WO2008128826A1 - Photokatalytisches material enthaltende partikel - Google Patents

Photokatalytisches material enthaltende partikel Download PDF

Info

Publication number
WO2008128826A1
WO2008128826A1 PCT/EP2008/052996 EP2008052996W WO2008128826A1 WO 2008128826 A1 WO2008128826 A1 WO 2008128826A1 EP 2008052996 W EP2008052996 W EP 2008052996W WO 2008128826 A1 WO2008128826 A1 WO 2008128826A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
weight
textiles
preferred
oil
Prior art date
Application number
PCT/EP2008/052996
Other languages
English (en)
French (fr)
Inventor
Matthias Sunder
Georg Meine
Original Assignee
Henkel Ag & Co. Kgaa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Ag & Co. Kgaa filed Critical Henkel Ag & Co. Kgaa
Publication of WO2008128826A1 publication Critical patent/WO2008128826A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0063Photo- activating compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0034Fixed on a solid conventional detergent ingredient
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/1213Oxides or hydroxides, e.g. Al2O3, TiO2, CaO or Ca(OH)2
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/128Aluminium silicates, e.g. zeolites
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06LDRY-CLEANING, WASHING OR BLEACHING FIBRES, FILAMENTS, THREADS, YARNS, FABRICS, FEATHERS OR MADE-UP FIBROUS GOODS; BLEACHING LEATHER OR FURS
    • D06L4/00Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/04Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/06Inorganic compounds or elements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/46Oxides or hydroxides of elements of Groups 4 or 14 of the Periodic System; Titanates; Zirconates; Stannates; Plumbates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M16/00Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/08Processes in which the treating agent is applied in powder or granular form

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Textile Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Detergent Compositions (AREA)

Abstract

Photokatalytisches Material enthaltende Partikel Es werden photokatalytisches Material enthaltende Partikel und Granulatkörner beschrieben, die als Wasch-oder Reinigungsmittel dienen können oder zumindest in diesen eigesetzt werden können. Der Einsatz dieser Partikel und Granulatkörner ermöglicht die Beseitigung, Deaktivierung oder Verminderung von Verunreinigungen und Mikroorganismen, insbesondere Bakterien und Keimen, in Textilien unter Einsatz von Licht imWellenlängenbereichvon 10-1200 nm. Er ermöglicht eine erleichterte Entfernbarkeit von farbigem Schmutz (farbige Flecken) von Textilien, er ermöglicht die Reduzierung des Faserhaftungsvermögens von Schmutz, vorzugsweise farbigen Flecken, auf Textilien, er ermöglicht die Erhöhung der Wasserlöslichkeitvon Schmutz, vorzugsweise farbigen Flecken, auf Textilien, er ermöglicht die Verhinderung des Entstehens fötider Gerüche auf den Textilien, er ermöglicht die Ausstattung der Textilien mit einem Selbstreinigungsvermögen, jeweils unter Einsatz von Licht imWellenlängenbereich von 10-1200 nm

Description

Photokatalytisches Material enthaltende Partikel
Die vorliegende Erfindung betrifft Partikel und Granulatkörner, welche a) photokatalytisches Material, b) Trägermaterial und c) organisches Lösemittel enthalten. Ferner betrifft sie Wasch- oder Reinigungsmittel, welche solche Partikel und/oder Granulatkörner enthalten. Ferner betrifft sie ein Verfahren zur Herstellung dieser Partikel und Granulatkörner. Ferner betrifft sie ein Verfahren zum Aufbringen feinpartikulären photokatalytischen Materials auf Textilien und harten Oberflächen. Ferner betrifft sie verschiedene Verfahren zur Reinigung, Pflege, Ausrüstung, Avivage und/oder Konditionierung von Textilien durch Behandlung dieser Artikel in einem Behandlungsbad unter Einsatz der erfindungsgemäßen Partikel, Granulatkörner oder Wasch- oder Reinigungsmittel, bei und/oder gefolgt von einer Exponierung des Artikels an Licht im Wellenlängenbereich von 10-1200 nm.
Der Einsatz photokatalytischer Materialien zur Bekämpfung von Schmutz und/oder unerwünschten Mikroorganismen ist erstrebenswert, denn das photokatalytische Material kann sich elektromagnetischer Strahlung eines geeigneten Wellenlängenbereichs bedienen, um Schmutz und/oder unerwünschte Mikroorganismen durch photokatalytische oder photochemische Reaktion abzubauen oder zu deaktivieren.
In der Regel handelt es sich aber bei geeignetem photokatalytischem Material um sehr feinteilige Substanzen, beispielsweise im Größenbereich von zumindest < 500 nm.
Deshalb ist es problematisch, solches feinteiliges photokatalytisches Material in pulverförmige Waschmittel zu inkorporieren. So kann es z.B. nicht direkt in eine pulverförmige Waschmittelmatrix eingearbeitet werden, weil dann eine Partikelseparation auftritt, die zu Inhomogenitäten im Waschmittel führt. D.h. manche Teile des Waschmittels würden Anteile des photokatalytischen Materials enthalten, andere wären ganz frei davon.
Die Aufgabe der vorliegenden Erfindung war es daher, die homogene Einarbeitung von feinteiligem photokatalytischem Material in feste Waschmittelmatrices zu ermöglichen.
Diese Aufgabe wird vom Gegenstand der vorliegenden Erfindung gelöst, nämlich einer Partikel, enthaltend a) photokatalytisches Material, b) Trägermaterial und c) organisches Lösemittel. Die erfindungsgemäßen Partikel sind dazu geeignet, Bestandteil eines Wasch- oder Reinigungsmittel zu sein. Die erfindungsgemäßen Partikel können auch eigenständige Waschoder Reinigungsmittel sein.
Dieser Gegenstand bietet zwei unmittelbare Vorteile. Erstens ermöglicht er eine verbesserte Handhabung und Dosierung des photokatalytischen Materials, da es nun in „verdünnter" Form vorliegt.
Dies erklärt sich wie folgt. Wenn ein Fachmann z.B. in 1000 g einer Waschmittelmatrix 0,1 % photokatalytisches Material einarbeiten soll, dann müsste er, wenn er auf das photokatalytische Material als solches beschränkt ist, genau 1g dieses sehr feinteiligen Materials zuführen und dies homogen in der Waschmittelmatrix verteilen. Wenn er sich allerdings der erfindungsgemäßen Partikel bedient, welche z.B. 5% photokatalytisches Material beinhalten, dann könnte er bereits 20 g dieser Partikel nehmen und in die Waschmittelmatrix einarbeiten. Die Menge der einzuarbeitenden Teilchen, wird also größer und damit leichter handhab- und dosierbar und ebenso wird eine homogenere Verteilung des photokatalytischen Materials über die gesamte Waschmittelmatrix ermöglicht. Außerdem sind die erfindungsgemäßen Partikel größer als das photokatalytische Ausgangsmaterial, was einerseits die Handhabung und Dosierung weiter erleichtert und andererseits Entmischungstendenzen vorbeugt.
Zweitens behält das eingesetzte photokatalytische Material seine Aktivität, da es nun nicht mehr zu unerwünschten Selbstagglomerationserscheinungen des photokatalytische Materials, z.B. infolge Lagerung und Entmischung, kommen kann, was einen Verlust photokatalytischer Aktivität bedeuten würde.
Außerdem geht mit der Inkorporation des feinteiligen photokatalytischen Materials in den festen Träger eine sehr gute Lagerstabilität einher, welche auch das gesamte Waschmittel betrifft, in welches die erfindungsgemäßen Partikel einarbeitbar sind. Dies ist ein Vorteil im Hinblick auf mögliche Zersetzungsprozesse, welche sich zumindest ansonsten aus der Aktivität des photokatalytischen Materials in der Waschmittelmatrix ergeben könnten. Durch die Ermöglichung des Einsatzes des photokatalytischen Materials in „verdünnter" Form werden mögliche Wechselwirkungen des photokatalytischen Materials mit sensitiven Waschmittelinhaltsstoffen einer Waschmittelmatrix, wie z.B. Parfüm, Enzyme, Bleiche, Bleichaktivatoren, optische Aufheller, reduziert.
Außerdem wird durch die Anwendung der erfindungsgemäßen Partikel bei der Textilbehandlung auch ein gleichmäßiges Aufziehen des photokatalytischen Materials auf die zu behandelnden Textilien ermöglicht. Darüber hinaus kann die Staubbelastung bei der Waschmittelproduktion verringert werden. Die erfindungsgemäßen Partikel ermöglichen ferner eine textilschonende Textilbehandlung, z.B. Fleckenbehandlung.
Das enthaltene photokatalytische Material bedient sich elektromagnetischer Strahlung eines geeigneten Wellenlängenbereichs, vermöge welcher z.B. Verschmutzungen oder Mikroben durch photokatalytische oder photochemische Reaktion, z.B. durch Oxidation oder durch Reduktion, abbaubar, deaktivierbar oder reduzierbar sind. Das photokatalytische Material ist insbesondere ein tageslichtaktives Material, insbesondere ein tageslichtaktives Bleichmittel, nutzt also die elektromagnetische Strahlung des Tageslichts. Für eine bevorzugte Entfaltung der Wirksamkeit des photokatalytische Material ist die Anwesenheit von vorzugsweise Sauerstoff und/oder Wasser erforderlich. Dazu genügt z.B. der in Wasser anwesende, gelöste Sauerstoff bzw. das in der Luft enthaltene Wasser (Luftfeuchte).
Die photokatalytische Aktivität des photokatalytischen Materials bezieht sich vorteilhafterweise auf natürliches oder künstliches Licht im Wellenlängenbereich von 10-1200 nm, vorzugsweise 300- 1200 nm, insbesonders zwischen 380 und 800 nm. Wenn das photokatalytische Material insbesondere die vom menschlichen Auge wahrnehmbare Strahlung des sichtbaren Bereichs des Spektrums mit Wellenlängen zwischen 380 und 800 nm für die o.g. Zwecke des Abbaus, der Deaktivierung oder der Reduzierung von Verunreinigungen ausnutzt, dann liegt eine bevorzugte Ausführungsform der Erfindung vor. Auch UV-Licht (10-380 nm) ist sehr vorteilhaft.
Vorteilhafterweise reicht sogar das Licht, welches durch Glasfenster in geschlossene Wohnräume einfällt (diffuses Tageslicht) aus, um die gewünschte photokatalytische Aktivität des photokatalytischen Materials zu gewährleisten. Selbst Licht aus technischen Lichtquellen (Kunstlicht), wie z.B. aus handelsüblichen Glühlampen (Glühbirnen), Halogenlampen, Leuchtstoffröhren, Kompaktleuchtstofflampen (Energiesparlampen) sowie aus Lichtquellen auf Basis von Leuchtdioden, reicht aus, um die gewünschte Wirkung zu bewirken. Insbesondere das natürliche Sonnenlicht führt zu sehr guten Effekten.
Das photokatalytischen Material kann auf mehreren Wegen bei und nach der Textilbehandlung seine Wirkung entfalten. Zuerst sei die Wirkung im Textilbehandlungsbad genannt. Wenn man z.B. die zu behandelnden Textilien in einen Bottich gibt, der eine Waschlauge enthält, in welche zuvor erfindungsgemäße Partikel gegeben wurden, und dieses Textilbehandlungsbad dann beispielsweise Licht aussetzt, z.B. in die Sonne stellt, dann entfaltet das photokatalytischen Material in dem Textilbehandlungsbad eine allgemeine Reinigungsleistung. Solches ist auch möglich bei der Textilbehandlung in einer automatischen Waschmaschine welche ein Sichtfenster (Bullauge) aufweist, wie es zumindest bei Frontladern üblich ist und/oder in Waschmaschine mit interner Lichtquelle.
Zum zweiten sei die Wirkung bei der Textiltrocknung genannt. Das im Rahmen der Textilbehandlung auf die zu trocknenden Textilien aufgezogene photokatalytische Material vermag im Zusammenspiel mit einer Lichteinstrahlung, z.b. durch Sonnenlicht bei der Trocknung auf der Leine im Freien, eine allgemeine Reinigungsleistung zu entfalten. Solches ist auch möglich bei der Textiltrocknung in einem automatischen Wäschetrockner mit interner Lichtquelle.
Zum dritten ist die Wirkung nach der Textiltrocknung zu nennen. Die getrockneten Textilien sind im eigentlichen Sinne nicht wirklich trocken, sondern beinhalten eine Restfeuchte, welche im Gleichgewicht mit der Umgebungsfeuchte steht (Raumfeuchte, Körperfeuchte). Diese Bedingungen reichen aus, um bei Lichteinstrahlung, z.B. durch Sonnenlicht, eine allgemeine Reinigungsleistung, hervorgerufen durch das auf den Textilien abgelagerte photokatalytische Material, zu entfalten. Diese letztgenannte Wirkung ist besonders vorteilhaft, weil die behandelten Kleidungsstücke gleichsam mit einem Langzeitschutz versehen werden, so das die Kleidung mit einem Selbstreinigungsvermögen ausstattet wird. Dieses Selbstreinigungsvermögen ist z.B. vorteilhaft, um dem Entstehen fötider Gerüche entgegenzuwirken, welche sich auf der Kleidung z.B. nach schweißtreibenden Aktivitäten (z.B. sportliche Aktivitäten) schnell bilden. Dieses Selbstreinigungsvermögen ist z.B. vorteilhaft, um die Ansiedlung von Mikroben auf Textilien zu verhindern oder zumindest zu erschweren. Dieses Selbstreinigungsvermögen ist z.B. vorteilhaft, um ein Aufziehen und festes Anhaften von insbesondere farbigen Anschmutzungen auf Fasern abzuwehren oder zu erschweren. Das photokatalytisch aktive Material ist vorteilhaft, um die Wiederauswaschbarkeit von farbigen Anschmutzungen zu verbessern. Das photokatalytisch aktive Material vermag nämlich unter Einwirkung von Licht die Struktur von insbesondere farbigen Anschmutzungen (Farbstoffen) z.B durch Oxidation zu zerstören. Die konjugierten Doppelbindungen, die bei den Farbstoffen für die Absorption von sichtbarem Licht und damit für die Farbgebung verantwortlich sind, werden gespalten oder hydroxyliert. Der Farbstoff verliert seine farbgebenden Eigenschaften und auch seine starkes Faserhaftungsvermögen. Gleichzeitig wird die Wasserlöslichkeit erhöht. So kann verhindert werden, dass sich ein farbiger Fleck gleichsam ins Textil „hineinfrisst" und dieses auf Dauer entwertet. Vorteilhafterweise wird nicht nur die Beseitigung herkömmlicher Verschmutzungen, sondern auch die Beseitigung, Deaktivierung, Denaturierung oder Verminderung von Mikroben, insbesondere schädlicher Mikroflora bzw. mikrobiellen Bewuchses, insbesondere von Algen, Blaualgen, Flechten, Keimen, Pilzen, Schimmelpilzen, Schimmelpilzsporen, Hefen, Milben, vorzugsweise Hausstaubmilben, bzw. ganz allgemein von (lnnenraum-)Noxen mit allergenem Potential ermöglicht.
Unter Noxen werden hier Faktoren verstanden, die den menschlichen Organismus schädigen, zumindest aber den Menschen in seinem Wohlbefinden beeinträchtigen können. Dies sind insbesondere die gerade genannten Faktoren, vor allem mikrobiologische Faktoren wie Viren, Bakterien, Pilze usw.
Die Entfaltung der allgemeinen Reinigungswirkung, welche bei der Anwendung der erfindungsgemäßen Partikel beobachtet werden kann, ist besonders effektiv hinsichtlich farbigen Verunreinigungen bzw. Anschmutzungen, die insbesondere zurückgehen auf rote bis blaue Anthocyanfarbstoffe, wie z.B. Cyanidin, z.B. aus Kirschen oder Heidelbeeren, rotes Betanidin aus der roten Beete, orangerote Carotinoide wie z.B. Lycopin, beta-Carotin, z.B. aus Tomaten oder Möhren, gelbe Curcumafarbstoffe, wie z.B. Curcumin, z.B. aus Curry und Senf, braune Gerbstoffe, z.B. aus Tee, Obst, Rotwein tiefbraune Huminsäure, z.B. aus Kaffee, Tee, Kakao, grünes Chlorophyll, z.B, aus grünen Gräsern, technische Farbstoffe aus Kosmetika, Tinten, Farbstiften, farbige Stoffwechsel produkte und/oder Ausscheidungsprodukte von Schimmelpilzen oder anderer Mirkoflora oder mikrobiellem Bewuchs oder Mikroben.
Vorteilhafterweise ist auch die Wiederauswaschbarkeit farblicher Anschmutzungen aus Textilien, die mit den erfindungsgemäßen Partikeln gewaschen wurden, erleichtert. Gewöhnlich ist bei der Entfernung von Flecken auf Textilien schnelles Handeln das oberste Gebot, denn je frischer ein Fleck ist, desto leichter lässt er sich entfernen. Ein Antrocknen von Flecken oder anderen Verschmutzungen, beispielsweise Blut-, Kaffe-, Tee-, Kugelschreiber-, Obst-, Rotwein- oder Teerflecken, insbesondere über mehrere Tage soll üblicherweise vermieden werden, damit es nicht zu einer möglicherweise irreversiblen Faserhaftung kommt. Die vorliegende Erfindung bringt hier Erleichterung, denn Textilien, die mit Waschmitteln behandelt wurden, die die erfindungsgemäßen Partikel enthalten, zeigten, dass die Faserhaftung von Flecken oder anderen Verschmutzungen so abgeschwächt wurde, dass sie leichter wieder ausgewaschen werden konnten. Die beschriebenen Vorteile erstrecken sich auch auf die Reinigung harter Oberflächen.
Die erfindungsgemäßen Partikel enthalten ein organisches Lösemittel. Wenn das organische Lösemittel zumindest ein Niotensid umfaßt, vorzugsweise aus der Gruppe der alkoxylierten Fettalkohole, der Alkylphenolpolyglykolether, der alkoxylierten Fettsäurealkylester, der Polyhydroxyfettsäureamide, der Alkylglykoside, der Alkylpolyglucoside, der Aminoxide der Fettsäureglucamide und/oder der langkettigen Alkylsulfoxide, so liegt eine bevorzugte Ausführungsform der Erfindung vor. Es ist vorteilhaft und entspricht einer weiteren bevorzugte Ausführungsform der Erfindung, wenn ein überwiegender Teil des organischen Lösemittels aus Niotensid(en) besteht, vorzugsweise beinhaltet das organische Lösemittel > 50 Gew.-%, vorteilhafterweise >60 Gew.-%, noch vorteilhafter > 70 Gew.-% und insbesondere > 80 Gew.-% Niotensid, wobei die Angabe Gew.-% auf die Gesamtmenge des organischen Lösemittels bezogen ist. Es ist sogar möglich, das > 90 Gew.-% oder sogar 100 % des gesamten organischen Lösemittels aus Niotensid(en) besteht.
Am besten geeignete organische Lösemittel umfassen alkoxylierten Fettalkohol. Wenn das organische Lösemittel also alkoxylierten Fettalkohol enthält, vorzugsweise in Mengen von zumindest 40 Gew.-%, vorteilhafterweise von zumindest 50 Gew.-%, in weiter vorteilhafter Weise von zumindest 60 Gew.-%, in überaus vorteilhafter weise von zumindest 70 Gew.-%, in noch vorteilhafterer Weise von zumindest 80 Gew.-%, insbesondere von zumindest 90 Gew.-%, in der vorteilhaftesten Weise in Mengen von 100 Gew.-%, Gew.-% jeweils bezogen auf die Gesamtmenge des organischen Lösemittels, wobei es sich vorteilhafterweise um ethoxylierte, insbesondere primäre Alkohole handelt mit vorzugsweise 8 bis 18 , insbesondere 12 bis 18 C- Atomen und vorzugsweise durchschnittlich 1 bis 12 Mol Alkylenoxid, vorzugsweise Ethylenoxid, pro Mol Alkohol, insbesondere 7 Mol Ethylenoxid pro Mol Alkohol, so liegt eine bevorzugte Ausführungsform der Erfindung vor.
Überraschenderweise konnte gefunden werden, dass, wenn das organische Lösemittel zumindest einen alkoxylierten Fettalkohol umfasst, eine besonders gute Lagerstabilität der erfindungsgemäßen Partikel resultiert. Dies trifft auch auf Waschmittelmatrices zu, in welche die Partikel eingearbeitet werden können. Außerdem wurde bei der Waschanwendung ein besonders gutes, gleichmäßiges Aufziehverhalten des photokatalytischen Materials beobachtet.
Wenn das organische Lösemittel zumindest ein Feuchthaltemittel umfasst, vorzugsweise Glycerin, Dimere und Trimere von Glycerin, Ethylenglykol, Propylenglykol, Zuckeralkohole, wie vorzugsweise Glucitol, Xylitol, Mannitol, Alkylpolyglucoside, Fettsäureglucamide, Saccharoseester, Sorbitane, Polysorbate, Polydextrose, Polyethylenglykol, vorzugsweise mit mittleren Molekulargewichten von 200 bis 8000, Propandiole, Butandiole, Triethylenglycol, hydrierter Glucosesirup und/oder Gemische aus vorgenannten, vorzugsweise in Mengen von 0,01 bis 50 Gew.-%, vorteilhafterweise 0,1 bis 40 Gew.-%, in weiter vorteilhafter Weise 1-30 Gew.-%, in vorteilhafterer Weise 2-20 Gew.-%, insbesondere 5 -15 Gew.-%, bezogen auf die Gesamtmenge des organischen Lösemittels, so liegt ebenfalls eine bevorzugte Ausführungsform der Erfindung vor.
Beispielsweise können organische Lösemittel bevorzugt sein, welche 85-95 Gew.-% Niotensid, vorzugsweise alkoxylierten Fettalkohol, und 5-15 Gew.-% Feuchthaltemittel, vorzugsweise Glycerin, enthalten. Insbesondere sind organische Lösemittel bevorzugt, welche nur aus Niotensid und Feuchthaltemittel bestehen.
Es konnte gefunden, dass, wenn das organische Lösemittel zumindest ein organisches Feuchthaltemittel umfasst, eine weiter verbesserte Ablagerung des feinteiligen photoaktiven Materials im Rahmen einer herkömmlichen Textilbehandlung auf den Textilien resultierte. Ein besonders geeignetes Feuchthaltemittel ist Glycerin sowie seine Dimere und Trimere und/oder Gemischen hievon. Wir konnten finden, das bei Anwesenheit des, vorzugsweise organischen, Feuchthaltemittels eine sehr gute Wirkung des Mittels gegen Verunreinigungen resultierte, insbesondere bei Einsatz von Glycerin.
Das erfindungsgemäße Trägermaterial umfasst vorzugsweise anorganisches Material, insbesondere Zeolith, Sulfat, Carbonat, Silikat, Ton, Kieselsäure und/oder deren Gemische. Dies entspricht einer bevorzugten Ausführungsform der Erfindung.
In einer bevorzugten Ausführungsform der Erfindung enthalten die erfindungsgemäßen Partikel Alkylpolyglucosid in einer Menge von 0,1-40 Gew.-%, bezogen auf das gesamte organische Lösemittel.
Besteht das Trägermaterial zumindest zu 40 Gew.-%, vorzugsweise zumindest zu 50 Gew.-%, vorteilhafterweise zumindest zu 60 Gew.-%, in weiter vorteilhafter Weise zumindest zu 70 Gew.-%, in vorteilhafterer Weise zumindest zu 80 Gew.-%, insbesondere zumindest zu 90 Gew.-% aus anorganisches Material, vorteilhafterweise Zeolith, insbesondere Zeolith X, Y, A, P, MAP und/oder Mischungen dieser, Gew.-% bezogen auf das gesamte Trägermaterial, so liegt wiederum eine bevorzugten Ausführungsform der Erfindung vor.
Als sehr vorteilhaft hat sich die Verwendung von sprühgetrocknetem Pulver als erfindungsgemäßes Trägermaterial erwiesen. Die Sprühtrocknung ist ein lange etabliertes Verfahren, dass auch bei der Herstellung von pulverförmigen Waschmitteln angewandt wird. Der erste Schritt des Verfahrens ist die Herstellung einer wäßrigen Aufschlämmung (Slurry) thermisch stabiler (Waschmittel-)lnhaltsstoffe, die sich unter den Bedingungen der Sprühtrocknung vorzugsweise weder verflüchtigen noch zersetzen (z.B. Tenside, Gerüststoffe, Stellmittel). Anschließend wird der Slurry über Pumpen in einen Sprühturm befördert und über Düsen versprüht, welche sich im Kopf des Turms befinden. Der versprühte Slurry wird dann durch aufsteigende Luft mit einer Temperatur von vorzugsweise 200 bis 35O0C getrocknet und das anhaftende Wasser wird dabei verdampft, so dass die eingesetzten Bestandteile am Auslass des Turms als feine Pulver erhalten werden.
Wenn die erfindungemäßen Partikel als Trägermaterial also ein sprühgetrocknetes Pulver umfassen, vorzugsweise enthaltend
(a) anorganisches Trägermaterial, vorzugsweise umfassend Zeolith, Sulfat, Carbonat, Silikat, Ton, Kieselsäure und/oder deren Gemische, vorzugsweise in Mengen > 30 Gew.-%, vorteilhafterweise > 40 Gew.-%, in weiter vorteilhafter Weise > 50 Gew.-%, noch vorteilhafter > 60 Gew.-%, insbesondere 70-90 Gew.-%,
(b) Niotensid, insbesondere ethoxylierten Fettalkohol, vorteilhafterweise in Mengen von 0,1-40 Gew.-%. Insbesondere 0,5-5 Gew.-%
(c) optional Vergrauungsinhibitor, vorzugsweise Carboxymethylcellulose-Natriumsalz, vorzugsweise in Mengen von 0-10 Gew.-%, insbesondere 1-5 Gew.-%,
(d) optional Wasser, vorzugsweise in Mengen von 0,05-30 Gew.-%, vorteilhafterweise 5-25 Gew.-
%, insbesondere 10-20 Gew.-%,
(e)optional Alkalien, vorzugsweise die Hydroxide der Alkalimetalle, insbesondere Natriumhydroxid und/oder Kaliumhydroxid, Gew.-% jeweils bezogen auf das Trägermaterial, so liegt eine weitere bevorzugte Ausführungsform der Erfindung vor.
Als photokatalytisches Material ist nach einer bevorzugten Ausführungsform der Erfindung Titandioxid enthalten, insbesondere ein modifiziertes Titandioxid, vorzugsweise ein mit Kohlenstoff modifiziertes Titandioxid.
Das photokatalytische Material, insbesondere das (vorzugsweise modifizierte) Titandioxid, ist nach einer bevorzugten Ausführungsform der Erfindung in dem erfindungsgemäßen Partikel in Mengen von vorteilhafterweise 0,0001 bis 30 Gew.-%, vorzugsweise 0,001 bis 20 Gew.-%, vorteilhafterweise 0,01 bis 15 Gew.-% enthalten, in weiter vorteilhafter Weise 0,1 bis 10 Gew.-%, noch vorteilhafter 1 bis 5 Gew.-% enthalten, Gew.-% bezogen auf die gesamte Partikel.
Nach einer bevorzugten Ausführungsform handelt es sich bei dem (vorzugsweise modifizierten) Titandioxid um ein mit Kohlenstoff modifiziertes Titandioxid. Es können aber auch anders modifizierte Titandioxide eingesetzt werden, beispielsweise mit Stickstoff modifiziertes Titandioxid oder z.B. mit Rhodium und/oder Platinionen dotiertes Titandioxids. Es ist aber erfindungsgemäß besonders bevorzugt, dass es sich um mit Nichtmetallen modifiziertes Titandioxid handelt.
Der Kohlenstoffgehalt des vorteilhafterweise mit Kohlenstoff modifizierten Titandioxids kann nach einer bevorzugten Ausführungsform im Bereich von 0,01 bis 10 Gew.-% vorzugsweise von 0,05 bis 5,0 Gew.-%, vorteilhafterweise von 0,3 bis 1 ,5 Gew.%, insbesondere von 0,4 bis 0,8 Gew.% liegen. Vorteilhafterweise liegt der TiO2-Gehalt des mit Kohlenstoff modifizierten Titandioxids z.B. über 95 Gew.-%, 96 Gew.-%, 97 Gew.-%, 98 Gew.-% oder 99 Gew.-%, bezogen auf das gesamte mit Kohlenstoff modifizierte Titandioxid.
Wenn der Kohlenstoff nur in einer Oberflächenschicht der Titandioxid-Partikel eingelagert ist, so liegt eine bevorzugte Ausführungsform vor. Das modifizierte Titandioxid kann vorteilhafterweise zusätzlich Stickstoff enthalten.
Wenn die spezifische Oberfläche des Titandioxids, vorzugsweise des modifizierten Titandioxids, nach BET (BET vorteilhafterweise nach DIN ISO 9277: 2003-05 bestimmt, vorzugsweise vereinfacht auch nach DIN 66132: 1975-07) vorzugsweise 50 bis 500 m2/g, vorteilhafterweise 100 bis 400 m2/g, in weiter vorteilhafter Weise 200 bis 350 m2/g, insbesondere 250 bis 300 m2/g beträgt, so liegt ebenfalls eine bevorzugte Ausführungsform vor.
Das mit Kohlenstoff modifizierte Titandioxid kann nach einer bevorzugten Ausführungsform z.B. dadurch erhalten werden, dass man eine Titanverbindung, welche eine spezifische Oberfläche von vorzugsweise mindestens 50 m2/g nach BET aufweist, mit einer organischen Kohlenstoffverbindung innig vermischt und die Mischung bei einer Temperatur von bis zu 35O0C thermisch behandelt wird.
Die dabei einsetzbare kohlenstoffhaltige Substanz kann nach einer bevorzugten Ausführungsform eine Kohlenstoffverbindung sein, welche zumindest eine funktionell Gruppe enthält, vorzugsweise ausgewählt aus OH, CHO, COOH, NHx, SHx. Insbesondere kann es sich bei der Kohlenstoffverbindung um eine Verbindung aus der Gruppe Ethylenglykol, Glycerin, Bernsteinsäure, Pentaerythrit, Kohlehydrate, Zucker, Stärke, Alkylpolyglucoside, Organoammoniumhydroxide oder Mischungen davon handeln. Es ist auch möglich, dass als kohlenstoffhaltige Substanz Ruß oder Aktivkohle eingesetzt wird.
Es kann auch bevorzugt sein, dass die kohlenstoffhaltige Substanz, welche mit der Titanverbindung vorteilhafterweise gemischt wird, um nach der thermischen Behandlung zu dem modifizierten Titandioxid zu gelangen, eine Zersetzungstemperatur von höchstens 4000C bevorzugt < 35O0C und insbesondere bevorzugt < 3000C aufweist.
Die zur Herstellung des modifizierten Titandioxids vorzugsweise einsetzbare Titanverbindung, welche gemäß zuvor genannter bevorzugter Ausführungsform mit einer organischen Kohlenstoffverbindung innig vermischt wird, kann ein amorphes, teilkristallines oder kristallines Titanoxid bzw. wasserhaltiges Titanoxid oder ein Titanhydrat oder ein Titanoxyhydrat sein, was wiederum einer bevorzugten Ausführungsform entspricht.
Die thermische Behandlung der Mischung aus der Titanverbindung und der Kohlenstoffverbindung kann nach einer bevorzugten Ausführungsform vorteilhafterweise in einem kontinuierlich zu betreibenden Calcinieraggregat, vorzugsweise einem Drehrohrofen durchgeführt werden. Das modifizierte Titandioxid lässt sich, insbesondere im Kontext des zuvor Beschriebenen, vorzugsweise z.B. dadurch erhalten, dass man ein Titandioxid (z.B. mit einer Teilchengröße im Bereich zwischen 2 bis 600 nm oder z.B. 3 bis 150 nm oder z.B. 4 bis 100 nm oder z.B. 5 bis 75 nm oder z.B. 10 bis 30 nm oder z.B. 200 bis 400 nm ), wie etwa handelsüblich erhältlich in Pulveroder Schlammform, hernimmt und aus diesem eine Suspension in einer Flüssigkeit, wie vorzugsweise Wasser, herstellt. Zu der Suspension wird dann vorteilhafterweise eine kohlenstoffhaltige Substanz zugegeben und es wird gemischt. Das Mischen kann unterstützt werden durch den Einsatz von Ultraschall. Der Mischvorgang (z.B. Rühren) kann vorzugsweise mehrere Stunden andauern, vorzugsweise 2, 4, 6, 8, 10 oder 12 Stunden oder sogar länger. Bezogen auf die Feststoffe der Suspension beträgt die Menge der Kohlenstoffverbindung vorteilhafterweise 1-40 Gew.-%, dementsprechend die Menge der Titanverbindung vorzugsweise 60-99 Gew.-%.
Danach wird die Flüssigkeit entfernt, beispielsweise durch Filtration, Abdampfen im Vakuum oder Dekantieren, und der Rückstand wird vorzugsweise getrocknet (z.B. vorzugsweise bei Temperaturen von 70-2000C, vorteilhafterweise über mehrere Stunden, beispielsweise mindestens 12 Stunden) und anschließend calziniert, beispielsweise bei einer Temperatur von mindestens 26O0C, vorzugsweise z.B. bei 3000C, vorzugsweise über einen Zeitraum von mehreren Stunden, vorzugsweise 1-4 Stunden, insbesondere 3 Stunden. Die Calcinierung kann vorteilhafterweise in einem geschlossenen Gefäß stattfinden.
Es kann vorteilhaft sein, das die Calcinierungstemperatur, z.B. 3000C, innerhalb einer Stunde erreicht wird (langsames Aufheizen auf 3000C).
Dabei ist vorzugsweise ein Farbwechsel des Pulvers von weiß über dunkelbraun nach beige bzw. leicht gelb-bräunlich festzustellen. Zu langes Erhitzen führt zu inaktiven, farblosen Pulvern. Der Fachmann kann dies mit wenigen Routineversuchen abschätzen. Die Calcinierung kann z.B. vorteilhafterweise so lange erfolgen, bis nach einem Farbwechsel des Pulvers von weiß über dunkelbraun ein weiterer Farbwechsel auf beige bzw. leicht gelb-bräunlich stattfindet.
Eine maximale Temperatur von 35O0C sollte dabei vorzugsweise nicht überschritten werden. Bei der thermischen Behandlung kommt es zu einer Zersetzung der organischen Kohlenstoffverbindung an der Oberfläche der Titanverbindung, so dass vorzugsweise ein modifiziertes Titandioxid entsteht, das vorzugsweise 0,005-4 Gew.-% Kohlenstoff enthält.
Nach der thermischen Behandlung wird das Produkt mit bekannten Verfahren vorteilhafterweise deagglomeriert, beispielsweise in einer Stiftmühle, Strahlmühle oder Gegenstrahlmühle. Die zu erzielende Kornfeinheit hängt von der Korngröße der Ausgangstitanverbindung ab. Die Kornfeinheit oder spezifische Oberfläche des Produkts liegt nur geringfügig niedriger, aber in der gleichen Größenordnung wie die des Edukts. Die angestrebte Kornfeinheit des Photokatalysators hängt von dem Einsatzbereich des Photokatalysators ab. Sie liegt üblicherweise im Bereich wie bei TiO2-Pigmenten, kann aber auch darunter oder darüber liegen.
Das im erfindungsgemäßen Partikel enthaltene photokatalytische Material, vorzugsweise modifizierte Titandioxid kann vorteilhafterweise eine Teilchengröße im Bereich zwischen 2 bis 600 nm aufweisen, also z.B. 3 bis 150 nm oder z.B. 4 bis 100 nm oder z.B. 5 bis 75 nm oder z.B. 10 bis 30 nm oder z.B. 200 bis 400 nm . Die Teilchengröße des photokatalytischen Materials, vorzugsweise modifizierten Titandioxids, kann zwar vorzugsweise im Bereich von 100-500 nm, vorteilhafterweise 200-400 nm liegen. Es kann auch bevorzugt sein, dass die Teilchengröße sehr klein ist, z.B. im Bereich von 2-150 nm, vorzugsweise 3-100 nm, vorteilhafterweise 4-80 nm oder z.B. 5-50 nm oder z.B. 8-30 nm oder z.B. 10-20 nm liegt.
Sehr kleine Teilchen, z.B. mit einer Teilchengröße von insbesondere 2, 3, 4, 5 oder 10 nm, können auch miteinander Agglomerate bilden, die dann entsprechend größer sind, z.B. bis zu 600 nm oder bis zu 500 nm oder bis zu 400 nm oder bis zu 300 nm groß, usw.
Die Teilchengröße kann z.B. vorteilhafterweise bei Werten wie 5 nm, 10 nm, 15 nm, 20 nm, 25 nm, 30 nm, 35 nm, 40 nm, 45 nm, 50 nm oder 60 nm liegen. Insbesondere sehr kleine Teilchengrößen unter 50 nm, unter 40 nm, unter 30 nm oder unter 20 nm können bevorzugt sein. Es kann vorteilhaft sein, bei der Herstellung des modifizierten Titandioxids von mikronisiertem Titandioxid auszugehen, also von Titandioxid mit sehr geringer Teilchengröße, z.B. zwischen 2 und 150 nm oder z.b. zwischen 5 und 100 nm. Die Teilchengröße kann dann z.B. vorteilhafterweise bei Werten wie 2 nm, 3 nm, 4 nm, 5 nm, 10 nm, 15 nm, 20 nm, 25 nm, 30 nm, 35 nm, 40 nm, 45 nm, 50 nm oder 60 nm liegen. Solche Werte sind bevorzugt. Die Schüttdichte des vorzugsweise modifizierten Titandioxids liegt vorzugsweise im Bereich von 100 bis 800 g/l, vorteilhafterweise von 200 bis 600 g/l, insbesondere von 300-500 g/l. Beispielsweise kann die Schüttdichte 350 g/l, 400 g/l oder 500 g/l betragen. Nach einer bevorzugten Ausführungsform liegt das (vorzugsweise modifizierte) Titandioxid in der Kristallmodifikation Anatas vor.
Das vorstehend beschriebene modifizierte Titandioxid zeichnet sich durch eine sehr gute photokatalytische Aktivität, insbesondere unter Nutzung von Tageslicht, aus. Insbesondere die vom menschlichen Auge wahrnehmbare Strahlung des sichtbaren Bereichs des Spektrums mit Wellenlängen zwischen 380 und 800 nm werden für die Zwecke des Abbaus, der Deaktivierung oder der Reduzierung von Verunreinigungen von dem beschriebenen modifizierten Titandioxid sehr gut genutzt. Auch UV-Strahlung zwischen 10-380 nm kann sehr gut genutzt werden.
Ein erfindungsgemäß besonders bevorzugter Partikel umfasst nach einer bevorzugte Ausführungsform der Erfindung a) photokatalytisches Material in Mengen von 0,01-40 Gew.-%, vorzugsweise 0,1 -30 Gew.-%, vorteilhafterweise 1-20 Gew.-%, noch vorteilhafter 5-15 Gew.-%, insbesondere 8-12 Gew.-% b) Trägermaterial, vorzugsweise umfassend sprühgetrocknetes Pulver, insbesondere umfassend Zeolith, in Mengen von 30-90 Gew.-%, vorzugsweise 40- 80 Gew.-%, vorteilhafterweise 50-70 Gew.-%, insbesondere 55-65 Gew-% c) organisches Lösemittel, vorzugsweise Niotensid und/oder Feuchthaltemittel, in Mengen von 5-60 Gew.-%, vorzugsweise 10-50 Gew.-%, vorteilhafterweise 20-40 Gew.-%, insbesondere 25-35 Gew.-%.
Weiterhin kann es vorteilhaft sein, wenn die erfindungsgemäßen Partikel Aviviermittel umfassen. Entsprechend stellen erfindungsgemäße Partikel, welche ein Aviviermittel umfassen, vorzugsweise Öle, Kationtenside, wie insbesondere Esterquats, Schichtsilicate, Fettsäure-Derivate, Siliconöle, Polymere, wie vorzugsweise polymere Kationtenside auf Siliconbasis oder Polymere auf Basis von Polyethylen, vorzugsweise in einer Menge von 0,05 bis 10 Gew.-%, vorzugsweise 0,1 - 5 Gew.-% Gew.-% bezogen auf die gesamte Partikel, eine bevorzugte Ausführungsform der Erfindung dar.
Aviviermittel helfen, den Griff, den Glanz, die Farbbrillanz, die Weichheit und/oder die Glätte der damit behandelten Gewebe zu verbessern. Besonders geeignet sind Esterquats. Esterquat ist die Sammelbezeichnung für kationische grenzflächenaktive Verbindungen mit zwei hydrophoben Gruppen, die über Ester-Bindungen mit einem quaternierten Di(Tri-)ethanolamin oder einer analogen Verbindung verknüpft sind. Geeignete Aviviermittel werden weiter unten beschrieben. Die Avivage-Komponente umfasst beispielsweise quaternäre Ammoniumverbindungen wie Monoalk(en)yltrimethylammonium-Verbindungen, Dialk(en)yldimethylammonium-Verbindungen, Mono-, Di- oder Triester von Fettsäuren mit Alkanolaminen.
Geeignete Beispiele für einsetzbare quaternäre Ammoniumverbindungen sind beispielsweise in den Formeln (I) und (II) gezeigt: )
Figure imgf000014_0001
wobei in (I) R für einen acyclischen Alkylrest mit 12 bis 24 Kohlenstoffatomen, R1 für einen gesättigten C1-C4 Alkyl- oder Hydroxyalkylrest steht, R2 und R3 entweder gleich R oder R1 sind oder für einen aromatischen Rest stehen. X~ steht entweder für ein Halogenid-, Methosulfat-, Methophosphat- oder Phosphation sowie Mischungen aus diesen. Beispiele für kationische Verbindungen der Formel (I) sind Monotalgtrimethylammoniumchlorid, Monostearyltrimethylammoniumchlorid, Didecyldimethylammoniumchlorid, Ditalgdimethyl- ammoniumchlorid oder Dihexadecylammoniumchlorid.
Verbindungen der Formel (II), (IM) und (IV) sind so genannte Esterquats. Esterquats zeichnen sich durch eine hervorragende biologische Abbaubarkeit aus. In Formel (II) steht R4 für einen aliphatischen Alk(en)ylrest mit 12 bis 22 Kohlenstoffatomen mit 0, 1 , 2 oder 3 Doppelbindungen und/oder gegebenenfalls mit Substituenten; R5 steht für H, OH oder 0(CO)R7, R6 steht unabhängig von R5 für H, OH oder 0(CO)R8, wobei R7 und R8 unabhängig voneinander jeweils für einen aliphatischen Alk(en)ylrest mit 12 bis 22 Kohlenstoffatomen mit O, 1 , 2 oder 3 Doppelbindungen steht, m, n und p können jeweils unabhängig voneinander den Wert 1 , 2 oder 3 haben. X kann entweder ein Halogenid-, Methosulfat-, Methophosphat- oder Phosphation sowie Mischungen aus diesen Anionen sein. Bevorzugt sind Verbindungen, bei denen R5 die Gruppe 0(CO)R7 darstellt. Besonders bevorzugt sind Verbindungen, bei denen R5 die Gruppe 0(CO)R7 darstellt und R4 und R7 Alk(en)ylreste mit 16 bis 18 Kohlenstoffatomen sind. Insbesondere bevorzugt sind Verbindungen, bei denen R6 zudem für OH steht. Beispiele für Verbindungen der Formel (I) sind Methyl-N-(2-hydroxyethyl)-N,N-di(talgacyloxyethyl)ammonium-methosulfat, Bis-(palmitoyloxyethyl)- hydroxyethyl-methyl-ammonium-methosulfat, 1 ,2-Bis-[talgacyloxy]-3-trimethylammoniumpro- panchlorid oder Methyl-N,N-bis(stearoyloxyethyl)-N-(2-hydroxyethyl)ammonium-methosulfat. Werden z.B. quaternierte Verbindungen der Formel (II) eingesetzt, die ungesättigte Alkylketten aufweisen, sind die Acylgruppen bevorzugt, deren korrespondierenden Fettsäuren eine Jodzahl zwischen 1 und 100, bevorzugt zwischen 5 und 80, mehr bevorzugt zwischen 10 und 60 und insbesondere zwischen 15 und 45 aufweisen und die ein cis/trans-lsomerenverhältnis (in Gew.-%) von größer als 30 : 70, vorzugsweise größer als 50 : 50 und insbesondere gleich oder größer als 60 : 40 haben. Handelsübliche Beispiele sind die von Stepan unter dem Warenzeichen Stepantex® vertriebenen Methylhydroxyalkyldialkoyloxyalkylammoniummethosulfate oder die unter Dehyquart® bekannten Produkte von Cognis, die unter Rewoquat® bekannten Produkte von Degussa bzw. die unter Tetranyl® bekannten Produkte von Kao. Weitere bevorzugte Verbindungen sind die Diesterquats der Formel (IM), die unter dem Namen Rewoquat® W 222 LM bzw. CR 3099 erhältlich sind.
Figure imgf000015_0001
R21 und R22 stehen dabei unabhängig voneinander jeweils für einen aliphatischen Rest mit 12 bis 22 Kohlenstoffatomen mit 0, 1 , 2 oder 3 Doppelbindungen.
Anstelle der Estergruppe 0(CO)R, wobei R für einen langkettigen Alk(en)ylrest steht, können z.B. weichmachende Verbindungen eingesetzt werden, die folgende Gruppen aufweisen: RO(CO), N(CO)R oder RN(CO) weisen, wobei von diesen Gruppen N(CO)R-Gruppen bevorzugt sind.
Neben den oben beschriebenen, optionalen quaternären Verbindungen können z.B. auch andere Verbindungen als weichmachende Komponente eingesetzt werden, wie beispielsweise quaternäre Imidazoliniumverbindungen der Formel (IV),
+
ΓΛ X"
/Z\r/R1 1
R9' I ^(CH2)q (IV); R10 O wobei R9 für H oder einen gesättigten Alkylrest mit 1 bis 4 Kohlenstoffatomen, R10 und R11 unabhängig voneinander jeweils für einen aliphatischen, gesättigten oder ungesättigten Alkylrest mit 12 bis 18 Kohlenstoffatomen, R10 alternativ auch für 0(CO)R20 stehen kann, wobei R20 einen aliphatischen, gesättigten oder ungesättigten Alkylrest mit 12 bis 18 Kohlenstoffatomen bedeutet, und Z eine NH-Gruppe oder Sauerstoff bedeutet und X" ein Anion ist. q kann ganzzahlige Werte zwischen 1 und 4 annehmen. Weitere besonders bevorzugt einsetzbare weichmachende Verbindungen sind durch Formel (V) beschrieben,
R13 H
R12 N-(CH2V C— O(CO)R15 X" (V);
R14 CH2 — O(CO)R16
wobei R12, R13 und R14 unabhängig voneinander für eine C-ι_4-Alkyl-, Alkenyl- oder Hydroxyalkyl- gruppe steht, R15 und R16 jeweils unabhängig ausgewählt eine C8.28-Alkylgruppe darstellt, X~ ein Anion ist und r eine Zahl zwischen 0 und 5 ist. Ein bevorzugtes Beispiel einer kationischen Abscheidungshilfe gemäß Formel (V) ist 2,3-Bis[talgacyloxy]-3-trimethylammoniumpropanchlorid.
Weitere erfindungsgemäß verwendbare weichmachende Komponenten stellen quaternisierten Proteinhydrolysate oder protonierte Amine dar.
Weiterhin sind auch kationische Polymere geeignete weichmachende Komponente. Zu den geeigneten kationischen Polymeren zählen die Polyquaternium-Polymere, wie sie im CTFA Cosmetic Ingredient Dictionary (The Cosmetic, Toiletry and Fragrance, Inc., 1997), insbesondere die auch als Merquats bezeichneten Polyquaternium-6-, Polyquaternium-7-, Polyquaternium-10- Polymere (Polymer JR, LR und KG Reihe von Amerchol), Polyquaternium-4-Copolymere, wie Pfropfcopolymere mit einen Cellulosegerüst und quartären Ammoniumgruppen, die über Allyldimethylammoniumchlorid gebunden sind, kationische Cellulosederivate, wie kationisches Guar, wie Guarhydroxypropyltriammoniumchlorid, und ähnliche quaternierte Guar-Derivate (z.B. Cosmedia Guar von Cognis oder die Jaguar Reihe von Rhodia), kationische quaternäre Zuckerderivate (kationische Alkylpolyglucoside), z.B. das Handelsprodukt Glucquat® 100, gemäß CTFA-Nomenklatur ein "Lauryl Methyl Gluceth-10 Hydroxypropyl Dimonium Chloride", Copolymere von PVP und Dimethylaminomethacrylat, Copolymere von Vinylimidazol und Vinylpyrrolidon, Aminosiliconpolymere und Copolymere.
Ebenfalls einsetzbar sind polyquaternierte Polymere (z.B. Luviquat® Care von BASF) und auch kationische Biopolymere auf Chitinbasis und deren Derivate, beispielsweise das unter der Handelsbezeichnung Chitosan® (Hersteller: Cognis) erhältliche Polymer. Einige der genannten kationischen Polymere weisen zusätzlich haut- und/oder textilpflegende Eigenschaften auf.
Ebenfalls einsetzbar sind Verbindungen der Formel (VI),
Figure imgf000017_0001
R17 kann ein aliphatischer Alk(en)ylrest mit 12 bis 22 Kohlenstoffatomen mit 0, 1 , 2 oder 3 Doppelbindungen sein, s kann Werte zwischen 0 und 5 annehmen. R18 und R19 stehen un< voneinander jeweils für H, C-ι_4-Alkyl oder Hydroxyalkyl und X~ ist ein Anion.
Weitere geeignete weichmachende Komponenten umfassen protonierte oder quaternierte Polyamine.
Besonders bevorzugte weichmachende Komponenten sind alkylierte quaternäre Ammoniumverbindungen, von denen mindestens eine Alkylkette durch eine Estergruppe und/oder Amidogruppe unterbrochen ist. Ganz besonders bevorzugt sind N-Methyl-N-(2-hydroxyethyl)-N,N- (ditalgacyloxyethyl)ammonium-methosulfat oder Bis-(palmitoyloxyethyl)-hydroxyethyl-methyl- ammonium-methosulfat.
Es können auch nichtionische weichmachende Komponenten enthalten sein, wie vor allem Polyoxyalkylenglycerolalkanoate, Polybutylene, langkettige Fettsäuren, ethoxylierte Fettsäureethanolamide, Alkylpolyglucoside, insbesondere Sorbitanmono,-di- und -triester, und Fettsäureester von Polycarbonsäuren
Zu den bevorzugtesten, optional einsetzbaren Avivage-Mtteln zählen auch kationische Zellulosederivate, kationische Stärken, Copolymere eines Diallyl-quaternären Ammoniumsalzes und eines Acrylamids, quaternisierte Vinylpyrrolidonvinylimidazolpolymere- Polyglykolaminkondensate, quaternisiertes Collagenpolypeptide, Polyethylenimin, kationisiertes Siliziumpolymer (beispielsweise Amodimethicon), kationische Silizium-polymere, z.B. bereitgestellt in einem Gemisch mit anderen Komponenten unter der Handelsmarke Dow Corning 929 (kationisierte Emulsion), Copolymere von Adipinsäure und
Dimethylaminohydroxypropyldiethylentriamin, kationische Chitinderivate, kationisiertes Guargummi (beispielsweise Jaguar C-B-S, Jaguar C-17, Jaguar C-16 usw., hergestellt von der Celanese Company), quaternäre Ammoniumsalzpolymere (beispielsweise Mirapol A-15, Mirapol AD-1 , Mirapol AZ- 1 usw., hergestellt von der Miranol Division of the Rhone Poulenc Company). Besonders bevorzugt ist auch Polyquaternium-11 , erhältlich als Luviquat® PQ11 , vertrieben von der BASF Corporation.
Nach einer bevorzugten Ausführungsform der Erfindung sind auch Hautpflegemittel bzw. hautpflegende Aktivstoffe in den erfindungsgemäßen Partikeln enthalten, insbesondere in Mengen
> 0,01 Gew.-%, Gew.-% bezogen auf die gesamte Partikel.
Hautpflegemittel (hautpflegende Aktivstoffe ) können insbesondere solche Mittel sein, welche der
Haut einen sensorischen Vorteil verleihen, z.B. indem sie Lipide und/oder Feuchthaltefaktoren zuführen. Hautpflegemittel können z.B. Proteine, Aminosäuren, Lecithine, Lipoide, Phosphatide,
Pflanzenextrakte, Vitamine sein; ebenso können Fettalkohole, Fettsäuren, Fettsäureester, Wachse,
Vaseline, Paraffine als Hautpflegemittel wirken.
Hautpflegende Aktivstoffe sind alle solchen Aktivstoffe die der Haut einen sensorischen und/oder kosmetischen Vorteil verleihen. Hautpflegende Aktivstoffe sind bevorzugt ausgewählt aus den nachfolgenden Substanzen: a) Wachse wie beispielsweise Carnauba, Spermaceti, Bienenwachs, Lanolin und/oder Derivate derselben und andere. b) Hydrophobe Pflanzenextrakte c) Kohlenwasserstoffe wie beispielsweise Squalene und/oder Squalane d) Höhere Fettsäuren, vorzugsweise solche mit wenigstens 12 Kohlenstoffatomen, beispielsweise Laurinsäure, Stearinsäure, Behensäure, Myristinsäure, Palmitinsäure, Ölsäure, Linolsäure, Linolensäure, Isostearinsäure und/oder mehrfach ungesättigte Fettsäuren und andere. e) Höhere Fettalkohole, vorzugsweise solche mit wenigstens 12 Kohlenstoffatomen, beispielsweise Laurylalkohol, Cetylalkohol, Stearylalkohol, Oleylalkohol, Behenylalkohol, Cholesterol und/oder 2-Hexadecanaol und andere. f) Ester, vorzugsweise solche wie Cetyloctanoate, Lauryllactate, Myristyllactate, Cetyllactate, Isopropylmyristate, Myristylmyristate, Isopropylpalmitate, Isopropyladipate, Butylstearate, Decyloleate, Cholesterolisostearate, Glycerolmonostearate, Glyceroldistearate, Glyceroltristearate, Alkyllactate, Alkylcitrate und/oder Alkyltartrate und andere. g) Lipide wie beispielsweise Cholesterol, Ceramide und/oder Saccharoseester und andere. h) Vitamine wie beispielsweise die Vitamine A und E, Vitaminalkylester, einschließlich Vitamin
C Alkylester und andere. i) Sonnenschutzmittel j) Phospholipide k) Derivate von alpha-Hydroxysäuren m) Germizide für den kosmetischen Gebrauch, sowohl synthetische wie beispielsweise
Salicylsäure und/oder andere als auch natürliche wie beispielsweise Neemöl und/oder andere. n) Silikone sowie Mischungen jeglicher vorgenannter Komponenten.
Bevorzugte hautpflegende Aktivstoffe sind auch etherische Öle, insbesondere ausgewählt aus der Gruppe der Angelica fine - Angelica archangelica, Anis - Pimpinella Anisum, Benzoe siam - Styrax tokinensis, Cabreuva - Myrocarpus fastig iatus, Cajeput - Melaleuca leucadendron, Cistrose
- Cistrus ladaniferus, Copaiba-Balsam - Copaifera reticulata, Costuswurzel - Saussurea discolor, Edeltannennadel - Abies alba, Elemi - Canarium luzonicum, Fenchel - Foeniculum dulce Fichtennadel - Picea abies, Geranium - Pelargonium graveolens, Ho-Blätter - Cinnamonum camphora, Immortelle (Strohblume) Helichrysum ang., Ingwer extra - Zingiber off., Johanniskraut - Hypericum perforatum, Jojoba, Kamille deutsch - Matricaria recutita, Kamille blau fine - Matricaria chamomilla, Kamille röm. - Anthemis nobilis, Kamille wild- Ormensis multicaulis, Karotte - Daucus carota, Latschenkiefer - Pinus mugho, Lavandin - Lavendula hybrida, Litsea Cubeba - (May Chang), Manuka - Leptospermum scoparium, Melisse - Melissa officinalis, Meerkiefer - Pinus pinaster,, Myrrhe - Commiphora molmol, Myrthe - Myrtus communis, Neem - Azadirachta, Niaouli
- (MQV) Melaleuca quin, viridiflora, Palmarosa - Cymbopogom martini, Patchouli - Pogostemon patschuli, Perubalsam - Myroxylon balsamum var. pereirae, Raventsara aromatica, Rosenholz - Aniba rosae odora, Salbei - Salvia officinalis Schachtelhalm - Equisetaceae, Schafgarbe extra - Achillea millefolia, Spitzwegerich - Plantago lanceolata, Styrax - Liquidambar orientalis, Tagetes (Ringelblume) Tagetes patula, Teebaum - Melaleuca alternifolia, Tolubalsam - Myroxylon Balsamum L., Virginia-Zeder - Juniperus virginiana, Weihrauch (Olibanum) - Boswellia carteri, Weißtanne - Abies alba.
Bevorzugte hautpflegende Aktivstoffe sind auch hautschützende Öle, insbesondere ausgewählt aus der Gruppe Algenöl Oleum Phaeophyceae, Aloe-Vera Öl Aloe vera brasiliana, Aprikosenkernöl Prunus armeniaca, Arnikaöl Arnica montana, Avocadoöl Persea americana, Borretschöl Borago officinalis, Calendulaöl Calendula officinalis, Camelliaöl Camellia oleifera, Distelöl Carthamus tinctorius, Erdnuß-öl Arachis hypogaea, Hanföl Cannabis sativa, Haselnußöl Corylus avellana/, Johanniskrautöl Hypericum perforatum, Jojobaöl Simondsia chinensis, Karottenöl Daucus carota, Kokosöl Cocos nucifera, Kürbiskernöl Curcubita pepo, Kukuinußöl Aleurites moluccana, Macadamianußöl Macadamia ternifolia, Mandelöl Prunus dulcis, Olivenöl Olea europaea, Pfirsichkernöl Prunus persica, Rapsöl Brassica oleifera, Rizinusöl Ricinus communis, Schwarzkümmelöl Nigella sativa, Sesamöl Sesamium indicum, Sonnenblumenöl Helianthus annus, Traubenkernöl Vitis vinifera, Walnußöl Juglans regia, Weizenkeimöl Triticum sativum. Nach einer weiteren bevorzugte Ausführungsform der Erfindung enthält eine erfindungsgemäße Partikel Riechstoffe (Parfümöl), vorzugsweise in Mengen von 0,01 bis 10 Gew.-%, Gew.-% bezogen auf die gesamte Partikel. Die Riechstoffe fördern die Akzeptanz des Produktes beim Verbraucher und vermitteln ein Gefühl der Sauberkeit. Geeignete Riechstoffe werden weiter unten beschrieben.
Insbesondere in Kombination mit Feuchthaltemittel und Niotensid konnte eine besonders lang anhaltende Duftwirkung der Riechstoffe beobachtet werden. Dies betrifft sowohl die erfindungsgemäße Partikel als solche wie die damit behandelten Objekte.
Gemäß einer weiteren bevorzugte Ausführungsform der Erfindung sind die erfindungsgemäßen Partikel abgepudert und/oder mit einer Beschichtung umgeben, wobei diese vorzugsweise Thermoplasten, wie PEG, PVA, Polyacrylate, PVP, Kohlenhydrate, Polyester wie vorzugsweise PET umfasst.
Enthalten die erfindungsgemäßen Partikel Trägermaterial mit einer mittleren Teilchengröße zwischen 0,1 und 2,0 mm, vorzugsweise 0,15 und 1 ,5 mm, insbesondere 0,2 und 1 ,2 mm, so liegt wiederum eine bevorzugte Ausführungsform der Erfindung vor.
Ein weiterer Gegenstand der Erfindung sind Granulatkörner, welche Aggregate aus mehreren erfindungsgemäßen Partikeln umfassen. Solche Granulatkörner sind erhältlich durch Agglomeration der erfindungsgemäßen Partikel, z.B in einem Mischer unter Einsatz von üblichen Bindemitteln. Die Aggregate können neben den erfindungsgemäßen Partikeln auch andere Partikel beinhalten.
Ein weiterer Gegenstand der Erfindung ist ein Wasch- oder Reinigungsmittel, enthaltend erfindungsgemäße Partikel und/oder Granulatkörner.
Nach einer bevorzugten Ausführungsform können erfindungsgemäße Partikel, Granulatkörner, Wasch- oder Reinigungsmittel weitere optionale Inhaltsstoffe enthalten, insbesondere wasch-, pflege- und/oder reinigungsaktive Inhaltsstoffe, vorteilhafterweise ausgewählt aus der Gruppe umfassend anionische Tenside, kationische Tenside, amphotere Tenside, nichtionische Tenside, Acidifizierungsmittel, Alkalisierungsmittel, antibakterielle Stoffe, Antioxidantien, Antiredepositionsmittel, Antistatika, Buildersubstanzen, Bleichmittel, Bleichaktivatoren, Bleichstabilisatoren, Bleichkatalysatoren, Cobuilder, Dispergiermittel, Elektrolyt^, Enzyme, Farbschutzstoffe, Färbemittel, Farbstoffe, Fluoreszensmittel, Fungizide, Germizide, geruchs- komplexierende Substanzen, Hilfsmittel, Hydrotrope, Klarspüler, Komplexbildner, Konservierungsmittel, Korrosionsinhibitoren, optische Aufheller, Parfümträger, Perlglanzgeber, pH- Stellmittel, Phobier- und Imprägniermittel, Polymere, Riechstoff(e) (Parfüm(öl)), Quell- und Schiebefestmittel, Schauminhibitoren, Schichtsilikate, schmutzabweisende Stoffe, Silberschutzmittel, Silikonöle, Viskositätsregulatoren, Verdickungsmittel, Verfärbungsinhibitoren, Vergrauungsinhibitoren und/oder Vitamine.
Vorzugsweise kann das erfindungsgemäße Wasch- oder Reinigungsmittel in einer lichtundurchlässigen Verpackung enthalten bzw. verpackt sein. Die lichtundurchlässige Verpackung ermöglicht eine verbesserte Lagerstabilität des erfindungsgemäßen Wasch- oder Reinigungsmittels.
Ein bevorzugtes erfindungsgemäßes Wasch- oder Reinigungsmittel kann neben den erfindungsgemäßen Partikeln und/oder Granulatkörner z.B. noch folgende Komponenten umfassen (sowohl einzelne dieser Komponenten als auch sämtliche dieser Komponenten):
(a) Aniontenside, vorzugsweise Alkylbenzolsulfonate, Alkansulfonate, Methylestersulfonate, α- Olefinsulfonate, Alkylsulfate und/oder Alkylethersulfate, vorteilhafterweise in Mengen von 0-40 Gew.-%, vorzugsweise in Mengen von 1-25 Gew.-%, insbesondere in Mengen von 5-15 Gew.-%
(b) Nichtionische Tenside, vorzugsweise alkoxylierte Fettalkohole, Alkylphenolpolyglykolether, alkoxylierte Fettsäurealkylester, Polyhydroxyfettsäureamide, Alkylglykoside, Alkylpolyglucoside, Saccharoseester, Sorbitanester, Aminoxide, Fettsäureglucamide und/oder der langkettigen Alkylsulfoxide, vorteilhafterweise in Mengen von 0-20 Gew.-%, vorzugsweise 0,1-15 Gew.-%, insbesondere 1-10 Gew.-%,
(c) Gerüststoffe, vorzugsweise Zeolith, alkalische amorphe Disilicate, kristalline Schichtsilicate Polycarboxylat und/oder Natriumeitrat, vorteilhafterweise in Mengen von 0-70 Gew.-%, vorzugsweise 5 — 60 Gew.-%, insbesondere 10-50 Gew.-% ,
(d) Alkalien, vorzugsweise NaOH, KOH und/oder Natriumcarbonat, vorteilhafterweise in Mengen von 0-30 Gew.-%, vorzugsweise 1-25 Gew.-%, insbesondere 5-15 Gew.-% (e)Bleichmittel, vorzugsweise Natriumperborat und/oder, Natriumpercarbonat, vorzugsweise in Mengen von 0-25 Gew.-%, insbesondere 5-20 Gew.-%,
(f) Korrosionsinhibitoren, vorzugsweise Natriumsilicat, vorteilhafterweise in Mengen von 0-10 Gew.-%, vorzugsweise 0,5-6 Gew.-%, insbesondere 1-5 Gew.-%,
(g) Stabilisatoren, vorzugsweise Phosphonate, vorteilhafterweise 0-5 Gew.-%, insbesondere 0.01— 1 Gew.-%,
(h) Schauminhibitor, vorzugsweise Seife, Siliconöle und/oder Paraffine, vorteilhafterweise in Mengen von 0-8 Gew.-%, vorzugsweise 0,1-5 Gew.-%, insbesondere 1-4 Gew.-%, (i) Enzyme, vorzugsweise Proteasen, Amylasen, Mannanasen, Tannasen, Cellulasen und/oder Lipasen, vorteilhafterweise in Mengen von 0-5 Gew.-%, vorzugsweise 0,1-5 Gew.-%, insbesondere 0,5-2 Gew.-%, (j) Vergrauungsinhibitor, vorzugsweise Carboxymethyl-cellulose, vorteilhafterweise in Mengen von
0-2 Gew.-%, insbesondere 0,01-1 Gew.-%,
(k) Verfärbungsinhibitor, vorzugsweise Polyvinylpyrrolidon-Derivate, vorteilhafterweise in Mengen von 0-2 Gew.-%, vorzugsweise 0,01-1 ,2 Gew.-%, insbesondere 0,05 -0,5 Gew.-%,
(I) Stellmittel, vorzugsweise Natriumsulfat, vorteilhafterweise in Mengen von 0-50 Gew.-%, vorzugsweise 5-40 Gew.-%, insbesondere 10-30 Gew.-%,
(m) Duftstoffe, vorzugsweise in Mengen von 0-10 Gew.-%, insbesondere 0,01-5 Gew.-%,
(n) Optische Aufheller, vorzugsweise Stilben-Derivate und/oder Biphenyl-Derivate, vorteilhafterweise in Mengen von 0-3 Gew.-%, vorzugsweise 0,01-1 Gew.-%, insbesondere 0,005-
0,5 Gew.-%,
(o) Aviviermittel, vorzugsweise Öle, Kationtenside, wie insbesondere Esterquats, Schichtsilicate,
Fettsäure-Derivate, Siliconöle, Polymere, wie vorzugsweise polymere Kationtenside auf
Siliconbasus oder Polymere auf Basis von Polyethylen, enthalten ist, vorzugsweise in einer Menge von 0 bis 15 Gew.-%, vorteilhafterweise 0,1 - 10 Gew.-%, insbesondere 0,5-5 Gew.-%,
(p) hautpflegende Aktivstoffe, vorzugsweise solche, wie weiter oben beschrieben, vorzugsweise in einer Menge von 0 bis 15 Gew.-%, vorteilhafterweise 0,1 - 10 Gew.-%, insbesondere 0,5-5 Gew.-
%,
(q) Wasser, vorzugsweise in Mengen von 0-30 Gew.-%, vorzugsweise 0,1 bis 20 Gew.-%, insbesondere 1-15 Gew.-%
(r) optional Salzersatzpolymere, vorzugsweise solche wie nachfolgend beschrieben, insbesondere in Mengen > 0,01 Gew.-%.
Vorgenannte Komponenten, d.h. einzelne dieser, mehrere dieser oder auch alle dieser, können auch Bestandteil der erfindungsgemäßen Partikel und/oder Granulatkörner sein.
Geeignete Salzersatzpolymere, welche vorzugsweise einsetzbar sind, sind beispielsweise die Sulfonsäuregruppen-haltigen Polymere, welche mit besonderem Vorzug eingesetzt werden.
Besonders bevorzugt als Sulfonsäuregruppen-haltige Polymere einsetzbar sind Copolymere aus ungesättigten Carbonsäuren, Sulfonsäuregruppen-haltigen Monomeren und gegebenenfalls weiteren ionogenen oder nichtionogenen Monomeren.
Im Rahmen der vorliegenden Erfindung sind als Monomer ungesättigte Carbonsäuren der Formel
R1(R2)C=C(R3)COOH
bevorzugt, in der R1 bis R3 unabhängig voneinander für -H, -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit - NH2, -OH oder -COOH substituierte Alkyl- oder Alkenylreste oder für -COOH oder -COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist.
Unter den ungesättigten Carbonsäuren, die sich durch die vorstehende Formel beschreiben lassen, sind insbesondere Acrylsäure (R = R = R = H), Methacrylsäure (R = R = H; R = CH3) und/oder Maleinsäure (R1 = COOH; R2 = R3 = H) bevorzugt.
Bei den Sulfonsäuregruppen-haltigen Monomeren sind solche der Formel
R5(R6)C=C(R7)-X-SO3H
bevorzugt, in der R5 bis R7 unabhängig voneinander für -H, -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit - NH2, -OH oder -COOH substituierte Alkyl- oder Alkenylreste oder für -COOH oder -COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist, und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2),,- mit n = O bis 4, -C00-(CH2)k- mit k = 1 bis 6, -C(O)-NH-C(CH3)2- und - C(O)-NH-CH(CH2CH3)-.
Unter diesen Monomeren bevorzugt sind solche der Formeln
H2C=CH-X-SO3H
H2C=C(CH3)-X-SO3H
HO3S-X-(R6)C=C(R7)-X-SO3H
in denen R6 und R7 unabhängig voneinander ausgewählt sind aus -H, -CH3, -CH2CH3, -CH2CH2CH3, -CH(CH3)2 und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CHz)n- mit n = O bis 4, -C00-(CH2)k- mit k = 1 bis 6, -C(O)-NH-C(CH3)2- und -C(O)-NH- CH(CH2CH3)-.
Besonders bevorzugte Sulfonsäuregruppen-haltige Monomere sind dabei 1-Acrylamido-1- propansulfonsäure, 2-Acrylamido-2-propansulfonsäure, 2-Acrylamido-2-methyl-1- propansulfonsäure, 2-Methacrylamido-2-methyl-1-propansulfonsäure, 3-Methacrylamido-2- hydroxy-propansulfonsäure, Allylsulfonsäure, Methallylsulfonsäure, Allyloxybenzolsulfonsäure, Methallyloxybenzolsulfonsäure, 2-Hydroxy-3-(2-propenyloxy)propansulfonsäure, 2-Methyl-2- propeni-sulfonsäure, Styrolsulfonsäure, Vinylsulfonsäure, 3-Sulfopropylacrylat, 3- Sulfopropylmethacrylat, Sulfomethacrylamid, Sulfomethylmethacrylannicl sowie wasserlösliche Salze der genannten Säuren.
Als weitere ionogene oder nichtionogene Monomere kommen insbesondere ethylenisch ungesättigte Verbindungen in Betracht. Vorzugsweise beträgt der Gehalt der eingesetzten Polymere an diesen weiteren ionogene oder nichtionogenen Monomeren weniger als 20 Gew.-%, bezogen auf das Polymer. Besonders bevorzugt zu verwendende Polymere bestehen lediglich aus Monomeren der Formel R1(R2)C=C(R3)COOH und Monomeren der Formel R5(R6)C=C(R7)-X- SO3H.
Zusammenfassend sind Copolymere aus i) ungesättigten Carbonsäuren der Formel R1(R2)C=C(R3)COOH in der R1 bis R3 unabhängig voneinander für -H, -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder -COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder -COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist, ii) Sulfonsäuregruppen-haltigen Monomeren der Formel R5(R6)C=C(R7)-X-SO3H in der R5 bis R7 unabhängig voneinander für -H, -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder -COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder -COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist, und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)n- mit n = O bis 4, -C00-(CH2)k- mit k = 1 bis 6, -C(O)-NH-C(CH3)2- und -C(O)-NH-CH(CH2CH3)- iii) gegebenenfalls weiteren ionogenen oder nichtionogenen Monomeren besonders bevorzugt.
Weitere besonders bevorzugte Copolymere bestehen aus i) einer oder mehreren ungesättigter Carbonsäuren aus der Gruppe Acrylsäure, Methacrylsäure und/oder Maleinsäure ii) einem oder mehreren Sulfonsäuregruppen-haltigen Monomeren der Formeln: H2C=CH-X-SO3H
H2C=C(CHs)-X-SO3H
HO3S-X-(R6)C=C(R7)-X-SO3H
in der R6 und R7 unabhängig voneinander ausgewählt sind aus -H, -CH3, -CH2CH3, -CH2CH2CH3, -CH(CH3)2 und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2),,- mit n = 0 bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(O)-NH- C(CHs)2- und -C(O)-NH-CH(CH2CH3)- iii) gegebenenfalls weiteren ionogenen oder nichtionogenen Monomeren.
Die Copolymere können die Monomere aus den Gruppen i) und ii) sowie gegebenenfalls iii) in variierenden Mengen enthalten, wobei sämtliche Vertreter aus der Gruppe i) mit sämtlichen Vertretern aus der Gruppe ii) und sämtlichen Vertretern aus der Gruppe iii) kombiniert werden können. Besonders bevorzugte Polymere weisen bestimmte Struktureinheiten auf, die nachfolgend beschrieben werden.
So sind beispielsweise Copolymere bevorzugt, die Struktureinheiten der Formel
-[CH2-CHCOOH]m-[CH2-CHC(O)-Y-SO3H]p-
enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)„- mit n = 0 bis 4, für -0-(C6H4)-, für -NH-C(CHs)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
Diese Polymere werden durch Copolymerisation von Acrylsäure mit einem Sulfonsäuregruppen- haltigen Acrylsäurederivat hergestellt. Copolymerisiert man das Sulfonsäuregruppen-haltige Acrylsäurederivat mit Methacrylsäure, gelangt man zu einem anderen Polymer, dessen Einsatz ebenfalls bevorzugt ist. Die entsprechenden Copolymere enthalten die Struktureinheiten der Formel
-[CH2-C(CH3)COOH]m-[CH2-CHC(O)-Y-SO3H]p-
in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -0-(C6H4)- , für -NH-C(CHs)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
Völlig analog lassen sich Acrylsäure und/oder Methacrylsäure auch mit Sulfonsäuregruppen- haltigen Methacrylsäurederivaten copolymerisieren, wodurch die Struktureinheiten im Molekül verändert werden. So sind Copolymere, welche Struktureinheiten der Formel
-[CH2-CHCOOH]m-[CH2-C(CH3)C(O)-Y-SO3H]p-
enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -0-(C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, besonders bevorzugt sind, ebenso bevorzugt wie Copolymere, die Struktureinheiten der Formel
-[CH2-C(CH3)COOH]^[CH2-C(CH3)C(O)-Y-SO3H]P-
enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -0-(C6H4)-, für -NH-C(CHs)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
Anstelle von Acrylsäure und/oder Methacrylsäure bzw. in Ergänzung hierzu kann auch Maleinsäure als besonders bevorzugtes Monomer aus der Gruppe i) eingesetzt werden. Man gelangt auf diese Weise zu erfindungsgemäß bevorzugten Copolymeren, die Struktureinheiten der Formel
-[HOOCCH-CHCOOH]m-[CH2-CHC(O)-Y-SO3H]p-
enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -0-(C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind. Erfindungsgemäß bevorzugt sind weiterhin Copolymere, die Struktureinheiten der Formel -[HOOCCH-CHCOOH]m-[CH2-C(CH3)C(O)O-Y-SO3H]p-
enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -0-(C6H4)-, für -NH-C(CHs)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
Zusammenfassend sind erfindungsgemäß solche Copolymere bevorzugt, die Struktureinheiten der Formeln
-[CH2-CHCOOH]m-[CH2-CHC(O)-Y-SO3H]p-
-[CH2-C(CH3)COOH]m-[CH2-CHC(O)-Y-SO3H]p-
-[CH2-CHCOOH]m-[CH2-C(CH3)C(O)-Y-SO3H]p-
-[CH2-C(CH3)COOH]^[CH2-C(CH3)C(O)-Y-SO3H]P-
-[HOOCCH-CHCOOH]m-[CH2-CHC(O)-Y-SO3H]p-
-[HOOCCH-CHCOOH]m-[CH2-C(CH3)C(O)O-Y-SO3H]p-
enthalten, in denen m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -0-(C6H4)-, für -NH-C(CHs)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
In den Polymeren können die Sulfonsäuregruppen ganz oder teilweise in neutralisierter Form vorliegen, d.h. dass das acide Wasserstoffatom der Sulfonsäuregruppe in einigen oder allen Sulfonsäuregruppen gegen Metallionen, vorzugsweise Alkalimetallionen und insbesondere gegen Natriumionen, ausgetauscht sein kann. Der Einsatz von teil- oder vollneutralisierten sulfonsäuregruppenhaltigen Copolymeren ist erfindungsgemäß bevorzugt.
Die Monomerenverteilung der erfindungsgemäß bevorzugt eingesetzten Copolymeren beträgt bei Copolymeren, die nur Monomere aus den Gruppen i) und ii) enthalten, vorzugsweise jeweils 5 bis 95 Gew.-% i) bzw. ii), besonders bevorzugt 50 bis 90 Gew.-% Monomer aus der Gruppe i) und 10 bis 50 Gew.-% Monomer aus der Gruppe ii), jeweils bezogen auf das Polymer. Bei Terpolymeren sind solche besonders bevorzugt, die 20 bis 85 Gew.-% Monomer aus der Gruppe i), 10 bis 60 Gew.-% Monomer aus der Gruppe ii) sowie 5 bis 30 Gew.-% Monomer aus der Gruppe iii) enthalten.
Die Molmasse der erfindungsgemäß bevorzugt einsetzbaren Sulfo-Copolymere kann variiert werden, um die Eigenschaften der Polymere dem gewünschten Verwendungszweck anzupassen. Bevorzugte Wasch- oder Reinigungsmittel sind dadurch gekennzeichnet, dass die Copolymere Molmassen von 2000 bis 200.000 gmol"1, vorzugsweise von 4000 bis 25.000 gmol"1 und insbesondere von 5000 bis 15.000 gmol"1 aufweisen.
Nach einer bevorzugten Ausführungsform der Erfindung liegt das erfindungsgemäße Wasch- und/oder Reinigungsmittel in portionierter Form vor, vorzugsweise in einem Beutel (Pouch) oder als Tablette vor.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung einer erfindungsgemäßen Partikel bei dem in einem ersten Schritt eine Suspension aus photokatalytischem Material und einem organischen Lösemittel gebildet wird, und die resultierende Suspension in einem zweiten Schritt mit einem festen Trägermaterial vermischt wird. Vorzugsweise ist in der Suspension das photokatalytische Material mikrofein dispergiert, insbesondere ist das enthaltene photokatalytische Material visuell nicht als Feststoff erkennbar.
Das einzusetzende photokatalytische Material und das organische Lösemittel sind vorzugsweise solche, wie sie weiter oben bereits beschrieben wurden. Das organische Lösemittel beinhaltet also vorzugsweise Niotensid und/oder Feuchthaltemittel.
Das einzusetzende feste Trägermaterial ist vorzugsweise jenes, welches bereits weiter oben beschrieben wurde, umfasst also vorzugsweise anorganisches Material, insbesondere Zeolith, Sulfat, Carbonat, Silikat, Ton, Kieselsäure und/oder deren Gemische, insbesondere sprühgetrocknetes Material.
Das Gewichtsverhältnis des photokatalytischen Materials zu organischem Lösemittel bei der hergestellten Suspension kann vorzugsweise im Bereich von 1 :1 bis 1 :40, vorteilhafterweise 2:3 bis 1 :30, in weiter vorteilhafter Weise im Bereich von 1 :2 bis 1 :20 liegen. Insbesondere Gewichtsverhältnisse des photokatalytischen Materials zu organischem Lösemittel im Bereich von 1 :2 bis 1 :15, z.B. 1 :2 bis 1 :10 oder 1 :2 bis 1 :5 können sehr vorteilhaft sein. Beispielsweise ist ein Gewichtsverhältnis von photokatalytischem Materials zu organischem Lösemittel von 1 :3 sehr vorteilhaft. Besonders vorteilhaft ist es, wenn > 50 Gew.-%, vorzugsweise > 60 Gew.-%, insbesondere > 70 Gew.-% der gesamten Suspension aus Niotensid bestehen.
Bei der Vermischung der Suspension mit dem festen Trägermaterial können vorteilhafterweise 40 bis 90 Gew.-%, vorzugsweise 50 bis 80 Gew.-%, insbesondere 60-70 Gew.-% an festem Trägermaterial mit vorteilhafterweise 10 bis 60 Gew.-%, vorzugsweise 20-50, insbesondere 30-40 Gew.-% an Suspension umgesetzt werden, Gew.-% bezogen auf das Gesamtgewicht aus Suspension und festem Trägermaterial.
Sollen die herzustellenden Partikel weitere Inhaltsstoffe enthalten, so können diese auf verschiedene Weisen eingearbeitet werden. Beispielsweise können Feststoffe und Flüssigkeiten mit in die oben genannte Suspension eingearbeitet werden, bevor diese in einem zweiten Schritt mit einem festen Trägermaterial vermischt wird. Beispielsweise können Feststoffe und Flüssigkeiten dann zugegeben werden, wenn die Suspension mit einem festen Trägermaterial vermischt wird. Beispielsweise können geeignete Feststoffe und Flüssigkeiten auch in das feste Trägermaterial eingearbeitet werden bevor dieses mit der genannten Suspension vermischt wird. Wiederum ist es möglich, nach dem Schritt des Vermischens der Suspension mit einem festen Trägermaterial, bei dem die gewünschten Partikel resultieren, diese Partikel nachzubehandeln, beispielsweise mit Flüssigkeiten zu beladen oder zu besprühen, z.B. mit Parfüm, und/oder mit Feststoffen abzupudern. Insbesondere sind auch Kombinationen der eben genannten Vorgehensweisen möglich.
In einer bevorzugten Ausführungsform der Erfindung des erfindungsgemäßen Verfahrens werden die erhaltenen Partikel in einem weiteren Schritt durch Granulation in einem Mischer unter Einsatz eines Bindemittels in gröbere Granulatkörner überführt. Dabei ist es auch möglich, die Partikel nicht nur mit sich selbst, sondern auch mit anderen Partikeln zu agglomerieren. Vorteilhafterweis sind auch andere Agglomerationsverfahren anwendbar, z.B. Wirbelschichtverfahren.
Geeignete Granulationsflüssigkeiten können z.B. wässrige Lösungen von Polymeren oder von klebrigen Stoffen, z.B. Glukose, sein. Wässrige Granulationsflüssigkeiten können z.B. Salze, Wasserglas, Alkylpolyglykoside, Kohlenhydrate (Saccharide), natürliche und/oder synthetische Polymere, wie insbesondere Celluloseether, Polyacrylate, Stärke, PEG, PVAL und/oder Biopolymere, z.B. Xanthan enthalten. Als Granulationsflüssigkeiten können auch wasserarme Systeme eingesetzt werden, beispielsweise auf Basis organischer Lösemittel, die gequollene Polymere enthalten. Es ist auch möglich wasserfreie Granulationsflüssigkeiten einzusetzen, z.B. Schmelzen oder zwei- oder mehrwertige Alkohole. Ebenfalls ist es möglich, mehrphasige Granulationsflüssigkeiten einzusetzen, beispielsweise wässrige Systeme, z.B. auf Basis einer Öl-Polymer-Wasser-Emulsion, auf Basis eines Tensidgemisches mit Luft oder auf Basis eines Systems aus Niotensid und Polymerlösung. Auch hier sind wasserfreie Systeme einsetzbar, nämlich z.B. feststoffhaltige Schmelzen, oder Systeme aus Polymer und Lösemittel.
Vorteilhafterweise kann das Granulierhilfsmittel Löslichkeitsverbesserer (Hydrotrope) umfassen. Typische Hydrotrope sind z.B. XyIoI- oder Cumolsulfonat oder andere Substanzen wie z.B. Harnstoff oder N-Methylacetamid.
Besonders geeignet sind auch Granulationsschäume. Einen Granulationsschaum erhält man z.B., wenn man eine fließfähige Komponente mit einem gasförmigen Medium beaufschlagt und somit aufschäumt. Ein Granulationsschaum ist beispielsweise ein Tensidschaum, der durch Aufschäumen einer fließfähigen, tensidhaltigen Komponente mit einem gasförmigen Medium erhalten wurde und als Granulationshilfsmittel einsetzbar ist. Der Granulationsschaum weist dabei vorzugsweise mittlere Porengrößen unterhalb 10 mm, vorzugsweise unterhalb 5 mm und insbesondere unterhalb 2 mm, auf. Durch den Einsatz eines Granulationsschaum anstelle herkömmlicher Granulierflüssigkeiten können noch homogenere Flüssigkeitsverteilungen beim Granulationsvorgang erzielt werden. Bevorzugt ist es, wenn zumindest ein Granulationsschaum und zumindest eine Granulationsflüssigkeit bei der Granulation eingesetzt werden. Die zu granulierenden Teilchen können noch besser benetzt werden wenn Granulationsschaum eingesetzt wird.
Die resultierenden Granulatkörner können ein Schüttgewicht im Bereich von 200-1500 g/l aufweisen. Die untere Grenze für das Schüttgewicht kann auch bei einem Wert von vorzugsweise 250, 300, 350, 400, 450, 500, 550, 600, 650, 700 oder sogar bei 750 g/L liegen. Es ist auch möglich, dass die untere Grenze noch höher liegt, z.B. bei 800g/L. Die obere Grenze für das Schüttgewicht kann bei einem Wert von vorzugsweise 1450, 1400, 1350, 1300, 1250, 1200, 1150, 1100, 1050, 1000, 950, 900, 850, 800 oder 750 g/L liegen. Es ist auch möglich, dass die obere Grenze noch tiefer liegt, z.B. bei einem Wert von vorzugsweise 700, 650, 600, 550 oder 500 g/L.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung eines pulverförmigen Wasch- oder Reinigungsmittels, wobei in einem ersten Schritt erfindungsgemäße Partikel oder Granulatkörner bereitgestellt werden, und in einem weiteren Schritt mit einer pulverförmigen Wasch- oder Reinigungsmittelmatrix vermengt werden.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Reinigung harter Oberflächen, insbesondere Geschirr, durch Behandlung dieser harten Oberflächen mit einer Reinigungsflüssigkeit, enthaltend erfindungsgemäße Partikel, Granulatkörner und/oder Wasch- oder Reinigungsmittel nach, bei und/oder gefolgt von einer Exponierung der harten Oberfläche an Licht im Wellenlängenbereich von 10-1200 nm. Reinigungsflüssigkeit, enthaltend erfindungsgemäße Partikel, Granulatkörner und/oder Wasch- oder Reinigungsmittel, bedeutet, das die erfindungsgemäßen Partikel, Granulatkörner und/oder Wasch- oder Reinigungsmittel in einer Flüssigkeit, vorzugsweise Wasser gelöst werden.
In einer bevorzugten Ausführungsform wird das vorstehende Verfahren unter Verwendung einer automatischen Geschirrspülmaschine, vorzugsweise einer automatischen Geschirrspülmaschine mit Lichtquelle durchgeführt.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zum Aufbringen feinpartikulären photokatalytischen Materials auf Textilien durch Behandlung dieser Textilien in einem Textilbehandlungsbad, zu welchem man erfindungsgemäße Partikel, Granulatkörner oder Waschoder Reinigungsmittel gibt.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Reinigung, Pflege, Ausrüstung, Avivage und/oder Konditionierung von Textilien durch Behandlung dieser Textilien in einem Textilbehandlungsbad, zu welchem man erfindungsgemäße Partikel, Granulatkörner oder Waschoder Reinigungsmittel gibt, bei und/oder gefolgt von einer Exponierung des textilen Artikels an Licht im Wellenlängenbereich von 10-1200 nm.
Dient dieses Verfahren der Beseitigung, Deaktivierung oder Verminderung von Mikroorganismen, insbesondere Bakterien und Keimen, in Textilien unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm, so liegt eine bevorzugte Ausführungsform der Erfindung vor.
Dient das erfindungsgemäße Verfahren zur Prophylaxebehandlung von Textilien in Form einer vorauseilenden Abwehr und Hemmung von Anschmutzungen und Flecken auf dem Textil unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm, so liegt ebenfalls eine bevorzugte Ausführungsform der Erfindung vor. In diesem Fall spricht man von einer schmutzabweisenden Ausrüstung, d.h. Anschmutzungen sollen verhindert oder erschwert werden bzw. die Beschmutzbarkeit von Textilien wird erschwert.
Dient das erfindungsgemäße Verfahren zur Ausrüstung von Textilien mit photokatalytischem Material zur Erleichterung der Entfernbarkeit von farbigem Schmutz (farbige Flecken) von Textilien unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm, so liegt eine bevorzugte Ausführung der Erfindung vor. In diesem Fall spricht man von einer Schmutz-Ablöse- und/oder Schmutz-Auswaschbarkeits-Erleichterungs-Ausrüstung, d.h. die Entfernbarkeit von Schmutz oder dessen Auswaschbarkeit von Textilien wird erleichtert.
Dient das erfindungsgemäße Verfahren zur Ausrüstung von Textilien mit photokatalytischem Material zur Reduzierung des Faserhaftungsvermögens von Schmutz , vorzugsweise farbigen Flecken, auf Textilien unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm, so liegt eine bevorzugte Ausführung der Erfindung vor.
Dient das erfindungsgemäße Verfahren zur Ausrüstung von Textilien mit photokatalytischem Material zur Erhöhung der Wasserlöslichkeit von Schmutz, vorzugsweise farbigen Flecken, auf Textilien, unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm, so liegt eine bevorzugte Ausführung der Erfindung vor.
Dient das erfindungsgemäße Verfahren zur Ausrüstung von Textilien mit photokatalytischem Material zur Verhinderung des Entstehens fötider Gerüche auf den Textilien, unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm, so liegt eine bevorzugte Ausführung der Erfindung vor.
Dient das erfindungsgemäße Verfahren zur Ausrüstung von Textilien mit photokatalytischem Material, so das die Textilien über ein Selbstreinigungsvermögen verfügen, unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm, so liegt eine bevorzugte Ausführung der Erfindung vor.
Dient das erfindungsgemäße Verfahren der Entfernung, Entfernungserleichterung oder Reduktion von Anschmutzungen und Flecken auf Textilien, die zurückgehen auf: rote bis blaue Anthocyanfarbstoffe, wie z.B. Cyanidin, z.B. aus Kirschen oder Heidelbeeren, rotes Betanidin aus der roten Beete, orangerote Carotinoide wie z.B. Lycopin, beta-Carotin, z.B. aus Tomaten oder Möhren, gelbe Curcumafarbstoffe, wie z.B. Curcumin, z.B. aus Curry und Senf, braune Gerbstoffe, z.B. aus Tee, Obst, Rotwein tiefbraune Huminsäure, z.B. aus Kaffee, Tee, Kakao, grünes Chlorophyll, z.B, aus grünen Gräsern, technische Farbstoffe aus Kosmetika, Tinten, Farbstiften
(farbige) Stoffwechselprodukte und/oder Ausscheidungsprodukte von Schimmelpilzen oder anderer Mirkoflora oder mikrobiellem Bewuchs oder Mikroben, unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm, so liegt abermals eine bevorzugte Ausführungsform der Erfindung vor. Ein erfindungsgemäßes Verfahren, ausgeführt unter Verwendung einer automatischen Waschmaschine, vorzugsweise einer automatischen Waschmaschine mit Lichtquelle, stellt wiederum eine bevorzugte Ausführungsform der Erfindung dar.
Ein erfindungsgemäßes Verfahren, bei welchem es sich um ein manuelles Verfahren handelt, welches in einem offenen Bottich oder einer Schüssel oder vergleichbarem Behälter ausgeführt wird, insbesondere Handwäsche, Vorwäsche und/oder Einweichen, wobei man den Bottich, nachdem die zu behandelnden Textilien mit der Waschlauge penetriert sind, Licht im Wellenlängenbereich von 10-1200 nm aussetzt, insbesondere Sonnenlicht, vorzugsweise für einen Zeitraum > 5 Minuten, stellt eine weitere bevorzugte Ausführungsform der Erfindung dar.
Alle vorstehend beschriebenen Verfahren sind besonders wirkungsvoll unter Ausnutzung von Licht im sichtbaren Bereich (380-800 nm) und/oder im UV-Bereich (10-380 nm). Es entspricht, also, bezogen auf alle vorgenannten Verfahren, jeweils einer bevorzugten Ausführungsform, wenn Licht im Wellenlängenbereich 380-800 nm und/oder im Bereich 10-380 zur Anwendung kommt.
Ein weiterer Gegenstand der Erfindung ist die Verwendung von erfindungsgemäßen Partikeln, Granulatkörner sowie Wasch- oder Reinigungsmitteln bei der Textilbehandlung, insbesondere Textilwäsche, zur Erleichterung der Entfernbarkeit von Schmutz, vorzugsweise farbigem Schmutz (farbige Flecken) von Textilien , unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm, durch Ausrüstung der Textilien mit photokatalytischem Material.
Ein weiterer Gegenstand der Erfindung ist die Verwendung von erfindungsgemäßen Partikeln, Granulatkörner sowie Wasch- oder Reinigungsmitteln bei der Textilbehandlung, insbesondere Textilwäsche, zur Erschwerung der Beschmutzbarkeit von Textilien, insbesondere der Beschmutzbarkeit mit farbigen Flecken, unter Einsatz von Licht im Wellenlängenbereich von 10- 1200 nm, durch Ausrüstung der Textilien mit photokatalytischem Material.
Ein weiterer Gegenstand der Erfindung ist die Verwendung von erfindungsgemäßen Partikeln, Granulatkörner sowie Wasch- oder Reinigungsmitteln bei der Textilbehandlung zur Reduzierung des Faserhaftungsvermögens von Schmutz, vorzugsweise farbigem Schmutz (farbigen Flecken) auf Textilien, unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm, durch Ausrüstung der Textilien mit photokatalytischem Material.
Ein weiterer Gegenstand der Erfindung ist die Verwendung von erfindungsgemäßen Partikeln, Granulatkörner sowie Wasch- oder Reinigungsmitteln bei der Textilbehandlung zur Erhöhung der Wasserlöslichkeit von Schmutz, vorzugsweise farbigem Schmutz (farbige Flecken) auf Textilien, unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm, durch Ausrüstung der Textilien mit photokatalytischem Material.
Ein weiterer Gegenstand der Erfindung ist die Verwendung von erfindungsgemäßen Partikeln, Granulatkörner sowie Wasch- oder Reinigungsmitteln bei der Textilbehandlung zur Verhinderung des Entstehens fötider Gerüche auf den Textilien, unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm, durch Ausrüstung der Textilien mit photokatalytischem Material.
Ein weiterer Gegenstand der Erfindung ist die Verwendung von erfindungsgemäßen Partikeln, Granulatkörner sowie Wasch- oder Reinigungsmitteln bei der Textilbehandlung zur Ausstattung der
Textilien mit einem Selbstreinigungsvermögen, unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm, durch Ausrüstung der Textilien mit photokatalytischem Material.
Bei allen vorgenannten Verwendungen ist Licht im Wellenlängenbereich von 10-380 nm und/oder 380-800 nm bevorzugt.
Im Folgenden werden bevorzugte, mögliche Inhaltsstoffe der erfindungsgemäßen Partikel, Granulatkörner und/oder Wasch- oder Reinigungsmittel, welche optional enthalten sein können, näher beschrieben. Die erfindungsgemäßen Partikel, Granulatkörner und/oder Wasch- oder Reinigungsmittel werden im Folgenden durch den Begriff der „erfindungemäßen Mittel" oder „Mittel" zusammengefasst. Wenn also im Folgenden von Mitteln die Rede ist, so sind damit die erfindungsgemäßen Partikel, Granulatkörner und/oder Wasch- oder Reinigungsmittel gemeint.
Anionische Tenside können bevorzugt in den erfindungsgemäßen Mitteln enthalten sein. Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise C9.i3-Alkylbenzolsulfonate, Olefinsulfonate, d.h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus C12-i8-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12-i8- Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden. Ebenso sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), z.B. die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Taigfettsäuren geeignet.
Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäureglyce- rinestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Um- esterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sulfierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Caprinsäure, Myristinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.
Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der Ci2-Ci8-Fettalkohole, beispielsweise aus Kokosfettalkohol, Taigfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der d0-C2o-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind die Ci2-Ci6-Alkylsulfate und Ci2-Ci5-Alkylsulfate sowie Ci4-Ci5-Alkylsulfate bevorzugt. Auch 2,3- Alkylsulfate, als Handelsprodukte der Shell OiI Company unter dem Namen DAN® erhalten werden können, sind geeignete Aniontenside.
Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7.2i-Alkohole, wie 2-Methyl-verzweigte C9.n-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder Ci2-i8-Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden insbesondere in Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens vorzugsweise nur in relativ geringen Mengen eingesetzt. Vorzugsweise können die erfindungsgemäßen Mittel frei von Schwefelsäuremonoester sein.
Eine weitere Klasse von Aniontensiden ist die durch Umsetzung von Fettalkoholethoxylaten mit Natriumchloracetat in Gegenwart basischer Katalysatoren zugängliche Klasse der Ethercarbonsäuren. Sie haben die allgemeine Formel: R10 0-(CH2-CH2-O)P-CH2-COOH mit R10 = C1-C18 und p = 0,1 bis 20. Ethercarbonsäuren sind wasserhärteunempfindlich und weisen ausgezeichnete Tensideigenschaften auf.
Geeignete anionische Tenside sind beispielsweise auch die Partialester von Di- oder Polyhydroxyalkanen, Mono- und Disacchariden, Polyethylenglykolen mit den EO-Addukten von Maleinsäureanhydrid an mindestens einfach ungesättigte Carbonsäuren mit einer Kettenlänge von 10 bis 25 Kohlenstoffatomen mit einer Säurezahl von 10 bis 140.
Bevorzugte anionische Tenside weisen neben einem unverzweigten oder verzweigten, gesättigten oder ungesättigten, aliphatischen oder aromatischen, acyclischen oder cyclischen, optional alkoxylierten Alkylrest mit 4 bis 28, vorzugsweise 6 bis 20, insbesondere 8 bis 18, besonders bevorzugt 10 bis 16, äußerst bevorzugt 12 bis 14 Kohlenstoffatomen, zwei oder mehr anionische, insbesondere zwei, Säuregruppen, vorzugsweise Carboxylat-, Sulfonat- und/oder Sulfatgruppen, insbesondere eine Carboxylat- und eine Sulfatgruppe, auf. Beispiele dieser Verbindungen sind die alpha-Sulfofettsäuresalze, die Acylglutamate, die Monoglyceriddisulfate und die Alkylether des Glycerindisulfats sowie insbesondere die nachfolgend beschriebenen monoveresterten Sulfosuccinate.
Besonders bevorzugte anionische Tenside sind die Sulfosuccinate, Sulfosuccinamate und Sulfosuccinamide, insbesondere Sulfosuccinate und Sulfosuccinamate, äußerst bevorzugt Sulfosuccinate. Bei den Sulfosuccinaten handelt es sich um die Salze der Mono- und Di-ester der Sulfobernsteinsäure HOOCCH(SO3H)CH2COOH, während man unter den Sulfosuccinamaten die Salze der Monoamide der Sulfobernsteinsäure und unter den Sulfosuccinamiden die Salze der Diamide der Sulfobernsteinsäure versteht.
Bei den Salzen handelt es sich bevorzugt um Alkalimetallsalze, Ammoniumsalze sowie Mono-, Di- bzw. Trialkanolammoniumsalze, beispielsweise Mono-, Di- bzw. Triethanolammoniumsalze, insbesondere um Lithium-, Natrium-, Kalium- oder Ammoniumsalze, besonders bevorzugt Natriumoder Ammoniumsalze, äußerst bevorzugt Natriumsalze.
In den Sulfosuccinaten ist eine bzw. sind beide Carboxylgruppen der Sulfobernsteinsäure vorzugsweise mit einem bzw. zwei gleichen oder verschiedenen unverzweigten oder verzweigten, gesättigten oder ungesättigten, acyclischen oder cyclischen, optional alkoxylierten Alkoholen mit 4 bis 22, vorzugsweise 6 bis 20, insbesondere 8 bis 18, besonders bevorzugt 10 bis 16, äußerst bevorzugt 12 bis 14 Kohlenstoffatomen verestert. Besonders bevorzugt sind die Ester unverzweigter und/oder gesättigter und/oder acyclischer und/oder alkoxylierter Alkohole, insbesondere unverzweigter, gesättigter Fettalkohole und/oder unverzweigter, gesättigter, mit Ethylen- und/oder Propylenoxid, vorzugsweise Ethylenoxid, alkoxylierter Fettalkohole mit einem Alkoxylierungsgrad von 1 bis 20, vorzugsweise 1 bis 15, insbesondere 1 bis 10, besonders bevorzugt 1 bis 6, äußerst bevorzugt 1 bis 4. Die Monoester werden im Rahmen der vorliegenden Erfindung gegenüber den Diestern bevorzugt. Ein besonders bevorzugtes Sulfosuccinat ist Sulfobernsteinsäurelaurylpolyglykolester-di-Natrium-Salz (Lauryl-EO-sulfosuccinat, Di-Na-SaIz; INCI Disodium Laureth Sulfosuccinate), das beispielsweise als Tego® Sulfosuccinat F 30 (Goldschmidt) mit einem Sulfosuccinatgehalt von 30 Gew.-% kommerziell erhältlich ist.
In den Sulfosuccinamaten bzw. Sulfosuccinamiden bildet eine bzw. bilden beide Carboxylgruppen der Sulfobernsteinsäure vorzugsweise mit einem primären oder sekundären Amin, das einen oder zwei gleiche oder verschiedene, unverzweigte oder verzweigte, gesättigte oder ungesättigte, acyclische oder cyclische, optional alkoxylierte Alkylreste mit 4 bis 22, vorzugsweise 6 bis 20, insbesondere 8 bis 18, besonders bevorzugt 10 bis 16, äußerst bevorzugt 12 bis 14 Kohlenstoffatomen trägt, ein Carbonsäureamid. Besonders bevorzugt sind unverzweigte und/oder gesättigte und/oder acyclische Alkylreste, insbesondere unverzweigte, gesättigte Fettalkylreste. Weiterhin geeignet sind beispielsweise die folgenden gemäß INCI bezeichneten Sulfosuccinate und Sulfosuccinamate, die im International Cosmetic Ingredient Dictionary and Handbook näher beschrieben sind: Ammonium Dinonyl Sulfosuccinate, Ammonium Lauryl Sulfosuccinate, Diammonium Dimethicone Copolyol Sulfosuccinate, Diammonium Lauramido-MEA Sulfosuccinate, Diammonium Lauryl Sulfosuccinate, Diammonium Oleamido PEG-2 Sulfosuccinate, Diamyl Sodium Sulfosuccinate, Dicapryl Sodium Sulfosuccinate, Dicyclohexyl Sodium Sulfosuccinate, Diheptyl Sodium Sulfosuccinate, Dihexyl Sodium Sulfosuccinate, Diisobutyl Sodium Sulfosuccinate, Dioctyl Sodium Sulfosuccinate, Disodium Cetearyl Sulfosuccinate, Disodium Cocamido MEA-Sulfosuccinate, Disodium CocamidoGlucoside Sulfosuccinate, Disodium Cocoyl Butyl Gluceth-10 Sulfosuccinate, Disodium C12-15 Pareth Sulfosuccinate, Disodium Deceth-5 Sulfosuccinate, Disodium Deceth-6 Sulfosuccinate, Disodium Dihydroxyethyl Sulfosuccinyl- undecylenate, Disodium Dimethicone Copolyol Sulfosuccinate, Disodium Hydrogenated Cottonseed Glyceride Sulfosuccinate, Disodium Isodecyl Sulfosuccinate, Disodium Isostearamido MEA-Sulfosuccinate, Disodium Isostearamido MIPA-Sulfosuccinate, Disodium Isostearyl Sulfosuccinate, Disodium Laneth-5 Sulfosuccinate, Disodium Lauramido MEA-Sulfosuccinate, Disodium Lauramido PEG-2 Sulfosuccinate, Disodium Lauramido PEG-5 Sulfosuccinate, Disodium Laureth-6 Sulfosuccinate, Disodium Laureth-9 Sulfosuccinate, Disodium Laureth-12 Sulfosuccinate, Disodium Lauryl Sulfosuccinate, Disodium Myristamido MEA-Sulfosuccinate, Disodium Nonoxynol-10 Sulfosuccinate, Disodium Oleamido MEA-Sulfosuccinate, Disodium Oleamido MIPA-Sulfosuccinate, Disodium Oleamido PEG-2 Sulfosuccinate, Disodium Oleth-3 Sulfosuccinate, Disodium Oleyl Sulfosuccinate, Disodium Palmitamido PEG-2 Sulfosuccinate, Disodium Palmitoleamido PEG-2 Sulfosuccinate, Disodium PEG-4 Cocamido MIPA-Sulfosuccinate, Disodium PEG-5 Laurylcitrate Sulfosuccinate, Disodium PEG-8 Palm Glycerides Sulfosuccinate, Disodium Ricinoleamido MEA-Sulfosuccinate, Disodium Sitostereth-14 Sulfosuccinate, Disodium Stearamido MEA-Sulfosuccinate, Disodium Stearyl Sulfosuccinamate, Disodium Stearyl Sulfosuccinate, Disodium Tallamido MEA-Sulfosuccinate, Disodium Tallowamido MEA- Sulfosuccinate, Disodium Tallow Sulfosuccinamate, Disodium Tridecylsulfosuccinate, Disodium Undecylenamido MEA-Sulfosucci-nate, Disodium Undecylenamido PEG-2 Sulfosuccinate, Disodium Wheat Germamido MEA-Sulfosuccinate, Disodium Wheat Germamido PEG-2 Sulfosuccinate, Di-TEA-Ole-amido PEG-2 Sulfosuccinate, Ditridecyl Sodium Sulfosuccinate, Sodium Bisglycol Ricinosulfosuccinate, Sodium/MEA Laureth-2 Sulfosuccinate und Tetrasodium Dicarboxyethyl Stearyl Sulfosuccinamate. Noch ein weiteres geeignetes Sulfosuccinamat ist Dinatrium-Cie-is-alkoxypropylensulfosuccinamat.
Eine weitere geeignete Verbindungsklasse sind Aniontensid-Kation-Komplexe, wobei das Kation selbst ursprünglich tensidische Eigenschaften aufweist. Beispiele sind Umesterungsprodukte von LAS-Säure mit Aminen, Aminderivaten, enthaltend eine C-Kette mit > 2 C-Atomen, vorzugsweiese C12-C16. Diese können z.B. am Stickstoff oxidiert sein, d.h. z.B. Umesterung von LAS-Säure mit Aminoxid C12-14.
Der Gehalt eines erfindungsgemäßen Wasch- oder Reinigungsmittels an anionischen Tensiden, vorzugsweise an den genannten anionischen Tensiden, kann in weiten Bereichen variieren. So kann ein erfindungsgemäßes Wasch- oder Reinigungsmittel sehr große Mengen Aniontensid enthalten, vorzugsweise bis zu einer Größenordnung von bis zu 40, 50 oder 60 Gew.- oder mehr, Gew.-% bezogen auf das gesamte Wasch- oder Reinigungsmittel. Ebenso kann ein erfindungsgemäßes Wasch- oder Reinigungsmittel nur sehr geringe Mengen Aniontensid enthalten, beispielsweise weniger als 15 oder 10 Gew.-% oder weniger als 5 Gew.-% oder noch weniger. Vorteilhafterweise sind in den erfindungsgemäßen Wasch- oder Reinigungsmitteln jedoch Aniontenside in Mengen von 0,1 bis 40 Gew.-% und insbesondere 5 bis 30 Gew.-% enthalten, wobei Konzentrationen oberhalb von 10 Gew.-% und sogar oberhalb von 15 Gew.-% besondere Bevorzugung finden. Nach einer bevorzugten Ausführungsform enthält das erfindungsgemäße Wasch- oder Reinigungsmittel anionische Tenside, vorzugsweise in Mengen von zumindest 0,01 Gew.-%, Gew.-% bezogen auf das gesamte Wasch- oder Reinigungsmittel. Nach einer anderen bevorzugten Ausführungsform kann das erfindungsgemäße Wasch- oder Reinigungsmittel frei von Aniontensid sein. Auch die erfindungsgemäßen Partikel sowie Granulatkörner können frei von Aniontensid sein.
Zusätzlich zu den genannten anionischen Tensiden, aber auch unabhängig von diesen, können in den erfindungsgemäßen Mitteln, insbesondere in den Wasch- oder Reinigungsmitteln, Seifen enthalten sein. Geeignet sind insbesondere gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierte Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z.B. Kokos-, Palmkern- oder Taigfettsäuren, abgeleitete Seifengemische. Der Gehalt des eines erfindungsgemäß bevorzugten Wasch- oder Reinigungsmittels an Seifen beträgt, unabhängig von anderen Aniontensiden, vorzugsweise nicht mehr als 3 Gew.-% und insbesondere 0,5 bis 2,5 Gew.-%, bezogen auf das gesamte Wasch- oder Reinigungsmittel. Nach einer anderen bevorzugten Ausführungsform ist das erfindungsgemäße Mittel von Seife.
Die anionischen Tenside und Seifen können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanol-amin, vorliegen. Vorzugsweise liegen sie in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
Vorteilhafterweise können nichtionische Tenside in den erfindungsgemäßen Mitteln enthalten sein. Beispielsweise kann ihr Gehalt in erfindungsgemäßen Wasch- oder Reinigungsmitteln bis zu 2 oder 3 oder 5 Gew.-% betragen, bezogen auf das gesamte Wasch- oder Reinigungsmittel. Es können auch größere Mengen an nichtionischem Tensid im Wasch- oder Reinigungsmittel enthalten sein, beispielsweise bis zu 5 Gew.-% oder 10 Gew.-% oder 15 Gew.-% oder 20 Gew.-%, 30 Gew.-%, 40 Gew.-%, 50 Gew.-% oder sogar darüber hinaus, falls es zweckmäßig ist. Sinnvolle Untergrenzen können bei Werten von 0,01 , 0,1 , 1 , 2, 3 oder 4 Gew.-% liegen, Gew.-% jeweils bezogen auf das gesamte Wasch- oder Reinigungsmittel
Vorzugsweise sind die nichtionischen Tenside aber in größeren Mengen, also bis zu 50 Gew.-%, vorteilhafterweise von 0,1 bis 40 Gew.-%, besonders bevorzugt von 0,5 bis 30 und insbesondere von 2 bis 25 Gew.-%, jeweils bezogen auf das gesamte Wasch- oder Reinigungsmittel, enthalten. Nach einer bevorzugten Ausführungsform enthält das erfindungsgemäße Wasch- oder Reinigungsmittel nichtionische Tenside, vorzugsweise in Mengen von zumindest 0,1 Gew.-%, bezogen auf das gesamte Wasch- oder Reinigungsmittel. Nach einer anderen, jedoch wenig bevorzugten, Ausführungsform kann das erfindungsgemäße Wasch- oder Reinigungsmittel auch frei von Niotensid sein.
Vorteilhafterweise können alle aus dem Stand der Technik bekannten nichtionischen Tenside in den erfindungsgemäßen Mitteln enthalten sein.
Die erfindungsgemäßen Mittel, insbesondere Wasch- oder Reinigungsmittel, können vorzugsweise auch kationische Tenside enthalten. Geeignete Kationtenside sind beispielsweise oberflächenaktive quaternäre Verbindungen, insbesondere mit einer Ammonium-, Sulfonium-, Phosphonium-, Jodonium- oder Arsoniumgruppe. Durch den Einsatz von quaternären oberflächenaktiven Verbindungen mit antimikrobieller Wirkung kann das Mittel mit einer antimikrobiellen Wirkung ausgestaltet werden bzw. dessen gegebenenfalls aufgrund anderer Inhaltsstoffe bereits vorhandene antimikrobielle Wirkung verbessert werden.
Besonders bevorzugte kationische Tenside sind die quaternären, z.T. antimikrobiell wirkenden Ammoniumverbindungen (QAV; INCI Quaternary Ammonium Compounds) gemäß der allgemeinen Formel (R')(R")(R'")(RIV)N+ X", in der R1 bis Rιv gleiche oder verschiedene CWAlkylreste1 C7-28- Aralkyl-reste oder heterozyklische Reste, wobei zwei oder im Falle einer aromatischen Einbindung wie im Pyridin sogar drei Reste gemeinsam mit dem Stickstoffatom den Heterozyklus, z.B. eine Pyridinium- oder Imidazoliniumverbindung, bilden, darstellen und X" Halogenidionen, Sulfationen, Hydroxidionen oder ähnliche Anionen sind. Für eine optimale antimikrobielle Wirkung weist vorzugsweise wenigstens einer der Reste eine Kettenlänge von 8 bis 18, insbesondere12 bis 16, C-Atomen auf.
QAV sind durch Umsetzung tertiärer Amine mit Alkylierungsmitteln, wie z.B. Methylchlorid, Benzylchlorid, Dimethylsulfat, Dodecylbromid, aber auch Ethylenoxid herstellbar. Die Alkylierung von tertiären Aminen mit einem langen Alkyl-Rest und zwei Methyl-Gruppen gelingt besonders leicht, auch die Quaternierung von tertiären Aminen mit zwei langen Resten und einer Methyl- Gruppe kann mit Hilfe von Methylchlorid unter milden Bedingungen durchgeführt werden. Amine, die über drei lange Alkyl-Reste oder Hydroxy-substituierte Alkyl-Reste verfügen, sind wenig reaktiv und werden bevorzugt mit Dimethylsulfat quaterniert.
Geeignete QAV sind beispielweise Benzalkoniumchlorid (N-Alkyl-N,N-dimethyl-benzylammonium- chlorid, CAS No. 8001-54-5), Benzalkon B (m.p-Dichlorbenzyl-dimethyl-C^-alkylammoniumchlorid, CAS No. 58390-78-6), Benzoxoniumchlorid (Benzyl-dodecyl-bis-(2-hydroxyethyl)-ammonium- chlorid), Cetrimoniumbromid (N-Hexadecyl-N,N-trimethyl-ammoniumbromid, CAS No. 57-09-0), Benzetoniumchlorid (N,N-Dimethyl-N-[2-[2-[p-(1 ,1 ,3,3-tetramethylbutyl)phenoxy]ethoxy]ethyl]- benzylammo-niumchlorid, CAS No. 121-54-0), Dialkyldimethylammoniumchloride wie Di-n-decyl- dimethyl-ammo-niumchlorid (CAS No. 7173-51-5-5), Didecyldimethylammoniumbromid (CAS No. 2390-68-3), Dioctyl-dimethyl-ammoniumchloric, 1-Cetylpyridiniumchlorid (CAS No. 123-03-5) und Thiazolinjodid (CAS No. 15764-48-1 ) sowie deren Mischungen. Bevorzugte QAV sind die Benzalkoniumchloride mit C8-C18-Alkylresten, insbesondere C-i2-C14-Aklyl-benzyl-dimethylammo- niumchlorid. Eine besonders bevorzugte QAV Kokospentaethoxymethylammoniummethosulfat (INCI PEG-5 Cocomonium Methosulfate; Rewoquat® CPEM).
Zur Vermeidung möglicher Inkompatibilitäten ggf. einzusetzender antimikrobieller kationischer Tenside mit ggf. enthaltenen anionischen Tensiden kann z.B. möglichst aniontensidverträgliches und/oder ggf. möglichst wenig kationisches Tensid eingesetzt oder in einer besonderen Ausführungsform der Erfindung gänzlich auf kationische Tenside verzichtet werden.
Die erfindungsgemäßen Wasch- oder Reinigungsmittel können ein oder mehrere kationische Tenside enthalten, vorteilhafterweise in Mengen, bezogen auf das gesamte Wasch- oder Reinigungsmittel, von 0 bis 30 Gew.-%, noch vorteilhafter größer 0 bis 20 Gew.-%, vorzugsweise 0,01 bis 10 Gew.-%, insbesondere 0,1 bis 5 Gew.-%. Geeignete Mindestwerte können auch bei 0,5, 1 , 2 oder 3 Gew.-% liegen. Nach einer bevorzugten Ausführungsform enthält das erfindungsgemäße Wasch- oder Reinigungsmittel kationische Tenside, vorzugsweise in Mengen von zumindest 0,1 Gew.-%, bezogen auf das gesamte Wasch- oder Reinigungsmittel. Nach einer anderen bevorzugten Ausführungsform kann das erfindungsgemäße Mittel, vorzugsweise Waschoder Reinigungsmittel, frei von Kationtensid sein.
Ebenso können die erfindungsgemäßen Mittel, vorzugsweise Wasch- oder Reinigungsmittel, auch amphotere Tenside enthalten. Diese werden weiter unten insbesondere noch näher beschrieben.
Die erfindungsgemäßen Wasch- oder Reinigungsmittel können ein oder mehrere amphotere Tenside enthalten, vorteilhafterweise in Mengen, bezogen auf das gesamte Wasch- oder Reinigungsmittel, von 0 bis 30 Gew.-%, noch vorteilhafter größer 0 bis 20 Gew.-%, vorzugsweise 0,01 bis 10 Gew.-%, insbesondere 0,1 bis 5 Gew.-%. Nach einer anderen bevorzugten Ausführungsform kann das erfindungsgemäße Mittel frei von amphoteren Tensiden sein.
Nach einer bestimmten Ausführungsform können die erfindungsgemäßen Wasch- oder Reinigungsmittel nur sehr wenig Gesamttensid enthalten, z.B. kann die Gesamttensidmenge unter 20 Gew.-%, 15 Gew.-%, 10 Gew.-% oder 5 Gew.-%, vorteilhafterweise sogar unter 3 Gew.-% oder unter 1 Gew.-%, insbesondere sogar unter 0,5 Gew.-% oder unter 0,1 Gew.-% liegen, Gew.-% jeweils bezogen auf das gesamte Wasch- oder Reinigungsmittel. Vorzugsweise beträgt der Gesamttensidgehalt aber zumindest 0,01 Gew.-%, 0,1 Gew-% oder 1 Gew.-%, bezogen auf das gesamte Wasch- oder Reinigungsmittel.
Weitere Inhaltsstoffe der erfindungsgemäßen Mittel können anorganische und organische Buildersubstanzen sein. Zu den anorganischen Buildersubstanzen gehören wasserunlösliche oder nicht wasserlösliche Inhaltsstoffe, wie Aluminosilikate und insbesondere Zeolithe.
In einer speziellen Ausführungsform kann das erfindungsgemäße Mittel, vorzugsweise Waschoder Reinigungsmittel, kein Phosphat und/oder kein Zeolith enthalten. Es ist aber deutlich mehr bevorzugt, dass das Mittel Zeolith enthält. Bevorzugt kann es dann sein, dass dieser Zeolithanteil, bezogen auf das Gesamtgewicht des Wasch- oder Reinigungsmittels, weniger als 5 Gew.-%, vorzugsweise maximal 4 Gew.-%, maximal 3 Gew.-% oder maximal 2 Gew.-% beträgt.
Es kann aber vorteilhafterweise auch vorgesehen sein, dass das erfindungsgemäße Wasch- oder Reinigungsmittel einen Zeolithgehalt von mindestens 10 Gew.-%, z.B. mindestens 15 Gew.-% oder mindestens 20 Gew.-% oder mindestens 30 Gew.-% oder auch darüber hinaus, beispielsweise mindestens 50 Gew.-% aufweist, Gew.-% bezogen auf das gesamte Wasch- oder Reinigungsmittel
Lösliche Builder kann das erfindungsgemäße Wasch- oder Reinigungsmittel, vorzugsweise in Mengen von 0,1 Gew.-% bis 30 Gew.-%, bevorzugt 5 Gew.-% bis 25 Gew.-% und besonders bevorzugt 10 Gew.-% bis 20 Gew.-%, bezogen auf das Gesamtgewicht des Wasch- oder Reinigungsmittels, enthalten, wobei Natriumcarbonat als löslicher Builder besonders bevorzugt ist. Es kann aber vorteilhafterweise auch vorgesehen sein, dass das erfindungsgemäße Wasch- oder Reinigungsmittel weniger als 10 Gew.-%, beispielsweise weniger als 5 Gew.-% lösliche Builder enthält, bezogen auf das gesamte Wasch- oder Reinigungsmittel. Geeignet sind beispielsweise Citrate, SKS-6, Citronensäure, MGDA (methyl glycine di-acetic acid), Triphsophate, Phosphonate, aliphatische Dicarbonsäuren (z.B. Adipin-, Glutar-, Bernsteinsäure). Nach einer anderen bevorzugten Ausführungsform kann das erfindungsgemäße Wasch- oder Reinigungsmittel frei von löslichem Builder sein. Einsetzbarer feinkristalliner, synthetischer und gebundenes Wasser enthaltender Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird beispielsweise Zeolith MAP(R) (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Von besonderem Interesse ist auch ein cokristallisiertes Natrium/Kalium-Aluminiumsilikat aus Zeolith A und Zeolith X, welches als VEGOBOND AX® (Handelsprodukt der Firma Condea Augusta S.p.A.) im Handel erhältlich ist. Der Zeolith kann als sprühgetrocknetes Pulver oder auch als ungetrocknete, von ihrer Herstellung noch feuchte, stabilisierte Suspension zum Einsatz kommen. Für den Fall, dass der Zeolith als Suspension eingesetzt wird, kann diese geringe Zusätze an nichtionischen Tensiden als Stabilisatoren enthalten, beispielsweise 1 bis 3 Gew.-%, bezogen auf Zeolith, an ethoxylierten Ci2-Ci8-FeK- alkoholen mit 2 bis 5 Ethylenoxidgruppen, Ci2-Ci4-Fettalkoholen mit 4 bis 5 Ethylenoxidgruppen oder ethoxylierten Isotridecanolen. Geeignete Zeolithe weisen eine mittlere Teilchengröße von vorzugsweise weniger als 10 μm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
Als weitere besonders geeignete Zeolithe sind Zeolithe vom Faujasit-Typ zu nennen. Zusammen mit den Zeolithen X und Y gehört das Mineral Faujasit zu den Faujasit-Typen innerhalb der Zeolith- Strukturgruppe 4, die durch die Doppelsechsring-Untereinheit D6R gekennzeichnet sind. Zur Zeo- lith-Strukturgruppe 4 zählen neben den genannten Faujasit-Typen noch die Mineralien Chabazit und Gmelinit sowie die synthetischen Zeolithe R (Chabazit-Typ), S (Gmelinit-Typ), L und ZK-5. Die beiden letztgenannten synthetischen Zeolithe haben keine mineralischen Analoga.
Zeolithe vom Faujasit-Typ sind aus ß-Käfigen aufgebaut, die tetrahedral über D6R-Unter-einheiten verknüpft sind, wobei die ß-Käfige ähnlich den Kohlenstoffatomen im Diamanten angeordnet sind. Das dreidimensionale Netzwerk der erfindungsgemäß geeigneten Zeolithe vom Faujasit-Typ weist Poren von 2,2 und 7,4 A auf, die Elementarzelle enthält darüber hinaus 8 Kavitäten mit ca. 13 A Durchmesser und läßt sich durch die Formel Na86[(AIO2)86(SiO2)i06] 264 H2O beschreiben. Das Netzwerk des Zeolith X enthält dabei ein Hohlraumvolumen von ungefähr 50%, bezogen auf den dehydratisierten Kristall, was den größten Leerraum aller bekannten Zeolithe darstellt (Zeolith Y: ca. 48% Hohlraumvolumen, Faujasit: ca. 47% Hohlraumvolumen).
Im Rahmen der vorliegenden Erfindung kennzeichnet der Begriff "Zeolith vom Faujasit-Typ" vorzugsweise alle drei Zeolithe, die die Faujasit-Untergruppe der Zeolith-Strukturgruppe 4 bilden. Neben dem Zeolith X sind erfindungsgemäß also auch Zeolith Y und Faujasit sowie Mischungen dieser Verbindungen geeignet, wobei der reine Zeolith X bevorzugt ist.
Auch Mischungen oder Cokristallisate von Zeolithen des Faujasit-Typs mit anderen Zeolithen, die nicht zwingend der Zeolith-Strukturgruppe 4 angehören müssen, sind erfindungsgemäß geeignet, wobei vorzugsweise mindestens 50 Gew.-% der Zeolithe vom Faujasit-Typ sind. Die geeigneten Aluminiumsilikate sind kommerziell erhältlich, und die Methoden zu ihrer Darstellung sind in Standardmonographien beschrieben.
Beispiele für kommerziell erhältliche Zeolithe vom X-Typ können durch die folgenden Formeln beschrieben werden:
Na86[(Alθ2)86(Siθ2)106] x H2O, K86[(AIO2)86(SiO2)106] x H2O, Ca4oNa6[(Alθ2)86(Siθ2)106] x H2O, Sr21Ba22E(AIO2)S6(SiO2)I06] x H2O, in denen x Werte von größer O bis 276 annehmen kann. Diese Zeolithe weisen Porengrößen von 8,0 bis 8,4 A auf.
Geeignet ist beispielsweise auch Zeolith A-LSX, der einem Co-Kristallisat aus Zeolith X und Zeolith A entspricht und in seiner wasserfreien Form die Formel (M2/nO + M'2/nO) AI2O3 zSiO2 besitzt, wobei M und M' Alkali- oder Erdalkalimetalle sein können und z eine Zahl von 2,1 bis 2,6 ist. Kommerziell erhältlich ist dieses Produkt unter dem Markennamen VEGOBOND AX von der Firma CONDEA Augusta S.p.A.
Auch Zeolithe vom Y-Typ sind kommerziell erhältlich und lassen sich beispielsweise durch die Formeln
Na56[(AIO2)56(SiO2)136] x H2O, K56[(AIO2)56(SiO2)136] x H2O, in denen x für Zahlen von größer O bis 276 steht, beschreiben. Diese Zeolithe weisen Porengrößen von 8,0 A auf.
Die Teilchengrößen der geeigneten Zeolithe liegt dabei vorteilhafterweise im Bereich von 0,1 μm bis zu 100 μm, vorzugsweise von 0,5 μm bis 50 μm und insbesondere von 1 μm bis 30 μm, jeweils mit Standard-Teilchengrößenbestimmungsmethoden gemessen. Nach einer anderen, wenig bevorzugten Ausführungsform kann das erfindungsgemäße Wasch- oder Reinigungsmittel frei von Zeolith sein.
In einer bevorzugten Ausführungsform der Erfindung sollen alle enthaltenen anorganischen Bestandteile vorzugsweise wasserlöslich sein. In diesen Ausführungsformen werden deshalb andere Buildersubstanzen als die genannten Zeolithe eingesetzt.
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000 g/mol. Dabei ist ein Polysaccharid mit einem Dextrose- Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000 g/mol. Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren.
Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindisuccinat, sind weitere geeignete Cobuilder. Dabei wird Ethylendiamin-N,N'-di- succinat (EDDS) bevorzugt in Form seiner Natrium- oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glycerintrisuccinate. Geeignete Einsatzmengen liegen beispielsweise bei 3 bis 15 Gew.-%, bezogen auf das gesamte Wasch- oder Reinigungsmittel.
Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten.
Eine weitere Substanzklasse mit Cobuildereigenschaften stellen die Phosphonate dar. Dabei handelt es sich insbesondere um Hydroxyalkan- bzw. Aminoalkanphosphonate. Unter den Hydroxyalkanphosphonaten ist das 1-Hydroxyethan-1 ,1-diphosphonat (HEDP) von besonderer Bedeutung als Cobuilder. Es wird vorzugsweise als Natriumsalz eingesetzt, wobei das Dinatriumsalz neutral und das Tetranatriumsalz alkalisch (pH 9) reagiert. Als Aminoalkanphosphonate kommen vorzugsweise Ethylendiamintetramethylenphosphonat (EDTMP), Diethylentriaminpentamethylenphosphonat (DTPMP) sowie deren höhere Homologe in Frage. Sie werden vorzugsweise in Form der neutral reagierenden Natriumsalze, z.B. als Hexanatriumsalz der EDTMP bzw. als Hepta- und Octa-Natriumsalz der DTPMP, eingesetzt. Als Builder wird dabei aus der Klasse der Phosphonate bevorzugt HEDP verwendet. Die Aminoalkanphosphonate besitzen zudem ein ausgeprägtes Schwermetallbindevermögen. Dementsprechend kann es bevorzugt sein, Aminoalkanphosphonate, insbesondere DTPMP, einzusetzen, oder Mischungen aus den genannten Phosphonaten zu verwenden.
In Fällen, in denen ein Phosphat-Gehalt toleriert wird, können auch Phosphate mitverwendet werden, insbesondere Pentanatriumtriphosphat, gegebenenfalls auch Pyrophosphate sowie Orthophosphate, die in erster Linie als Fällungsmittel für Kalksalze wirken. Phosphate werden überwiegend in maschinellen Geschirrspülmitteln, teilweise aber auch noch in Waschmitteln eingesetzt.
Alkalimetallphosphate ist dabei die summarische Bezeichnung für die Alkalimetall- (insbesondere Natrium- und Kalium-)Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphorsäuren (HPO3)n und Orthophosphorsäure H3PO4 neben höhermolekularen Vertretern unterscheiden kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken als Alkaliträger, verhindern Kalkbeläge auf Maschinenteilen bzw. Kalkinkrustationen in Geweben und tragen überdies zur Reinigungsleistung bei.
Natriumdihydrogenphosphat, NaH2PO4, existiert als Dihydrat (Dichte 1 ,91 gern"3, Schmelzpunkt 60°) und als Monohydrat (Dichte 2,04 gern"3). Beide Salze sind weiße, in Wasser sehr leicht lösliche Pulver, die beim Erhitzen das Kristallwasser verlieren und bei 2000C in das schwach saure Diphosphat (Dinatriumhydrogendiphosphat, Na2H2P2O7), bei höherer Temperatur in Natiumtrimetaphosphat (Na3P3O9) und Maddrellsches Salz (siehe unten), übergehen. NaH2PO4 reagiert sauer; es entsteht, wenn Phosphorsäure mit Natronlauge auf einen pH-Wert von 4,5 eingestellt und die Maische versprüht wird. Kaliumdihydrogenphosphat (primäres oder einbasiges Kaliumphosphat, Kaliumbiphosphat, KDP), KH2PO4, ist ein weißes Salz der Dichte 2,33 gern'3, hat einen Schmelzpunkt 253° [Zersetzung unter Bildung von Kaliumpolyphosphat (KPO3)J und ist leicht löslich in Wasser.
Dinatriumhydrogenphosphat (sekundäres Natriumphosphat), Na2HPO4, ist ein farbloses, sehr leicht wasserlösliches kristallines Salz. Es existiert wasserfrei und mit 2 Mol. (Dichte 2,066 gern"3, Wasserverlust bei 95°), 7 Mol (Dichte 1 ,68 gern"3, Schmelzpunkt 48° unter Verlust von 5 H2O) und 12 Mol. Wasser (Dichte 1 ,52 gern"3, Schmelzpunkt 35° unter Verlust von 5 H2O), wird bei 100° wasserfrei und geht bei stärkerem Erhitzen in das Diphosphat Na4P2O7 über. Dinatriumhydrogenphosphat wird durch Neutralisation von Phosphorsäure mit Sodalösung unter Verwendung von Phenolphthalein als Indikator hergestellt. Di-kaliumhydrogenphosphat (sekundäres od. zweibasiges Kaliumphosphat), K2HPO4, ist ein amorphes, weißes Salz, das in Wasser leicht löslich ist.
Trinatriumphosphat, tertiäres Natriumphosphat, Na3PO4, sind farblose Kristalle, die als Dodecahydrat eine Dichte von 1 ,62 gern'3 und einen Schmelzpunkt von 73-760C (Zersetzung), als Decahydrat (entsprechend 19-20% P2O5) einen Schmelzpunkt von 1000C und in wasserfreier Form (entsprechend 39-40% P2O5) eine Dichte von 2,536 gern'3 aufweisen. Trinatriumphosphat ist in Wasser unter alkalischer Reaktion leicht löslich und wird durch Eindampfen einer Lösung aus genau 1 Mol Dinatrium-phosphat und 1 Mol NaOH hergestellt. Trikaliumphosphat (tertiäres oder dreibasiges Kaliumphosphat), K3PO4, ist ein weißes, zerfließliches, körniges Pulver der Dichte 2,56 gern"3, hat einen Schmelzpunkt von 1340° und ist in Wasser mit alkalischer Reaktion leicht löslich. Es entsteht z.B. beim Erhitzen von Thomasschlacke mit Kohle und Kaliumsulfat. Trotz des höheren Preises werden in der Reinigungsmittel-Industrie die leichter löslichen, daher hochwirksamen Kaliumphosphate gegenüber entsprechenden Natrium-Verbindungen vielfach bevorzugt.
Tetranatriumdiphosphat (Natriumpyrophosphat), Na4P2O7, existiert in wasserfreier Form (Dichte 2,534 gern"3, Schmelzpunkt 988°, auch 880° angegeben) und als Decahydrat (Dichte 1 ,815-1 ,836 gern'3, Schmelzpunkt 94° unter Wasserverlust). Beide Substanzen sind farblose, in Wasser mit alkalischer Reaktion lösliche Kristalle. Na4P2O7 entsteht beim Erhitzen von Dinatriumphosphat auf >200° oder indem man Phosphorsäure mit Soda im stöchiometrischem Verhältnis umsetzt und die Lösung durch Versprühen entwässert. Das Decahydrat komplexiert Schwermetall-Salze und Härtebildner und verringert daher die Härte des Wassers. Kaliumdiphosphat (Kaliumpyrophosphat), K4P2O7, existiert in Form des Trihydrats und stellt ein farbloses, hygroskopisches Pulver mit der Dichte 2,33 gern"3 dar, das in Wasser löslich ist, wobei der pH-Wert der 1 %igen Lösung bei 25° 10,4 beträgt.
Durch Kondensation des NaH2PO4 bzw. des KH2PO4 entstehen höhermolekulare Natrium- und Kaliumphosphate, bei denen man cyclische Vertreter, die Natrium- bzw. Kaliummetaphosphate und kettenförmige Typen, die Natrium- bzw. Kaliumpolyphosphate, unterscheiden kann. Insbesondere für letztere sind eine Vielzahl von Bezeichnungen in Gebrauch: Schmelz- oder Glühphosphate, Grahamsches Salz, Kurrolsches und Maddrellsches Salz. Alle höheren Natrium- und Kaliumphosphate werden gemeinsam als kondensierte Phosphate bezeichnet.
Das technisch wichtige Pentanatriumtriphosphat, Na5P3O10 (Natriumtripolyphosphat), ist ein wasserfrei oder mit 6 H2O kristallisierendes, nicht hygroskopisches, weißes, wasserlösliches Salz der allgemeinen Formel NaO-[P(O)(ONa)-O]n-Na mit n=3. In 100 g Wasser lösen sich bei Zimmertemperatur etwa 17 g, bei 60° ca. 20 g, bei 100° rund 32 g des kristallwasserfreien Salzes; nach zweistündigem Erhitzen der Lösung auf 100° entstehen durch Hydrolyse etwa 8% Orthophosphat und 15% Diphosphat. Bei der Herstellung von Pentanatriumtriphosphat wird Phosphorsäure mit Sodalösung oder Natronlauge im stöchiometrischen Verhältnis zur Reaktion gebracht und die Lösung durch Versprühen entwässert. Ähnlich wie Grahamsches Salz und Natriumdiphosphat löst Pentanatriumtriphosphat viele unlösliche Metall-Verbindungen (auch Kalkseifen usw.). Pentakaliumtriphosphat, K5P3O10 (Kaliumtripolyphosphat), kommt beispielsweise in Form einer 50 Gew.-%-igen Lösung (> 23% P2O5, 25% K2O) in den Handel. Die Kaliumpolyphosphate finden in der Wasch- und Reinigungsmittel-Industrie breite Verwendung. Weiter existieren auch Natriumkaliumtripolyphosphate, welche ebenfalls im Rahmen der vorliegenden Erfindung einsetzbar sind. Diese entstehen beispielsweise, wenn man Natriumtrimetaphosphat mit KOH hydrolysiert:
(NaPOs)3 + 2 KOH * Na3K2P3O10 + H2O
Diese sind erfindungsgemäß genau wie Natriumtripolyphosphat, Kaliumtripolyphosphat oder Mischun-gen aus diesen beiden einsetzbar; auch Mischungen aus Natriumtripoly-phosphat und Natriumkaliumtripolyphosphat oder Mischungen aus Kaliumtripolyphosphat und Natriumka- liumtripolyphosphat oder Gemische aus Natriumtripolyphosphat und Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat sind erfindungsgemäß einsetzbar.
In einer bevorzugten Ausführungsform der Erfindung werden als anorganischen Buildersubstanzen insbesondere Carbonate und Silicate eingesetzt.
Zu nennen sind hier insbesondere kristalline, schichtförmige Natriumsilicate der allgemeinen
Formel NaMSixO2x+1 yH2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1 ,6 bis 4, vorzugsweise 1 ,9 bis 4,0 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Da derartige kristalline Silicate aber in einem Sprühtrocknungsverfahren mindestens teilweise ihre kristalline Struktur verlieren, werden kristalline Silicate vorzugsweise nachträglich zugemischt. Bevorzugte kristalline Schichtsilicate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl ß- als auch δ-Natriumdisilicate
Na2Si205 yH20 bevorzugt. Im Handel befinden sich derartige Verbindungen beispielsweise unter der Bezeichnung SKS® (Fa. Clariant). So handelt es sich bei SKS-6® vorwiegend um ein δ-
Natriumdi-silicat mit der Formel Na2Si2O5 ^yH2O, bei SKS-7® vorwiegend um das ß-Natriumdisilicat. Durch Reaktion mit Säuren (z.B. Citronensäure oder Kohlensäure) entsteht aus dem δ-
Natriumdisilicat Kanemit NaHSi2O5 yH2O, im Handel unter den Bezeichnungen SKS-9® bzw. SKS- 10® (Fa. Clariant). Von Vorteil kann es auch sein, chemische Modifikationen dieser Schichtsilicate einzusetzen. So kann beispielsweise die Alkalität der Schichtsilicate geeignet beeinflusst werden. Mit Phosphat bzw. mit Carbonat dotierte Schichtsilicate weisen im Vergleich zu dem δ-Natrium- disilicat veränderte Kristallmorphologien auf, lösen sich schneller und zeigen im Vergleich zu δ- Natriumdisilicat ein erhöhtes Calciumbindevermögen. So sind Schichtsilicate der allgemeinen Summenformel x Na2O • y SiO2 • z P2O5 in der das Verhältnis x zu y einer Zahl 0,35 bis 0,6, das Verhältnis x zu z einer Zahl von 1 ,75 bis 1200 und das Verhältnis y zu z einer Zahl von 4 bis 2800 entspricht bekannt. Die Löslichkeit der Schichtsilicate kann auch erhöht werden, indem besonders feinteilige Schichtsilicate eingesetzt werden. Auch Compounds aus den kristallinen Schichtsilicaten mit anderen Inhaltsstoffen können eingesetzt werden. Dabei sind insbesondere Compounds mit Cellulosederivaten, die Vorteile in der desintegrierenden Wirkung aufweisen, sowie Compounds mit Polycarboxylaten, z.B. Citronensäure, bzw. polymeren Polycarboxylaten, z.B. Copolymeren der Acrylsäure, zu nennen.
Zu den bevorzugten Buildersubstanzen gehören auch amorphe Natriumsilikate mit einem Modul Na2O : SiO2 VOn 1 :2 bis 1 :3,3, vorzugsweise von 1 :2 bis 1 :2,8 und insbesondere von 1 :2 bis 1 :2,6, welche Sekundärwascheigenschaften aufweisen. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, dass die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, dass die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silikate, welche ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern aufweisen, sind bekannt. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.
Besonders bevorzugte anorganische wasserlösliche Builder sind Alkalimetallcarbonate und Alkalimetallbicarbonate, wobei Natrium- und Kaliumcarbonat und insbesondere Natriumcarbonat zu den bevorzugten Ausführungsformen zählen.
Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Alkali- und insbesondere Natriumsalze einsetzbaren Polycarbonsäuren, wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen. Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit, wie beispielsweise in den erfindungsgemäßen Granulaten, auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
Als organische Builder sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol. Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV-Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäure-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.
Die erfindungsgemäßen Mittel können auch Polymere enthalten. Geeignete Polymere, die auch als Trägerstoffe in Verbindung mit Duftstoff einsetzbar sind, umfassen insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 2000 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 2000 bis 10000 g/mol, und besonders bevorzugt von 3000 bis 5000 g/mol, aufweisen, bevorzugt sein.
Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2000 bis 70000 g/mol, vorzugsweise 20000 bis 50000 g/mol und insbesondere 30000 bis 40000 g/mol.
Der Gehalt der Wasch- oder Reinigungsmittel an organischen Buildersubstanzen kann in einem breiten Rahmen variieren. Bevorzugt sind Gehalte von 2 bis 20 Gew.-%, wobei insbesondere Gehalte von maximal 10 Gew.-% besonderen Anklang finden, bezogen auf das gesamte Waschoder Reinigungsmittel. Nach einer anderen bevorzugten Ausführungsform kann das erfindungsgemäße Mittel frei von organischen Buildersubstanzen sein.
Die erfindungsgemäßen Mittel können Komponenten aus den Klassen der Vergrauungsinhibitoren (Schmutzträger), der Neutralsalze und/oder der textilweichmachenden Hilfsmittel (beispielsweise Kationtenside) aufweisen, was bevorzugt ist.
Vergrauungsinhibitoren haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte suspendiert zu halten und so das Wiederaufziehen des Schmutzes zu verhindern. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise die wasserlöslichen Salze polymerer Carbonsäuren, Leim, Gelatine, Salze von Ethercarbon-säuren oder Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich lösliche Stärkepräparate und andere als die oben genannten Stärkeprodukte verwenden, z.B. abgebaute Stärke, Aldehydstärken usw.. Auch Polyvinylpyrrolidon ist brauchbar. Bevorzugt werden jedoch Celluloseether, wie Carboxymethylcellulose (Na-SaIz), Methylcellulose, Hydroxyalkylcellulose und Mischether, wie Me- thylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarboxy-methylcellulose und deren Gemische, sowie Polyvinyl-pyrrolidon beispielsweise in Mengen von vorzugsweise 0,1 bis 5 Gew.- %, bezogen auf das gesamte Wasch- oder Reinigungsmittel, eingesetzt.
Als typisches Beispiel für einen geeigneten Vertreter der Neutralsalze ist das Natriumsulfat zu nennen. Es kann in Mengen von beispielsweise 0 bis 60 Gew.-%, vorzugsweise 2 bis 45 Gew.-% eingesetzt werden, bezogen auf das gesamte Wasch- oder Reinigungsmittel.
Die erfindungsgemäßen Mittel können Aviviermittel enthalten z.B. Weichmacher. Geeignete Aviviermittel (Weichmacher) sind z.T. schon ausführlicher beschrieben worden. Geeignete Aviviermittel (Weichmacher) sind beispielsweise auch quellfähige Schichtsilikate von der Art entsprechender Montmorillonite, beispielsweise Bentonit, ebenso kationische Tenside.
Im folgenden werden die nichtionischen Tenside näher beschrieben. Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methyl-verzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Palmkern-, Taigfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise Ci2-Ci4-Alkohole mit 3 EO bis 6 EO, C9-C-, i-Alkohole mit 7 EO, Ci3-Ci5-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, Ci4-Ci5-AIkO- hole mit 4 EO, 5 EO, 7 EO oder 9 EO, Ci2-Ci8-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus Ci2-Ci4-Alkohol mit 3 EO und Ci2-Ci8-Alkohol mit 7 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können.
Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow ränge ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind (TaIg-) Fettalkohole mit 14 EO, 16 EO, 20 EO, 25 EO, 30 EO oder 40 EO.
Bevorzugte nichtionische Tenside sind ein oder mehrere mit Ethylen- (EO) und/oder Propylenoxid (PO) alkoxylierte, unverzweigte oder verzweigte, gesättigte oder ungesättigte C10-22-Alkohole mit einem Alkoxylierungsgrad bis zu 30, vorzugsweise ethoxylierte C10-i8-Fettalkohole mit einem Ethoxylierungsgrad von weniger als 30, bevorzugt 1 bis 20, insbesondere 1 bis 12, besonders bevorzugt 1 bis 8, äußerst bevorzugt 2 bis 5, beispielsweise C-|2-14-Fettalkoholethoxylate mit 2, 3 oder 4 EO oder eine Mischung von der C-|2-14-Fettalkoholethoxylate mit 3 und 4 EO im Gewichtsverhältnis von 1 zu 1 oder Isotridecylalkoholethoxylat mit 5, 8 oder 12 EO.
Außerdem können als weitere nichtionische Tenside auch Alkylglykoside der allgemeinen Formel RO(G)x eingesetzt werden, in der R einen primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl von 1 bis 10; vorzugsweise liegt x bei 1 ,1 bis 1 ,4. geeignet sind auch N-Methylglucamide mit C12/C14.
Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden, insbesondere zusammen mit alkoxylierten Fettalkoholen und/oder Alkylglykosiden, eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester, besonders bevorzugt sind Ci2-Ci8-Fettsäuremethylester mit durchschnittlich 3 bis 15 EO, insbesondere mit durchschnittlich 5 bis 12 EO, sind z.B. auch einsetzbar.
Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N-di- methylamin-oxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
Weiterhin geeignet sind alkoxylierte Amine, vorteilhafterweise ethoxylierte und/oder propoxylierte, insbesondere primäre und sekundäre Amine mit vorzugsweise 1 bis 18 C-Atomen pro Alkylkette und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) und/oder 1 bis 10 Mol Propylenoxid (PO) pro Mol Amin.
Bei erfindungsgemäßen Mitteln die besonders für das maschinelle Geschirrspülen geeignet sind, insbesondere Geschirrspülmittel in Form von Tablettenformkörpern, wie Tabs, kommen als Tenside prinzipiell zwar alle Tenside in Frage. Bevorzugt sind für diesen Anwendungszweck aber gerade die vorstehend beschriebenen nichtionischen Tenside und hier vor allem die schwachschäumenden nichtionischen Tenside. Besonders bevorzugt sind die alkoxylierten Alkohole, besonders die ethoxylierten und/oder propoxylierten Alkohole. Dabei versteht der Fachmann allgemein unter alkoxylierten Alkoholen die Reaktionsprodukte von Alkylenoxid, bevorzugt Ethylenoxid, mit Alkoholen, bevorzugt im Sinne der vorliegenden Erfindung die längerkettigen Alkohole Ci0 bis Ci8, bevorzugt von Ci2 bis Ci6, wie Cn-, Ci2-, Ci3-, Ci4-, Ci5-, C-I6- ,Ciτ- und Cis-Alkohole. In der Regel entstehen aus n Molen Ethylenoxid und einem Mol Alkohol, abhängig von den Reaktionsbedingungen ein komplexes Gemisch von Additionsprodukten unterschiedlichen Ethoxylierungsgrades. Eine weitere Ausführungsform besteht im Einsatz von Gemischen der Alkylenoxide bevorzugt des Gemisches von Ethylenoxid und Propylenoxid. Auch kann man gewünschtenfalls durch eine abschließende Veretherung mit kurzkettigen Alkylgruppen, wie bevorzugt der Butylgruppe, zur Substanzklasse der "verschlossenen" Alkoholethoxylaten gelangen, die ebenfalls im Sinne der Erfindung eingesetzt werden kann. Ganz besonders bevorzugt im Sinne der vorliegenden Erfindung sind dabei hochethoxylierte Fettalkohole oder deren Gemische mit endgruppenverschlossenen Fettalkoholethoxylaten.
Vorteilhafterweise können die erfindungsgemäßen Mittel auch Schauminhibitoren enthalten, beispielsweise schauminhibierendes Paraffinöl oder schauminhibierendes Silikon-öl, beispielsweise Dimethylpolysiloxan. Auch der Einsatz von Mischungen dieser Wirkstoffe ist möglich. Als bei Raumtemperatur feste Zusatzstoffe kommen, insbesondere bei den genannten schauminhibierenden Wirkstoffen, Paraffinwachse, Kieselsäuren, die auch in bekannter Weise hydrophobiert sein können, und von C2-7-Diaminen und C12-22-Carbon-säuren abgeleitete Bisamide in Frage.
Für den Einsatz bevorzugt in Frage kommende schauminhibierende Paraffinöle, die auch in Abmischung mit Paraffinwachsen vorliegen können, sind im allgemeinen komplexe Stoffgemische ohne scharfen Schmelzpunkt. Zur Charakterisierung bestimmt man üblicherweise den Schmelzbereich durch Differential-Thermo-Analyse (DTA) und/oder den Erstarrungspunkt. Darunter versteht man die Temperatur, bei der das Paraffin durch langsames Abkühlen aus dem flüssigen in den festen Zustand übergeht. Paraffine mit weniger als 17 C-Atomen sind erfindungsgemäß nicht brauchbar, ihr Anteil im Paraffinölgemisch sollte daher so gering wie möglich sein und liegt vorzugsweise unterhalb der mit üblichen analytischen Methoden, zum Beispiel Gaschromatographie, signifikant meßbaren Grenze. Vorzugsweise werden Paraffine verwendet, die im Bereich von 2O0C bis 7O0C erstarren. Dabei ist zu beachten, dass auch bei Raumtemperatur fest erscheinende Paraffinwachsgemische unterschiedliche Anteile an flüssigen Paraffinölen enthalten können. Bei den erfindungsgemäß brauchbaren Paraffinwachsen liegt der Flüssiganteil bei 4O0C möglichst hoch, ohne bei dieser Temperatur schon 100 % zu betragen. Bevorzugte Paraffinwachsgemische weisen bei 4O0C einen Flüssiganteil von mindestens 50 Gew.- %, insbesondere von 55 Gew.-% bis 80 Gew.-%, und bei 6O0C einen Flüssiganteil von mindestens 90 Gew.-% auf. Dies hat zur Folge, dass die Paraffine bei Temperaturen bis hinunter zu mindestens 7O0C, vorzugsweise bis hinunter zu mindestens 6O0C fließfähig und pumpbar sind. Außerdem ist darauf zu achten, dass die Paraffine möglichst keine flüchtigen Anteile enthalten. Bevorzugte Paraffinwachse enthalten weniger als 1 Gew.-%, insbesondere weniger als 0,5 Gew.- % bei 11O0C und Normaldruck verdampfbare Anteile. Erfindungsgemäß brauchbare Paraffine können beispielsweise unter den Handelsbezeichnungen Lunaflex® der Firma Füller sowie Deawax® der DEA Mineralöl AG bezogen werden.
Die Paraffinöle können bei Raumtemperatur feste Bisamide, die sich von gesättigten Fettsäuren mit 12 bis 22, vorzugsweise 14 bis 18 C-Atomen sowie von Alkylendiaminen mit 2 bis 7 C-Atomen ableiten, enthalten. Geeignete Fettsäuren sind Laurin-, Myristin-, Stearin-, Arachin- und Behensäure sowie deren Gemische, wie sie aus natürlichen Fetten beziehungsweise gehärteten Ölen, wie Talg oder hydriertem Palmöl, erhältlich sind. Geeignete Diamine sind beispielsweise Ethylendiamin 1 ,3-Propy-lendiamin, Tetramethylendiamin, Pentamethylendiamin, Hexamethylendiamin, p-Phenylendi-amin und Toluylendiamin. Bevorzugte Diamine sind Ethylendiamin und Hexamethylendiamin. Besonders bevorzugte Bisamide sind Bis-myristoyl- ethylendiamin, Bispalmitoyl-ethylendiamin, Bis-stearoyl-ethylendi-amin und deren Gemische sowie die entsprechenden Derivate des Hexamethylendiamins. Geeignet sind auch Hexamethylendi- aminethoxylate.
Vorgenannte Inhaltsstoffe können optional Bestandteil der erfindungsgemäßen Partikel, Granulatkörner und/oder Wasch- oder Reinigungsmittel sein.
Die erfindungsgemäßen Mittel können vorzugsweise mit weiteren Bestandteilen, insbesondere von Wasch-, Pflege-, und/oder Reinigungsmitteln oder kosmetischen Inhaltsstoffen, vermischt werden. Aus dem breiten Stand der Technik ist allgemein bekannt, welche Inhaltsstoffe von Wasch-, Pflege- oder Reinigungsmitteln und welche Rohstoffe üblicherweise noch zugemischt werden können.
Vorzugsweise kann das Mittel UV-Absorber, die vorteilhafterweise auf die behandelten Textilien aufziehen und die Lichtbeständigkeit der Fasern und/oder die Lichtbeständigkeit sonstiger Rezepturbestandteile verbessern, aufweisen. Unter UV-Absorber sind organische Substanzen (Lichtschutzfilter) zu verstehen, die in der Lage sind, ultraviolette Strahlen zu absorbieren und die aufgenommene Energie in Form längerwelliger Strahlung, z.B. Wärme wieder abzugeben. Verbindungen, die diese gewünschten Eigenschaften aufweisen, sind beispielsweise die durch strahlungslose Desaktivierung wirksamen Verbindungen und Derivate des Benzophenons mit Substituenten in 2- und/oder 4-Stellung. Weiterhin sind auch substituierte Benzotriazole, in 3- Stellung Phenylsubstituierte Acrylate (Zimtsäurederivate), gegebenenfalls mit Cyanogruppen in 2- Stellung, Salicylate, organische Ni-Komplexe sowie Naturstoffe wie Umbelliferon und die körpereigene Urocansäure geeignet. Besondere Bedeutung haben Biphenyl- und vor allem Stilbenderivate, kommerziell als Tinosorb® FD oder Tinosorb® FR ex Ciba erhältlich. Als UV-B- Absorber sind zu nennen 3-Benzylidencampher bzw. 3-Benzylidennorcampher und dessen Derivate, z.B. 3-(4-Methylbenzyliden)campher; 4-Aminobenzoesäure-derivate, vorzugsweise 4-(Di- methylamino)benzoesäure-2-ethylhexylester, 4-(Dimethylamino)benzoe-säure-2-octylester und A- (Dimethylamino)benzoesäureamylester; Ester der Zimtsäure, vorzugsweise 4-Meth-oxyzimtsäure- 2-ethylhexylester, 4-Methoxyzimtsäurepropylester, 4-Methoxyzimtsäureiso-annyl-ester, 2-Cyano- 3,3-phenylzimtsäure-2-ethylhexylester (Octocrylene); Ester der Salicylsäure, vorzugs-weise Salicylsäure-2-ethylhexylester, Salicylsäure-4-isopropylbenzyl-ester, Salicylsäurehomonnenthy- lester; Derivate des Benzophenons, vorzugsweise 2-Hy-droxy-4-methoxybenzophenon, 2-Hydroxy- 4-methoxy-4'-nnethylbenzophenon, 2,2'-Dihy-droxy-4-methoxybenzophenon; Ester der Benzalmalonsäure, vorzugsweise 4-Methoxy-benzmalonsäuredi-2-ethylhexylester; Triazinderivate, wie z.B. 2,4,6-Trianilino-(p-carbo-2'-ethyl-1 '-hexyloxy)-1 ,3,5-triazin und Octyl Triazon, oder Dioctyl Butamido Triazone (Uvasorb® HEB); Propan-1 ,3-dione, wie z.B. 1-(4-tert.Butylphenyl)-3- (4'methoxyphenyl)propan-1 ,3-dion; Ketotricyclo(5.2.1.0)decan-Derivate. Weiterhin geeignet sind 2- Phenylbenzimidazol-5-sul-fonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alkylammonium-, Alkanolammonium- und Glucammoniumsalze; Sulfonsäurederivate von Benzophenonen, vorzugsweise 2-Hy-droxy-4-methoxybenzophenon-5-sulfon-säure und ihre Salze; Sulfonsäurederivate des 3-Benzylidencamphers, wie z.B. 4-(2-Oxo-3-bor-nylidenmethyl)benzol- sulfonsäure und 2-Methyl-5-(2-oxo-3-bornyliden)sulfonsäure und deren Salze.
Als typische UV-A-Filter kommen insbesondere Derivate des Benzoylmethans in Frage, wie beispielsweise 1-(4'-tert.Butylphenyl)-3-(4'-methoxyphenyl)propan-1 ,3-dion, 4-tert.-Butyl-4'- methoxydibenzoylmethan (Parsol 1789), 1-Phenyl-3-(4'-isopropylphenyl)-propan-1 ,3-dion sowie Enaminverbindungen. Die UV-A und UV-B-Filter können selbstverständlich auch in Mischungen eingesetzt werden. Neben den genannten löslichen Stoffen kommen für diesen Zweck auch unlösliche Lichtschutzpigmente, nämlich feindisperse, vorzugsweise nanoisierte Metalloxide bzw. Salze in Frage. Beispiele für geeignete Metalloxide sind insbesondere Zinkoxid und Titandioxid und daneben Oxide des Eisens, Zirkoniums, Siliciums, Mangans, Aluminiums und Cers sowie deren Gemische. Als Salze können Silicate (Talk), Bariumsulfat oder Zink-stearat eingesetzt werden. Die Oxide und Salze werden in Form der Pigmente bereits für hautpflegende und hautschützende Emulsionen und dekorative Kosmetik verwendet. Die Partikel sollten dabei einen mittleren Durchmesser von weniger als 100 nm, vorzugsweise von 5 bis 50 nm und insbesondere von 15 bis 30 nm aufweisen. Sie können eine sphärische Form aufweisen, es können jedoch auch solche Partikel zum Einsatz kommen, die eine ellipsoide oder in sonstiger Weise von der sphärischen Gestalt abweichende Form besitzen. Die Pigmente können auch oberflächenbehandelt, d.h. hydrophilisiert oder hydrophobiert vorliegen. Typische Beispiele sind gecoatete Titandioxide, wie z.B. Titandioxid T 805 (Degussa) oder Eusolex® T2000 (Merck). Als hydrophobe Coatingmittel kommen dabei vor allem Silicone und dabei speziell Trialkoxyoctylsilane oder Simethicone in Frage Vorzugsweise wird mikronisiertes Zinkoxid verwendet. Weitere geeignete UV-Licht-schutzfilter sind dem einschlägigen Stand der Technik zu entnehmen zu entnehmen.
Die UV-Absorber können vorteilhafterweise in Mengen von 0,01 Gew.-% bis 5 Gew.-%, vorzugsweise von 0,03 Gew.-% bis 1 Gew.-%, in dem Mittel enthalten sein. Sie können dem Mittel auch nachträglich, beispielsweise zusammen mit anderen Stoffen, zugemischt werden. In einer bevorzugten Ausführungsform sind die erfindungsgemäßen Partikel, Granulatkörner und/oder Wasch- oder Reinigungsmittel jedoch frei von UV-Absorber bzw. UV-A-Filter.
Vorzugsweise können die erfindungsgemäßen Wasch- oder Reinigungsmittel auch als Tablette oder Formkörper vorliegen. Als "Tablette" oder "Formkörper" werden im Rahmen der vorliegenden Anmeldung unabhängig von der Art ihrer Herstellung formstabile, feste Körper bezeichnet. Derartige Körper lassen sich beispielsweise durch Kristallisation, Formguß, Spritzguß, reaktive oder thermische Sinterung, (Co)Extrusion, Verprillung, Pastillierung, oder
Kompaktierungsverfahren wie die Kalandrierung oder Tablettierung herstellen. Die Herstellung der "Tabletten" oder "Formkörper" durch Tablettierung ist im Rahmen der vorliegenden Anmeldung besonders bevorzugt. Die Tablette besteht also vorzugsweise aus verpresstem, teilchenförmigen Material.
Erfindungsgemäße Wasch- oder Reinigungsmittel, vorzugsweise als Tablette oder Formkörper vorliegend, können vorzugsweise Desintegrationshilfsmittel enthalten. Als quellfähige Desintegrationshilfsmittel kommen beispielsweise Bentonite oder andere quellbare Silikate in Betracht. Auch synthetische Polymere, insbesondere die im Hygienebereich eingesetzten Superabsorber oder quervernetztes Polyvinylpyrrolidon, lassen sich einsetzen.
Mit besonderem Vorteil werden als quellfähige Desintegrationshilfsmittel Polymere auf der Basis von Stärke und/oder Cellulose eingesetzt. Diese Basis-Substanzen können allein oder in Mischung mit weiteren natürlichen und/oder synthetischen Polymeren zu quellfähigen Desintegrationsmitteln verarbeitet werden. Im einfachsten Fall kann ein cellulosehaltiges Material oder reine Cellulose durch Granulierung, Kompaktierung oder andere Anwendung von Druck in Sekundärpartikel überführt werden, welche bei Kontakt mit Wasser quellen und so als Sprengmittel dienen. Als cellulosehaltiges Material hat sich Holzstoff bewährt, der durch thermische oder chemischthermische Verfahren aus Hölzern bzw. Holzspänen (Sägespäne, Sägereiabfälle) zugänglich ist. Dieses Cellulosematerial aus dem TMP-Verfahren (thermo mechanical pulp) oder dem CTMP- Verfahren (chemo-thermo mechanical pulp) kann dann durch Anwendung von Druck konnpaktiert werden, vorzugsweise Walzenkompaktiert und in Partikelform überführt werden. Selbstverständlich lässt sich völlig analog auch reine Cellulose einsetzen, die allerdings von der Rohstoffbasis her teurer ist. Hier können sowohl mikrokristalline als auch amorphe feinteilige Cellulose und Mischungen derselben verwendet werden.
Ein anderer Weg besteht darin, das cellulosehaltige Material unter Zusatz von Granulierhilfsmitteln zu granulieren. Als Granulierhilfsmittel haben sich beispielsweise Lösungen synthetischer Polymere oder nichtionische Tenside bewährt. Um Rückstände auf mit den erfindungsgemäßen Mitteln gewaschenen Textilien zu vermeiden, sollte die Primärfaserlänge der eingesetzten Cellulose bzw. der Cellulose im cellulosehaltigen Material unter 200 μm liegen, wobei Primärfaserlängen unter 100 μm, insbesondere unterhalb von 50μm bevorzugt sind. Die Sekundärpartikel besitzen idealerweise eine Partikelgrößenverteilung, bei der vorzugsweise mehr als 90 Gew.-% der Partikel Größen oberhalb von 200 μm haben. Ein gewisser Staubanteil kann zu einer verbesserten Lagerstabilität der damit hergestellten Tabletten beitragen. Anteile eines Feinstaubanteils von kleiner 0,1 mm bis zu 10 Gew.-%, vorzugsweise bis zu 8 Gew.-% können in den erfindungsgemäß eingesetzten Mitteln mit Sprengmittelgranulaten vorhanden sein.
Als weitere Tenside für alle erfindungsgemäßen Mittel kommen so genannte Gemini-Tenside in Betracht. Hierunter werden im Allgemeinen solche Verbindungen verstanden, die zwei hydrophile Gruppen und zwei hydrophobe Gruppen pro Molekül besitzen. Diese Gruppen sind in der Regel durch einen sogenannten "Spacer" voneinander getrennt. Dieser Spacer ist in der Regel eine Kohlenstoffkette, die lang genug sein sollte, dass die hydrophilen Gruppen einen ausreichenden Abstand haben, damit sie unabhängig voneinander agieren können. Derartige Tenside zeichnen sich im allgemeinen durch eine ungewöhnlich geringe kritische Micellkonzentration und die Fähigkeit, die Oberflächenspannung des Wassers stark zu reduzieren, aus. In Ausnahmefällen werden jedoch unter dem Ausdruck Gemini-Tenside nicht nur dimere, sondern auch trimere Tenside verstanden.
Geeignete Gemini-Tenside sind beispielsweise sulfatierte Hydroxymischether oder Dimeralkohol- bis- und Trimeralkohol-tris-sulfate und -ether-sulfate. Endgruppenverschlossene dimere und trimere Mischether zeichnen sich insbesondere durch ihre Bi- und Multifunktionalität aus. So besitzen die genannten endgruppenverschlossenen Tenside gute Netzeigenschaften und sind dabei schaumarm, so dass sie sich insbesondere für den Einsatz in maschinellen Wasch-, Pflegeoder Reinigungsverfahren eignen.
Eingesetzt werden können aber auch Gemini-Polyhydroxyfettsäureamide oder PoIy- Polyhydroxyfett-säureamide, wie sie im einschlägigen Stand der Technik beschrieben werden.
Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der folgenden Formel,
R23
I
R-CO-N-[Z]
in der RCO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R23 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der folgenden Formel,
R24-O-R25
R-CO-N-[Z]
in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R24 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R25 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C-|.4-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propoxylierte Derivate dieses Restes.
[Z] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N- Alkoxy- oder N-Aryloxy-substituierten Verbindungen können dann beispielsweise durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.
Geeignet sind auch N-Methylglucamide.
Die erfindungsgemäßen Mittel enthalten vorzugsweise auch amphoterische Tenside. Neben zahlreichen ein- bis dreifach alkylierten Aminoxiden stellen die Betaine eine bedeutende Klasse dar.
Betaine stellen bekannte Tenside dar, die überwiegend durch Carboxyalkylierung, vorzugsweise Carboxymethylierung von aminischen Verbindungen hergestellt werden. Vorzugsweise werden die Ausgangsstoffe mit Halogencarbonsäuren oder deren Salzen, insbesondere mit Natriumchloracetat kondensiert, wobei pro Mol Betain ein Mol Salz gebildet wird. Ferner ist auch die Anlagerung von unge-sättigten Carbonsäuren, wie beispielsweise Acrylsäure möglich. Zur Nomenklatur und insbesondere zur Unterscheidung zwischen Betainen und "echten" Amphotensiden sei auf die einschlägige Fachliteratur hingewiesen. Beispiele für geeignete Betaine stellen die Carboxy- alkylierungsprodukte von sekundären und insbesondere tertiären Aminen dar, die der Formel (IX) folgen, R27
I
R26-N-(CH2)nCOOX1 (IX)
I
R28
in der R26 für Alkyl- und/oder Alkenylreste mit 6 bis 22 Kohlenstoffatomen, R27 für Wasserstoff oder Alkylreste mit 1 bis 4 Kohlenstoffatomen, R28 für Alkylreste mit 1 bis 4 Kohlen-stoffatomen, n für Zahlen von 1 bis 6 und X1 für ein Alkali- und/oder Erdalkalimetall oder Ammonium steht. Typische Beispiele sind die Carboxymethylierungsprodukte von Hexylmethylamin, Hexyldimethylamin, Octyldimethylamin, Decyldimethylamin, Dodecylmethylamin, Dodecyldimethylamin, Dodecylethylmethylamin, C12/i4-Kokosalkyldimethylamin, Myristyldimethylamin, Cetyldimethylamin, Stearyldimethylamin, Stearylethyl-methylamin, Oleyldimethylamin, Ci6/i8-Talgalkyldimethylamin sowie deren technische Gemische.
Weiterhin kommen auch Carboxyalkylierungsprodukte von Amidoaminen in Betracht, die der Formel (X) folgen,
R29
R31CO-NH-(CH2)m-N-(CH2)nCOOX2 (X)
I
R30
in der R31CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen und 0 oder 1 bis 3 Doppelbindungen, m für Zahlen von 1 bis 3 steht und R29, R30, n und X2 die oben angegebenen Bedeutungen haben. Typische Beispiele sind Umsetzungsprodukte von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, namentlich Capronsäure, Caprylsäure, Caprin-säure, Laurinsäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidin- säure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearin-säure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Gemische, mit N, N- Dimethylaminoethylamin, N,N-Dimethylaminopropylamin, N,N-Diethylaminoethylamin und N, N- Diethylaminopropylamin, die mit Natriumchloracetat kondensiert werden. Bevorzugt ist der Einsatz eines Kondensationsproduktes von C8/i8-Kokosfettsäure-N,N-dimethylaminopropylamid mit Natriumchloracetat.
Weiterhin kommen als geeignete Ausgangsstoffe für die im Sinne der Erfindung optional einsetzbaren Betaine auch Imidazoline in Betracht, die der Formel (Xl) folgen,
Figure imgf000059_0001
in der R32 für einen Alkylrest mit 5 bis 21 Kohlenstoffatomen, R33 für eine Hydroxylgruppe, einen OCOR32- oder NHCOR32-Rest und m für 2 oder 3 steht. Auch bei diesen Substanzen handelt es sich um bekannte Stoffe, die beispielsweise durch cyclisierende Kondensation von 1 oder 2 Mol Fettsäure mit mehrwertigen Aminen, wie beispielsweise Aminoethyl-ethanolamin (AEEA) oder Diethylentriamin erhalten werden können. Die entsprechenden Carboxyalkylierungsprodukte stellen Gemische unterschiedlicher offenkettiger Betaine dar. Typische Beispiele sind Kondensationsprodukte der oben genannten Fettsäuren mit AEEA, vorzugsweise Imidazoline auf Basis von Laurinsäure oder wiederum Ci2/i4-Kokosfettsäure, die anschließend mit Natriumchloracetat betainisiert werden.
Lösemittel, die in den erfindungsgemäßen Mitteln enthalten sein können, stammen beispielsweise aus der Gruppe ein- oder mehrwertigen Alkohole, Alkanolamine oder Glycolether. Vorzugsweise werden die Lösemittel ausgewählt aus Ethanol, n- oder i-Propanol, Butanolen, Glykol, Propanoder Butandiol, Glycerin, Diglykol, Propyl- oder Butyldiglykol, Hexylenglycol, Ethylenglykolmethylether, Ethylenglykolethylether, Ethylen-glykolpropylether, Ethylenglykolmono-n- butylether, Diethylenglykol-methylether, Diethylenglykolethylether, Propylenglykolmethyl-, -ethyl- oder -propyl-ether, Butoxy-propoxy-propanol (BPP), Dipropylenglykolmonomethyl-, oder - ethylether, Di-isopropylenglykol-monomethyl-, oder -ethylether, Methoxy-, Ethoxy- oder Butoxytriglykol, 1-Butoxyethoxy-2-propanol, 3-Methyl-3-methoxybutanol, Propylen-glykol-t- butylether sowie Mischungen dieser Lösemittel.
Einige Glykolether sind unter den Handelsnamen Arcosolv® (Arco Chemical Co.) oder Cellosolve®, Carbitol® oder Propasol® (Union Carbide Corp.) erhältlich; dazu gehören auch z.B. ButylCarbitol®, HexylCarbitol®, MethylCarbitol®, und Carbitol® selbst, (2-(2-Ethoxy)ethoxy)ethanol. Die Wahl des Glykolethers kann vom Fachmann leicht auf der Basis seiner Flüchtigkeit, Wasserlöslichkeit, seines Gewichtsprozentanteils an der gesamten Dispersion und dergleichen getroffen werden. Pyrrolidon-Lösemittel, wie N-Alkyl-pyrrolidone, beispielsweise N-Methyl-2-pyrrolidon oder N-C8-Ci2- Alkyl-pyrrolidon, oder 2-Pyrrolidon, können ebenfalls eingesetzt werden. Weiterhin bevorzugt als alleinige Lösemittel oder als Bestandteil eines Lösemittelgemisches sind Glycerinderivate, insbesondere Glycerincarbonat.
Zu den Alkoholen, die in den erfindungsgemäßen Mitteln enthalten sein können, gehören flüssige Polyethylenglykole, mit niederem Molekulargewicht, beispielsweise Polyethylenglykole mit einem Molekulargewicht von 200, 300, 400 oder 600. Weitere geeignete Cosolventien sind andere Alkohole, zum Beispiel (a) niedere Alkohole wie Ethanol, Propanol, Isopropanol und n-Butanol, (b) Ketone wie Aceton und Methylethylketon, (c) C2-C4-Polyole wie ein Diol oder ein Triol, beispielsweise Ethylenglykol, Propylenglykol, Glycerin oder Gemische davon. Insbesondere bevorzugt ist aus der Klasse der Diole 1 ,2-Octandiol.
In einer bevorzugten Ausführungsform enthält das erfindungsgemäße Mittel ein oder mehrere Lösemittel aus der Gruppe, umfassend C1- bis C4-Monoalko-hole, C2- bis C6-Glykole, C3- bis C12- Glykolether und Glycerin, insbesondere Ethanol. Die erfindungsgemäßen C3- bis C12-Glykolether enthalten Alkyl- bzw. Alkenylgruppen mit weniger als 10 Kohlenstoffatomen, vorzugsweise bis zu 8, insbesondere bis zu 6, besonders bevorzugt 1 bis 4 und äußerst bevorzugt 2 bis 3 Kohlenstoffatomen.
Bevorzugte C1- bis C4-Monoalkohole sind Ethanol, n-Propanol, /so-Propanol und terf-Butanol. Bevorzugte C2- bis C6-Glykole sind Ethylenglykol, 1 ,2-Propylenglykol, 1 ,3-Propylenglykol, 1 ,5- Pentandiol, Neopentylglykol und 1 ,6-Hexandiol, insbesondere Ethylenglykol und 1 ,2- Propylenglykol. Bevorzugte C3- bis C12-Glykolether sind Di-, Tri-, Tetra- und Pentaethylenglykol, Di- , Tri-und Tetrapropylenglykol, Propylenglykolmonotertiärbutylether und Propylenglykolmono- ethylether sowie die gemäß INCI bezeichneten Lösemittel Butoxydiglycol, Butoxyethanol, Butoxyisopropanol, Butoxypropanol, Butyloctanol, Ethoxydiglycol, Ethoxyethanol, Ethyl Hexanediol, Isobutoxypropanol, Isopentyldiol, 3-Methoxybutanol, Methoxyethanol, Methoxyisopropanol und Methoxymethylbutanol.
Das erfindungsgemäße Mittel kann ein oder mehrere Lösemittel nur in solchen Mengen enthalten, so das es immer noch ein Feststoff ist.
In einer bevorzugten Ausführungsform kann das erfindungsgemäße Mittel, vorzugsweise Waschoder Reinigungsmittel, gegebenenfalls ein oder mehrere Komplexbildner enthalten.
Komplexbildner (INCI Chelating Agents), auch Sequestriermittel genannt, sind Inhaltsstoffe, die Metallionen zu komplexieren und inaktivieren vermögen.
Geeignet sind beispielsweise die folgenden gemäß INCI bezeichneten Komplexbildner, die beispielsweise im International Cosmetic Ingredient Dictionary and Handbook näher beschrieben sind: Aminotrimethylene Phosphonic Acid, Beta-Alanine Diacetic Acid, Calcium Disodium EDTA, Citric Acid, Cyclodextrin, Cyclohexanediamine Tetraacetic Acid, Diammonium Citrate, Diammonium EDTA, Diethylenetriamine Pentamethylene Phosphonic Acid, Dipotassium EDTA, Disodium Azacycloheptane Diphosphonate, Disodium EDTA, Disodium Pyrophosphate, EDTA, Etidronic Acid, Galactaric Acid, Gluconic Acid, Glucuronic Acid, HEDTA, Hydroxypropyl Cyclodextrin, Methyl Cyclodextrin, Pentapotassium Triphosphate, Pentasodium Aminotrimethylene Phosphonate, Pentasodium Ethylenediamine Tetramethylene Phosphonate, Pentasodium Pentetate, Pentasodium Triphosphate, Pentetic Acid, Phytic Acid, Potassium Citrate, Potassium EDTMP, Potassium Gluconate, Potassium Polyphosphate, Potassium Trisphosphonomethylamine Oxide, Ribonic Acid, Sodium Chitosan Methylene Phosphonate, Sodium Citrate, Sodium Diethylenetriamine Pentamethylene Phosphonate, Sodium Dihydroxyethylglycinate, Sodium EDTMP, Sodium Gluceptate, Sodium Gluconate, Sodium Glycereth-1 Polyphosphate, Sodium Hexametaphosphate, Sodium Metaphosphate, Sodium Metasilicate, Sodium Phytate, Sodium Polydimethylglycinophenolsulfonate, Sodium Trimetaphosphate, TEA-EDTA, TEA-Polyphos-phate, Tetrahydroxyethyl Ethylenediamine, Tetrahydroxypropyl Ethylenediamine, Tetrapotassium Etidronate, Tetrapotassium Pyrophosphate, Tetrasodium EDTA, Tetrasodium Etidronate, Tetrasodium Pyrophosphate, Tripotassium EDTA, Trisodium Dicarboxymethyl Alaninate, Trisodium EDTA, Trisodium HEDTA, Trisodium NTA und Trisodium Phosphate.
Bevorzugte Komplexbildner sind tertiäre Amine, insbesondere tertiäre Alkanolamine (Ami- noalkohole). Die Alkanolamine besitzen sowohl Amino- als auch Hydroxy- und/oder Ether-gruppen als funktionelle Gruppen. Besonders bevorzugte tertiäre Alkanolamine sind Tri-ethanolamin und Tetra-2-hydroxypro-pylethylendiamin (N,N,N',N'-Tetrakis-(2-hydroxy-pro-pyl)ethylendiamin).
Ein besonders bevorzugter Komplexbildner ist die Etidronsäure (1-Hydroxyethyliden-1 ,1- diphosphon-säure, 1-Hydroxyethyan-1 ,1-diphosphonsäure, HEDP, Acetophosphonsäure, INCI Etidronic Acid) einschließlich ihrer Salze. In einer bevorzugten Ausführungsform enthält das erfindungsgemäße Mittel demgemäß als Komplexbildner Etidronsäure und/oder eines oder mehrere ihrer Salze.
In einer besonderen Ausführungsform enthält das erfindungsgemäße Mittel eine Komplexbildnerkombination aus einem oder mehreren tertiären Aminen und einer oder mehreren weiteren Komblexbildnern, vorzugsweise einer oder mehreren Komplexbildnersäuren oder deren Salzen, insbesondere aus Triethanolamin und/oder Tetra-2-hydroxypropylethylendiamin und Etidronsäure und/oder einem oder mehrerer ihrer Salze.
Das erfindungsgemäße Wasch- oder Reinigungsmittel enthält vorteilhafterweise Komplexbildner in einer Menge von üblicherweise 0 bis 20 Gew.-%, vorzugsweise 0,1 bis 15 Gew.-%, insbesondere 0,5 bis 10 Gew.-%, besonders bevorzugt 1 bis 8 Gew.-%, äußerst bevorzugt 1 ,5 bis 6 Gew.-%, bezogen auf das gesamte Wasch- oder Reinigungsmittel.
In einer weiteren bevorzugten Ausführungsform enthält das erfindungsgemäße Mittel gegebenenfalls ein oder mehrere Enzyme. Als Enzyme kommen insbesondere solche aus der Klassen der Hydrolasen wie der Proteasen, Esterasen, Lipasen bzw. lipolytisch wirkende Enzyme, Amylasen, Cellulasen bzw. andere Glykosylhydrolasen und Gemische der genannten Enzyme in Frage. Alle diese Hydrolasen tragen in der Wäsche zur Entfernung von Verfleckungen wie protein-, fett- oder stärkehaltigen Verfleckungen und Vergrauungen bei. Cellulasen und andere Glykosylhydrolasen können darüber hinaus durch das Entfernen von Pilling und Mikrofibrillen zur Farberhaltung und zur Erhöhung der Weichheit des Textils beitragen. Zur Bleiche bzw. zur Hemmung der Farbübertragung können auch Oxireduktasen eingesetzt werden.
Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen wie Bacillus subtilis, Bacillus licheniformis, Streptomyceus griseus und Humicola insolens gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease und Cellulase oder aus Cellulase und Lipasebzw. lipolytisch wirkenden Enzymen oder aus Protease, Amylase und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease, Lipase bzw. lipolytisch wirkenden Enzymen und Cellulase, insbesondere jedoch Protease und/oder Lipase-haltige Mischungen bzw. Mischungen mit lipolytisch wirkenden Enzymen von besonderem Interesse. Beispiele für derartige lipolytisch wirkende Enzyme sind die bekannten Cutinasen. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Zu den geeigneten Amylasen zählen insbesondere α-Amylasen, Iso-Amylasen, Pullulanasen und Pektinasen. Als Cellulasen werden vorzugsweise Cellobiohydrolasen, Endoglucanasen und ß-Glucosidasen, die auch Cellobiasen genannt werden, bzw. Mischungen aus diesen eingesetzt. Da sich verschiedene Cellulase-Typen durch ihre CMCase- und Avicelase-Aktivitäten unterscheiden, können durch gezielte Mischungen der Cellulasen die gewünschten Aktivitäten eingestellt werden. Besonders vorteilhaft ist es, wenn die erfindungsgemäßen Mittel Mannanase enthalten. Dies entspricht einer bevorzugten Ausführungsform der Erfindung. Es konnte gefunden werden, das die Mannanase im Verbund mit dem photokatalytischen Material eine besonders gute Wirkung bei der Schmutzablösung von galactomannanhaltigen Rückständen erbrachte. Auch der Einsatz von Tannase ist bevorzugt.
Die Enzyme können als Formkörper an Trägerstoffe adsorbiert oder gecoated eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymmischungen oder Enzymgranulate kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,12 bis etwa 2 Gew.- % betragen, bezogen auf das gesamte Wasch- oder Reinigungsmittel.
Die erfindungsgemäßen Mittel, vorzugsweise Wasch- oder Reinigungsmittel, können Bleichmittel enthalten. Unter den als Bleich-mittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natriumpercarbonat, das Natriumperborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Peroxopyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Persulfate beziehungsweise Perschwefelsäure. Brauchbar ist auch das Harnstoffperoxohydrat Percarbamid, das durch die Formel H2N-CO-NH2 H2O2 beschrieben werden kann. Insbesondere beim Einsatz der Mittel für das Reinigen harter Oberflächen, zum Beispiel beim maschinellen Geschirrspülen, können sie gewünschtenfalls auch Bleichmittel aus der Gruppe der organischen Bleichmittel enthalten, obwohl deren Einsatz prinzipiell auch bei Mitteln für die Textilwäsche möglich ist. Typische organische Bleichmittel sind die Diacylperoxide, wie zum Beispiel Dibenzoylperoxid. Weitere typische organische Bleichmittel sind die Peroxysäuren, wobei als Beispiele besonders die Alkylperoxysäuren und die Arylperoxysäuren genannt werden. Bevorzugte Vertreter sind die Peroxybenzoesäure und ihre ringsubstituierten Derivate, wie Alkylperoxybenzoesäuren, aber auch Peroxy-α-Naphtoesäure und Magnesium-monoperphthalat, die aliphatischen oder substituiert ali- phatischen Peroxysäuren, wie Peroxylaurinsäure, Peroxystearinsäure, ε-Phthalimidoper- oxycapronsäure (Phthalimidoperoxyhexansäure, PAP), o-Carboxybenzamidoperoxycapronsäure, N-Nonenylamidoperadipinsäure und N-Nonenylamidopersuccinate, und aliphatische und araliphatische Peroxydicarbonsäuren, wie 1 ,12-Diperoxycarbonsäure, 1 ,9-Diperoxyazelainsäure, Diperoxysebacinsäure, Diperoxybrassylsäure, die Diperoxyphthalsäuren, 2-Decyl-diperoxybutan- 1 ,4-disäure, N,N-Terephthaloyl-di(6-aminopercapronsäure) können eingesetzt werden.
Die Bleichmittel können vorzugsweise gecoated sein, um sie gegen vorzeitige Zersetzung zu schützen.
Das erfindungsgemäße Wasch- oder Reinigungsmittel kann vorzugsweise einen oder mehrere antimikrobielle Wirkstoffe bzw. Konservierungsmittel in einer Menge von üblicherweise 0,0001 bis 3 Gew.-%, vorzugsweise 0,0001 bis 2 Gew.-%, insbesondere 0,0002 bis 1 Gew.-%, besonders bevorzugt 0,0002 bis 0,2 Gew.-%, äußerst bevorzugt 0,0003 bis 0,1 Gew.-%, enthalten.
Antimikrobielle Wirkstoffe bzw. Konservierungsmittel unterscheidet man je nach antimikro-biellem Spektrum und Wirkungsmechanismus zwischen Bakteriostatika und Bakteriziden, Fungistatika und Fungiziden usw. Wichtige Stoffe aus diesen Gruppen sind beispielsweise Benzalkoniumchloride, Alkylarylsulfonate, Halogenphenole und Phenolmercuriacetat. Die Begriffe antimikrobielle Wirkung und antimikrobieller Wirkstoff haben im Rahmen der erfindungsgemäßen Lehre die fachübliche Bedeutung. Geeignete antimikrobielle Wirkstoffe sind vorzugsweise ausgewählt aus den Gruppen der Alkohole, Amine, Aldehyde, antimikrobiellen Säuren bzw. deren Salze, Carbonsäureester, Säureamide, Phenole, Phenolderivate, Diphenyle, Diphenylalkane, Harnstoffderivate, Sauerstoff-, Stickstoff-acetale sowie -formale, Benzamidine, Isothiazoline, Phthalimidderivate, Pyridinderivate, antimikrobiellen oberflächenaktiven Verbindungen, Guanidine, antimikrobiellen amphoteren Verbindungen, Chinoline, 1 ,2-Dibrom-2,4-di-cyanobutan, lodo-2-propyl-butyl-carbamat, lod, lodophore, Peroxoverbindungen, Halogenverbindungen sowie beliebigen Gemischen der voranstehenden.
Der antimikrobielle Wirkstoff kann dabei ausgewählt sein aus Ethanol, n-Propanol, i-Pro-panol, 1 ,3- Butandiol, Phenoxyethanol, 1 ,2-Propylenglykol, Glycerin, Undecylensäure, Benzoesäure, Salicylsäure, Dihydracetsäure, o-Phenylphenol, N-Methylmorpholin-aceto-nitril (MMA), 2-Benzyl-4- chlorphenol, 2,2'-Methylen-bis-(6-brom-4-chlorphenol), 4,4'-Di-chlor-2'-hydroxydiphenylether (Dichlosan), 2,4,4'-Trichlor-2'-hydroxydiphenylether (Trichlosan), Chlorhexidin, N-(4-Chlorphenyl)- N-(3,4-dichlorphenyl)-harnstoff, N,N'-(1 ,10-decan-diyldi-1-pyridinyl-4-yliden)-bis-(1-octanamin)- dihydrochlorid, N,N'-Bis-(4-chlorphenyl)-3,12-diimino-2,4,11 ,13-tetraaza-tetradecandiinnidannid, Glucoprotaminen, antimikrobiellen oberflächenaktiven quaternären Verbindungen, Guanidinen einschl. den Bi- und Polyguani-dinen, wie beispielsweise 1 ,6-Bis-(2-ethylhexyl-biguanido-hexan)- dihydrochlorid, 1 , 6-Di-(N1, N-ι'-phenyldiguanido-N5,N5')-hexan-tetrahydochlorid, 1 ,6-Di-(N11N1'- phenyl-N-i.N-i-methyldiguanido-Ns.Ns^-hexan-dihydro-chlorid, 1 ,6-Di-(N1, N1 '-o-chloro- phenyldiguanido- N5,N5')-hexan-dihydrochlorid, i .θ-Di^N-i.N-i'^.θ-dichlorophenyldiguanido-Ns.Ns')- hexan-dihydrochlorid, 1 , 6-Di-[N1, N^-beta-φ-methoxyphenyO diguanido-Ns.Ns'J-hexane-dihy- drochlorid, 1 , 6-Di-(N1, N-i'-alpha-methyl-.beta.-phenyldiguanido-Ns.Ns^-hexan-dihydro-chlorid, 1 ,6- Di-(N1, N1 '-p-nitrophenyldiguanido-N5,N5')hexan-dihydrochlorid, omega:onnega-Di-( N11N1'- phenyldiguanido-N5,N5')-di-n-propylether-dihydrochlorid, omega:onnega'-Di-(N1,N1'-p-chlorophe- nyldiguanido-N5,N5')-di-n-propylether-tetrahydrochlorid, 1 ,6-Di-(N-i,N-i'-2,4-dichlorophenyldiguanido- N5,N5')hexan-tetrahydrochlorid, 1 ,6-Di-(N1, N1 '-p-methylphe-nyldiguanido-N5,N5')hexan- dihydrochlorid, 1 , 6-Di-(N1, Ni'-2, 4, 5-trichlorophenyldi-guanido-N5,N5')hexan-tetrahydrochlorid, 1 ,6- Di-[N1, N-ι'-alpha-(p-chlorophenyl) ethyldiguanido-N5,N5'] hexan-dihydrochlorid, omega:omega-Di- (N-i.N-i'-p-chlorophe-nyldiguanido-Ns.Ns^m-xylene-dihydrochlorid, 1 ,12-Di-(N1, N1 '-p- chlorophenyldiguanido-N5,N5') dodecan-dihydro-chlorid, 1 ,10-Di-(N1, N1 '-phenyldiguanido-N5, N5')- decan-tetrahydrochlorid, 1 , 12-Di-(N1, N-i'-phenyldiguanido- N5, N5') dodecan-tetrahydrochlorid, 1 ,6- Di-(N1, N-i'-o-chlorophenyldi-guanido- N5, N5') hexan-dihydrochlorid, 1 , 6-Di-(N1, N-i'-o-chlorophenyl- diguanido- N5, N5') hexan-tetrahydrochlorid, Ethylen-bis-(1 -tolyl biguanid), Ethylen-bis-(p-tolyl biguanide), Ethylen-bis-(3,5-dimethylphenylbiguanid), Ethylen-bis-(p-tert-amylphenylbiguanid), Ethylen-bis-(nonylphenylbiguanid), Ethylen-bis-(phenylbi-guanid), Ethylen-bis-(N-butylphenylbi- guanid), Ethylen-bis (2,5-diethoxyphenylbiguanid), Ethylen-bis (2,4-dimethylphenyl biguanid), Ethylen-bis (o-diphenylbiguanid), Ethylen-bis (mixed amyl naphthylbiguanid), N-Bu- tyl-ethylen-bis- (phenylbiguanid), Trimethylen bis (o-tolylbiguanid), N-Butyl-trimethyle- bis-(phenyl biguanide) und die entsprechenden Salze wie Acetate, Gluconate, Hydrochloride, Hydrobromide, Citrate, Bisulfite, Fluoride, Polymaleate, N-Cocosalkylsarcosinate, Phosphite, Hypophosphite, Perfluorooctanoate, Silicate, Sorbate, Salicylate, Maleate, Tartrate, Fumarate, Ethylendiamintetraacetate, Iminodiacetate, Cinnamate, Thiocyanate, Arginate, Pyromellitate, Tetracarboxybutyrate, Benzoate, Glutarate, Monofluorphosphate, Perfluorpropionate sowie beliebige Mischungen davon. Weiterhin eignen sich halogenierte XyIoI- und Kresolderivate, wie p-Chlormetakresol oder p-Chlormetaxylol, sowie natürliche antimikrobielle Wirkstoffe pflanzlicher Herkunft (z.B. aus Gewürzen oder Kräutern), tierischer sowie mikrobieller Herkunft. Vorzugsweise können antimikrobiell wirkende oberflächenaktive quaternäre Verbindungen, ein natürlicher antimikrobieller Wirkstoff pflanzlicher Herkunft und/oder ein natürlicher antimikrobieller Wirkstoff tierischer Herkunft, äußerst bevorzugt mindestens ein natürlicher antimikrobieller Wirkstoff pflanzlicher Herkunft aus der Gruppe, umfassend Coffein, Theobromin und Theophyllin sowie etherische Öle wie Eugenol, Thymol und Geraniol, und/ oder mindestens ein natürlicher antimikrobieller Wirkstoff tierischer Herkunft aus der Gruppe, umfassend Enzyme wie Eiweiß aus Milch, Lysozym und Lactoperoxidase, und/ oder mindestens eine antimikrobiell wirkende oberflächenaktive quaternäre Verbindung mit einer Ammonium-, Sulfonium-, Phosphonium-, lodonium- oder Arsoniumgruppe, Peroxoverbindungen und Chlorverbindungen eingesetzt werden. Auch Stoffe mikrobieller Herkunft, sogenannte Bakteriozine, können eingesetzt werden. Vorzugsweise finden Glycin, Glycinderivate, Formaldehyd, Verbindungen, die leicht Formaldehyd abspalten, Ameisensäure und Peroxide Verwendung.
Die als antimikrobielle Wirkstoffe geeigneten quaternären Ammoniumverbindungen (QAV) sind oben schon beschrieben worden. Besonders geeignet ist beispielsweise Benzalkoniumchlorid etc. Benzalkoniumhalogenide und/ oder substituierte Benzalkoniumhalogenide sind beispielsweise kommerziell erhältlich als Barquat® ex Lonza, Marquat® ex Mason, Variquat® ex Witco/ Sherex und Hyamine® ex Lonza, sowie Bardac® ex Lonza. Weitere kommerziell erhältliche antimikrobielle Wirkstoffe sind N-(3-Chlorallyl)-hexaminiumchlorid wie Dowicide® und Dowicil® ex Dow, Benzethoniumchlorid wie Hyamine® 1622 ex Rohm & Haas, Methylbenzethoniumchlorid wie Hyamine® 1OX ex Rohm & Haas, Cetylpyridiniumchlorid wie Cepacolchlorid ex Merrell Labs.
Weiterhin können die erfindungsgemäßen Mittel, vorzugsweise Wasch- oder Reinigungsmittel, gegebenenfalls Bügelhilfsstoffe zur Verbesserung des Wasserabsorptionsvermögens, der Wiederbenetzbarkeit der behandelten Textilien und zur Erleichterung des Bügeins der behandelten Textilien enthalten. Es können in den Formulierungen beispielsweise Silikonderivate eingesetzt werden. Diese verbessern zusätzlich das Ausspülverhalten der waschaktiven Formulierungen durch ihre schauminhibierenden Eigenschaften. Bevorzugte Silikonderivate sind beispielsweise Polydialkyl- oder Alkylarylsiloxane, bei denen die Alkylgruppen ein bis fünf C-Atome aufweisen und ganz oder teilweise fluoriert sind. Bevorzugte Silikone sind Polydimethylsiloxane, die gegebenenfalls derivatisiert sein können und dann aminofunktionell oder quaterniert sind bzw. Si- OH-, Si-H- und/oder Si-Cl-Bindungen aufweisen. Die erfindungsgemäßen Mittel können vorzugsweise auch mit Parfümöl (Riechstoffe, Duftstoffe) parfümiert sein.
Mit dem Begriff Parfümöl sind vorzugsweise in sich abgeschlossene Duftstoffkompositionen gemeint, welche gemeinhin zur Produktbeduftung eingesetzt werden und insbesondere nach menschlichem Ermessen wohlriechend sind. Dies sei an einem Beispiel erläutert. Will ein Fachmann z.B. ein Duschgel wohlriechend machen, so fügt er ihm für gewöhnlich nicht nur eine (wohl-)riechende Substanz, sondern ein Kollektiv (wohl-)riechender Substanzen bei. Ein solches Kollektiv besteht gewöhnlich aus einer Vielzahl einzelner Riechstoffe, z.B. mehr als 10 oder 15, vorzugsweise bis zu 100 oder mehr. Diese Reichstoffe formen zusammenwirkend ein gewünschtes wohlriechendes, harmonisches Geruchsbild.
Ein erfindungsgemäßes Parfümöl kann einzelne Riechstoffverbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe enthalten. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.- Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat (DMBCA), Phenylethylacetat, Benzylacetat, Ethylmethylphenylglycinat, Allylcyclohexyl-propionat, Styrallylpropionat, Benzylsalicylat, Cyclohexylsalicylat, Floramat, Melusat und Jasmecyclat. Zu den Ethern zählen beispielsweise Benzylethylether und Ambroxan , zu den Aldehyden z.B. die linearen Alkanale mit 8 - 18 C-Atomen, Citral, Citronellal, Citronellyloxy-acetaldehyd, Cyclamenaldehyd, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, °c-|somethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote des gebildeten Parfümöl erzeugen.
Die Parfümöle können aber auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller-Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl. Um wahrnehmbar zu sein, muß ein Riechstoff flüchtig sein, wobei neben der Natur der funktionellen Gruppen und der Struktur der chemischen Verbindung auch die Molmasse eine wichtige Rolle spielt. So besitzen die meisten Riechstoffe Molmassen bis etwa 200 Dalton, während Molmassen von 300 Dalton und darüber eher eine Ausnahme darstellen. Aufgrund der unterschiedlichen Flüchtigkeit von Riechstoffen verändert sich der Geruch eines aus mehreren Riechstoffen zusammengesetzten Parfüms während des Verdampfens, wobei man die Geruchseindrücke in „Kopfnote" (top note), „Herz- bzw. Mittelnote" (middle note bzw. body) sowie „Basisnote" (end note bzw. dry out) unterteilt.
Haftfeste Riechstoffe, die im Rahmen der vorliegenden Erfindung vorteilhafterweise in den Parfümölen einsetzbar sind, sind beispielsweise die ätherischen Öle wie Angelikawurzelöl, Anisöl, Arnikablütenöl, Basilikumöl, Bayöl, Champacablütenöl, Edeltannenöl, Edeltannenzapfenöl, Elemiöl, Eukalyptusöl, Fenchelöl, Fichtennandelöl, Galbanumöl, Geraniumöl, Gingergrasöl, Guajakholzöl, Gurjunbalsamöl, Helichrysumöl, Ho-Öl, Ingweröl, Irisöl, Kajeputöl, Kalmusöl, Kamillenöl, Kampferöl, Kanagaöl, Kardamomenöl, Kassiaöl, Kiefernnadelöl, Kopaϊvabalsamöl, Korianderöl, Krauseminzeöl, Kümmelöl, Kuminöl, Lemongrasöl, Moschuskörneröl, Myrrhenöl, Nelkenöl, Neroliöl, Niaouliöl, Olibanumöl, Origanumöl, Palmarosaöl, Patschuliöl, Perubalsamöl, Petitgrainöl, Pfefferöl, Pfefferminzöl, Pimentöl, Pine-Öl, Rosenöl, Rosmarinöl, Sandelholzöl, Sellerieöl, Sternanisöl, Thujaöl, Thymianöl, Verbenaöl, Vetiveröl, Wacholderbeeröl, Wermutöl, Wintergrünöl, Ylang -Ylang-Öl, Ysop-Öl, Zimtöl, Zimtblätteröl sowie Zypressenöl.
Aber auch die höhersiedenden bzw. festen Riechstoffe natürlichen oder synthetischen Ursprungs können im Rahmen der vorliegenden Erfindung vorteilhafterweise als haftfeste Riechstoffe bzw. Riechstoffgemische in den Parfümölen eingesetzt werden. Zu diesen Verbindungen zählen die nachfolgend genannten Verbindungen sowie Mischungen aus diesen: Ambrettolid, α- Amylzimtaldehyd, Anethol, Anisaldehyd, Anisalkohol, Anisol, Anthranilsäuremethylester, Acetophenon, Benzylaceton, Benzaldehyd, Benzoesäureethylester, Benzophenon, Benzylakohol, Borneol, Bornylacetat, α-Bromstyrol, n-Decylaldehyd, n-Dodecylaldehyd, Eugenol, Eugenolmethylether, Eukalyptol, Farnesol, Fenchon, Fenchylacetat, Geranylacetat, Geranylformiat, Heliotropin, Heptincarbonsäuremethylester, Heptaldehyd, Hydrochinon-Di-methylether, Hydroxyzimtaldehyd, Hydroxyzimtalkohol, Indol, Iron, Isoeugenol, Isoeugenolmethylether, Iso- safrol, Jasmon, Kampfer, Karvakrol, Karvon, p- Kresolmethylether, Cumarin, p- Methoxyacetophenon, Methyl-n-amylketon, Methylanthranilsäuremethylester, p-Methyl- acetophenon, Methylchavikol, p-Methylchinolin, Methyl-ß-naphthylketon, Methyl-n-nonyl- acetaldehyd, Methyl-n-nonylketon, Muskon, ß-Naphtholethylether, ß-Naphthol-methylether, Nerol, Nitrobenzol, n-Nonylaldehyd, Nonylakohol, n-Octylaldehyd, p-Oxy-Acetophenon, Pentadekanolid, ß-Phenylethylakohol, Phenylacetaldehyd-Dimethylacetal, Phenylessigsäure, Pulegon, Safrol, Salicylsäureisoamylester, Salicylsäuremethylester, Salicylsäurehexylester, Salicylsäure- cyclohexylester, Santalol, Skatol, Terpineol, Thymen, Thymol, γ-Undelacton, Vanilin, Veratrumaldehyd, Zimtaldehyd, Zimtalkohol, Zimtsäure, Zimtsäureethylester, Zimtsäurebenzylester. Zu den leichter flüchtigen Riechstoffen, die im Rahmen der vorliegenden Erfindung in den Parfümöl vorteilhaft einsetzbar sind, zählen insbesondere die niedriger siedenden Riechstoffe natürlichen oder synthetischen Usprung, die allein oder in Mischungen eingesetzt werrden können. Beispiele für leichter flüchtige Riechstoffe sind Alkyisothiocyanate (Alkylsenföle), Butandion, Limonen, Linalool, Linaylacetat und -propionat, Menthol, Menthon, Methyl-n-hep-tenon, Phellandren, Phenylacetaldehyd, Terpinylacetat, Zitral, Zitronellal.
Alle vorgenannten Riechstoffe sind alleine oder in Mischung in den Parfümölen gemäß der vorliegenden Erfindung mit den bereits genannten Vorteilen einsetzbar.
Insbesondere können auch Duftsstoffe aus der Gruppe der Allylalkoholester, Ester sekundärer Alkohole, Ester tertiärer Alkohole, allylische Ketone, Acetale, Ketale, Kondensationsprodukte von Aminen und Aldehyden und/oder deren Mischungen im Parfümöl enthalten sein.
In einer bevorzugten Ausführungsform enthält das erfindungsgemäße Mittel bestimmte Minimalwerte an Parfümöl, nämlich zumindest 0,00001 Gew.-%, vorteilhafterweise zumindest 0,0001 Gew.-%, in beträchtlich vorteilhafter weise zumindest 0,001 Gew.-%, in vorteilhafterer Weise zumindest 0,01 Gew.-%, in weiter vorteilhafter Weise zumindest 0,1 Gew.-%, in noch weiter vorteilhafter Weise zumindest 0,2 Gew.-%, in sehr vorteilhafter Weise zumindest 0,3 Gew.-%, in besonders vorteilhafter Weise zumindest 0,4 Gew.-%, in ganz besonders vorteilhafter weise zumindest 0,45 Gew.-%, in erheblich vorteilhafter Weise zumindest 0,5 Gew.-%, in ganz erheblich vorteilhafter Weise zumindest 0,55 Gew.-%, in äußerst vorteilhafter Weise zumindest 0,6 Gew.-%, in höchst vorteilhafterweise zumindest 0,65 Gew.-%, in überaus vorteilhafterweise zumindest 0,7 Gew.-%, in ausnehmend vorteilhafter Weise zumindest 0,75 Gew.-%, in außergewöhnlich vorteilhafter Weise zumindest 0,8 Gew.-%, in außerordentlich vorteilhafter Weise zumindest 0,85 Gew.-%, insbesondere zumindest 0,9 Gew.-% an Parfümöl, bezogen auf das gesamte Waschoder Reinigungsmittel.
In einer bevorzugten Ausführungsform enthalten die Parfümöle weniger als 8 , vorteilhafterweise weniger als 7, in vorteilhafterer Weise weniger als 6, in wiederum vorteilhafterer Weise weniger als 5, in weiter vorteilhafterweise weniger als 4, noch vorteilhafter weniger als 3, vorzugsweise weniger als 2, insbesondere keine Duftstoffe aus der Liste Amylcinnamal, Amylcinnamylalkohol, Benzylalkohol, Benzylsalicylat, Cinnamylalkohol, Cinnamal, Citral, Cumarin, Eugenol, Geraniol, Hydroxycitronellal, Hydroxymethylpentylcyclohexencarboxaldehyd, Isoeugenol, Anisylalkohol, Benzylbenzoat, Benzylcinnamat, Citronellol, Farnesol, Hexylcinnamaldehyd, Lilial, d-Limonen, Linalool, Methylheptincarbonat, 3-Methyl-4-(2,6,6-trimethyl-2-cyclohexen-1-yl)-3-buten-2-on, Eichenmoosextrakt, Baummoosextrakt.
Nach einer weiteren bevorzugten Ausführungsform kann das erfindungsgemäße Mittel frei von Parfümöl sein.

Claims

Patentansprüche:
1. Partikel, enthaltend a) photokatalytisches Material, b) Trägermaterial, c) organisches Lösemittel
2. Partikel nach Anspruch 1 , dadurch gekennzeichnet, das das organische Lösemittel zumindest ein Niotensid umfaßt, vorzugsweise aus der Gruppe der alkoxylierten Fettalkohole, der Alkylphenolpolyglykolether, der alkoxylierten Fettsäurealkylester, der Polyhydroxyfettsäureamide, der Alkylglykoside, der Alkylpolyglucoside, der Aminoxide der Fettsäureglucamide und/oder der langkettigen Alkylsulfoxide.
3. Partikel nach einem der vorigen Ansprüche 1 oder 2, dadurch gekennzeichnet, das als Trägermaterial anorganisches Material, vorzugsweise Zeolith, Sulfat, Carbonat, Silikat, Ton, Kieselsäure und/oder deren Gemische, enthalten ist.
4. Partikel nach einem der vorigen Ansprüche 1-3, dadurch gekennzeichnet, das als photokatalytisches Material Titandioxid eingesetzt wird, insbesondere ein modifiziertes Titandioxid, vorzugsweise ein mit Kohlenstoff modifiziertes Titandioxid.
5. Partikel nach einem der vorigen Ansprüche 1-4, umfassend a) photokatalytisches Material in Mengen von 0,01-40 Gew.-%, vorzugsweise 0,1 -30 Gew.-%, vorteilhafterweise 1-20 Gew.-%, noch vorteilhafter 5-15 Gew.-%, insbesondere 8-12 Gew.-% b) Trägermaterial, vorzugsweise umfassend sprühgetrocknetes Pulver, insbesondere umfassend Zeolith, in Mengen von 30-90 Gew.-%, vorzugsweise 40- 80 Gew.-%, vorteilhafterweise 50-70 Gew.-%, insbesondere 55-65 Gew-% c) organisches Lösemittel, vorzugsweise Niotensid und/oder Feuchthaltemittel, in Mengen von 5-60 Gew.-%, vorzugsweise 10-50 Gew.-%, vorteilhafterweise 20-40 Gew.-%, insbesondere 25-35 Gew.-%.
6. Granulatkörner, dadurch gekennzeichnet, das sie Aggregate aus mehreren Partikeln nach einem der Ansprüche 1-5 umfassen.
7. Wasch- oder Reinigungsmittel, enthaltend Partikel gemäß einem der Ansprüche 1-5 und/oder Granulatkörner nach Anspruch 6.
8. Verfahren zur Herstellung eines Partikels nach einem der Ansprüche 1-5, bei dem in einem ersten Schritt eine Suspension aus photokatalytischen Material und einem organischen Lösemittel gebildet wird, und die resultierende Suspension in einem zweiten Schritt mit einem festen Träger vermischt wird.
9. Verfahren nach Anspruch 8, bei dem die erhaltenen Partikel in einem weiteren Schritt durch Granulation in einem Mischer unter Einsatz eines Bindemittels in Granulatkörner überführt werden.
10. Verfahren zum Aufbringen feinpartikulären photokatalytischen Materials auf Textilien durch Behandlung dieser Textilien in einem Textilbehandlungsbad, zu welchem man
Partikel nach einem der Ansprüche 1-5, Granulatkörner nach Anspruch 6 und/oder ein Waschoder Reinigungsmittel nach Anspruch 7 gibt.
11. Verfahren zur Reinigung, Pflege, Ausrüstung, Avivage und/oder Konditionierung von Textilien durch Behandlung dieser Textilien in einem Textilbehandlungsbad, zu welchem man
Partikel nach einem der Ansprüche 1-5, Granulatkörner nach Anspruch 6 und/oder ein Waschoder Reinigungsmittel nach Anspruch 7 gibt, bei und/oder gefolgt von einer Exponierung der Textilien an Licht im Wellenlängenbereich von 10-1200 nm.
12. Verfahren nach einem der vorigen Ansprüche 10 oder 11 zur Ausrüstung von Textilien mit photokatalytischem Material zur Erleichterung der Entfern barkeit von farbigem Schmutz (farbige Flecken) von Textilien unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm.
13. Verfahren nach einem der vorigen Ansprüche 10 bis 12 zur Ausrüstung von Textilien mit photokatalytischem Material zur Reduzierung des Faserhaftungsvermögens von Schmutz, vorzugsweise farbigen Flecken, auf Textilien unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm.
14. Verfahren nach einem der vorigen Ansprüche 10 bis 13 zur Ausrüstung von Textilien mit photokatalytischem Material zur Erhöhung der Wasserlöslichkeit von Schmutz, vorzugsweise farbigen Flecken, auf Textilien, unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm.
15. Verfahren zur Reinigung harter Oberflächen, insbesondere Geschirr, durch Behandlung dieser harten Oberflächen mit einer Reinigungsflüssigkeit, enthaltend Partikel nach einem der Ansprüche 1-5, bei und/oder gefolgt von einer Exponierung der harten Oberfläche an Licht im Wellenlängenbereich von 10-1200 nm.
PCT/EP2008/052996 2007-04-23 2008-03-13 Photokatalytisches material enthaltende partikel WO2008128826A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007019369A DE102007019369A1 (de) 2007-04-23 2007-04-23 Photokatalytisches Material enthaltende Partikel
DE102007019369.8 2007-04-23

Publications (1)

Publication Number Publication Date
WO2008128826A1 true WO2008128826A1 (de) 2008-10-30

Family

ID=39386127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/052996 WO2008128826A1 (de) 2007-04-23 2008-03-13 Photokatalytisches material enthaltende partikel

Country Status (2)

Country Link
DE (1) DE102007019369A1 (de)
WO (1) WO2008128826A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103979573A (zh) * 2014-06-01 2014-08-13 许盛英 酸化后的沸石
US11312922B2 (en) 2019-04-12 2022-04-26 Ecolab Usa Inc. Antimicrobial multi-purpose cleaner comprising a sulfonic acid-containing surfactant and methods of making and using the same
EP3497195B1 (de) 2016-08-10 2022-09-07 Unilever IP Holdings B.V. Waschzusammensetzung
US11679065B2 (en) 2020-02-27 2023-06-20 The Procter & Gamble Company Compositions with sulfur having enhanced efficacy and aesthetics
US11771635B2 (en) 2021-05-14 2023-10-03 The Procter & Gamble Company Shampoo composition
US11819474B2 (en) 2020-12-04 2023-11-21 The Procter & Gamble Company Hair care compositions comprising malodor reduction materials
US11904036B2 (en) 2017-10-10 2024-02-20 The Procter & Gamble Company Sulfate free clear personal cleansing composition comprising low inorganic salt

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011006982A1 (de) * 2011-04-07 2012-10-11 Beiersdorf Ag Zubereitungen mit einem langanhaltenden floralen Duft ohne 4-(4-Hydroxy-4-methylpentyl)-3-cyclohexencarboxaldehyd
CN102383319B (zh) * 2011-06-16 2013-04-17 北京泛博化学股份有限公司 一种增深剂及其制备方法
EP3197424A1 (de) 2014-09-26 2017-08-02 The Procter & Gamble Company Auffrischungszusammensetzungen und vorrichtungen damit
CN104294687A (zh) * 2014-09-27 2015-01-21 无锡市东北塘宏良染色厂 一种白地防沾污剂
EP3432856A1 (de) 2016-03-24 2019-01-30 The Procter and Gamble Company Haarpflegezusammensetzungen mit geruchsreduzierenden zusammensetzungen
US10792384B2 (en) 2017-12-15 2020-10-06 The Procter & Gamble Company Rolled fibrous structures comprising encapsulated malodor reduction compositions

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3430773A1 (de) * 1983-08-24 1985-03-14 Ciba-Geigy Ag, Basel Waschpulveradditive in form von speckles
EP0145438A2 (de) * 1983-12-07 1985-06-19 The Procter & Gamble Company Zusatzprodukte für Wäschewaschmittel
DE4344215A1 (de) * 1993-12-23 1995-06-29 Cognis Bio Umwelt Silberkorrosionsschutzmittelhaltige Enzymzubereitung
WO1996023051A1 (fr) * 1995-01-25 1996-08-01 Rhone-Poulenc Chimie Composition detergente contenant du dioxyde de titane a fonction bactericide et photo-oxydante
JP2003095907A (ja) * 2001-09-26 2003-04-03 Lion Corp 皮膚化粧料
US6770609B1 (en) * 1999-04-13 2004-08-03 Procter & Gamble Company Light reflecting particles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3430773A1 (de) * 1983-08-24 1985-03-14 Ciba-Geigy Ag, Basel Waschpulveradditive in form von speckles
EP0145438A2 (de) * 1983-12-07 1985-06-19 The Procter & Gamble Company Zusatzprodukte für Wäschewaschmittel
DE4344215A1 (de) * 1993-12-23 1995-06-29 Cognis Bio Umwelt Silberkorrosionsschutzmittelhaltige Enzymzubereitung
WO1996023051A1 (fr) * 1995-01-25 1996-08-01 Rhone-Poulenc Chimie Composition detergente contenant du dioxyde de titane a fonction bactericide et photo-oxydante
US6770609B1 (en) * 1999-04-13 2004-08-03 Procter & Gamble Company Light reflecting particles
JP2003095907A (ja) * 2001-09-26 2003-04-03 Lion Corp 皮膚化粧料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KRONOS BV ROTTERDAM, ET AL.: "KRONOS vlp 7000 - data sheet", INTERNET ARTICLE, 2006, XP002481395, Retrieved from the Internet <URL:http://www.kronostio2.com/khome.nsf/aab10880f2484fffc125697e002a987e/bd88ac5b7e34a61e852572d0006497ad/$FILE/vlp_7000.pdf> [retrieved on 200805] *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103979573A (zh) * 2014-06-01 2014-08-13 许盛英 酸化后的沸石
EP3497195B1 (de) 2016-08-10 2022-09-07 Unilever IP Holdings B.V. Waschzusammensetzung
US11904036B2 (en) 2017-10-10 2024-02-20 The Procter & Gamble Company Sulfate free clear personal cleansing composition comprising low inorganic salt
US11312922B2 (en) 2019-04-12 2022-04-26 Ecolab Usa Inc. Antimicrobial multi-purpose cleaner comprising a sulfonic acid-containing surfactant and methods of making and using the same
US11891586B2 (en) 2019-04-12 2024-02-06 Ecolab Usa Inc. Highly acidic antimicrobial multi-purpose cleaner and methods of making and using the same
US11679065B2 (en) 2020-02-27 2023-06-20 The Procter & Gamble Company Compositions with sulfur having enhanced efficacy and aesthetics
US11819474B2 (en) 2020-12-04 2023-11-21 The Procter & Gamble Company Hair care compositions comprising malodor reduction materials
US11771635B2 (en) 2021-05-14 2023-10-03 The Procter & Gamble Company Shampoo composition

Also Published As

Publication number Publication date
DE102007019369A1 (de) 2008-10-30

Similar Documents

Publication Publication Date Title
WO2008128826A1 (de) Photokatalytisches material enthaltende partikel
DE102007038029A1 (de) Wasch- oder Reinigungsmittel mit polyesterbasiertem Soil-Release-Polymer
EP2711414B1 (de) Stabilisierug von Kapselsystemen in Wasch- und Reinigungsmitteln
EP2038391A1 (de) Wasch-, reinigungs- und pflegemittel
WO2007054177A1 (de) Oxidationsmittel enthaltende, wohlriechende verbrauchsprodukte
WO2006053615A1 (de) Duftstoffkombination enthaltend 3, 7-dymethyl-6-en-nitril (citronellyl nitril) als genanoritril-substitut
WO2008128818A1 (de) Flüssiges wasch- oder reinigungsmittel mit fliessgrenze
EP2069471A1 (de) Wasch- oder reinigungsmittelabgabesystem
EP1922398A1 (de) Verbrauchsprodukte mit welchselnden geruchsbildern
EP2046929A1 (de) Flüssigkeitsträger
EP2057259A1 (de) Schmelzgranulate für wasch- und reinigungsmittel
WO2008128817A1 (de) Flüssiges textilbehandlungsmittel
EP2240565A1 (de) Wasch- und reinigungsmittel mit porösen polyamidpartikeln
EP1660621A1 (de) Auf substratoberflächen aufziehende mittel
EP2185655A2 (de) Modifiziertes titandioxid
EP1802733B1 (de) Aufnahmefähige partikel
DE102008015396A1 (de) Wasch- oder Reinigungsmittel mit Seife und polyesterbasiertem Soil-Release-Polymer
WO2008116768A1 (de) Antimilbenmittel
WO2007033731A1 (de) Wasch- und reinigungsmittel mit hautpflegenden inhaltsstoffen
WO2008145424A1 (de) Wasch- oder reinigungsmittel mit flüssiger, gelförmiger oder pastenartiger konsistenz
WO2008128827A1 (de) Photokatalytisches material enthaltende flüssigsysteme
DE102006031897A1 (de) Wasch-, Reinigungs- und Pflegemittel
DE102004019752A1 (de) Mittel mit metallisch riechendem Duftstoff geeignet zum Einsatz in Wasch-/Wäschepflege- und Raumbeduftungsmitteln
DE102005060006B4 (de) Sichere Festkörpersprühparfümierung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08717740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08717740

Country of ref document: EP

Kind code of ref document: A1