Oblast techniky
Vynález se týká textilie obsahující alespoň jednu vrstvu polymerních nanovláken o průměru do 600 nanometrů vyrobených elektrostatickým zvlákňováním roztoku polymeru, přičemž nanovlákna obsahují nanočástice nízkomolekulární látky.
Dále se vynález týká způsobu výroby vrstvy nanovláken obsahujících nanočástice nízkomolekulámí látky z roztoku polymeru elektrostatickým zvlákňováním v elektrickém poli vytvořeném rozdílem potenciálů mezi nabitou elektrodou a protielektrodou.
Dosavadní stav techniky
Z CZ 294274 a k němu analogické mezinárodní přihlášky WO 2005/024101 Al je známé vyrábět textilie obsahující alespoň jednu vrstvu z polymerních nanovláken vyrobenou elektrostatickým zvlákňováním roztoku polymeru v elektrickém poli vytvořeném rozdílem potenciálů mezi otočně uloženou nabitou válcovou elektrodou a protielektrodou, přičemž nabitá válcová elektroda je částí svého obvodu ponořena v roztoku polymeru svým povrchem přivádí roztok polymeru do elektrického pole pro zvlákňování. Elektrostatickým zvlákňováním se vyrábějí zmíněné textilie z různých polymerů rozpustných ve vodném nebo nevodném roztoku,
Textilie obsahující alespoň jednu vrstvu z polymerních nanovláken se užívají kromě jiného ve zdravotnictví například ke krytí ran, neboť díky malým rozměrům pórů zabraňují pronikání bakterií do rány a současně umožňují odchod kapalných zplodin hojícího procesu a přístup vzduchu kráně.
Jiné známé textilie používané ve zdravotnictví někdy obsahují fyziologicky účinné látky, které se z nich kontrolovanou rychlostí uvolňují a podporují proces hojení. Tyto látky jsou na hotovou textilii nanášeny ponořením textilie do roztoku příslušné látky a jejím následným usušením, přičemž množství látky, které na textilii ulpí se velmi obtížně řídí, respektive obtížně se do textilie ukládá velmi malé množství účinné látky, což omezuje použití takových textilií. Ještě obtížněji se ovlivňuje dlouhodobé a pozvolné uvolňování těchto látek.
Pro svůj antiseptický a antimikrobiální účinek se ve zdravotnictví používá řada látek s antiseptickými a antimikrobiálními účinky. Příkladem jsou disociovatelné sloučeniny těžkých kovů, zejména stříbra, s vysokou antimikrobiální účinností. Tyto sloučeniny jsou však současně pro lidský organismus toxické a mají tedy nežádoucí vedlejší účinky. Lepších výsledků se dosahuje s kovovým stříbrem, které je jen nepatrně rozpustné a disociovatelné v prostředí tělních tekutin. Koncentrace takto vytvořených iontů je postačující pro dosažení antimikrobiálního efektu, přičemž míra nežádoucích vedlejších účinků je nepatrná. Stříbro ve vhodné formě lze připravit v různých substrátech jako jsou textilní útvary nebo polymemí membrány redukcí stříbrných sloučenin. Stříbro je v těchto nosičích přítomno ve formě kovových částic, jejichž velikost se pohybuje v řádu mikrometrů. Podobná forma stříbra se využívá i v textilních materiálech, například v ponožkách, k zamezení vzniku pachu působením bakterií.
so Ze studia koloidního stavu hmoty je známo, že chemické, případně katalytické působení pevných hmot se zvyšuje s měrným povrchem účinných látek. Při zmenšující se velikosti částic účinné látky v nosiči lze tedy potřebné míry účinků teto látky dosáhnout menším množstvím účinné látky v nosiči respektive menší koncentrací účinné látky v nosiči. Redukcí kovových solí ve vodných roztocích, například při fotografických technikách, vznikají částice kovu o rozměrech větCZ 300797 B6 ších než jeden mikrometr. Tyto částice mají černou barvu. Rada patentů a zveřejněných prací se zabývá postupy přípravy kovových nanočástic s charakteristickými rozměry pod jeden mikrometr. Podle US 5759230 lze takové částice připravit redukcí stříbrných solí v alkoholických roztocích. Postupy podle US6110254 a 6660058 využívají redukce na mezifázi dvourozpouštěd5 lových systémů, případně s použitím vhodných povrchově aktivních látek. Práce K. Šiškové a kol. publikované ve sbornících konference Nano03, Brno 2003 a Nano04, Bmo 2004 popisují využití laserového paprsku k přípravě nanočástic stříbra. Nanočástice stříbra lze s výhodou využít pro jejich vysokou aktivitu a minimální toxicitu, jejich výroba podle výše uvedených postupů je však náročná a neřeší umístění těchto částic do vhodných nosných substrátů.
WO 2004/044281 A2 popisuje výrobu nanovláken elektrostatickým zvlákňováním roztoků různých polymerů a směsí polymerů, přičemž roztok polymeru pro výrobu nanovláken může obsahovat například oxidy kovů, stříbro, částice obsahující uhlík, uhlíkové nanotrubičky a jejich kombinace.
WO 01/27365 AI popisuje zařízení k výrobě nanovláken elektrostatickým zvlákňováním roztoků různých polymerů s různými aditivy, která jsou součástí roztoku před zvlákňováním a po zvláknění se stávají součástí nanovláken v nezměněné formě.
Cílem vynálezu je vytvořit textilii obsahující alespoň jednu vrstvu nanovláken, která obsahují nanočástice nízkomolekulámích látek, jako je například stříbro a další kovy vhodných vlastností a podobně o co nejmenších rozměrech. Cílem vynálezu je rovněž vytvořit způsob výroby vrstvy takových nanovláken.
Podstata vynálezu
Čile vynálezu je dosaženo textilií obsahující alespoň jednu vrstvu polymemích nanovláken, která obsahují nanočástice nízkomolekulámí látky, přičemž podstata vynálezu spočívá v tom, že nano30 částice nízkomolekulámí látky jsou produkty chemické reakce mezi prekurzorem nízkomolekulámí látky rozpuštěným v polymemím roztoku a chemickým činidlem aplikovaným na nanovlákna po jejich zvláknění, přičemž rozměry nanočástic nízkomolekulámí látky jsou menší než je průměr nanovláken.
Prekurzor nízkomolekulámí látky je ve zvlákňovaném roztoku polymeru rozptýlen molekulárně respektive iontově. V tomto stavu je zvlákněn a jeho koncentrace a velikost částic v nanovláknech po zvláknění je blízká jeho koncentraci v roztoku. Při chemické reakci mezi prekurzorem nízkomolekulámí látky a chemickým Činidlem aplikovaným na nanovlákna po jejich zvláknění omezuje vysoká viskozita prostředí pohyb vznikajících nanočástic nízkomolekulámí látky a zamezuje tím jejich shlukování. Proto v nanovláknech vznikají male nanočástice nízkomolekulámí látky.
Podle nároku 2 je výhodné, je-li prekurzorem nízkomolekulámí látky sůl kovu a nízkomolekulámí látkou je kov. Nanovlákna pak obsahují většinou velmi malé nanočástice příslušné látky, které jsou schopny dlouhodobě uvolňovat a působit tak požadovaný účinek.
Podle nároku 3 je výhodné, je-li prekurzorem nízkomolekulámí látky dusičnan stříbrný a nízkomolekulámí látkou je stříbro. Redukce dusičnanu stříbrného probíhá, přestože částice dusičnanu stříbrného jsou uloženy v nanovláknech. Nedochází ke shlukování nanočástic stříbra, což se projevuje žlutou barvou.
Podstata způsobu výroby vrstvy nanovláken z roztoku polymeru elektrostatickým zvlákňováním spočívá v tom, že polymerní roztok pro zvlákňování obsahuje prekurzor nízkomolekulámí látky, která je při zvlákňování strháván společně s polymerem do vznikajících nanovláken, přičemž po
-2 CZ 300797 B6 zvláknění se na prekurzor obsažený v n ano vláknech působí vhodným chemickým činidlem, jímž se prekurzor nízkomolekulámí látky přetvoří na nízkomolekulámí látku.
Při tom je výhodné, je-li prekurzorem nízkomolekulámí látky sůl kovu a nízkomolekulámí látkou je kov.
Ve výhodném provedení podle nároku 7 je prekurzorem nízkomolekulámí látky dusičnan stříbrný a nízkomolekulámí látkou je stříbro.
io
Příklady provedení vynálezu
V průběhu vytváření nanovláken z roztoku polymeru elektrostatickým zvlákňováním v elektrickém poli vytvořeném rozdílem potenciálů mezi otočně uloženou nabitou elektrodou a protielek15 trodou, přičemž nabitá elektroda je částí svého obvodu ponořena v roztoku polymeru a svým povrchem přivádí roztok polymeru do elektrického pole pro zvlákňování. Nabitá elektroda je přitom s výhodou tvořena válcem podle CZ 294274 a k němu analogické mezinárodní přihlášky WO2005/024101 Al. Elektrostatickým zvlákňováním se vyrábějí zmíněné textilie z různých polymerů rozpustných ve vodném nebo nevodném roztoku. Průměr nanovláken je menší než 600 nanometrů obvykle v rozmezí od 100 do 600 nanometrů.
Za vhodných okolností lze elektrostatickým zvlákňováním zvlákňovat nejen příslušný polymer z roztoku polymeru nebo směsi polymerů, ale spolu s polymerem i nízkomolekulámí látky rozpuštěné nebo dispergované ve stejném rozpouštědle jako polymer. Částice nízkomolekulámí látky jsou při elektrostatickém zvlákňování vynášeny obvodem otáčející se nabité válcové elektrody společně s polymerem do elektrického pole pro zvlákňování, kde jsou při vytváření nanovlákna polymerem strhávány a zůstávají uloženy v nanovláknech, přičemž velikost částic nízkomolekulámí látky se obvykle pohybuje od 5 do 100 nanometrů a je menší než průměr nanovlákna, v němž je uloženo. Koncentrace nízkomolekulámí látky ve vznikající vrstvě nanovláken může být přitom blízká koncentraci ve zvlákňovaném roztoku.
Částice nízkomolekulámí látky jsou tvořeny alespoň jednou látkou ze skupiny kovy, soli, barviva, fyziologicky účinné látky, vůně, indikátory a katalyzátory.
Nejprve bude způsob výroby vrstvy nanovláken podle vynálezu popsán pro nízkomolekulámí látku tvořenou kovovými částicemi, například stříbrem, a vodný roztok polymeru. Například z polyvinylalkoholu se připraví vodný roztok polyvinylalkoholu, který dále obsahuje síťující prostředek a rozpustnou stříbrnou sůl, s výhodou dusičnan stříbrný. Při zvlákňování jsou částice dusičnanu stříbrného strhávány společně s polymerem do vznikajících nanovláken. Po zvláknění je polymer převeden na trojrozměrnou nerozpustnou formu aktivací síťujícího prostředku teplem. Následně se dusičnan stříbrný redukuje známým způsobem působením roztoku známého redukčního činidla, například vodným roztokem černobílé fotografické vývojky. Redukce dusičnanu stříbrného probíhá obvyklým způsobem, přestože je dusičnan stříbrný uložen v polymeru nanovlákna, a po redukci obsahují nanovlákna vrstvy nanovláken částice stříbra o rozměrech 5 až 100 nanometrů.
V případě polyuretanu se elektrostaticky zvlákňuje nevodný roztok dimethylformamidu, přičemž v tomto roztoku je rozpuštěn dusičnan stříbrný, který je z něho vyredukován ještě v tomto roztoku vhodným redukčním činidlem a vzniklé stříbro je dispergováno ve zvlákňovaném roztoku. Při elektrostatickém zvlákňování jsou pak tyto částice stříbra strhávány společně s polymerem a ukládány v nanovláknech.
Nízká koncentrace kovových iontů v základním polymeru a omezená pohyblivost reagujících činidel znemožňuje shlukování atomů vyredukovaného kovu do větších částic, takže vznikají
-3 CZ 300797 B6 nanočástice. Výsledný produkt - textilie obsahující alespoň jednu vrstvu nanovláken, pak nemá černou barvu, ale barvu hnědou až žlutou. Následně je vrstva nanovláken zbavena rozpustných produktů chemických reakcí vodou, sušena a sterilizována.
Taková vrstva nanovláken z polyvinylalkoholu nebo polyuretanu s částicemi stříbra ukotvenými v nanoviáknech má vysokou a dlouhodobou antimikrobiální účinnost a zabraňuje růstu bakterií, ras a plísní. Plošná hmotnost textilií je přitom pouze 0,5 až 2 gm'2, přičemž obsahují 0,01 až 0,2 gm'2 kovového stříbra. Toto množství je podstatně nižší než u dosud užívaných výrobků a tomu úměrně nízké je i zatížení lidského organismu vedlejšími toxickými účinky.
Konkrétní příklady způsobu výroby vrstvy nanovláken z roztoku polymeru a textilie obsahující alespoň jednu vrstvu polymemích nanovláken jsou popsány v níže uvedených příkladech.
Příklad 1
Dvanáctiprocentní vodný roztok polyvinylalkoholu o průměrné molekulové hmotnosti 100 000, třicetiprocentní vodný roztok kyseliny polyakrylové o průměrné molekulové hmotnosti 70 000 a čtyřprocentní vodný roztok dusičnanu stříbrného se smísí v objemovém poměru 5:1:1. Po homogenizaci je smíšený roztok zvlákněn procesem elektrostatického zvlákňování podle CZ 294274 na vrstvu nanovláken o plošné hmotnosti 2 gm2 s průměry nanovláken v rozsahu 150 až 500 nanometrů. Vrstva nanovláken je vystavena teplotě 150 °C po dobu 30 min, přičemž proběhne síťovací reakce a materiál nanovláken se stane nerozpustným ve vodě. Na vrstvu nanovláken se pak působí vodným roztokem černobíle fotografické vývojky prodávané v CZ pod ozna25 cením METOL, čímž se dusičnan stříbrný redukuje a uvnitř polymemích nanovláken vzniknou částice stříbra o rozměrech 10 až 100 nanometrů.
Příklad 2
Vrstva nanovláken se vyrobí stejným způsobem jako v přikladu 1 ze směsi stejných látek v poměru 5:1: 0,2. Po redukci dusičnanu stříbrného uloženého v nanoviáknech při zvlákňování vzniknou v nanoviáknech Částice stříbra o rozměrech 5 až 50 nanometrů.
Příklad 3
Vrstva nanovláken se opět vyrobí stejně jako v příkladu 1 s tím, že jako redukční činidlo dusičnanu stříbrného uloženého v nanoviáknech při zvlákňování se použije dvouprocentní vodný roz40 tok kyseliny askorbové. Výsledný produkt byl bakteriologicky testován a podle výsledků testů zcela zabraňuje růstu bakterií, kvasinek a plísní.
Příklad 4
V dimetylformamidovém roztoku, který obsahuje osmnáct procent polyuretanu o průměrné molekulové hmotnosti 120 000 a jedno procento dusičnanu stříbrného se ekvivalentem acetaldehydu, stáním po dobu 4 hodin a při teplotě 20 °C vyredukuje kovové stříbro. Roztok je následně promíchán, zhomogenizován a vzniklá jemná suspenze je zvlákněna procesem elektrostaticko kého zvlákňování podle CZ 294274 na vrstvu nanovláken o plošné hmotnosti přibližně 10 gm2 s průměry nanovláken v rozsahu od 100 do 500 nanometrů.
Dusičnan stříbrný může být v roztoku polymeru nahrazen jinou solí kovu, například mědi, nebo jinou nízkomolekulámí látkou ze skupiny kovy, soli, barviva, fyziologicky účinné látky, vůně,
-4CZ 300797 B6 indikátory a katalyzátory, přičemž nanovlákna vrstvy vyrobené elektrostatickým zvlákňováním obsahují příslušnou nízkomolekulámí látku, většinou ve velmi malém množství, a jsou schopna ji v případě potřeby řízené uvolňovat. Z barviv lze například použít při zvlákňování vodného roztoku polymeru dvouprocentní vodný roztok satumové červeně.