"Klares Wasch- und Reinigungsmittel mit Fließgrenze"
Die Erfindung betrifft ein klares, flüssiges Wasch- und Reinigungsmittel mit Fließgrenze, enthaltend Tensid(e) sowie weitere übliche Inhaltsstoffe von Wasch- und Reinigungsmitteln.
Die Einarbeitung von bestimmten Wirkstoffen (z. B. Bleichmittel, Enzyme, Parfüme, Farbstoffe usw.) in flüssige Wasch- und Reinigungsmittel kann zu Problemen führen. Beispielsweise können Unverträglichkeiten zwischen den einzelnen Wirkstoffkomponenten der flüssigen Wasch- und Reinigungsmittel auftreten. Dies kann zu unerwünschten Verfärbungen, Agglomerationen, Geruchsproblemen und Zerstörung von waschaktiven Wirkstoffen führen.
Der Verbraucher verlangt jedoch flüssige Wasch- und Reinigungsmittel, die auch nach Lagerung und Transport zum Zeitpunkt der Anwendung optimal ihre Wirkung entfalten. Dies bedingt, dass sich die Inhaltsstoffe des flüssigen Wasch- und Reinigungsmittels zuvor weder abgesetzt, zersetzt oder verflüchtigt haben.
Durch aufwendige und dementsprechend teure Verpackungen kann beispielsweise der Verlust flüchtiger Komponenten verhindert werden. Chemisch inkompatible Komponenten können separiert von den restlichen Komponenten des flüssigen Wasch- und Reinigungsmittels aufbewahrt und dann zur Anwendung zudosiert werden. Die Verwendung undurchsichtiger Verpackungen verhindert die Zersetzung lichtempfindlicher Komponenten, hat aber auch den Nachteil, dass der Konsument Aussehen und Menge des flüssigen Wasch- und Reinigungsmittels nicht sehen kann.
Ein Konzept zur Einarbeitung empfindlicher, chemisch oder physikalisch inkompatibler sowie flüchtiger Komponenten besteht im Einsatz von Partikel und insbesondere Mikrokapseln, in denen diese Inhaltsstoffe lager- und transportstabil eingeschlossen sind.
Aus dem Kosmetikbereich werden in der britischen Patentschrift GB 14 71 406 flüssige wässrige Reinigungsmittel beschrieben, die mindestens 2 Gew.-% Triethanolaminlaurylsulfat, insgesamt 8 bis 50 Gew.-% Tensid sowie 0,1 bis 5 Gew.-% suspendierte Phase, zum Beispiel sphäroidale Kapseln mit einem Durchmesser von 0,1 bis 5 mm enthalten, und einen pH-Wert von 5,5 bis 11 aufweisen. Eine homogene Verteilung der suspendierten Phase wird durch Einsatz wasserlöslicher Acrylsäurepolymere wie beispielsweise Carbopol 941 erzielt. Die Anmeldung enthält keine Angaben, ob die flüssigen wässrigen Reinigungsmittel Fließgrenzen aufweisen.
Die WO 97/12027 offenbart flüssige Waschmittel mit einem pH-Wert von 5 bis 9 (bei 10 % Verdünnung), die 10 bis 40 Gew.-% anionische Tenside, 1 bis 10 Gew.-% Aminoxide, weniger als 10 Gew.-% Lösungsmittel und von 0 bis 10 Gew.-% Elektrolyt enthalten. Die Flüssigkeit hat eine
Viskosität von 100 bis 4000 cps bei einer Scherrate von 20 s'1 und ist in der Lage Partikel bis zu einer Größe von 200 μm zu suspendieren.
Eine Möglichkeit um Partikel in einer Flüssigkeit zu suspendieren, ist die Verwendung von strukturierten Flüssigkeiten. Dabei wird zwischen einer internen und einer externen Strukturierung unterschieden. Eine externe Strukturierung kann beispielsweise durch Einsatz von strukturierenden Gums wie zum Beispiel Xanthan Gum, Guar Gum, Johannisbrotkernmehl, Gellan Gum, Wellan Gum oder Carrageenan oder von Polyacrylatverdickern erzielt werden.
Aus ästhetischer Sicht ist es wünschenswert, dass die flüssigen Waschmittel, in denen die Partikel suspendiert sind, transparent bzw. zumindest transluzent sind. Der Einsatz von strukturierenden Gums führt aber oft zu trüben Zusammensetzung.
In der WO 00/36078 werden transparente/transluzente Flüssigwaschmittel beschrieben, welche in der Lage sind Partikel mit einer Größe von 300 bis 5000 μm zu suspendieren, umfassend mindestens 15 Gew.-% Tensid und 0.01 bis 5 Gew.-% eines polymeren Gums. Die Anmeldung enthält keine Angaben, ob die Flüssigwaschmittel Fließgrenzen aufweisen.
Ein weiterer Nachteil bei Verwendung dieser Strukturierungs- oder Verdickungsmittel ist ihre Empfindlichkeit gegenüber ionischen Verbindungen, insbesondere gegenüber den in reinigenden Anwendungen obligaten anionischen Tensiden.
Bei hohen Konzentrationen an polymeren Verdickern in Systemen mit gleichzeitig hohen Konzentrationen an Anionentensiden können drastische Steigerungen der Viskosität erfolgen, die die Handhabbarkeit der Wasch- und Reinigungsmittel (beispielsweise pumpen, gießen oder dosieren) stark beeinträchtigen. Es ist auch nicht immer möglich, in elektrolyt- und/oder tensidreichen Systemen Fließgrenzen zu erzeugen.
So weisen die in der WO 00/36078 beschriebenen flüssigen Waschmittel nur geringe Mengen an Fettsäureseifen (< 1 ,42 Gew.-%) auf.
In der EP 1 466 959 A1 werden Fließgrenzen aufweisende Formulierungen mit hohen Mengen an anionischen Tensiden beschrieben, die keinen polymeren Verdicker, sondern ein anionische und kationische Tenside in einem bestimmten, zur Erzeugung einer Fließgrenze wirksamen Verhältnis aufweisen.
Es ist eine Aufgabe der vorliegenden Erfindung ein klares flüssiges Wasch- und Reinigungsmittel mit Fließgrenze bereitzustellen, welches lager- und transportstabil und in der Lage ist, Partikel homogen zu dispergieren.
Diese Aufgabe wird gelöst durch ein klares, flüssiges Wasch- und Reinigungsmittel, enthaltend Tensid(e) sowie weitere übliche Inhaltsstoffe von Wasch- und Reinigungsmitteln, wobei das Mittel ein Polyacrylat und eine Lösungsmittelkomponente umfassend Dipropylenglykol enthält.
Überraschenderweise wurde gefunden, dass die Kombination von Polyacrylat als polymeres Verdickungsmittel mit Dipropylenglykol zu klaren lagerstabilen Wasch- und Reinigungsmitteln mit Fließgrenze führt.
Es ist bevorzugt, dass die Lösungsmittelkomponente ein Gemisch aus Dipropylenglykol und 1 ,2- Propandiol umfasst
Es hat sich gezeigt, dass die Kombination von Dipropylenglykol und 1 ,2-Propandiol als Lösungsmittelkomponente zu höheren Fließgrenzen führt, als Dipropylenglykol alleine.
Es ist bevorzugt, dass das Verhältnis von Dipropylenglykol zu 1 ,2-Propandiol 3:1 bis 1 :3 beträgt. Es ist insbesondere bevorzugt, dass das Verhältnis von Dipropylenglykol zu 1 ,2-Propandiol 1 :1 beträgt.
Es hat sich gezeigt, dass bei diesen Verhältnissen und insbesondere bei einem Verhältnis von Dipropylenglykol zu 1 ,2-Propandiol von 1 :1 klare, flüssige Wasch- und Reinigungsmitteln mit besonders hohen Fließgrenzen erhalten werden.
Es ist bevorzugt, dass die Menge an der Lösungsmittelkomponente 0,5 bis 15 Gew.-% und bevorzugt 2 bis 9 Gew.-% beträgt.
Weiterhin ist es bevorzugt, dass die Menge an Polyacrylat 0,1 bis 10 Gew.-% und bevorzugt 2 bis 5 Gew.-% beträgt.
Es hat sich gezeigt, dass diese Mengen an Lösungsmittelkomponente und/oder Polyacrylat zu Wasch- und Reinigungsmitteln mit besonders guten physikalischen und ästhetischen Eigenschaften führen.
Es ist insbesondere bevorzugt, dass das Wasch- und Reinigungsmittel wässrig ist.
Wässrige Wasch- und Reinigungsmittel lassen sich preiswert und einfach in bereits vorhandenen Anlagen herstellen.
In einer bevorzugten Ausführungsform enthält das Wasch- und Reinigungsmittel dispergierte Partikel, insbesondere bevorzugt Mikrokapseln oder Speckies, deren Durchmesser entlang ihrer größten räumlichen Ausdehnung 0,01 bis 10.000 μm beträgt.
Insbesondere durch die Verwendung von Mikrokapseln oder Speckies können empfindliche, chemisch oder physikalisch inkompatible sowie flüchtige Komponenten des wässrigen flüssigen Wasch- und Reinigungsmittels lager- und transportstabil eingeschlossen werden und in dem wässrigen flüssigen Wasch- und Reinigungsmittels homogen dispergiert werden. Dadurch wird unter anderem gewährleistet, dass das Wasch- und Reinigungsmittel dem Konsumenten zum Zeitpunkt der Anwendung mit voller Wach- und Reinigungskraft zur Verfügung steht.
In einer besonders bevorzugten Ausführungsform enthält das Wasch- und Reinigungsmittel zwischen 2 und 20 Gew.-%, vorzugsweise zwischen 3 und 10 Gew.-% und ganz besonders bevorzugt zwischen 4 und 8 Gew.-% Fettsäureseife.
Fettsäureseifen sind ein wichtiger Bestandteil für die Waschkraft eines flüssigen, insbesondere wässrigen, Wasch- und Reinigungsmittels. Überraschend hat sich gezeigt, dass bei Verwendung eines Verdickungssystem aus Polyacrylat und einer Lösungsmittelkomponente umfassend Dipro- pylenglykol in Gegenwart hoher Menge an Fettsäureseife klare, stabile und verdickte flüssige Wasch- und Reinigungsmittel mit Fließgrenze erhalten werden. Üblicherweise führt der Einsatz von hohen Mengen (> 2 Gew.-%) Fettsäureseife in derartigen Systemen zu trüben und/oder instabilen Produkten.
Die Erfindung betrifft auch die Verwendung eines erfindungsgemäßen klaren, flüssigen Wasch- und Reinigungsmittels zum Reinigen von textilen Flächengebilden oder harten Oberflächen.
Ferner betrifft die Erfindung ein Verfahren zur Herstellung eines klaren, flüssigen Wasch- und Reinigungsmittels, enthaltend Tensid(e) sowie weitere übliche Inhaltsstoffe von Wasch- und Reinigungsmitteln, bei dem ein Polyacrylat und eine Lösungsmittelkomponente umfassend Dipropy- lenglykol eingesetzt wird.
Insbesondere betrifft die Erfindung auch die Verwendung eines Polyacrylats und einer Lösungsmittelkomponente umfassend Dipropylenglykol zur Herstellung eines klaren, flüssigen Wasch- und Reinigungsmittels mit Fließgrenze.
Im Folgenden werden die erfindungsgemäßen Wasch- und Reinigungsmittel, unter anderem anhand von Beispielen, eingehend beschrieben.
Das Wasch- und Reinigungsmittel enthält als Verdicker ein Polyacrylat. Zu den Polyacrylaten zählen Polyacrylat- oder Polymethacrylat-Verdickern, wie beispielsweise die hochmolekularen mit einem Polyalkenylpolyether, insbesondere einem Allylether von Saccharose, Pentaerythrit oder Propylen, vernetzten Homopolymere der Acrylsäure (INCI- Bezeichnung gemäß „International Dictionary of Cosmetic Ingredients" der „The Cosmetic, Toiletry and Fragrance Association (CTFA)": Carbomer), die auch als Carboxyvinylpolymere bezeichnet werden. Solche Polyacryl- säuren sind u.a. von der Fa. 3V Sigma unter dem Handelsnamen Polygel®, z.B. Polygel DA, und von der Fa. Noveon unter dem Handelsnamen Carbopol® erhältlich, z.B. Carbopol 940 (Molekulargewicht ca. 4.000.000), Carbopol 941 (Molekulargewicht ca. 1. 250.000) oder Carbopol 934 (Molekulargewicht ca. 3. 000.000). Weiterhin fallen darunter folgende Acrylsäure-Copolymere: (i) Copolymere von zwei oder mehr Monomeren aus der Gruppe der Acrylsäure, Methacrylsäure und ihrer einfachen, vorzugsweise mit C-^-Alkanolen gebildeten, Ester (INCI Acrylates Copolymer), zu denen etwa die Copolymere von Methacrylsäure, Butylacrylat und Methylmethacrylat (CAS-Be- zeichnung gemäß Chemical Abstracts Service: 25035-69-2) oder von Butylacrylat und Methylmethacrylat (CAS 25852-37-3) gehören und die beispielsweise von der Fa. Rohm & Haas unter den Handelsnamen Aculyn® und Acusol® sowie von der Firma Degussa (Goldschmidt) unter dem Handelsnamen Tego® Polymer erhältlich sind, z.B. die anionischen nicht-assoziativen Polymere Aculyn 22, Aculyn 28, Aculyn 33 (vernetzt), Acusol 810, Acusol 823 und Acusol 830 (CAS 25852- 37-3); (ii) vernetzte hochmolekulare Acrylsäure-Copolymere, zu denen etwa die mit einem Allylether der Saccharose oder des Pentaerythrits vernetzten Copolymere von C10-30-Alkylacrylaten mit einem oder mehreren Monomeren aus der Gruppe der Acrylsäure, Methacrylsäure und ihrer einfachen, vorzugsweise mit C-^-Alkanolen gebildeten, Ester (INCI Acrylates/C10-30 Alkyl Acrylate Crosspolymer) gehören und die beispielsweise von der Fa. Noveon unter dem Handelsnamen Carbopol® erhältlich sind, z.B. das hydrophobierte Carbopol ETD 2623 und Carbopol 1382 (INCI Acrylates/C 10-30 Alkyl Acrylate Crosspolymer) sowie Carbopol Aqua 30 (früher Carbopol EX 473).
Bevorzugte flüssige Wasch- und Reinigungsmittel enthalten das Polyacrylat in einer Menge von 0,1 bis 10 Gew.-% und bevorzugt 2 bis 5 Gew.-%.
Es ist von Vorteil, wenn das Polyacrylat ein Copolymer einer ungesättigten Mono- oder Dicarbon- säuren und eines oder mehr Ci-C30-Alkylestern der (Meth)acrylsäure ist.
Weiterhin enthält das Wasch- und Reinigungsmittel eine Lösungsmittelkomponente umfassend Di- propylenglykol. Insbesondere bevorzugt umfasst die Lösungsmittelkomponente Dipropylenglykol und 1 ,2-Propandiol. Ganz besonders bevorzugt besteht die Lösungsmittelkomponente aus Dipro-
pylenglykol und 1 ,2-Propandiol. Das Verhältnis von Dipropylenglykol zu 1 ,2-Propandiol beträgt vorteilhafterweise zwischen 3 : 1 und 1 : 3 und beträgt ganz besonders bevorzugt 1 : 1. Die Menge an der Lösungsmittelkomponente bezogen auf die Gesamtmenge des Wasch- und Reinigungsmittels beträgt 0,5 bis 15 Gew.-% und bevorzugt 2 bis 9 Gew.-%.
Neben dem Verdicker und der Lösungsmittelkomponente enthalten die flüssigen Wasch- und Reinigungsmittel Tensid(e), wobei anionische, nichtionische, kationische und/oder amphotere Ten- side eingesetzt werden können. Bevorzugt sind aus anwendungstechnischer Sicht Mischungen aus anionischen und nichtionischen Tensiden. Der Gesamttensidgehalt des flüssigen Wasch- und Reinigungsmittel liegt vorzugsweise unterhalb von 40 Gew.-% und besonders bevorzugt unterhalb von 35 Gew.-%, bezogen auf das gesamte flüssige Wasch- und Reinigungsmittel.
Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2- Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Al- koholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, zum Beispiel aus Kokos-, Palm-, Taigfett- oder Oleylalkohol, und durch-schnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-i4- Alkohole mit 3 EO, 4 EO oder 7 EO, C9.irAlkohol mit 7 EO, C13.15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-i8-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus Ci2_i4-Alkohol mit 3 EO und C12.i8-Alkohol mit 7 EO. Die angegebenen Ethoxylierungs- grade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow ränge ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Taigfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO. Auch nichtionische Tenside, die EO- und PO- Gruppen zusammen im Molekül enthalten, sind erfindungsgemäß einsetzbar. Hierbei können Blockcopolymere mit EO-PO-Blockeinheiten bzw. PO-EO-Blockeinheiten eingesetzt werden, aber auch EO-PO-EO-Copolymere bzw. PO-EO-PO-Copolymere. Selbstverständlich sind auch gemischt alkoxylierte Niotenside einsetzbar, in denen EO- und PO-Einheiten nicht blockweise, sondern statistisch verteilt sind. Solche Produkte sind durch gleichzeitige Einwirkung von Ethylen- und Propylenoxid auf Fettalkohole erhältlich.
Außerdem können als weitere nichtionische Tenside auch Alkylglykoside der allgemeinen Formel RO(G)x eingesetzt werden, in der R einen primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18
C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1 ,2 bis 1 ,4.
Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkyl- ester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester.
Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N-dimethyl- aminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel (2),
R1
I R-CO-N-[Z] (2) in der RCO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R1 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (3),
R1-O-R2
I R-CO-N-[Z] (3) in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R1 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R2 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C-ι-4-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit min-
destens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propoxylierte Derivate dieses Restes.
[Z] wird vorzugsweise durch reduktive Aminierung eines Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N-Aryloxy-sub- stituierten Verbindungen können dann durch Umsetzung mit Fettsäuremethylestem in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.
Der Gehalt an nichtionischen Tensiden beträgt den flüssigen Wasch- und Reinigungsmitteln bevorzugt 5 bis 30 Gew.-%, vorzugsweise 7 bis 20 Gew.-% und insbesondere 9 bis 15 Gew.-%, jeweils bezogen auf das gesamte Mittel.
Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise C9.i3-Alkylbenzolsulfonatet Olefinsulfonate, d.h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus ,Ci2-i8-Monoolefineιi mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12-18- Alkanen beispielsweise durch Sulfochlorierung oder Suifoxidation mit anschließender Hydrolyse bzw.- Neutralisation gewonnen werden. Ebenso sind auch die Ester von α-Sulfofettsäuren (Ester- sulfonate), zum Beispiel die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Taigfettsäuren geeignet.
Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäureglycerin- estem sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Um- esterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sulfierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Caprinsäure, Myristinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.
Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der C12-C18-Fettalkohole, beispielsweise aus Kokosfettalkohol, Taigfettalkohol, Lauryl-, Myri- styl-, Cetyl- oder Stearylalkohol oder der C10-C2o-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind die C12-Ci6-Alkyl-
sulfate und C12-C15-Alkylsulfate sowie C14-C15-Alkylsulfate bevorzugt. Auch 2,3-Alkylsulfate, die beispielsweise als Handelsprodukte der Shell OiI Company unter dem Namen DAN® erhalten werden können, sind geeignete Aniontenside.
Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7.2i-Alkohole, wie 2-Methyl-verzweigte Cg-n-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder Ci2.i8-Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.
Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobemsteinsäure, die auch als SuI- fosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Di- ester der Sulfobemsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten Ca.18-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.
Insbesondere bevorzugte anionische Tenside' sind Seifen. Geeignet sind gesättigte und ungesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, (hydrierten) Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, zum Beispiel Kokos-, Palmkern-, Olivenöl- oder Taigfettsäuren, abgeleitete Seifengemische.
Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
Der Gehalt bevorzugter flüssiger Wasch- und Reinigungsmittel an anionischen Tensiden beträgt 2 bis 30 Gew.-%, vorzugsweise 4 bis 25 Gew.-% und insbesondere 5 bis 22 Gew.-%, jeweils bezogen auf das gesamte Mittel. Es ist besonders bevorzugt, dass die Menge an Fettsäureseife mindestens 2 Gew.-% und besonders bevorzugt mindestens 3 Gew.-% und insbesondere bevorzugt mindestens 4 Gew.-% beträgt.
Die Viskosität der flüssigen Wasch- und Reinigungsmittel kann mit üblichen Standardmethoden (beispielsweise Brookfield-Viskosimeter LVT-II bei 20 U/min und 2O0C, Spindel 3) gemessen werden und liegt vorzugsweise im Bereich von 1500 bis 5000 mPas. Bevorzugte Mittel haben Viskositäten von 2000 bis 4000 mPas, wobei Werte um 3500 mPas besonders bevorzugt sind.
Zusätzlich zu' dem Polyacrylat-Verdicker, der Lösungsmittelkomponente und zu dem/den Tensid(en) können die flüssigen Wasch- und Reinigungsmittel weitere Inhaltsstoffe enthalten, die die anwendungstechnischen und/oder ästhetischen Eigenschaften des flüssigen Wasch- und Reinigungsmittels weiter verbessern. Im Rahmen der vorliegenden Erfindung enthalten bevorzugte Mittel einen oder mehrere Stoffe aus der Gruppe der Gerüststoffe, Bleichmittel, Bleichaktivatoren, Enzyme, Elektrolyte, zusätzlichen nichtwässrigen Lösungsmittel, pH-Stellmittel, Duftstoffe, Parfümträger, Fluoreszenzmittel, Farbstoffe, Hydrotope, Schauminhibitoren, Silikonöle, Antiredepositions- mittel, optischen Aufheller, Vergrauungsinhibitoren, Einlaufverhinderer, Knitterschutzmittel, Farb- übertragungsinhibitoren, antimikrobiellen Wirkstoffe, Germizide, Fungizide, Antioxidantien, Korrosionsinhibitoren, Antistatika, Bügelhilfsmittel, Phobier- und Imprägniermittel, Quell- und Schiebe- festmittel sowie UV-Absorber.
Als Gerüststoffe, die in den flüssigen Wasch- und Reinigungsmitteln enthalten sein können, sind insbesondere Silikate, Aluminiumsilikate (insbesondere Zeolithe), Carbonate, Salze organischer Di- und Polycarbonsäuren sowie Mischungen dieser Stoffe zu nennen.
Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSixO2x+I H2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1 ,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt.
Insbesondere sind sowohl ß- als auch δ-Natriumdisilikate Na2Si2O5-VH2O bevorzugt.
Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na2O : SiO2 von 1 : 2 bis 1 : 3,3, vorzugsweise von 1 : 2 bis 1 : 2,8 und insbesondere von 1 : 2 bis 1 : 2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgen- amorph" verstanden. Dies heißt, dass die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten ver-
waschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, dass die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis maximal 50 nm und insbesondere bis maximal 20 nm bevorzugt sind. Derartige so genannte rönt- genamorphe Silikate, weisen ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern auf. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoun- dierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.
Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma SASOL unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel
nNa2O ■ (1-n)K2O ' AI2O3 ' (2 - 2,5)SiO2 • (3,5 - 5,5) H2O n = 0,90 - 1 ,0 beschrieben werden kann. Der Zeolith kann als sprühgetrocknetes Pulver oder auch als ungetrock- nete, von ihrer Herstellung noch feuchte, stabilisierte Suspension zum Einsatz kommen. Für den Fall, dass der Zeolith als Suspension eingesetzt wird, kann diese geringe Zusätze an nichtionischen Tensiden als Stabilisatoren' enthalten, beispielsweise 1 bis 3 Gew.-%, bezogen auf Zeolith, an ethoxylierten Ci2-Ci8-Fettalkoholen mit.2 bis 5 Ethylenoxidgruppen, Ci2-C14-Fettalkoholen mit 4 bis 5 Ethylenoxidgruppen oder ethoxylierten Isotridecanolen. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 μm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Geeignet sind insbesondere die Natriumsalze der Orthophosphate, der Pyrophosphate und insbesondere der Tripolyphosphate.
Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natri- umperborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Natriumpercarbonat, Peroxypyrophosphate, Citratper- hydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure.
Um beim Waschen bei Temperaturen von 6O0C und darunter eine verbesserte Bleichwirkung zu erreichen, können Bleichaktivatoren in die Wasch- und Reinigungsmittel eingearbeitet werden. Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxo- carbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED)1 acylierte Triazinderivate, insbesondere 1 ,5-Diacetyl-2,4-dioxo- hexahydro-1 ,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylen- glykoldiacetat und 2,5-Diacetoxy-2,5-dihydrofuran.
Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch so genannte Bleichkatalysatoren in die flüssigen Wasch- und Reinigungsmittel eingearbeitet werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru - oder Mo-Salenkomplexe oder -carbonylkom- plexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit stickstoffhaltigen Tripod- Liganden sowie Co-, Fe-, Cu- und Ru-Amminkomplexe sind als Bleichkatalysatoren verwendbar.
Als Enzyme kommen insbesondere solche aus der Klassen der Hydrolasen wie der Proteasen, Esterasen, Lipasen bzw. lipolytisch wirkende Enzyme, Amylasen, Cellulasen bzw. andere Glyko- sylhydrolasen und Gemische der genannten Enzyme in Frage. Alle diese Hydrolasen tragen in der Wäsche zur Entfernung von Verfleckungen wie protein-, fett- oder stärkehaltigen Verfleckungen und Vergrauungen bei. Cellulasen und andere Glykosylhydrolasen können darüber hinaus durch das Entfernen von Pilling und Mikrofibπllen zur Farberhaltung und zur Erhöhung der Weichheit des Textils beitragen. Zur Bleiche bzw. zur Hemmung der Farbübertragung können auch Oxiredukta- sen eingesetzt werden. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen wie Bacillus subtilis, Bacillus licheniformis, Streptomyceus griseus und Humicola insolens gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease und Cellulase oder aus Cellulase und Lipase bzw. lipolytisch wirkenden Enzymen oder aus Protease, Amylase und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease, Lipase bzw. lipolytisch wirkenden Enzymen und Cellulase, insbesondere jedoch Protease und/oder Lipase-haltige Mischungen bzw. Mischungen mit lipolytisch wirkenden Enzymen von besonderem Interesse. Beispiele für derartige lipolytisch wirkende Enzyme sind die bekannten
Cutinasen. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Zu den geeigneten Amylasen zählen insbesondere α-Amylasen, Iso-Amylasen, Pullulanasen und Pektinasen. Als Cellulasen werden vorzugsweise Cellobiohydrolasen, Endoglucanasen und ß-Glu- cosidasen, die auch Cellobiasen genannt werden, bzw. Mischungen aus diesen eingesetzt. Da sich verschiedene Cellulase-Typen durch ihre CMCase- und Avicelase-Aktivitäten unterscheiden, können durch gezielte Mischungen der Cellulasen die gewünschten Aktivitäten eingestellt werden.
Die Enzyme können an Trägerstoffe adsorbiert sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymflüssigformulierungen, Enzymmischungen oder Enzymgranulate kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,12 bis etwa 2,5 Gew.-% betragen.
Als Elektrolyt^ aus der Gruppe der anorganischen Salze kann eine breite Anzahl der verschiedensten Salze eingesetzt werden. Bevorzugte Kationen sind die Alkali- und Erdalkalimetalle, bevorzugte Anionen sind die Haiogenide und Sulfate. Aus herstellungstechnischer Sicht ist der Einsatz von NaCI oder MgCI2 in den Mitteln bevorzugt. Der Anteil an Elektrolyten in den Mitteln beträgt üblicherweise 0,5 bis 5 Gew.-%.
Die klaren, flüssigen Wasch- und Reinigungsmittel sind insbesondere bevorzugt wässrig, dass heißt sie weisen einen Gehalt an Wasser von größer 5 Gew.-%, bevorzugt größer 15 Gew.-% und insbesondere bevorzugt größer 25 Gew.-% auf.
Zusätzliche nichtwässrige Lösungsmittel, die in den flüssigen Wasch- und Reinigungsmitteln eingesetzt werden können, stammen beispielsweise aus der Gruppe ein- oder mehrwertigen Alkohole, Alkanolamine oder Glykolether, sofern sie im angegebenen Konzentrationsbereich mit Wasser mischbar sind. Vorzugsweise werden die Lösungsmittel ausgewählt aus Ethanol, n- oder i-Pro- panol, Butanolen, Glykol, Butandiol, Glycerin, Diglykol, Butyldiglykol, Hexylenglykol, Ethylenglykol- methylether, Ethylenglykolethylether, Ethylenglykolpropylether, Ethylenglykolmono-n-butylether, Di- ethylenglykol-methylether, Diethylenglykolethylether, Propylenglykolmethyl-, -ethyl- oder -propyl- ether, Dipropylenglykolmonomethyl- oder -ethylether, Di-isopropylenglykolmonomethyl- oder - ethylether, Methoxy-, Ethoxy- oder Butoxytriglykol, 1-Butoxyethoxy-2-propanol, 3-Methyl-3-meth- oxybutanol, Propylen-glykol-t-butylether sowie Mischungen dieser Lösungsmittel. Diese zusätzlichen nichtwässrige Lösungsmittel können in wässrigen flüssigen Wasch- und Reinigungsmitteln, in Mengen zwischen 0,5 und 8 Gew.-%, bevorzugt aber unter 5 Gew.-% und insbesondere unterhalb von 3 Gew.-% eingesetzt werden. Diese Mengen sind in wässrigen Wasch- und Reinigungsmitteln unabhängig von der Menge der Lösungsmittelkomponente.
Um den pH-Wert der flüssigen Wasch- und Reinigungsmittel in den gewünschten Bereich zu bringen, kann der Einsatz von pH-Stellmitteln angezeigt sein. Einsetzbar sind hier sämtliche bekannten Säuren bzw. Laugen, sofern sich ihr Einsatz nicht aus anwendungstechnischen oder ökologischen Gründen bzw. aus Gründen des Verbraucherschutzes verbietet. Üblicherweise überschreitet die Menge dieser Stellmittel 10 Gew.-% der Gesamtformulierung nicht.
Eine andere bevorzugte Komponente der vorliegenden Erfindung ist ein Hydrotrop. Bevorzugte Hydrotrope umfassen die sulfonierten Hydrotrope wie zum Beispiel die Alkylarylsulfonate oder Al- kylarylsulfonsäuren.
Bevorzugte Hydrotrope sind aus XyIoI-, Toluol-, Cumol-, Naphthalinsulfonat oder -sulfonsäure und Mischungen hiervon gewählt. Gegenionen sind vorzugsweise aus Natrium, Calcium und Ammonium gewählt. Typischerweise können die flüssigen Wasch- und Reinigungsmittel 0,01 bis 20 Gew.- % eines Hydrotrops, mehr bevorzugt 0,05 bis 10 Gew.-% und am meisten bevorzugt 0,1 bis 5 Gew.-% umfassen.
Um den ästhetischen Eindruck der flüssigen Wasch- und Reinigungsmittel zu verbessern, können sie mit geeigneten Farbstoffen eingefärbt werden. Bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unempfindlichkeit gegenüber den übrigen Inhaltsstoffen der Mittel und gegen Licht sowie keine ausgeprägte Substantivität gegenüber Textilfasern, um diese nicht anzufärben.
Als Schauminhibitoren, die in den flüssigen Wasch- und Reinigungsmitteln eingesetzt werden können, kommen beispielsweise Seifen, Paraffine oder Silikonöle in Betracht, die gegebenenfalls auf Trägermaterialien aufgebracht sein können. Geeignete Antiredepositionsmittel, die auch als „soil repellents" bezeichnet werden, sind beispielsweise nichtionische Celluloseether wie Methylcellu- lose und Methylhydroxypropylcellulose mit einem Anteil an Methoxygruppen von 15 bis 30 Gew.-% und an Hydroxypropylgruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglycolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Insbesondere bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und Terephthalsäure-Polymere.
Optische Aufheller (so genannte „Weißtöner") können den flüssigen Wasch- und Reinigungsmitteln zugesetzt werden, um Vergrauungen und Vergilbungen der behandelten Textilen Flächengebilden zu beseitigen. Diese Stoffe ziehen auf die Faser auf und bewirken eine Aufhellung und vorgetäuschte Bleichwirkung, indem sie unsichtbare Ultraviolettstrahlung in sichtbares längerwelliges
Licht umwandeln, wobei das aus dem Sonnenlicht absorbierte ultraviolette Licht als schwach bläuliche Fluoreszenz abgestrahlt wird und mit dem Gelbton der vergrauten bzw. vergilbten Wäsche reines Weiß ergibt. Geeignete Verbindungen stammen beispielsweise aus den Substanzklassen der 4,4'-Diamino-2,2'-stilbendisulfonsäuren (Flavonsäuren), 4,4'-Distyryl-biphenylen, Methylum- belliferone, Cumarine, Dihydrochinolinone, 1 ,3-Diarylpyrazoline, Naphthalsäureimide, Benzoxazol-, Benzisoxazol- und Benzimidazol-Systeme sowie der durch Heterocyclen substituierten Pyren- derivate. Die optischen Aufheller werden üblicherweise in Mengen zwischen 0,03 und 0,3 Gew.-%, bezogen auf das fertige Mittel, eingesetzt.
Vergrauungsinhibitoren haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte suspendiert zu halten und so das Wiederaufziehen des Schmutzes zu verhindern. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise Leim, Gelatine, Salze von Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich lösliche Stärkepräparate und andere als die oben genannten Stärkeprodukte verwenden, zum Beispiel abgebaute Stärke, Aldehydstärken usw. Auch Polyvinylpyrrolidon ist brauchbar. Bevorzugt werden jedoch Celluloseether wie Carboxymethyl- cellulose (Na-SaIz), Methylcellulose, Hydroxyalkylcellulose und Mischether wie Methylhydroxy- ethylcellulose, Methylhydroxypropylcellulose, Methylcarboxy-methylcellulose und deren Gemische in Mengen von 0,1 bis 5 Gew.-%, bezogen auf die Mittel, eingesetzt.
Da textile Flächengebilde, insbesondere aus Reyon, Zellwolle, Baumwolle und deren Mischungen, zum Knittern neigen können, weil die Einzelfasern gegen Durchbiegen, Knicken, Pressen und Quetschen quer zur Faserrichtung empfindlich sind, können die Mittel synthetische Knitterschutzmittel enthalten. Hierzu zählen beispielsweise synthetische Produkte auf der Basis von Fettsäuren, Fettsäureestern, Fettsäureamiden, -alkylolestern, -alkylolamiden oder Fettalkoholen, die meist mit Ethylenoxid umgesetzt sind, oder Produkte auf der Basis von Lecithin oder modifizierter, Phosphorsäureester.
Zur Bekämpfung von Mikroorganismen können die flüssigen Wasch- und Reinigungsmittel anti- mikrobielle Wirkstoffe enthalten. Hierbei unterscheidet man je nach antimikrobiellem Spektrum und Wirkungsmechanismus zwischen Bakteriostatika und Bakteriziden, Fungistatika und Fungiziden usw. Wichtige Stoffe aus diesen Gruppen sind beispielsweise Benzalkoniumchloride, Alkylarylsul- fonate, Halogenphenole und Phenolmercuriacetat, wobei bei den erfindungsgemäßen Mitteln auch gänzlich auf diese Verbindungen verzichtet werden kann.
Um unerwünschte, durch Sauerstoffeinwirkung und andere oxidative Prozesse verursachte Veränderungen an den flüssigen Wasch- und Reinigungsmitteln und/oder den behandelten textilen
Flächegebilden zu verhindern, können die Mittel Antioxidantien enthalten. Zu dieser Verbindungsklasse gehören beispielsweise substituierte Phenole, Hydrochinone, Brenzcatechine und aromatische Amine sowie organische Sulfide, Polysulfide, Dithiocarbamate, Phosphite und Phosphonate.
Ein erhöhter Tragekomfort kann aus der zusätzlichen Verwendung von Antistatika resultieren, die den Mitteln zusätzlich beigefügt werden. Antistatika vergrößern die Oberflächenleitfähigkeit und ermöglichen damit ein verbessertes Abfließen gebildeter Ladungen. Äußere Antistatika sind in der Regel Substanzen mit wenigstens einem hydrophilen Molekülliganden und geben auf den Oberflächen einen mehr oder minder hygroskopischen Film. Diese zumeist grenzflächenaktiven Antistatika lassen sich in stickstoffhaltige (Amine, Amide, quartäre Ammoniumverbindungen), phosphor- haltige (Phosphorsäureester) und schwefelhaltige (Alkylsulfonate, Alkylsulfate) Antistatika unterteilen. Externe Antistatika sind beispielsweise Lauryl- (bzw. Stearyl-)dimethylbenzylammonium- chloride, die sich als Antistatika für textile Flächengebilde bzw. als Zusatz zu Waschmitteln, wobei zusätzlich ein Avivageeffekt erzielt wird, eignen.
Zur Verbesserung des Wasserabsorptionsvermögens, der Wiederbenetzbarkeit der behandelten textiien Flächengebilde und zur Erleichterung des Bügeins der behandelten textilen Flächengebilde können in den flüssigen Wasch- und Reinigungsmitteln beispielsweise Silikonderivate eingesetzt werden. Diese verbessern zusätzlich das Ausspülverhalten der Mittel durch ihre schauminhibierenden Eigenschaften. Bevorzugte Silikonderivate sind beispielsweise Polydialkyl- oder Alkylarylsilo- xane, bei denen die Alkylgruppen ein bis fünf C-Atome aufweisen und ganz oder teilweise fluoriert sind. Bevorzugte Silikone sind Polydimethylsiloxane, die gegebenenfalls derivatisiert sein können und dann aminofunktionell oder quaterniert sind bzw. Si-OH-, Si-H- und/oder Si-Cl-Bindungen aufweisen. Die Viskositäten der bevorzugten Silikone liegen bei 25°C im Bereich zwischen 100 und 100.000 mPas, wobei die Silikone in Mengen zwischen 0,2 und 5 Gew.-%, bezogen auf das gesamte Mittel eingesetzt werden können.
Schließlich können die flüssigen Wasch- und Reinigungsmittel auch UV-Absorber enthalten, die auf die behandelten textilen Flächengebilde aufziehen und die Lichtbeständigkeit der Fasern verbessern. Verbindungen, die diese gewünschten Eigenschaften aufweisen, sind beispielsweise die durch strahlungslose Desaktivierung wirksamen Verbindungen und Derivate des Benzophe- nons mit Substituenten in 2- und/oder 4-Stellung. Weiterhin sind auch substituierte Benzotriazole, in 3-Stellung Phenylsubstituierte Acrylate (Zimtsäurederivate), gegebenenfalls mit Cyanogruppen in 2-Stellung, Salicylate, organische Ni-Komplexe sowie Naturstoffe wie Umbelliferon und die körpereigene Urocansäure geeignet.
Um die durch Schwermetalle katalysierte Zersetzung bestimmter Waschmittel-Inhaltsstoffe zu vermeiden, können Stoffe eingesetzt werden, die Schwermetalle komplexieren. Geeignete Schwerme-
talikomplexbildner sind beispielsweise die Alkalisalze der Ethylendiamintetraessigsäure (EDTA) oder der Nitrilotriessigsäure (NTA) sowie Alkalimetallsalze von anionischen Polyelektrolyten wie Polymaleaten und Polysulfonaten.
Eine bevorzugte Klasse von Komplexbildnern sind die Phosphonate, die in bevorzugten flüssigen Wasch- und Reinigungsmitteln in Mengen von 0,01 bis 2,5 Gew.-%, vorzugsweise 0,02 bis 2 Gew.- % und insbesondere von 0,03 bis 1 ,5 Gew.-% enthalten sind. Zu diesen bevorzugten Verbindungen zählen insbesondere Organophosphonate wie beispielsweise 1-Hydroxyethan-1 ,1-diphos- phonsäure (HEDP), Aminotri(methylenphosphonsäure) (ATMP), Diethylentriamin-penta(methylen- phosphonsäure) (DTPMP bzw. DETPMP) sowie 2-Phosphonobutan-1 ,2,4-tricarbonsäure (PBS- AM), die zumeist in Form ihrer Ammonium- oder Alkalimetallsalze eingesetzt werden.
Die erhaltenen flüssigen Wasch- und Reinigungsmittel sind klar, dass heißt sie weisen keinen Bodensatz auf und sind vorzugsweise transparent oder zumindest transluzent. Vorzugsweise weisen die flüssigen Wasch- und 'Reinigungsmittel ohne Zugabe eines Farbstoffes eine Transmission des sichtbaren Lichtes (410 bis 800 nm) von mindestens 30%, vorzugsweise mindestens 50% und insbesondere bevorzugt mindestens 75% auf.
Neben diesen Bestandteilen kann ein flüssiges Wasch- und Reinigungsmittel dispergierte Partikel, deren Durchmesser entlang ihrer größten räumlichen Ausdehnung 0,01 bis 10.000 μm beträgt, enthalten.
Partikel können im Sinne dieser Erfindung Mikrokapseln oder Speckies als auch Granulate, Compounds und Duftperlen sein, wobei Mikrokapseln oder Speckies bevorzugt sind.
Unter dem Begriff "Mikrokapsel" werden Aggregate verstanden, die mindestens einen festen oder flüssigen Kern enthalten, der von mindestens einer kontinuierlichen Hülle, insbesondere einer Hülle aus Polymer(en), umschlossen ist. Üblicherweise handelt es sich um mit filmbildenden Polymeren umhüllte feindisperse flüssige oder feste Phasen, bei deren Herstellung sich die Polymere nach Emulgierung und Koazervation oder Grenzflächenpolymerisation auf dem einzuhüllenden Material niederschlagen. Die mikroskopisch kleinen Kapseln lassen sich wie Pulver trocknen. Neben einkernigen Mikrokapseln sind auch mehrkernige Aggregate, auch Mikrosphären genannt, bekannt, die zwei oder mehr Kerne im kontinuierlichen Hüllmaterial verteilt enthalten. Ein- oder mehrkernige Mikrokapseln können zudem von einer zusätzlichen zweiten, dritten etc. Hülle umschlossen sein. Bevorzugt sind einkernige Mikrokapseln mit einer kontinuierlichen Hülle. Die Hülle kann aus natürlichen, halbsynthetischen oder synthetischen Materialien bestehen. Natürlich Hüllmaterialien sind beispielsweise Gummi arabicum, Agar Agar, Agarose, Maltodextrine, Alginsäure bzw. ihre Salze, z.B. Natrium- oder Calciumalginat, Fette und Fettsäuren, Cetylalkohol, Collagen, Chitosan,
Lecithine, Gelatine, Albumin, Schellack, Polysaccharide, wie Stärke oder Dextran, Sucrose und Wachse. Halbsynthetische Hüllmaterialien sind unter anderem chemisch modifizierte Cellulosen, insbesondere Celluloseester und -ether, z.B. Celluloseacetat, Ethylcellulose, Hydroxypropylcellu- lose, Hydroxypropylmethylcellulose und Carboxymethylcellulose, sowie Stärkederivate, insbesondere Stärkeether und -ester. Synthetische Hüllmaterialien sind beispielsweise Polymere wie PoIy- acrylate, Polyamide, Polyvinylalkohol oder Polyvinylpyrrolidon.
Im Inneren der Mikrokapseln können empfindliche, chemisch oder physikalisch inkompatible sowie flüchtige Komponenten (= Wirkstoffe) des flüssigen Wasch- und Reinigungsmittels lager- und transportstabil eingeschlossen werden. In den Mikrokapseln können sich beispielsweise optische Aufheller, Tenside, Komplexbildner, Bleichmittel, Bleichaktivatoren, Färb- und Duftstoffe, Antioxi- dantien, Gerüststoffe, Enzyme, Enzym-Stabilisatoren, antimikrobielle Wirkstoffe, Vergrauungsinhi- bitoren, Antiredepositionsmittel, pH-Stellmittel, Elektrolyte, Schauminhibitoren und UV-Absorber befinden. Zusätzlich zu den oben nicht als Inhaltsstoffe der erfindungsgemäßen wässrigen flüssigen Wasch- und Reinigungsmittel genannten Bestandteile, können die Mikrokapseln beispielsweise kationische Tenside, Vitamine, Proteine, Konservierungsmittel, Waschkraftverstärker oder Perlglanzgeber enthalten. Die Füllungen der Mikrokapseln können Feststoffe oder Flüssigkeiten in Form von Lösungen oder Emulsionen bzw. Suspensionen sein.
Die Mikrokapseln können im herstellungsbedingten Rahmen eine beliebige Form aufweisen, sie sind jedoch bevorzugt näherungsweise kugelförmig. Ihr Durchmesser entlang ihrer größten räumlichen Ausdehnung kann je nach den in ihrem Inneren enthaltenen Komponenten und der Anwendung zwischen 0,01 μm (visuell nicht als Kapsel erkennbar) und 10.000 μm liegen. Bevorzugt sind sichtbare Mikrokapseln mit einem Durchmesser im Bereich von 100 μm bis 7,000 μm, insbesondere von 400 μm bis 5.000 μm. Die Mikrokapseln sind nach im Stand der Technik bekannten Verfahren zugänglich, wobei der Koazervation und der Grenzflächenpolymerisation die größte Bedeutung zukommt. Als Mikrokapseln lassen sich sämtliche auf dem Markt angebotenen tensidstabilen Mikrokapseln einsetzen, beispielsweise die Handelsprodukte (in Klammern angegeben ist jeweils das Hüllmaterial) Hallcrest Microcapsules (Gelatine, Gummi Arabicum), Coletica Thalaspheres (maritimes Collagen), Lipotec Millicapseln (Alginsäure, Agar-Agar), induchem Unispheres (Lactose, mikrokristalline Cellulose, Hydroxypropylmethylcellulose); Unicerin C30 (Lactose, mikrokristalline Cellulose, Hydroxypropylmethylcellulose), Kobo Glycospheres (modifizierte Stärke, Fettsäureester, Phospholipide), Softspheres (modifiziertes Agar Agar) und Kuhs Probiol Nanospheres (Phospholipide).
Alternativ können auch Partikel eingesetzt werden, die keine Kern-Hülle-Struktur aufweisen, sondern in denen der Wirkstoff in einer Matrix aus einem matrix-bildenden Material verteilt ist. Solche Partikel werden auch als „Speckies" bezeichnet.
Ein bevorzugtes matrix-bildendes Material ist Alginat. Zur Herstellung Alginat-basierter Speckies wird eine wässrige Alginat-Lösung, welche auch den einzuschließenden Wirkstoff bzw. die einzuschließenden Wirkstoffe enthält, vertropft und anschließend in einem Ca2+-lonen oder AI3+-lonen enthaltendem Fällbad ausgehärtet.
Es kann vorteilhaft sein, dass die Alginat-basierten Speckies anschließend mit Wasser gewaschen und dann in einer wässrigen Lösung mit einem Komplexbildner gewaschen werden, um freie Ca2+- lonen oder freie AI3+-lonen, welche unerwünschte Wechselwirkungen mit Inhaltsstoffen des flüssigen Wasch- und Reinigungsmittels, z.B. den Fettsäureseifen, eingehen können, auszuwaschen. Anschließend werden die Alginat-basierten Speckies noch mal mit Wasser gewaschen, um überschüssigen Komplexbildner zu entfernen.
Alternativ können anstelle von Alginat andere, matrix-bildende Materialien eingesetzt werden. Beispiele für matrix-bildende Materialien umfassen Polyethylenglykol, Polyvinylpyrrolidon, Polymeth- acrylat, Polylysin, Poloxarηer, Polyvinylalkohόl, Polyacrylsäure, Polyethylenoxid, Polyethoxyoxa- zolin, Albumin, Gelatine, Acacia, Chitosan, Cellulose, Dextran, Ficoll®, Stärke, Hydroxyethylcellu- lose, Hydroxypropylcellulose, Hydroxypropylmethylcellulose, Hyaluronsäure, Carboxymethylcellu- lose, Carboxymethylcellulose, deacetyliertes Chitosan, Dextransulfat und Derivate dieser Materialien. Die Matrixbildung erfolgt bei diesen Materialien beispielsweise über Gelierung, Polyanion- Polykation-Wechselwirkungen oder Polyelektrolyt-Metallion-Wechselwirkungen und ist im Stand der Technik genauso wie die Herstellung von Partikeln mit diesen matrix-bildenden Materialien wohl bekannt.
Die Partikel können stabil in den wässrigen flüssigen Wasch- und Reinigungsmittel dispergiert werden. Stabil bedeutet, dass die Mittel bei Raumtemperatur und bei 400C über einen Zeitraum von mindestens 4 Wochen und bevorzugt von mindestens 6 Wochen stabil sind, ohne dass die Mittel aufrahmen oder sedimentieren.
Die Freisetzung der Wirkstoffe aus den Mikrokapseln oder Speckies erfolgt üblicherweise während der Anwendung der sie enthaltenden Mittel durch Zerstörung der Hülle bzw. der Matrix infolge mechanischer, thermischer, chemischer oder enzymatischer Einwirkung. In einer bevorzugten Ausführungsform der Erfindung enthalten die flüssigen Wasch- und Reinigungsmittel gleiche oder verschiedene Partikel in Mengen von 0,01 bis 10 Gew.-%, insbesondere 0,2 bis 8 Gew.-% und äußerst bevorzugt 0,5 bis 5 Gew.-%.
Die erfindungsgemäßen Wasch- und Reinigungsmittel können zum Reinigen von textilen Flächengeweben und/oder harten Oberflächen verwendet werden.
Zur Herstellung der flüssigen Wasch- und Reinigungsmittel werden die sauren Komponenten wie beispielsweise die linearen Alkylsulfonate, Zitronensäure, Borsäure, Phosphonsäure, die Fettalko- holethersulfate, usw. und die nichtionischen Tenside vorgelegt. Die Lösungsmittelkomponente wird vorzugsweise auch zu diesem Zeitpunkt hinzugegeben, die Zugabe kann aber auch zu einem späteren Zeitpunkt erfolgen. Zu diesen Komponenten wird das Polyacrylat gegeben. Anschließend wird eine Base wie beispielsweise NaOH, KOH, Triethanolamin oder Monoethanolamin gefolgt von der Fettsäure, falls vorhanden, zugegeben. Darauf folgend werden die restlichen Inhaltsstoffe und die restlichen Lösungsmittel des wässrigen flüssigen Wasch- und Reinigungsmittel zu der Mischung gegeben und der pH-Wert auf ungefähr 8,5 eingestellt. Abschließend können die zu dispergierenden Partikel zugegeben und durch Mischen homogen in dem wässrigen flüssigen Wasch- und Reinigungsmittel verteilt werden.
Beispiele
In Tabelle 1 sind erfindungsgemäße Wasch- und Reinigungsmittel E1 bis E5 sowie ein Vergleichsbeispiel V1 gezeigt. Die erhaltenen Wasch- und Reinigungsmittel E1 bis E5 waren klar, wiesen eine Viskosität um 3.000 mPas und eine Fließgrenze > 0,6 Pa auf. Der pH-Wert der flüssigen Wasch- und Reinigungsmittel lag bei 8,5. Alle Angaben erfolgen in Gewichtsprozent, jeweils bezogen auf das gesamte Mittel.
Tabelle 1 :
V1 E1 E2 E3 E4 E5
1 ,2-Propandiol 8 0 2 6 4 2
Dipropylenglykol 0 8 6 2 4 2
Polyacrylat (Carbopol Aqua 30) 3 3 3 3 3 -
Polyacrylat (Polygel W301) ~ ~ - - - 1 ,8
C12-i4-Fettalkohol mit 7 EO 10 10 10 10 10 10
Cg-13 Alkylbenzolsulfonat, Na-SaIz 10 10 10 10 10 -
Zitronensäure 3 3 3 3 3 2
Dequest® 2010 1 1 1 1 1 -
Dequest® 2066 - - - - - 0,7
Natriumlaurylethersulfat mit 2 EO 10 10 10 10 10 5
Monoethanolamin 3 3 3 3 3 2
C12-iS-Fettsäure, Na-SaIz 5,5 5,5 5,5 5,5 5,5 5,5
Enzyme, Farbstoffe, Stabilisatoren + + + + + +
Mikrokapseln mit ca. 2000 μm 0 0,5 0,5 0,5 0,5 0,5 0,5
Wasser Ad 100 Ad 100 Ad 100 Ad 100 Ad 100 Ad 100
Fließgrenze (Pa) 0,4 0,6 0,6 0,8 1 ,0 0,6
Aussehen trüb klar klar klar klar klar
Dequest® 2010: Hydroxyethyliden-1 ,1-diphosphonsäure, Tetra-Na-Salz (ex Solutia) Dequest® 2066: Diethylentriaminpenta(methylenphosphonsäure), Hepta-Na-Salz (ex Solutia)
Die Bestimmung der Fließgrenzen erfolgte auf einem Rheometer AR 1000-N der Firma Texas Instruments bei einer Temperatur von 250C.
Die vier Wasch- und Reinigungsmittel E1 bis E5 waren bei Raumtemperatur und bei 4O0C über 8 Wochen stabil.
Aus den Beispielen wird deutlich, dass die Verwendung von Dipropylenglykol und insbesondere die Verwendung von Dipropylenglykol und 1 ,2-PropandioI als Lösungsmittelkomponente in Kombination mit einem Acrylatverdicker einen synergistischen Effekt besitzt und zu einem verdickten klaren Wasch- und Reinigungsmittel mit hoher Fließgrenze führt.
Aus dem Vergleichsversuch V1 wird auch deutlich, dass die Verwendung von 1 ,2-Propandiol alleine zu trüben Mitteln mit Fließgrenze führt.