivstoffe sind alle solchen Aktivstoffe die der Haut einen sensorischen und/oder kosmetischen Vorteil verleihen. Hautpflegende Aktivstoffe sind bevorzugt ausgewählt aus den nachfolgenden Substanzen: a) Wachse wie beispielsweise Carnauba, Spermaceti, Bienenwachs, Lanolin und/oder Derivate derselben und andere. b) Hydrophobe Pflanzenextrakte c) Kohlenwasserstoffe wie beispielsweise Squalene und/oder Squalane d) Höhere Fettsäuren, vorzugsweise solche mit wenigstens 12 Kohlenstoffatomen, beispielsweise Laurinsäure, Stearinsäure, Behensäure, Myristinsäure, Palmitinsäure, Ölsäure, Linolsäure, Linolensäure, Isostearinsäure und/oder mehrfach ungesättigte Fettsäuren und andere. e) Höhere Fettalkohole, vorzugsweise solche mit wenigstens 12 Kohlenstoffatomen, beispielsweise Laurylalkohol, Cetylalkohol, Stearylalkohol, Oleylalkohol, Behenylalkohol, Cholesterol und/oder 2-Hexadecanaol und andere. f) Ester, vorzugsweise solche wie Cetyloctanoate, Lauryllactate, Myristyllactate, Cetyllactate, Isopropylmyristate, Myristylmyristate, Isopropylpalmitate, Isopropyladipate, Butylstearate, Decyloleate, Cholesterolisostearate, Glycerolmonostearate, Glyceroldistearate, Glyceroltristearate, Alkyllactate, Alkylcitrate und/oder Alkyltartrate und andere. g) Lipide wie beispielsweise Cholesterol, Ceramide und/oder Saccharoseester und andere h) Vitamine wie beispielsweise die Vitamine A und E, Vitaminalkylester, einschließlich Vitamin
C Alkylester und andere, i) Sonnenschutzmittel j) Phospholipide k) Derivate von alpha-Hydroxysäuren m) Germizide für den kosmetischen Gebrauch, sowohl synthetische wie beispielsweise
Salicylsäure und/oder andere als auch natürliche wie beispielsweise Neemöl und/oder andere n) Silikone sowie Mischungen jeglicher vorgenannter Komponenten.
Bevorzugt einsetzbare hautpflegende Aktivstoffe sind vorzugsweise auch etherische Öle, insbesondere ausgewählt aus der Gruppe der Angelica fine - Angelica archangelica, Anis - Pimpinella Anisum, Benzoe siam - Styrax tokinensis, Cabreuva - Myrocarpus fastigiatus, Cajeput - Melaleuca leucadendron, Cistrose - Cistrus ladaniferus, Copaiba-Balsam - Copaifera reticulata, Costuswurzel - Saussurea discolor, Edeltannennadel - Abies alba, Elemi - Canarium luzonicum, Fenchel - Foeniculum dulce Fichtennadel - Picea abies, Geranium - Pelargonium graveolens, Ho- Blätter - Cinnamonum camphora, Immortelle (Strohblume) Helichrysum ang., Ingwer extra - Zingiber off., Johanniskraut - Hypericum perforatum, Jojoba, Kamille deutsch - Matricaria recutita, Kamille blau fine - Matricaria chamomilla, Kamille röm. - Anthemis nobilis, Kamille wild- Ormensis multicaulis, Karotte - Daucus carota, Latschenkiefer - Pinus mugho, Lavandin - Lavendula hybrida, Litsea Cubeba - (May Chang), Manuka - Leptospermum scoparium, Melisse - Melissa officinalis, Meerkiefer - Pinus pinaster,, Myrrhe - Commiphora molmol, Myrthe - Myrtus communis, Neem - Azadirachta, Niaouli - (MQV) Melaleuca quin, viridiflora, Palmarosa - Cymbopogom martini, Patchouli - Pogostemon patschuli, Perubalsam - Myroxylon balsamum var. pereirae, Raventsara aromatica, Rosenholz - Aniba rosae odora, Salbei - Salvia officinalis Schachtelhalm - Equisetaceae, Schafgarbe extra - Achillea millefolia, Spitzwegerich - Plantago lanceolata, Styrax - Liquidambar orientalis, Tagetes (Ringelblume) Tagetes patula, Teebaum - Melaleuca alternifolia, Tolubalsam - Myroxylon Balsamum L., Virginia-Zeder - Juniperus virginiana, Weihrauch (Olibanum) - Boswellia carteri, Weißtanne - Abies alba. Der Einsatz von etherischen Ölen entspricht einer bevorzugten Ausführungsform der Erfindung.
Bevorzugte einsetzbare hautpflegende Aktivstoffe sind vorzugsweise auch hautschützende Öle, insbesondere ausgewählt aus der Gruppe Algenöl Oleum Phaeophyceae, Aloe-Vera Öl Aloe vera brasiliana, Aprikosenkernöl Prunus armeniaca, Arnikaöl Arnica montana, Avocadoöl Persea americana, Borretschöl Borago officinalis, Calendulaöl Calendula officinalis, Camelliaöl Camellia oleifera, Distelöl Carthamus tinctorius, Erdnuß-öl Arachis hypogaea, Hanföl Cannabis sativa, Haselnußöl Corylus avellana/, Johanniskrautöl Hypericum perforatum, Jojobaöl Simondsia chinensis, Karottenöl Daucus carota, Kokosöl Cocos nucifera, Kürbiskernöl Curcubita pepo, Kukuinußöl Aleurites moluccana, Macadamianußöl Macadamia ternifolia, Mandelöl Prunus dulcis, Olivenöl Olea europaea, Pfirsichkernöl Prunus persica, Rapsöl Brassica oleifera, Rizinusöl Ricinus communis, Schwarzkümmelöl Nigella sativa, Sesamöl Sesamium indicum, Sonnenblumenöl Helianthus annus, Traubenkernöl Vitis vinifera, Walnußöl Juglans regia, Weizenkeimöl Triticum sativum. Der Einsatz von hautschützenden Ölen entspricht einer bevorzugten Ausführungsform der Erfindung.
Die optional enthaltenen hautpflegenden Aktivstoffe können bei der Textilbehandlung auf das Textil übergehen und dann wiederum vom Textil auf die Haut übergehen, wenn das Textil mit der Haut in Kontakt kommt, z.B. beim Tragen von Kleidung. Auf diese Weise gereichen hautpflegende Aktivstoffe in den erfindungsgemäßen Textilbehandlungsmitteln der Haut des Verbrauchers zum Vorteil. Bei Einsatz erfindungsgemäßer Textilbehandlungsmittel, welche optional hautpflegende Aktivstoffe enthalten, in einem manuellen Textilbehandlungsverfahren, gereichen die hautpflegenden Aktivstoffe der Haut des Verbrauchers unmittelbar zum Vorteil, nämlich bei Kontakt der Hand mit der Waschlauge. Der Einsatz hautpflegender Aktivstoffe ist jedoch rein optional.
Bevorzugt ist es, wenn das erfindungsgemäße Textilbehandlungsmittel in einer lichtundurchlässigen Verpackung enthalten ist. Dies entspricht einer bevorzugten Ausführungsform der Erfindung. Bevorzugt sind auch Einmalportionen, z.b. in Form von Pouches.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zum Aufbringen photokatalytischen Materials auf Textilien durch Behandlung dieser Textilien in einem Textilbehandlungsbad enthaltend ein erfindungsgemäßes Textilbehandlungsmittel. Es ist auch möglich, dass Textil direkt mit dem Textilbehandlungsmittel zu kontaktieren.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Reinigung, Pflege, Ausrüstung, Avivage und/oder Konditionierung von Textilien durch Behandlung dieser Textilien in einem Textilbehandlungsbad enthaltend ein erfindungsgemäßes Textilbehandlungsmittel, bei und/oder gefolgt von einer Exponierung der Textilien an Licht im Wellenlängenbereich von 10-1200 nm. Es ist auch möglich, dass Textil direkt mit dem Textilbehandlungsmittel zu kontaktieren.
Wenn das erfindungsgemäße Verfahren auf die Beseitigung, Deaktivierung oder Verminderung von Mikroorganismen, insbesondere Bakterien und Keimen, in Textilien unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm gerichtet ist, so liegt eine bevorzugte Ausführungsform der Erfindung vor.
Ein erfindungsgemäßes Verfahren zur Prophylaxebehandlung von Textilien in Form einer vorauseilenden Abwehr und Hemmung von Anschmutzungen und Flecken unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm stellt wiederum eine bevorzugte Ausführungsform der Erfindung dar. Ein erfindungsgemäßes Verfahren zur Ausrüstung von Textilien mit photokatalytischem Material zur Erleichterung der Entfernbarkeit von farbigem Schmutz (farbige Flecken) von Textilien unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm stellt auch eine bevorzugte Ausführungsform der Erfindung dar.
Ein erfindungsgemäßes Verfahren zur Ausrüstung von Textilien mit photokatalytischem Material zur Reduzierung des Faserhaftungsvermögens von Schmutz, vorzugsweise farbigen Flecken, auf Textilien unter Einsatz von Licht imt Wellenlängenbereich von 10-1200 nm stellt ebenfalls eine bevorzugte Ausführungsform der Erfindung dar.
Ein erfindungsgemäßes Verfahren zur Ausrüstung von Textilien mit photokatalytischem Material zur Erhöhung der Wasserlöslichkeit von Schmutz, vorzugsweise farbigen Flecken, auf Textilien, unter Einsatz von Licht imt Wellenlängenbereich von 10-1200 nm stellt wiederum eine bevorzugte Ausführungsform der Erfindung dar.
Ein erfindungsgemäßes Verfahren zur Ausrüstung von Textilien mit photokatalytischem Material zur Verhinderung des Entstehens fötider Gerüche auf den Textilien, unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm entspricht einer weiteren bevorzugte Ausführungsform der Erfindung.
Ein erfindungsgemäßes Verfahren zur Ausrüstung von Textilien mit photokatalytischem Material zur Ausstattung der Textilien mit einem Selbstreinigungsvermögen, unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm stellt ebenfalls eine bevorzugte Ausführungsform der Erfindung dar.
Ein erfindungsgemäßes Verfahren zur Entfernung oder Reduktion von farbigen Anschmutzungen oder Flecken auf Textilien, die insbesondere zurückgehen auf: rote bis blaue Anthocyanfarbstoffe, wie z.B. Cyanidin, z.B. aus Kirschen oder
Heidelbeeren, rotes Betanidin aus der roten Beete, orangerote Carotinoide wie z.B. Lycopin, beta-Carotin, z.B. aus Tomaten oder Möhren, gelbe Curcumafarbstoffe, wie z.B. Curcumin, z.B. aus Curry und Senf, braune Gerbstoffe, z.B. aus Tee, Obst, Rotwein tiefbraune Huminsäure, z.B. aus Kaffee, Tee, Kakao, grünes Chlorophyll, z.B, aus grünen Gräsern, technische Farbstoffe aus Kosmetika, Tinten, Farbstiften farbige Stoffwechsel produkte und/oder Ausscheidungsprodukte von Schimmelpilzen oder anderer Mirkoflora oder mikrobiellem Bewuchs oder Mikroben, unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm, stellt wiederum eine bevorzugte Ausführungsform der Erfindung dar.
Ein erfindungsgemäßes Verfahren unter Verwendung einer automatischen Waschmaschine, vorzugsweise einer automatischen Waschmaschine mit Lichtquelle, wobei das Textilbehandlungsmittel insbesondere im Nachspülgang zugegeben wird, stellt abermals eine bevorzugte Ausführungsform der Erfindung dar.
Ein erfindungsgemäßes Verfahren, bei dem es sich um ein manuelles Verfahren handelt, welches in einem offenen Bottich ausgeführt wird, insbesondere Handwäsche und/oder Einweichen, wobei man den Bottich, nachdem die zu behandelnden Textilien mit der Waschlauge penetriert sind, Licht im Wellenlängenbereich von 10-1200 nm aussetzt, insbesondere Sonnenlicht, vorzugsweise für einen Zeitraum > 5 Minuten, stellt ebenso eine bevorzugte Ausführungsform der Erfindung dar.
Alle vorstehend beschriebenen Verfahren sind besonders wirkungsvoll unter Ausnutzung von Licht im sichtbaren Bereich (380-800 nm) und/oder im UV-Bereich (10-380 nm). Es entspricht, also, bezogen auf alle vorgenannten Verfahren, jeweils einer bevorzugten Ausführungsform, wenn Licht im Wellenlängenbereich 380-800 nm und/oder im Bereich 10-380 zur Anwendung kommt.
Die erfindungsgemäßen Textiklbehandlungsmittel können neben den zwingenden Bestandteilen Kationtensid und photokatalytischem Material noch weitere optionale Inhaltsstoffe enthalten. Diese werden im Folgenden z.T. näher beschrieben.
Ein erfindungsgemäßes Textilbehandlungsmittel kann optional auch anionisches Tensid umfassen, wenngleich dies weniger bevorzugt ist. Stärker bevorzugt ist es, wenn ein erfindungsgemäßes Textilbehandlungsmittel frei von Aniontensid ist, also weniger als 5 Gew.-%, 2 Gew.-% oder 1 Gew.-% an anionischem Tensid, insbesondere aber 0 Gew.-% an anionischem Tensid umfaßt, Gew.-% bezogen auf das gesamte Textilbehandlungsmittel.
Als anionisches Tensid kann beispielsweise solches vom Typ der Sulfonate und Sulfate eingesetzt werden. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise C9.13-Alkylbenzolsulfonate, Olefinsulfonate, d.h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus C12-i8-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12-i8- Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden. Ebenso sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), zum Beispiel die α-sulfonierten Methylester der hydrierten Kokos-, Palmkernoder Taigfettsäuren geeignet.
Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäureglycerinestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sulfierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Caprinsäure, Myristinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.
Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der C12-C18-Fettalkohole, beispielsweise aus Kokosfettalkohol, Taigfettalkohol, Lauryl-, Myri- styl-, Cetyl- oder Stearylalkohol oder der C10-C2o-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind die C12-C16-Alkyl- sulfate und C12-C15-Alkylsulfate sowie C14-C15-Alkylsulfate bevorzugt. Auch 2,3-Alkylsulfate, welche als Handelsprodukte der Shell OiI Company unter dem Namen DAN® erhalten werden können, sind geeignete Aniontenside.
Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7.21-Alkohole, wie 2-Methyl-verzweigte C^-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C12.18-Fettalkohole mit 1 bis 4 EO, sind geeignet.
Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8.18-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.
Insbesondere bevorzugte anionische Tenside sind Seifen. Geeignet sind gesättigte und ungesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, (hydrierten) Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, zum Beispiel Kokos-, Palmkern-, Olivenöl- oder Taigfettsäuren, abgeleitete Seifengemische.
Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
Sollte ein Einsatz anionischer Tenside in den Textilbehandlungsmittel erwünscht sein, so könnte der Gehalt solcher Textilbehandlungsmittel an anionischen Tensiden in besonderen Ausführungsformen z.B. 2 bis 30 Gew.-%, vorzugsweise 4 bis 25 Gew.-% und insbesondere 5 bis 22 Gew.-%, jeweils bezogen auf das gesamte Textilbehandlungsmittel, betragen. Vorzugsweise sind in den erfindungsgemäßen Textilbehandlungsmitteln jedoch gar keine Aniontenside enthalten, was einer bevorzugten Ausführungsform der Erfindung entspricht.
Auch der Einsatz amphoterer Tenside, umfassend Ampholyte und Betaine, ist möglich, z.B. in Mengen > 0,01 Gew.-%, bezogen auf das gesamte Textilbehandlungsmittel. Geeignete amphotere Tenside sind z.B. N-(Acylamidoalkyl)betaine, N-Alkyl-ß-aminopropionate, N-Alkyl-ß- iminopropionate sowie die üblicherweise im Zusammenhang mit Waschmitteln einsetzbaren amphoteren Tenside. In einer bevorzugten Ausführungsform der Erfindung ist das erfindungsgemäße Textilbehandlungsmittel jedoch ganz frei von amphoterem Tensid.
Auch der Einsatz von Gemini-Tensiden ist möglich, z.B. in Mengen > 0,01 Gew.-%, bezogen auf das gesamte Textilbehandlungsmittel. Gemini-Tenside sind Tenside, die je zwei hydrophobe und hydrophile Gruppen im Molekül enthalten. Sie zeichnen sich durch eine ungewöhnlich hohe Grenzflächenaktivität aus. In einer bevorzugten Ausführungsform der Erfindung ist das erfindungsgemäße Textilbehandlungsmittel jedoch ganz frei Gemini-Tensiden.
Zusätzlich zum Kationtensid und photokatalytischen Material können die erfindungsgemäßen Textilbehandlungsmittel optional noch weitere Inhaltsstoffe, welche z.T. auch schon genannt wurden, wie z.B. Feuchthaltemittel, enthalten, insbesondere solche optionale Inhaltsstoffe, welche die anwendungstechnischen und/oder ästhetischen Eigenschaften des Textilbehandlungsmittels weiter verbessern. Im Rahmen der vorliegenden Erfindung enthalten bevorzugte Textilbehandlungsmittel zusätzlich einen oder mehrere Stoffe aus der Gruppe der Gerüststoffe (builder), Bleichmittel, Bleichaktivatoren, Enzyme, Elektrolyt^, Feuchthaltemittel, nichtwässrigen Lösungsmittel, pH-Stellmittel, Parfüme, Parfümträger, Fluoreszenzmittel, Farbstoffe, Hydrotope, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, optischen Aufheller, Vergrauungsinhibitoren, Einlaufverhinderer, Knitterschutzmittel, Farbübertragungsinhibitoren, antimikrobiellen Wirkstoffe, Germizide, Fungizide, Antioxidantien, Konservierungsmittel, Korrosionsinhibitoren, Antistatika, Bittermittel, Bügelhilfsmittel, Phobier- und Imprägniermittel, Quell- und Schiebefestmittel, neutrale Füllsalze sowie ggf. UV-Absorber.
Als Gerüststoffe, die in den Textilbehandlungsmitteln optional enthalten sein können, sind beispielsweise Silikate, Aluminiumsilikate (insbesondere Zeolithe), Carbonate, Salze organischer Di- und Polycarbonsäuren sowie Mischungen dieser Stoffe zu nennen.
Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSixO2x+I H2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1 ,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl ß- als auch δ-Natriumdisilikate Na2Si2O5 • yH2O bevorzugt. Vorzugsweise ist das erfindungsgemäße Textilbehandlungsmittel jedoch frei von kristallinen, schichtförmigen Natriumsilikaten, enthält also vorzugsweise weniger als 3 Gew.-%, 2 Gew.-% oder 1 Gew.-% an kristallinen, schichtförmigen Natriumsilikaten, insbesondere ist überhaupt kein kristallines, schichtförmiges Natriumsilikat, also 0 Gew.-%, enthalten, Gew.-% bezogen auf das gesamte Textilbehandlungsmittel.
Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na2O : SiO2 von 1 : 2 bis 1 : 3,3, vorzugsweise von 1 : 2 bis 1 : 2,8 und insbesondere von 1 : 2 bis 1 : 2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Korn paktierung/ Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff „amorph" auch „röntgen- amorph" verstanden. Dies heißt, dass die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, dass die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis maximal 50 nm und insbesondere bis maximal 20 nm bevorzugt sind. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.
Vorzugsweise ist das erfindungsgemäße Textilbehandlungsmittel jedoch frei von amorphen Natriumsilikaten, enthält also vorzugsweise weniger als 3 Gew.-%, 2 Gew.-% oder 1 Gew.-% an amorphen Natriumsilikaten, insbesondere ist überhaupt kein, also 0 Gew.-% amorphes Natriumsilikat enthalten, Gew.-% bezogen auf das gesamte Textilbehandlungsmittel
Ein einsetzbarer feinkristalliner, synthetischer und gebundenes Wasser enthaltender Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma SASOL unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel
nNa2O (1-n)K2O AI2O3 (2 - 2,5)SiO2 (3,5 - 5,5) H2O n = 0,90 - 1 ,0
beschrieben werden kann. Der Zeolith kann als sprühgetrocknetes Pulver oder auch als ungetrock- nete, von ihrer Herstellung noch feuchte, stabilisierte Suspension zum Einsatz kommen. Für den Fall, dass der Zeolith als Suspension eingesetzt wird, kann diese geringe Zusätze an nichtionischen Tensiden als Stabilisatoren enthalten, beispielsweise 1 bis 3 Gew.-%, bezogen auf Zeolith, an ethoxylierten C12-C18-Fettalkoholen mit 2 bis 5 Ethylenoxidgruppen, C12-C14- Fettalkoholen mit 4 bis 5 Ethylenoxidgruppen oder ethoxylierten Isotridecanolen. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 μm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
Vorzugsweise ist das erfindungsgemäße Textilbehandlungsmittel jedoch frei von Zeolith, enthält also vorzugsweise weniger als 3 Gew.-%, 2 Gew.-% oder 1 Gew.-% an Zeolith, insbesondere ist überhaupt kein, also 0 Gew.-%, Zeolith enthalten, Gew.-% bezogen auf das gesamte Textilbehandlungsmittel.
Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Geeignet sind insbesondere die Natriumsalze der Orthophosphate, der Pyrophosphate und insbesondere der Tripolyphosphate.
Vorzugsweise ist das erfindungsgemäße Textilbehandlungsmittel jedoch frei von Phosphat, enthält also vorzugsweise weniger als 3 Gew.-%, 2 Gew.-% oder 1 Gew.-% an Phosphat, insbesondere ist überhaupt kein, also 0 Gew.-%, Phosphat enthalten, Gew.-% bezogen auf das gesamte Textilbehandlungsmittel.
Organische Builder, welche in dem Textilbehandlungsmittel vorhanden sein können, umfassen Polycarboxylatpolymere wie Polyacrylate und Acrylsäure/Maleinsäure-Copolymere, Polyaspartate und monomere Polycarboxylate wie Citrate, Gluconate, Succinate oder Malonate, die bevorzugt als Natriumsalze eingesetzt werden. Wenn Builder eingesetzt werden sollen, dann sind organische Builder zu bevorzugen.
Möglich ist auch der Einsatz zusätzlicher Bleichmittel. Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natriumperborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Natriumpercarbonat, Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthalo- iminopersäure oder Diperdodecandisäure. Vorzugsweise ist das erfindungsgemäße Textilbehandlungsmittel jedoch frei von zusätzlichem Bleichmittel, enthält also vorzugsweise weniger als 3 Gew.-%, 2 Gew.-% oder 1 Gew.-% an zusätzlichem Bleichmittel, insbesondere ist überhaupt kein, also 0 Gew.-%, zusätzliches Bleichmittel enthalten, Gew.-% bezogen auf das gesamte Textilbehandlungsmittel.
Um beim Waschen bei Temperaturen von 6O0C und darunter eine verbesserte Bleichwirkung zu erreichen, können Bleichaktivatoren in die Textilbehandlungsmittel eingearbeitet werden. Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/- oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1 ,5- Diacetyl-2,4-dioxohexahydro-1 ,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso- NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5-Diacetoxy-2,5-dihydrofuran. Vorzugsweise enthalten die erfindungsgemäßen Textilbehandlungsmittel jedoch gar keine Bleichaktivatoren.
Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren in die Textilbehandlungsmittel eingearbeitet werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru- oder Mo-Salenkomplexe oder -carbonylkomplexe. Auch Mn-, Fe- , Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit stickstoffhaltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru-Amminkomplexe sind als Bleichkatalysatoren verwendbar. Vorzugsweise enthalten die erfindungsgemäßen Textilbehandlungsmittel jedoch gar keine Bleichkatalysatoren.
Ein erfindungsgemäßes Textilbehandlungsmittel kann ein Verdickungsmittel enthalten. Dies entspricht einer bevorzugten Ausführungsform der Erfindung. Das Verdickungsmittel kann beispielsweise einen Polyacrylat-Verdicker, Xanthan Gum, Gellan Gum, Guarkernmehl, Alginat, Carrageenan, Carboxymethylcellulose, Bentonite, Wellan Gum, Johannisbrotkernmehl, Agar-Agar, Tragant, Gummi arabicum, Pektine, Polyosen, Stärke, Dextrine, Gelatine und Casein umfassen. Aber auch abgewandelte Naturstoffe wie modifizierten Stärken und Cellulosen, beispielhaft seien hier Carboxymethylcellulose und andere Celluloseether, Hydroxyethyl- und -propylcellulose sowie Kernmehlether genannt, können als Verdickungsmittel eingesetzt werden.
Zu den Polyacryl- und Polymethacryl-Verdickern zählen beispielsweise die hochmolekularen mit einem Polyalkenylpolyether, insbesondere einem Allylether von Saccharose, Pentaerythrit oder Propylen, vernetzten Homopolymere der Acrylsäure (INCI- Bezeichnung gemäß „International Dictionary of Cosmetic Ingredients" der „The Cosmetic, Toiletry and Fragrance Association (CTFA)": Carbomer), die auch als Carboxyvinylpolymere bezeichnet werden. Solche Polyacrylsäuren sind u.a. von der Fa. 3V Sigma unter dem Handelsnamen Polygel®, z.B. Polygel DA, und von der Fa. B. F. Goodrich unter dem Handelsnamen Carbopol® erhältlich, z.B. Carbopol 940 (Molekulargewicht ca. 4.000.000), Carbopol 941 (Molekulargewicht ca. 1.250.000) oder Carbopol 934 (Molekulargewicht ca. 3.000.000). Weiterhin fallen darunter folgende Acrylsäure- Copolymere: (i) Copolymere von zwei oder mehr Monomeren aus der Gruppe der Acrylsäure, Methacrylsäure und ihrer einfachen, vorzugsweise mit C-ι_4-Alkanolen gebildeten, Ester (INCI Acrylates Copolymer), zu denen etwa die Copolymere von Methacrylsäure, Butylacrylat und Methylmethacrylat (CAS- Bezeichnung gemäß Chemical Abstracts Service: 25035-69-2) oder von Butylacrylat und Methylmethacrylat (CAS 25852-37-3) gehören und die beispielsweise von der Fa. Rohm & Haas unter den Handelsnamen Aculyn® und Acusol® sowie von der Firma Degussa (Goldschmidt) unter dem Handelsnamen Tego® Polymer erhältlich sind, z.B. die anionischen nichtassoziativen Polymere Aculyn 22, Aculyn 28, Aculyn 33 (vernetzt), Acusol 810, Acusol 820, Acusol 823 und Acusol 830 (CAS 25852-37-3); (ii) vernetzte hochmolekulare Acrylsäurecopolymere, zu denen etwa die mit einem Allylether der Saccharose oder des Pentaerythrits vernetzten Copolymere von C10-30-Alkylacrylaten mit einem oder mehreren Monomeren aus der Gruppe der Acrylsäure, Methacrylsäure und ihrer einfachen, vorzugsweise mit C-ι_4-Alkanolen gebildeten, Ester (INCI Acrylates/C-ιo-30 Alkyl Acrylate Crosspolymer) gehören und die beispielsweise von der Fa. B. F. Goodrich unter dem Handelsnamen Carbopol® erhältlich sind, z.B. das hydrophobierte Carbopol ETD 2623 und Carbopol 1382 (INCI Acrylates/CiO-3O Alkyl Acrylate Crosspolymer) sowie Carbopol Aqua 30 (früher Carbopol EX 473).
Ein weiteres bevorzugt einsetzbares polymeres Verdickungsmittel ist Xanthan Gum, ein mikrobielles anionisches Heteropolysaccharid, das von Xanthomonas campestris und einigen anderen Species unter aeroben Bedingungen produziert wird und eine Molmasse von 2 bis 15 Millionen Dalton aufweist. Xanthan wird aus einer Kette mit ß-1 ,4-gebundener Glucose (Cellulose) mit Seitenketten gebildet. Die Struktur der Untergruppen besteht aus Glucose, Mannose, Glucuronsäure, Acetat und Pyruvat, wobei die Anzahl der Pyruvat-Einheiten die Viskosität des Xanthan Gums bestimmt.
Als Verdickungsmittel kommt insbesondere auch ein Fettalkohol in Frage. Fettalkohole können verzweigt oder nichtverzweigt sowie nativen Ursprungs oder petrochemischen Ursprungs sein. Bevorzugte Fettalkohole haben eine C-Kettenlänge von 10 bis 20 C-Atomen, bevorzugt 12 bis 18. Bevorzugt werden Mischungen unterschiedlicher C-Kettenlängen, wie talgfettalkohol oder Kokosfettalkohol, eingesetzt. Beispiele sind Lorol ® Spezial (C12-i4-ROH) oder Lorol® Technisch (C-12-18-ROH) (beide ex Cognis).
Bevorzugte erfindungsgemäße Textilbehandlungsmittel enthalten bezogen auf das gesamte Textilbehandlungsmittel vorteilhafterweise 0,01 bis 3 Gew.-% und vorzugsweise 0,1 bis 1 Gew.-% Verdickungsmittel. Die Menge an eingesetztem Verdickungsmittel ist dabei abhängig von der Art des Verdickungsmittels und dem gewünschten Grad der Verdickung.
Das Textilbehandlungsmittel kann Enzyme in verkapselter Form und/oder direkt in dem Textilbehandlungsmittel enthalten. Als Enzyme kommen insbesondere solche aus der Klassen der Hydrolasen wie der Proteasen, Esterasen, Lipasen bzw. lipolytisch wirkende Enzyme, Amylasen, Cellulasen bzw. andere Glykosylhydrolasen, Hemicellulase, Cutinasen, ß-Glucanasen, Oxidasen, Peroxidasen, Perhydrolasen und/oder Laccasen und Gemische der genannten Enzyme in Frage. Alle diese Hydrolasen tragen in der Wäsche zur Entfernung von Verfleckungen wie protein-, fett- oder stärkehaltigen Verfleckungen und Vergrauungen bei. Cellulasen und andere Glykosylhydrolasen können darüber hinaus durch das Entfernen von Pilling und Mikrofibrillen zur Farberhaltung und zur Erhöhung der Weichheit des Textils beitragen. Zur Bleiche bzw. zur Hemmung der Farbübertragung können auch Oxireduktasen eingesetzt werden. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen wie Bacillus subtilis, Bacillus licheniformis, Streptomyceus griseus und Humicola insolens gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease und Cellulase oder aus Cellulase und Lipase bzw. lipolytisch wirkenden Enzymen oder aus Protease, Amylase und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease, Lipase bzw. lipolytisch wirkenden Enzymen und Cellulase, insbesondere jedoch Protease und/oder Lipase-haltige Mischungen bzw. Mischungen mit lipolytisch wirkenden Enzymen von besonderem Interesse. Beispiele für derartige lipolytisch wirkende Enzyme sind die bekannten Cutinasen. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Zu den geeigneten Amylasen zählen insbesondere α-Amylasen, Iso-Amylasen, Pullulanasen und Pektinasen. Als Cellulasen werden vorzugsweise Cellobiohydrolasen, Endoglucanasen und ß-Glucosidasen, die auch Cellobiasen genannt werden, bzw. Mischungen aus diesen eingesetzt. Da sich verschiedene Cellulase-Typen durch ihre CMCase- und Avicelase-Aktivitäten unterscheiden, können durch gezielte Mischungen der Cellulasen die gewünschten Aktivitäten eingestellt werden. Besonders vorteilhaft ist es, wenn die erfindungsgemäßen Textilbehandlunsgmittel Mannanase enthalten, und zwar insbesondere inkorporiert in Mikrokaspeln und/oder Speckies. Dies entspricht einer bevorzugten Ausführungsform der Erfindung Es konnte gefunden werden, dass die Mannanase im Verbund mit dem photokatalytischen Material eine besonders gute Wirkung bei der Schmutzablösung von galactomannanhaltigen Rückständen auf Textilien erbrachte. Auch der Einsatz von Tannase ist bevorzugt.
Die Enzyme können an Trägerstoffe adsorbiert sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, der Enzymflüssigformulierung(en) oder der Enzymgranulate direkt in dem Textilbehandlungsmittel kann beispielsweise etwa 0,01 bis 5 Gew.-%, vorzugsweise 0,12 bis etwa 2,5 Gew.-% betragen.
Es ist aber stärker bevorzugt, dass das Textilbehandlungsmittel gar keine Enzyme enthält. Dies entspricht einer bevorzugten Ausführungsform.
Als Elektrolyt^ aus der Gruppe der anorganischen Salze kann eine breite Anzahl der verschiedensten Salze eingesetzt werden. Bevorzugte Kationen sind die Alkali- und Erdalkalimetalle, bevorzugte Anionen sind die Halogenide und Sulfate. Aus herstellungstechnischer Sicht ist der Einsatz von NaCI oder MgCI2 in den Textilbehandlungsmitteln bevorzugt. Der Anteil an Elektrolyten in den Textilbehandlungsmittel kann z.B. üblicherweise 0,1 bis 5 Gew.-% betragen. Nichtwässrige Lösungsmittel, die in den erfindungsgemäßen Textilbehandlungsmitteln eingesetzt werden können, stammen beispielsweise aus der Gruppe der ein- oder mehrwertigen Alkohole, Alkanolamine oder Glykolether. Vorzugsweise werden die Lösungsmittel ausgewählt aus Ethanol, n- oder i-Propanol, Butanolen, Glykol, Propan- oder Butandiol, Glycerin, Diglykol, Propyl- oder Butyldiglykol, Hexylenglycol, Ethylenglykolmethylether, Ethylenglykolethylether, Ethylenglykolpropylether, Ethylenglykolmono-n-butylether, Diethylenglykolmethylether, Diethylenglykolethylether, Propylenglykolmethyl-, -ethyl- oder -propylether, Dipropylenglykolmono- methyl- oder -ethylether, Di-isopropylenglykolmonomethyl- oder -ethylether, Methoxy-, Ethoxy- oder Butoxytriglykol, 1-Butoxyethoxy-2-propanol, 3-Methyl-3-methoxybutanol, Propylen-glykol-t- butylether sowie Mischungen dieser Lösungsmittel. Nichtwässrige Lösungsmittel können in den erfindungsgemäßen Textilbehandlungsmitteln vorzugsweise in Mengen zwischen 0,5 und 15 Gew.- %, bevorzugt aber unter 12 Gew.-% und insbesondere unterhalb von 9 Gew.-% eingesetzt werden.
Die Viskosität der erfindungsgemäßen Textilbehandlungsmittel (insbesondere in Form von flüssigen Waschmitteln oder Weichspülern) kann mit üblichen Standardmethoden (beispielsweise Brookfield-Viskosimeter LVT-II bei 20 U/min und 2O0C, Spindel 3) gemessen werden und liegt insbesondere für flüssige Waschmittel vorzugsweise im Bereich von 500 bis 5000 mPas. Bevorzugte Textilbehandlungsmittel in Form von flüssigen Waschmitteln haben Viskositäten von vorzugsweise 700 bis 4000 mPas, wobei Werte zwischen 1000 und 3000 mPas besonders bevorzugt sind. Die Viskosität von erfindungsgemäßen Textilbehandlungsmitteln in Form von Weichspülern, welche erfindungsgemäß bevorzugt sind, beträgt vorzugsweise 20 bis 4000 mPas, wobei Werte zwischen 40 und 2000 mPas besonders bevorzugt sind. Insbesondere bevorzugt liegt die Viskosität von Weichspülern von 40 bis 1000 mPas.
Um den pH-Wert der erfindungsgemäßen Textilbehandlungsmittel in den gewünschten Bereich zu bringen, kann der Einsatz von pH-Stellmitteln angezeigt sein. Einsetzbar sind hier sämtliche bekannten Säuren bzw. Laugen, sofern sich ihr Einsatz nicht aus anwendungstechnischen oder ökologischen Gründen bzw. aus Gründen des Verbraucherschutzes verbietet. Üblicherweise überschreitet die Menge dieser Stellmittel 7 Gew.-% oder vorzugsweise 5 Gew.-% der Gesamtformulierung nicht.
Der pH-Wert des erfindungsgemäßen Textilbehandlungsmittels in Form eines flüssigen Waschmittels liegt bevorzugt zwischen 4 und 10 und bevorzugt zwischen 5,5 und 8,5. Der pH-Wert des erfindungsgemäßen Textilbehandlungsmittels in Form eines Weichspülers, was erfindungsgemäß bevorzugt ist, liegt vorzugsweise zwischen 1 und 6 und bevorzugt zwischen 1 ,5 und 3,5.
In einer bevorzugten Ausführungsform enthält das Textilbehandlungsmittel gegebenenfalls ein oder mehrere Parfüms (Parfümöle, Riechstoffe) in einer Menge von üblicherweise bis 10 Gew.-%, vorzugsweise 0,01 bis 5 Gew.-%, insbesondere 0,05 bis 3 Gew.-%, besonders bevorzugt 0,1 bis 2 Gew.-% und äußerst bevorzugt 0,4 bis 0,8 Gew.-%. Dabei ist die Menge an eingesetztem Parfüm auch von der Art des Textilbehandlungsmittels abhängig.
Als Parfümöle (Riechstoffe, Duftstoffe) können einzelne Riechstoffverbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind.
Mit dem Begriff Parfümöl sind vorzugsweise in sich abgeschlossene Duftstoffkompositionen gemeint, welche gemeinhin zur Produktbeduftung eingesetzt werden und insbesondere nach menschlichem Ermessen wohlriechend sind. Dies sei an einem Beispiel erläutert. Will ein Fachmann z.B. ein Reinigungsmittel wohlriechend machen, so fügt er ihm für gewöhnlich nicht nur eine (wohl-)riechende Substanz, sondern ein Kollektiv (wohl-)riechender Substanzen bei. Ein solches Kollektiv besteht gewöhnlich aus einer Vielzahl einzelner Riechstoffe, z.B. mehr als 10 oder 15, vorzugsweise bis zu 100 oder mehr. Diese Riechstoffe formen zusammenwirkend ein gewünschtes wohlriechendes, harmonisches Geruchsbild.
Ein einsetzbares Parfümöl kann einzelne Riechstoffverbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe enthalten. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.- Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat (DMBCA), Phenylethylacetat, Benzylacetat, Ethylmethylphenylglycinat, Allylcyclohexyl-propionat, Styrallylpropionat, Benzylsalicylat, Cyclohexylsalicylat, Floramat, Melusat und Jasmecyclat. Zu den Ethern zählen beispielsweise Benzylethylether und Ambroxan , zu den Aldehyden z.B. die linearen Alkanale mit 8 - 18 C-Atomen, Citral, Citronellal, Citronellyloxy-acetaldehyd, Cyclamenaldehyd, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, oc-|somethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote des gebildeten Parfümöl erzeugen.
Die Parfümöle können aber auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller-Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl. Um wahrnehmbar zu sein, muß ein Riechstoff flüchtig sein, wobei neben der Natur der funktionellen Gruppen und der Struktur der chemischen Verbindung auch die Molmasse eine wichtige Rolle spielt. So besitzen die meisten Riechstoffe Molmassen bis etwa 200 Dalton, während Molmassen von 300 Dalton und darüber eher eine Ausnahme darstellen. Aufgrund der unterschiedlichen Flüchtigkeit von Riechstoffen verändert sich der Geruch eines aus mehreren Riechstoffen zusammengesetzten Parfüms während des Verdampfens, wobei man die Geruchseindrücke in „Kopfnote" (top note), „Herz- bzw. Mittelnote" (middle note bzw. body) sowie „Basisnote" (end note bzw. dry out) unterteilt.
Haftfeste Riechstoffe, die im Rahmen der vorliegenden Erfindung vorteilhafterweise einsetzbar sind, sind beispielsweise die ätherischen Öle wie Angelikawurzelöl, Anisöl, Arnikablütenöl, Basilikumöl, Bayöl, Champacablütenöl, Edeltannenöl, Edeltannenzapfenöl, Elemiöl, Eukalyptusöl, Fenchelöl, Fichtennandelöl, Galbanumöl, Geraniumöl, Gingergrasöl, Guajakholzöl, Gurjunbalsamöl, Helichrysumöl, Ho-Öl, Ingweröl, Irisöl, Kajeputöl, Kalmusöl, Kamillenöl, Kampferöl, Kanagaöl, Kardamomenöl, Kassiaöl, Kiefernnadelöl, Kopaϊvabalsamöl, Korianderöl, Krauseminzeöl, Kümmelöl, Kuminöl, Lemongrasöl, Moschuskörneröl, Myrrhenöl, Nelkenöl, Neroliol, Niaouliöl, Olibanumöl, Origanumöl, Palmarosaöl, Patschuliöl, Perubalsamöl, Petitgrainöl, Pfefferöl, Pfefferminzöl, Pimentöl, Pine-Öl, Rosenöl, Rosmarinöl, Sandelholzöl, Sellerieöl, Sternanisöl, Thujaöl, Thymianöl, Verbenaöl, Vetiveröl, Wacholderbeeröl, Wermutöl, Wintergrünöl, Ylang -Ylang-Öl, Ysop-Öl, Zimtöl, Zimtblätteröl sowie Zypressenöl.
Aber auch die höhersiedenden bzw. festen Riechstoffe natürlichen oder synthetischen Ursprungs können im Rahmen der vorliegenden Erfindung vorteilhafterweise als haftfeste Riechstoffe bzw. Riechstoffgemische eingesetzt werden. Zu diesen Verbindungen zählen die nachfolgend genannten Verbindungen sowie Mischungen aus diesen: Ambrettolid, α-Amylzimtaldehyd, Anethol, Anisaldehyd, Anisalkohol, Anisol, Anthranilsäuremethylester, Acetophenon, Benzylaceton, Benzaldehyd, Benzoesäureethylester, Benzophenon, Benzylakohol, Borneol, Bornylacetat, α- Bromstyrol, n-Decylaldehyd, n-Dodecylaldehyd, Eugenol, Eugenolmethylether, Eukalyptol, Farnesol, Fenchon, Fenchylacetat, Geranylacetat, Geranylformiat, Heliotropin, Heptincarbonsäuremethylester, Heptaldehyd, Hydrochinon-Di-methylether, Hydroxyzimtaldehyd, Hydroxyzimtalkohol, Indol, Iron, Isoeugenol, Isoeugenolmethylether, Isosafrol, Jasmon, Kampfer, Karvakrol, Karvon, p- Kresolmethylether, Cumarin, p-Methoxyacetophenon, Methyl-n-amylketon, Methylanthranilsäuremethylester, p-Methylacetophenon, Methylchavikol, p-Methylchinolin, Methyl- ß-naphthylketon, Methyl-n-nonylacetaldehyd, Methyl-n-nonylketon, Muskon, ß-Naphtholethylether, ß-Naphthol-methylether, Nerol, Nitrobenzol, n-Nonylaldehyd, Nonylakohol, n-Octylaldehyd, p-Oxy- Acetophenon, Pentadekanolid, ß-Phenylethylakohol, Phenylacetaldehyd-Dimethylacetal, Phenyles- sigsäure, Pulegon, Safrol, Salicylsäureisoamylester, Salicylsäuremethylester, Salicylsäure- hexylester, Salicylsäurecyclohexylester, Santalol, Skatol, Terpineol, Thymen, Thymol, γ- Undelacton, Vanilin, Veratrumaldehyd, Zimtaldehyd, Zimtalkohol, Zimtsäure, Zimtsäureethylester, Zi mtsäu rebenzylester.
Zu den leichter flüchtigen Riechstoffen, die im Rahmen der vorliegenden Erfindung vorteilhaft einsetzbar sind, zählen insbesondere die niedriger siedenden Riechstoffe natürlichen oder synthetischen Usprung, die allein oder in Mischungen eingesetzt werrden können. Beispiele für leichter flüchtige Riechstoffe sind Alkyisothiocyanate (Alkylsenföle), Butandion, Limonen, Linalool, Linaylacetat und -propionat, Menthol, Menthon, Methyl-n-hep-tenon, Phellandren, Phenylacetaldehyd, Terpinylacetat, Zitral, Zitronellal.
Alle vorgenannten Riechstoffe sind alleine oder in Mischung gemäß der vorliegenden Erfindung mit den bereits genannten Vorteilen einsetzbar.
In einer bevorzugten Ausführungsform enthält das erfindungsgemäße Textilbehandlungsmittel bestimmte Minimalwerte an Parfümöl (Riechstoffen), nämlich zumindest 0,00001 Gew.-%, vorteilhafterweise zumindest 0,0001 Gew.-%, in beträchtlich vorteilhafter weise zumindest 0,001 Gew.-%, in vorteilhafterer Weise zumindest 0,01 Gew.-%, in weiter vorteilhafter Weise zumindest 0,1 Gew.-%, in noch weiter vorteilhafter Weise zumindest 0,2 Gew.-%, in sehr vorteilhafter Weise zumindest 0,3 Gew.-%, in besonders vorteilhafter Weise zumindest 0,4 Gew.-%, in ganz besonders vorteilhafter Weise zumindest 0,45 Gew.-%, in erheblich vorteilhafter Weise zumindest 0,5 Gew.-%, in ganz erheblich vorteilhafter Weise zumindest 0,55 Gew.-%, in äußerst vorteilhafter Weise zumindest 0,6 Gew.-%, in höchst vorteilhafterweise zumindest 0,65 Gew.-%, in überaus vorteilhafterweise zumindest 0,7 Gew.-%, in ausnehmend vorteilhafter Weise zumindest 0,75 Gew.-%, in außergewöhnlich vorteilhafter Weise zumindest 0,8 Gew.-%, in außerordentlich vorteilhafter Weise zumindest 0,85 Gew.-%, insbesondere zumindest 0,9 Gew.-% an Parfümöl, bezogen auf das gesamte Textilbehandlungsmittel.
In einer bevorzugten Ausführungsform enthalten die Parfümöle weniger als 8 , vorteilhafterweise weniger als 7, in vorteilhafterer Weise weniger als 6, in wiederum vorteilhafterer Weise weniger als 5, in weiter vorteilhafterweise weniger als 4, noch vorteilhafter weniger als 3, vorzugsweise weniger als 2, insbesondere keine Duftstoffe aus der Liste Amylcinnamal, Amylcinnamylalkohol, Benzylalkohol, Benzylsalicylat, Cinnamylalkohol, Cinnamal, Citral, Cumarin, Eugenol, Geraniol, Hydroxycitronellal, Hydroxymethylpentylcyclohexencarboxaldehyd, Isoeugenol, Anisylalkohol, Benzylbenzoat, Benzylcinnamat, Citronellol, Farnesol, Hexylcinnamaldehyd, Lilial, d-Limonen, Linalool, Methylheptincarbonat, 3-Methyl-4-(2,6,6-trimethyl-2-cyclohexen-1-yl)-3-buten-2-on, Eichenmoosextrakt, Baummoosextrakt.
Nach einer weiteren speziellen Ausführungsform kann das erfindungsgemäße Textilbehandlungsmittel ganz frei von Parfümöl (Riechstoffen) sein. Es ist aber deutlich mehr bevorzugt, dass Riechstoffe enthalten sind.
Um den ästhetischen Eindruck der Textilbehandlungsmittel zu verbessern, können sie mit geeigneten Farbstoffen eingefärbt werden. Bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unempfindlichkeit gegenüber den übrigen Inhaltsstoffen der Textilbehandlungsmittel und gegen Licht sowie keine ausgeprägte Substantivität gegenüber Textilfasern, um diese nicht anzufärben.
Als Schauminhibitoren, die in den Textilbehandlungsmitteln eingesetzt werden können, kommen beispielsweise Seifen, Paraffine oder Silikonöle in Betracht, die gegebenenfalls auf Trägermaterialien aufgebracht sein können.
Geeignete Soil-Release-Polymere, die auch als „Antiredepositionsmittel" bezeichnet werden, sind beispielsweise nichtionische Celluloseether wie Methylcellulose und Methylhydroxypropylcellulose mit einem Anteil an Methoxygruppen von 15 bis 30 Gew.-% und an Hydroxypropylgruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylen- und/oder Polypropylenglykolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Geeignete Derivate umfassen die sulfonierten Derivate der Phthalsäure- und Terephthalsäure-Polymere.
Optische Aufheller (so genannte „Weißtöner") können den Textilbehandlungsmitteln zugesetzt werden, um Vergrauungen und Vergilbungen der behandelten Textilen Flächengebilden zu beseitigen. Diese Stoffe ziehen auf die Faser auf und bewirken eine Aufhellung und vorgetäuschte Bleich- Wirkung, indem sie unsichtbare Ultraviolettstrahlung in sichtbares längerwelliges Licht umwandeln, wobei das aus dem Sonnenlicht absorbierte ultraviolette Licht als schwach bläuliche Fluoreszenz abgestrahlt wird und mit dem Gelbton der vergrauten bzw. vergilbten Wäsche reines Weiß ergibt. Geeignete Verbindungen stammen beispielsweise aus den Substanzklassen der 4,4'-Diamino- 2,2'-stilbendisulfonsäuren (Flavonsäuren), 4,4'-Distyryl-biphenylen, Methylumbelliferone, Cumarine, Dihydrochinolinone, 1 ,3-Diarylpyrazoline, Naphthalsäureimide, Benzoxazol-, Benzisoxazol- und Benzimidazol-Systeme sowie der durch Heterocyclen substituierten Pyrenderivate. Die optischen Aufheller werden üblicherweise in Mengen zwischen 0% und 0,3 Gew.-%, bezogen auf das gesamte Textilbehandlungsmittel, eingesetzt. Nach einer weiteren bevorzugten Ausführungsform ist das erfindungsgemäße Textilbehandlungsmittel ganz frei von optischem Aufheller.
Vergrauungsinhibitoren haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte suspendiert zu halten und so das Wiederaufziehen des Schmutzes zu verhindern. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise Leim, Gelatine, Salze von Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich lösliche Stärkepräparate und andere als die oben genannten Stärkeprodukte verwenden, zum Beispiel abgebaute Stärke, Aldehydstärken usw. Auch Polyvinylpyrrolidon ist brauchbar. Bevorzugt werden jedoch Celluloseether wie Carboxymethylcellulose (Na-SaIz), Methylcellulose, Hydroxyalkylcellulose und Mischether wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarboxymethylcellulose und deren Gemische in Mengen von 0,1 bis 5 Gew.-%, bezogen auf die Textilbehandlungsmittel, eingesetzt.
Nach einer weiteren bevorzugten Ausführungsform ist das erfindungsgemäße Textilbehandlungsmittel ganz frei von Vergrauungsinhibitoren.
Um während des Waschens und/oder des Reinigens von gefärbten Textilien die Farbstoffablösung und/oder die Farbstoffübertragung auf andere Textilien wirksam zu unterdrücken, kann das Textilbehandlungsmittel einen Farbübertragungsinhibitor enthalten. Es ist bevorzugt, dass der Farbübertragungsinhibitor ein Polymer oder Copolymer von cyclischen Aminen wie beispielsweise Vinylpyrrolidon und/oder Vinylimidazol ist. Als Farbübertragungsinhibitor geeignete Polymere umfassen Polyvinylpyrrolidon (PVP), Polyvinylimidazol (PVI), Copolymere von Vinylpyrrolidon und Vinylimidazol (PVP/PVI), Polyvinylpyridin-N-oxid, Poly-N-carboxymethyl-4-vinylpyridiumchlorid sowie Mischungen daraus. Besonders bevorzugt werden Polyvinylpyrrolidon (PVP), Polyvinylimidazol (PVI) oder Copolymere von Vinylpyrrolidon und Vinylimidazol (PVP/PVI) als Farbübertragungsinhibitor eingesetzt. Die eingesetzten Polyvinylpyrrolidone (PVP) besitzen bevorzugt ein mittleres Molekular gewicht von 2.500 bis 400.000 und sind kommerziell von ISP Chemicals als PVP K 15, PVP K 30, PVP K 60 oder PVP K 90 oder von der BASF als Sokalan® HP 50 oder Sokalan® HP 53 erhältlich. Die eingesetzten Copolymere von Vinylpyrrolidon und Vinylimidazol (PVP/PVI) weisen vorzugsweise ein Molekulargewicht im Bereich von 5.000 bis 100.000 auf. Kommerziell erhältlich ist ein PVP/PVI-Copolymer beispielsweise von der BASF unter der Bezeichnung Sokalan® HP 56.
Die Menge an einsetzbarem Farbübertragungsinhibitor bezogen auf die Gesamtmenge des Textilbehandlungsmittels reicht z.B. vorzugsweise von 0,01 bis 2 Gew.-%, vorzugsweise von 0,05 bis 1 Gew.-% und mehr bevorzugt von 0,1 bis 0,5 Gew.-%. Nach einer weiteren bevorzugten Ausführungsform ist das erfindungsgemäße Textilbehandlungsmittel ganz frei von Farbübertragungsinhibitoren.
Alternativ können aber auch enzymatische Systeme, umfassend eine Peroxidase und Wasserstoffperoxid beziehungsweise eine in Wasser Wasserstoffperoxid-Iiefernde Substanz, als Farbübertragungsinhibitor eingesetzt werden. Der Zusatz einer Mediatorverbindung für die Peroxidase, zum Beispiel eines Acetosyringons, eines Phenolderivats oder eines Phenotiazins oder Phenoxazins, ist in diesem Fall bevorzugt, wobei auch zusätzlich die oben genannten polymeren Farbübertragungsinhibitoren eingesetzt werden können.
Da textile Flächengebilde, insbesondere aus Reyon, Zellwolle, Baumwolle und deren Mischungen, zum Knittern neigen können, weil die Einzelfasern gegen Durchbiegen, Knicken, Pressen und Quetschen quer zur Faserrichtung empfindlich sind, können die Textilbehandlungsmittel synthetische Knitterschutzmittel enthalten. Hierzu zählen beispielsweise synthetische Produkte auf der Basis von Fettsäuren, Fettsäureestern, Fettsäureamiden, -alkylolestern, -alkylolamiden oder Fettalkoholen, die meist mit Ethylenoxid umgesetzt sind, oder Produkte auf der Basis von Lecithin oder modifizierter Phosphorsäureester.
Zur weiteren Bekämpfung von Mikroorganismen können die Textilbehandlungsmittel zusätzlich antimikrobielle Wirkstoffe enthalten. Hierbei unterscheidet man je nach antimikrobiellem Spektrum und Wirkungsmechanismus zwischen Bakteriostatika und Bakteriziden, Fungistatika und Fungiziden usw. Wichtige Stoffe aus diesen Gruppen sind beispielsweise Benzalkoniumchloride, Alkylarylsulfonate, Halogenphenole und Phenolmercuriacetat, wobei bei den erfindungemäßen Textilbehandlungsmitteln auch gänzlich auf diese Verbindungen verzichtet werden kann.
Die erfindungsgemäßen Textilbehandlungsmittel können Konservierungsmittel enthalten, wobei vorzugsweise nur solche eingesetzt werden, die kein oder nur ein geringes hautsensibilisierendes Potential besitzen. Beispiele sind Sorbinsäure und seine Salze, Benzoesäure und seine Salze, Salicylsäure und seine Salze, Phenoxyethanol, 3-lodo-2-propynylbutylcarbamat, Natrium N- (hydroxymethyl)glycinat, Biphenyl-2-ol sowie Mischungen davon. Ein geeignetes Konservierungsmittel stellt die lösungsmittelfreie, wässrige Kombination von Diazolidinylharnstoff, Natriumbenzoat und Kaliumsorbat (erhältlich als Euxyl® K 500 ex Schuelke & Mayr) dar, welches in einem pH-Bereich bis 7 eingesetzt werden kann. Insbesondere eignen sich Konservierungsmittel auf Basis von organischen Säuren und/oder deren Salzen zur Konservierung der erfindungsgemäßen, hautfreundlichen Textilbehandlungsmittel.
Um unerwünschte, durch Sauerstoffeinwirkung und andere oxidative Prozesse verursachte Veränderungen an den Textilbehandlungsmitteln und/oder den behandelten textilen Flächengebilden zu verhindern, können die Textilbehandlungsmittel Antioxidantien enthalten. Zu dieser Verbindungsklasse gehören beispielsweise substituierte Phenole, Hydrochinone, Brenzcatechine und aromatische Amine sowie organische Sulfide, Polysulfide, Dithiocarbamate, Phosphite, Phosphonate und Vitamin E. Nach einer weiteren bevorzugten Ausführungsform ist das erfindungsgemäße Textilbehandlungsmittel ganz frei von Antioxidantien.
Ein erhöhter Tragekomfort kann aus der zusätzlichen Verwendung von Antistatika resultieren, die den Textilbehandlungsmitteln zusätzlich beigefügt werden. Antistatika vergrößern die Oberflächenleitfähigkeit und ermöglichen damit ein verbessertes Abfließen gebildeter Ladungen. Äußere Antistatika sind in der Regel Substanzen mit wenigstens einem hydrophilen Molekülliganden und geben auf den Oberflächen einen mehr oder minder hygroskopischen Film. Diese zumeist grenzflächenaktiven Antistatika lassen sich in stickstoffhaltige (Amine, Amide, quartäre Ammoniumverbindungen), phosphorhaltige (Phosphorsäureester) und schwefelhaltige (Alkylsulfonate, Alkylsulfate) Antistatika unterteilen. Lauryl- (bzw. Stearyl-)dimethylbenzyl- ammoniumchloride eignen sich als Antistatika für textile Flächengebilde bzw. als Zusatz zu Textilbehandlungsmitteln, wobei zusätzlich ein Avivageeffekt erzielt wird.
Zur Verbesserung des der Wiederbenetzbarkeit der behandelten textilen Flächengebilde und zur Erleichterung des Bügeins der behandelten textilen Flächengebilde können in den Textilbehandlungsmitteln beispielsweise Silikonderivate eingesetzt werden. Diese verbessern zusätzlich das Ausspülverhalten der Textilbehandlungsmittel durch ihre schauminhibierenden Eigenschaften. Bevorzugte Silikonderivate sind beispielsweise Polydialkyl- oder Alkylarylsiloxane, bei denen die Alkylgruppen ein bis fünf C-Atome aufweisen und ganz oder teilweise fluoriert sind. Bevorzugte Silikone sind Polydimethylsiloxane, die gegebenenfalls derivatisiert sein können und dann aminofunktionell oder quaterniert sind bzw. Si-OH-, Si-H- und/oder Si-Cl-Bindungen aufweisen. Die Viskositäten der bevorzugten Silikone liegen bei 250C im Bereich zwischen 100 und 100.000 mPas, wobei die Silikone vorzugsweise in Mengen zwischen 0,2 und 5 Gew.-%, bezogen auf das gesamte Textilbehandlungsmittel eingesetzt werden können.
Schließlich können die Textilbehandlungsmittel auch UV-Absorber enthalten, die auf die behandelten textilen Flächengebilde aufziehen und die Lichtbeständigkeit der Fasern verbessern. Verbindungen, die diese gewünschten Eigenschaften aufweisen, sind beispielsweise die durch strahlungslose Desaktivierung wirksamen Verbindungen und Derivate des Benzophenons mit Substituenten in 2- und/oder 4-Stellung. Weiterhin sind auch substituierte Benzotriazole, in 3- Stellung Phenyl-substituierte Acrylate (Zimtsäurederivate), gegebenenfalls mit Cyanogruppen in 2- Stellung, Salicylate, organische Ni-Komplexe sowie Naturstoffe wie Umbelliferon und die körpereigene Urocansäure geeignet. Nach einer weiteren bevorzugten Ausführungsform ist das erfindungsgemäße Textilbehandlungsmittel jedoch ganz frei von solchen UV-Absorbern.
Um die durch Schwermetalle katalysierte Zersetzung bestimmter Waschmittel-Inhaltsstoffe zu vermeiden, können Stoffe eingesetzt werden, die Schwermetalle komplexieren. Geeignete Schwermetallkomplexbildner sind beispielsweise die Alkalisalze der Ethylendiamintetraessigsäure (EDTA) oder der Nitrilotriessigsäure (NTA) sowie Alkalimetallsalze von anionischen Polyelektrolyten wie Polymaleaten und Polysulfonaten.
Eine bevorzugte Klasse von Komplexbildnern sind die Phosphonate, die in bevorzugten Textilbehandlungsmitteln in Mengen von vorteilhafterweise 0,01 bis 2,5 Gew.-%, vorzugsweise 0,02 bis 2 Gew.-% und insbesondere von 0,03 bis 1 ,5 Gew.-% enthalten sein können. Zu diesen bevorzugten Verbindungen zählen insbesondere Organophosphonate wie beispielsweise 1- Hydroxyethan-1 ,1-diphosphonsäure (HEDP), Aminotri(nnethylenphosphonsäure) (ATMP), Diethylentriamin-penta(methylenphosphonsäure) (DTPMP bzw. DETPMP) sowie 2- Phosphonobutan-1 ,2,4-tricarbonsäure (PBS-AM), die zumeist in Form ihrer Ammonium- oder Alkalimetallsalze eingesetzt werden.
Geeignet sind insbesondere die folgenden gemäß INCI bezeichneten Komplexbildner, die beispielsweise im International Cosmetic Ingredient Dictionary and Handbook näher beschrieben sind: Aminotrimethylene Phosphonic Acid, Beta-Alanine Diacetic Acid, Calcium Disodium EDTA, Citric Acid, Cyclodextrin, Cyclohexanediamine Tetraacetic Acid, Diammonium Citrate, Diammonium EDTA, Diethylenetriamine Pentamethylene Phosphonic Acid, Dipotassium EDTA, Disodium Azacycloheptane Diphosphonate, Disodium EDTA, Disodium Pyrophosphate, EDTA, Etidronic Acid, Galactaric Acid, Gluconic Acid, Glucuronic Acid, HEDTA, Hydroxypropyl Cyclodextrin, Methyl Cyclodextrin, Pentapotassium Triphosphate, Pentasodium Aminotrimethylene Phosphonate, Pentasodium Ethylenediamine Tetramethylene Phosphonate, Pentasodium Pentetate, Pentasodium Triphosphate, Pentetic Acid, Phytic Acid, Potassium Citrate, Potassium EDTMP, Potassium Gluconate, Potassium Polyphosphate, Potassium Trisphosphonomethylamine Oxide, Ribonic Acid, Sodium Chitosan Methylene Phosphonate, Sodium Citrate, Sodium Diethylenetriamine Pentamethylene Phosphonate, Sodium Dihydroxyethylglycinate, Sodium EDTMP, Sodium Gluceptate, Sodium Gluconate, Sodium Glycereth-1 Polyphosphate, Sodium Hexametaphosphate, Sodium Metaphosphate, Sodium Metasilicate, Sodium Phytate, Sodium Polydimethylglycinophenolsulfonate, Sodium Trimetaphosphate, TEA-EDTA, TEA-Polyphos-phate, Tetrahydroxyethyl Ethylenediamine, Tetrahydroxypropyl Ethylenediamine, Tetrapotassium Etidronate, Tetrapotassium Pyrophosphate, Tetrasodium EDTA, Tetrasodium Etidronate, Tetrasodium Pyrophosphate, Tripotassium EDTA, Trisodium Dicarboxymethyl Alaninate, Trisodium EDTA, Trisodium HEDTA, Trisodium NTA und Trisodium Phosphate.
Bevorzugte Komplexbildner sind tertiäre Amine, insbesondere tertiäre Alkanolamine (Ami- noalkohole). Die Alkanolamine besitzen sowohl Amino- als auch Hydroxy- und/oder Ether-gruppen als funktionelle Gruppen. Besonders bevorzugte tertiäre Alkanolamine sind Tri-ethanolamin und Tetra-2-hydroxypro-pylethylendiamin (N,N,N',N'-Tetrakis-(2-hydroxy-pro-pyl)ethylendiamin). Besonders bevorzugte Kombinationen tertiärer Amine mit Zinkricinoleat und einem oder mehreren ethoxylierten Fettalkoholen als nichtionische Lösungsvermittler sowie ggf. Lösungsmittel sind im Stand der Technik beschrieben.
Ein besonders bevorzugter Komplexbildner ist die Etidronsäure (1-Hydroxyethyliden-1 ,1- diphosphon-säure, 1-Hydroxyethyan-1 ,1-diphosphonsäure, HEDP, Acetophosphonsäure, INCI Etidronic Acid) einschließlich ihrer Salze. In einer bevorzugten Ausführungsform enthält das erfindungsgemäße Textilbehandlungsmittel demgemäß als Komplexbildner Etidronsäure und/oder eines oder mehrere ihrer Salze.
In einer besonderen Ausführungsform enthält das erfindungsgemäße Textilbehandlungsmittel eine Komplexbildnerkombination aus einem oder mehreren tertiären Aminen und einer oder mehreren weiteren Komblexbildnern, vorzugsweise einer oder mehreren Komplexbildnersäuren oder deren Salzen, insbesondere aus Triethanolamin und/oder Tetra-2-hydroxypropylethylendiamin und Etidronsäure und/oder einem oder mehrerer ihrer Salze.
Die Herstellung der erfindungsgemäßen Textilbehandlungsmittel kann nach allen dem Fachmann geläufigen Techniken zur Herstellung von flüssigen Textilbehandlungsmitteln erfolgen.
Die Herstellung eines erfindungsgemäßen Weichspülers kann also nach dem Fachmann geläufigen Techniken zur Herstellung von Weichspülern erhalten werden. Dies kann beispielsweise durch Aufmischen der Rohstoffe, gegebenenfalls unter Einsatz von hochscherenden Mischapparaturen, geschehen. Es empfiehlt sich ein Aufschmelzen der weichmachenden Komponente(n) und ein nachfolgendes Dispergieren der Schmelze in einem Lösungsmittel, vorzugsweise Wasser. Die weiteren Inhaltsstoffe inklusive z.B. des photokatalytischen Materials können durch einfaches Zumischen in die Weichspüler integriert werden.
Die Herstellung eines erfindungsgemäßen flüssigen Waschmittel als Textilbehandlungsmittel erfolgt beipsielsweise mittels üblicher und bekannter Methoden und Verfahren in dem beispielsweise die Bestandteile einfach in Rührkesseln vermischt werden, wobei Wasser, ggf. nichtwässrige Lösungsmittel und Tenside, zweckmäßigerweise vorgelegt werden und die weiteren Bestandteile inklusive z.B. des photokatalytischen Materials portionsweise hinzugefügt werden. Ein gesondertes Erwärmen bei der Herstellung ist nicht erforderlich, wenn es gewünscht ist, sollte die Temperatur der Mischung 8O0C nicht übersteigen. Beispiele
Esterquat: 13 Gew.-%
Propanol-2: 1 ,3 Gew.-%
Ameisensäure: 0,05 Gew.-%
Photokat. Material*: 0,1 Gew.-%
MgCI2: 0,09 Gew.-%
Wasser: auf 100 Gew.-%
Esterquat: 13 Gew.-%
Propanol-2: 1 ,3 Gew.-%
Ameisensäure: 0,05 Gew.-%
Photokat. Material* 1 %
MgCI2: 0,09 Gew.-%
Polyacrylat: 0,1 Gew.-%
Wasser: auf 100 Gew.-%
#: Als photokatalytisches Material wurde ein feinpartikuläres, mit Kohlenstoff modifiziertes Titandioxid eingesetzt, mit einer Teilchengröße < 50 nm, mit TiO2-Gehalt von ca. 97 Gew.-%.

Claims

Patentansprüche:
1. Flüssiges Textilbehandlungsmittel, dadurch gekennzeichnet, dass es photokatalytisches Material und Kationtensid enthält.
2. Textilbehandlungsmittel nach Anspruch 1 , dadurch gekennzeichnet, dass als Kationtensid eine quartäre Ammonium-Verbindung, insbesondere Esterquat enthalten ist, vorzugsweise in Mengen von > 0,1 Gew.-%, vorteilhafterweise 1 bis 40 Gew.-%, insbesondere 3 bis 30 Gew.-%, bezogen auf das gesamte Textilbehandlungsmittel.
3. Textilbehandlungsmittel nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass als photokatalytisches Material Titandioxid enthalten ist, insbesondere ein modifiziertes Titandioxid, vorzugsweise ein mit Kohlenstoff modifiziertes Titandioxid.
4. Textilbehandlungsmittel nach einem der Ansprüche 1-3, dadurch gekennzeichnet, dass ein Feuchthaltemittel enthalten ist, vorzugsweise Glycerin, Dimere und Trimere von Glycerin, Ethylenglykol, Propylenglykol, Zuckeralkohole, wie vorzugsweise Glucitol, Xylitol, Mannitol, Alkylpolyglucoside, Fettsäureglucamide, Saccharoseester, Sorbitane, Polysorbate, Polydextrose, Polyethylenglykol, vorzugsweise mit mittleren Molekulargewichten von 200 bis 8000, Propandiole, Butandiole, Triethylenglycol, hydrierter Glucosesirup und/oder Gemische aus vorgenannten, vorzugsweise in Mengen von 0,01 bis 10 Gew.-%, vorteilhafterweise 0,1 bis 5 Gew.-%, insbesondere 0,5 bis 2 Gew.-%, Gew.-% jeweils bezogen auf das gesamte Mittel.
5. Verfahren zum Aufbringen photokatalytischen Materials auf Textilien durch Behandlung dieser Textilien in einem Textilbehandlungsbad enthaltend ein Textilbehandlungsmittel nach einem der Ansprüche 1-4.
6. Verfahren zur Reinigung, Pflege, Ausrüstung, Avivage und/oder Konditionierung von Textilien durch Behandlung dieser Textilien in einem Textilbehandlungsbad enthaltend ein Textilbehandlungsmittel nach einem der Ansprüche 1-4, bei und/oder gefolgt von einer Exponierung der Textilien an Licht im Wellenlängenbereich von 10-1200 nm.
7. Verfahren nach einem der vorigen Ansprüche 5 oder 6 zur Beseitigung, Deaktivierung oder Verminderung von Mikroorganismen, insbesondere Bakterien und Keimen, in Textilien unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm.
8. Verfahren nach einem der vorigen Ansprüche 5 bis 7 zur Prophylaxebehandlung von Textilien in Form einer vorauseilenden Abwehr und Hemmung von Anschmutzungen und Flecken unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm.
9. Verfahren nach einem der vorigen Ansprüche 5 bis 8 zur Ausrüstung von Textilien mit photokatalytischem Material zur Erleichterung der Entfern barkeit von farbigem Schmutz (farbige Flecken) von Textilien unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm.
10. Verfahren nach einem der vorigen Ansprüche 5 bis 9 zur Ausrüstung von Textilien mit photokatalytischem Material zur Reduzierung des Faserhaftungsvermögens von Schmutz, vorzugsweise farbigen Flecken, auf Textilien unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm.
11. Verfahren nach einem der vorigen Ansprüche 5 bis 10 zur Ausrüstung von Textilien mit photokatalytischem Material zur Erhöhung der Wasserlöslichkeit von Schmutz, vorzugsweise farbigen Flecken, auf Textilien, unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm.
12. Verfahren nach einem der vorigen Ansprüche 5 bis 11 zur Ausrüstung von Textilien mit photokatalytischem Material zur Verhinderung des Entstehens fötider Gerüche auf den Textilien, unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm.
13. Verfahren nach einem der vorigen Ansprüche 5 bis 12 zur Ausrüstung von Textilien mit photokatalytischem Material zur Ausstattung der Textilien mit einem Selbstreinigungsvermögen, unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm.
14. Verfahren nach einem der vorigen Ansprüche 5 bis 13 zur Entfernung oder Reduktion von Anschmutzungen und Flecken auf Textilien, die insbesondere zurückgehen auf: rote bis blaue Anthocyanfarbstoffe, wie z.B. Cyanidin, z.B. aus Kirschen oder
Heidelbeeren, rotes Betanidin aus der roten Beete, orangerote Carotinoide wie z.B. Lycopin, beta-Carotin, z.B. aus Tomaten oder Möhren, gelbe Curcumafarbstoffe, wie z.B. Curcumin, z.B. aus Curry und Senf, braune Gerbstoffe, z.B. aus Tee, Obst, Rotwein tiefbraune Huminsäure, z.B. aus Kaffee, Tee, Kakao, grünes Chlorophyll, z.B, aus grünen Gräsern, technische Farbstoffe aus Kosmetika, Tinten, Farbstiften farbige Stoffwechselprodukte und/oder Ausscheidungsprodukte von Schimmelpilzen oder anderer Mirkoflora oder mikrobiellem Bewuchs oder Mikroben, unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm.
15. Verfahren gemäß einem der Ansprüche 5 bis 14 unter Verwendung einer automatischen Waschmaschine, vorzugsweise einer automatischen Waschmaschine mit Lichtquelle, wobei das Textilbehandlungsmittel insbesondere im Nachspülgang zugegeben wird.
PCT/EP2008/052698 2007-04-23 2008-03-06 Flüssiges textilbehandlungsmittel WO2008128817A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007019372.8 2007-04-23
DE102007019372A DE102007019372A1 (de) 2007-04-23 2007-04-23 Flüssiges Textilbehandlungsmittel

Publications (1)

Publication Number Publication Date
WO2008128817A1 true WO2008128817A1 (de) 2008-10-30

Family

ID=39386492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/052698 WO2008128817A1 (de) 2007-04-23 2008-03-06 Flüssiges textilbehandlungsmittel

Country Status (2)

Country Link
DE (1) DE102007019372A1 (de)
WO (1) WO2008128817A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103570772A (zh) * 2012-07-31 2014-02-12 中国科学院大连化学物理研究所 一种选择性氧化葡萄糖制备高附加值化学品的方法
CN107523450A (zh) * 2017-10-13 2017-12-29 北京洛娃日化有限公司 一种洗鞋粉及制备方法
CN111117812A (zh) * 2020-01-08 2020-05-08 上海江笙生物科技有限公司 一种环保杀菌组合物及其制备方法
CN111848945A (zh) * 2020-05-07 2020-10-30 苏州联胜化学有限公司 涤纶蓬松亲水软片
EP3805347A1 (de) * 2019-10-08 2021-04-14 The Procter & Gamble Company Verfahren zum waschen von stoffen

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150211165A1 (en) * 2014-01-24 2015-07-30 The Procter & Gamble Company Method for Treating Laundry
CN106702781B (zh) * 2016-11-21 2019-01-08 泗阳捷锋帽业有限公司 一种二氧化钛改性机织物的染色方法
CN106702766B (zh) * 2016-11-21 2019-01-08 泗阳捷锋帽业有限公司 一种二氧化钛改性机织物的颜料上色方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000355872A (ja) * 1999-06-16 2000-12-26 Lion Corp 光触媒含有繊維処理剤
JP2005207002A (ja) * 2003-12-25 2005-08-04 Lion Corp 繊維製品用液状消臭剤組成物及び繊維製品用液状消臭柔軟剤組成物
JP2006063499A (ja) * 2004-08-30 2006-03-09 Lion Corp 繊維製品用液状仕上げ剤組成物
DE60022395T2 (de) * 1999-12-22 2006-06-29 Reckitt Benckiser (Uk) Limited, Slough Photokatalytische zusammensetzungen und verfahren

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000355872A (ja) * 1999-06-16 2000-12-26 Lion Corp 光触媒含有繊維処理剤
DE60022395T2 (de) * 1999-12-22 2006-06-29 Reckitt Benckiser (Uk) Limited, Slough Photokatalytische zusammensetzungen und verfahren
JP2005207002A (ja) * 2003-12-25 2005-08-04 Lion Corp 繊維製品用液状消臭剤組成物及び繊維製品用液状消臭柔軟剤組成物
JP2006063499A (ja) * 2004-08-30 2006-03-09 Lion Corp 繊維製品用液状仕上げ剤組成物

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 200133, Derwent World Patents Index; AN 2001-310300, XP002481576 *
DATABASE WPI Week 200559, Derwent World Patents Index; AN 2005-574493, XP002481575 *
DATABASE WPI Week 200623, Derwent World Patents Index; AN 2006-215427, XP002481574 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103570772A (zh) * 2012-07-31 2014-02-12 中国科学院大连化学物理研究所 一种选择性氧化葡萄糖制备高附加值化学品的方法
CN103570772B (zh) * 2012-07-31 2016-08-31 中国科学院大连化学物理研究所 一种选择性氧化葡萄糖制备高附加值化学品的方法
CN107523450A (zh) * 2017-10-13 2017-12-29 北京洛娃日化有限公司 一种洗鞋粉及制备方法
JP2022550893A (ja) * 2019-10-08 2022-12-05 ザ プロクター アンド ギャンブル カンパニー 布地を洗濯する方法
EP3805347A1 (de) * 2019-10-08 2021-04-14 The Procter & Gamble Company Verfahren zum waschen von stoffen
EP3805346A1 (de) * 2019-10-08 2021-04-14 The Procter & Gamble Company Verfahren zum waschen von stoffen
WO2021072427A1 (en) * 2019-10-08 2021-04-15 The Procter & Gamble Company A method of laundering fabric
WO2021072428A1 (en) * 2019-10-08 2021-04-15 The Procter & Gamble Company A method of laundering fabric
CN114423852A (zh) * 2019-10-08 2022-04-29 宝洁公司 洗涤织物的方法
CN114502710A (zh) * 2019-10-08 2022-05-13 宝洁公司 洗涤织物的方法
JP2022550892A (ja) * 2019-10-08 2022-12-05 ザ プロクター アンド ギャンブル カンパニー 布地を洗濯する方法
JP7425187B2 (ja) 2019-10-08 2024-01-30 ザ プロクター アンド ギャンブル カンパニー 布地を洗濯する方法
JP7425186B2 (ja) 2019-10-08 2024-01-30 ザ プロクター アンド ギャンブル カンパニー 布地を洗濯する方法
CN111117812B (zh) * 2020-01-08 2021-04-13 上海江笙生物科技有限公司 一种环保杀菌组合物及其制备方法
CN111117812A (zh) * 2020-01-08 2020-05-08 上海江笙生物科技有限公司 一种环保杀菌组合物及其制备方法
CN111848945A (zh) * 2020-05-07 2020-10-30 苏州联胜化学有限公司 涤纶蓬松亲水软片

Also Published As

Publication number Publication date
DE102007019372A1 (de) 2008-10-30

Similar Documents

Publication Publication Date Title
EP1713896B1 (de) Mikroemulsionen
EP1280878B1 (de) Verwendung von nanoskaligen teilchen zur verbesserung der schmutzablösung
EP2137288A1 (de) Flüssiges wasch- oder reinigungsmittel mit fliessgrenze
EP1989282B1 (de) Vergrauungsinhibierendes flüssigwaschmittel
WO2008128826A1 (de) Photokatalytisches material enthaltende partikel
WO2006102978A1 (de) Klares wasch- oder reinigungsmittel mit fliessgrenze
WO2008128817A1 (de) Flüssiges textilbehandlungsmittel
EP2038391A1 (de) Wasch-, reinigungs- und pflegemittel
WO2006053615A1 (de) Duftstoffkombination enthaltend 3, 7-dymethyl-6-en-nitril (citronellyl nitril) als genanoritril-substitut
EP2956534A1 (de) Vergrauungsinhibierende waschmittel
WO2005019400A1 (de) Auf substratoberflächen aufziehende mittel
EP2045317A1 (de) Flüssigwasch- und Flüssigreinigungsmittel
EP2185655A2 (de) Modifiziertes titandioxid
WO2007107191A1 (de) Mehrphasiges wasch-, spül- oder reinigungsmittel mit vertikalen phasengrenzen
EP2691504B1 (de) Wasch- oder reinigungsmittel mit modifizierten riechstoffen
WO2008116768A1 (de) Antimilbenmittel
WO2007033731A1 (de) Wasch- und reinigungsmittel mit hautpflegenden inhaltsstoffen
WO2008145424A1 (de) Wasch- oder reinigungsmittel mit flüssiger, gelförmiger oder pastenartiger konsistenz
WO2008128827A1 (de) Photokatalytisches material enthaltende flüssigsysteme
EP2764078B1 (de) Hydrogelbildner enthaltende wasch- oder reinigungsmittel
DE102008015110A1 (de) Sprühgetrocknete Wasch- oder Reinigungsmittelprodukte
WO2008037619A2 (de) Textilbehandlungsmittel
DE10064491A1 (de) Verwendung von alkoxylierten Duftalkoholen in Textilwaschmitteln
DE102005055495A1 (de) Textilbehandlungsmittel mit einem Milcherzeugnis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08717446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08717446

Country of ref document: EP

Kind code of ref document: A1