CS245829B1 - Preparation method of cyclo-tetraphosphate dizincate - Google Patents

Preparation method of cyclo-tetraphosphate dizincate Download PDF

Info

Publication number
CS245829B1
CS245829B1 CS851788A CS178885A CS245829B1 CS 245829 B1 CS245829 B1 CS 245829B1 CS 851788 A CS851788 A CS 851788A CS 178885 A CS178885 A CS 178885A CS 245829 B1 CS245829 B1 CS 245829B1
Authority
CS
Czechoslovakia
Prior art keywords
zinc
phosphoric acid
preparation
mixture
kpa
Prior art date
Application number
CS851788A
Other languages
Czech (cs)
Other versions
CS178885A1 (en
Inventor
Miroslav Trojan
Original Assignee
Miroslav Trojan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miroslav Trojan filed Critical Miroslav Trojan
Priority to CS851788A priority Critical patent/CS245829B1/en
Publication of CS178885A1 publication Critical patent/CS178885A1/en
Publication of CS245829B1 publication Critical patent/CS245829B1/en

Links

Landscapes

  • Fertilizers (AREA)

Abstract

Způsob přípravy cyklo-tetrafosforečnanu dizinečnatého kalcinaci výchozí směsi z oxidu, hydroxidu či z uhličitanu zinečnatého a kyseliny fosforečné v molárním poměru fosforečnanových aniontů k zinečnatým kationtům 1,9 až 2,25 : 1, s výhodou 2,0 až 2,05 : 1 a působením na zinečnatou sloučeninu s kyselinou fosforečnou hmotnostní koncentrace 30 až 90 %, s výhodou 85 až 80 % hmot. koncentrace; získaná směs obsahující zinečnaté a fosforečnanové ionty se ponechá před kalcinaci v klidu nejméně 30 minut a poté se začne zahřívat rychlostí menší než 20 °C/min, s výhodou rychlostí 2 až 5 °C/min na teplotu 220 až 800 °C, s výhodou na teplotu 300 až 500 °C, přičemž v prostoru kalcinované směsi je tenze vodní páry vyšší než 20 kPa, s výhodou 60 až 100 kPa. Řešení se může uplatnit ve fosforečnanové technologii a vzhledem k možnému použití produktu také v pigmentářském průmyslu při přípravě antikorozních nátěrových hmot a v agrochemii při přípravě mikroprvkových hnojiv.Process for preparing cyclo-tetraphosphate the calcined calcination of the starting oxide mixture, hydroxide or zinc carbonate a phosphoric acid in the phosphate molar ratio anions to zinc cations 1.9 to 2.25: 1, preferably 2.0 to 2.05: 1 and treating the zinc compound s phosphoric acid mass concentration 30 to 90%, preferably 85 to 80% wt. concentration; the obtained mixture containing zinc and phosphate ions are left before calcination, rest for at least 30 minutes and then heats up less than 20 ° C / min, preferably at 2 to 5 ° C / min to 220-800 ° C, preferably at a temperature of 300 to 500 ° C, while in space the calcined mixture is a vapor pressure higher than 20 kPa, preferably 60 to 100 kPa. The solution can be applied in phosphate technology and due to possible use product also in the pigment industry in the preparation of anticorrosive coatings mass and in agrochemistry in the preparation of microelements fertilizers.

Description

(54) Způsob přípravy cyklo-tetrafosforečnanu dizinečnatého(54) A process for the preparation of disodium cyclotrophosphate

Způsob přípravy cyklo-tetrafosforečnanu dizinečnatého kalcinaci výchozí směsi z oxidu, hydroxidu či z uhličitanu zinečnatého a kyseliny fosforečné v molárním poměru fosforečnanových aniontů k zinečnatým kationtům 1,9 až 2,25 : 1, s výhodou 2,0 až 2,05 : 1 a působením na zinečnatou sloučeninu s kyselinou fosforečnou hmotnostní koncentrace 30 až 90 %, s výhodou 85 až 80 % hmot. koncentrace; získaná směs obsahující zinečnaté a fosforečnanové ionty se ponechá před kalcinaci v klidu nejméně 30 minut a poté se začne zahřívat rychlostí menší než 20 °C/min, s výhodou rychlostí 2 až 5 °C/min na teplotu 220 až 800 °C, s výhodou na teplotu 300 až 500 °C, přičemž v prostoru kalcinované směsi je tenze vodní páry vyšší než 20 kPa, s výhodou 60 až 100 kPa.A process for the preparation of disodium cyclotrophosphate by calcining the starting mixture from zinc oxide, hydroxide or carbonate and phosphoric acid in a molar ratio of phosphate anions to zinc cations of 1.9 to 2.25: 1, preferably 2.0 to 2.05: 1 and treating the zinc compound with phosphoric acid with a concentration of 30 to 90% by weight, preferably 85 to 80% by weight. concentration; the resulting mixture containing zinc and phosphate ions is allowed to stand for at least 30 minutes prior to calcination and is then heated at a rate of less than 20 ° C / min, preferably 2 to 5 ° C / min to 220 to 800 ° C, preferably to a temperature of 300 to 500 ° C, wherein the water vapor pressure in the space of the calcined mixture is higher than 20 kPa, preferably 60 to 100 kPa.

Řešení se může uplatnit ve fosforečnanové technologii a vzhledem k možnému použití produktu také v pigmentářském průmyslu při přípravě antikorozních nátěrových hmot a v agrochemii při přípravě mikroprvkových hnojiv.The solution can be applied in the phosphate technology and due to the possible use of the product also in the pigment industry in the preparation of anticorrosive paints and in agrochemistry in the preparation of microelement fertilizers.

Vynález se týká přípravy cyklo-tetrafosforečnanu dizinečnatého.The present invention relates to the preparation of disodium cyclotrophosphate.

Cyklo-tetrafosforečnan dizinečnatý (c— —ΖΠ2Ρ4Ο12) je tepelně a chemicky velmi stabilní látkou s možným použitím jako antikorozní pigment do nátěrových hmot či jako mikroprvkové hnojivo. Dosavadní údaje o jeho přípravě vycházejí především ze způsobu kalcinace dihydrátu dihydrogenfosforečnanu zinečnatého, kdy lze za určitých podmínek kalcinace, dosud však přesněji nespecifikovaných, získat téměř čistý produkt. Tento způsob přípravy cyklotetrafosforečnanu dizinečnatého však vyžaduje použití výchozího fosforečnanu v čisté podobě. Získání dihydrogenfosforečnanu zinečnatého je však velmi náročnou operací na teplotní řízení reakcí jeho vzniku, je náročná časově, vyžaduje kvalitní výchozí suroviny, jejichž zužitkování na produkt je navíc poměrně malé. S technologickým využitím dihydrogenfosforečnanu zinečnatého k přípravě cyklo-tetrafosforeěnanu dizinečnatého, proto nelze z uvedených důvodů počítat. Existuje však technologicky schůdnější možnost přípravy cyklo-tetrafosforečnanu ze směsi oxidu nebo hydroxidu zinečnatého a kyseliny fosforečné nebo fosforečnanů amonných. Dosavadní údaje o podmínkách přípravy jsou opět neúplné, ale vždy však údajně vzniká směs kondenzovaných fosforečnanů, přičemž jedním z produktů je i cyklo-tetrafosforečnan dizinečnatý. Vedle něho vznikají difosforečnany, vyšší lineární fosforečnany zinečnaté a samostatnou kondenzací fosforečné složky také vznikají polyfosforečné kyseliny. Tyto kyseliny způsobují snížení obsahu fosforečných aniontů, které mohou zkondenzovat na zinečnaté produkty a toto snížení je pak kompenzováno zůstatkem nezreagovaného oxidu zinečnatého z výchozí zinečnaté suroviny, jako další nečistoty. Příprava čistého cyklo-tetrafosforečnanu dizinečnatého, nebo produktu s jeho vysokým obsahem, není proto způsoby podle dosavadních údajů možná.Disodium Cyclo-Phosphate (c— —ΖΠ2Ρ4 je12) is a thermally and chemically very stable substance with possible use as anticorrosive pigment in paints or as a micro-element fertilizer. The present data on its preparation are based mainly on the method of calcination of zinc dihydrogen phosphate dihydrate, where it is possible to obtain almost pure product under certain calcination conditions, but not yet more precisely specified. However, this process for the preparation of disodium cyclotrophosphate requires the use of the starting phosphate in pure form. However, obtaining zinc dihydrogen phosphate is a very demanding operation for the temperature control of its reaction, it is time consuming, requires high-quality raw materials, the utilization of which is relatively small. Technological use of zinc dihydrogen phosphate for the preparation of disodium cyclo-tetrafosphate is therefore not foreseeable. However, there is a more technologically feasible possibility of preparing cyclotrophosphate from a mixture of zinc oxide or hydroxide and phosphoric acid or ammonium phosphates. The existing data on the preparation conditions are again incomplete, but a mixture of condensed phosphates is always reported to be produced, one of the products being disodium cyclotrophosphate. In addition, pyrophosphates are formed, higher linear zinc phosphates and polyphosphoric acids are also formed by the independent condensation of the phosphorous component. These acids cause a reduction in the content of phosphorus anions that can condense to the zinc products, and this reduction is then compensated by the balance of unreacted zinc oxide from the zinc feedstock as other impurities. The preparation of pure disodium cyclotrophosphate, or a product with a high content thereof, is therefore not possible according to prior art methods.

Tyto nedostatky odstraňuje způsob přípravy cyklo-tetrafosforečnanu dizinečnatého podle vynálezu, jehož podstata spočívá v kalcinaci oxidu, nebo hydroxidu nebo uhličitanu zinečnatého nebo jejich směsi spolu s kyselinou fosforečnou, vyznačující se tím, že molární poměr fosforečnanových aniontů k zinečnatým kationtům je 1,9 až 2,25 : 1, s výhodou 2,0 až 2,05 : 1, přičemž na zinečnatou sloučeninu se působí kyselinou fosforečnou hmotnostní koncentrace 30 až 90 %, s výhodou 65 až 80 %. Získaná směs se před kalcinací ponechá v klidu nejméně 30 minut a pak se začne zahřívat rychlostí menší než 20 °C/min, s výhodou rychlostí 2 až 5 °C/min na teplotu 220 až 800 °C, s výhodou na teplotu 300 až 500 °C, přičemž v prostoru kalcinované směsi se tenze vodní páry udržuje vyšší než 20 kPa, s výhodou 60 až 100 kPa. Pro přípravu cyklo-tetrafosforečnanu dizinečnatého ze zcela čistých surovin by byl nejvhodnější molární poměr fosforečnanových a zinečnatých iontů přesně podle stechiometrie rovný 2 :1. Podle čistoty použité kyseliny fosforečné (ev. obsahu iontů kovů) a podle čistoty zinečnaté suroviny (příměsí kovů) je třeba poměr upravit v uvedeném rozsahu 1,9 až 2,25 : 1, přiěemž výhodnější je, je-li fosforečnanových aniontů malý přebytek (2 až 2,05 :1), než naopak jejich nedostatek oproti stechiometrii. Nižší koncentrace kyseliny fosforečné by byla výhodnější z hlediska řízení kondenzačních reakcí a tím i výtěžku a čistoty produktu, avšak způsobovala by zase zvýšení energetických nároků na odpaření přebytečné vody a zvětšovala objem výchozí směsi, jež by navíc měla charakter řídké suspenze. Její kalcinace by potom přinášela technické problémy, oproti kalcinaci směsi menšího objemu v podobě tuhé či pastovlté, jež vzniká, je-li použita kyselina fosforečná koncentrace v horní části uvedeného rozsahu. S výhodou se proto použije kyseliny o koncentraci 65 až 80 hmot. °/o. Získaná směs obsahující zinečnaté a fosforečnanové ionty se ponechá před kalcinací v klidu nejméně 30 minut a poté se začne zahřívat rychlostí menší než 20 °C/min, s výhodou rychlostí 2 až 5 °C/min na teplotu 220 až 800 °C, s výhodou na teplotu 300 až 500 °C, přičemž v prostoru kalcinované směsi je tenze páry vyšší než 20 kPa, s výhodou 60 až 100 kPa. Ponechání směsi, obsahující fosforečnanové a zinečnaté ionty, před kalcinací alespoň 30 minut v klidu, je třeba pro dostatečné proběhnutí úvodní reakce výchozí zinečnaté sloučeniny s kyselinou fosforečnou, to je neutralizační reakce při použití hydroxidu zinečnatého či zejména pak rozkladné reakce uhličitanu zinečnatého při jeho použití, neboť uvolňovaný oxid uhličitý a jím způsobené kypění směsi by vlastní kalcinaci komplikovaly. Zahřívání směsi rychlostí menší než 20 °C/min se volí proto, aby jednotlivé dehydratační a kondenzační reakce postupně probíhající ve směsi mohly při teplotách (nebo v jejich blízkosti), při kterých k nim dochází, proběhnout co nejpomaleji a tím s co nejvyšším výtěžkem. Jinak by docházelo k nežádoucímu štěpení meziproduktů za uvolňování fosforečné složky, jež by pak kondenzovala samostatně na polyfosforečné kyseliny a tím znečišťovala hlavní produkt a snižovala jeho výtěžek. Při volbě velmi nízké rychlosti záhřevu je třeba počítat s neúměrným prodloužením doby přípravy produktů a tím i určité zvýšení materiálových a energetických nároků. Navíc bude v tomto případě i obtížnější udržovat v prostoru kalcinované směsi dostatečnou tenzi vodní páry a tím zabraňovat možnému štěpení meziproduktů. Spodní nutná hranice teploty kalcinace (220°C) je dána teplotou pozvolného vzniku prvních částeček cyklo-tetrafosforečnanu dizinečnatého. Horní hranice teplotní oblasti kalcinace (800°Cj souvisí s tepelnou stabilitou cyklo-tetrafosforečnanu, který při této teplotě taje za rozpadu tetrafosforečnanových cyklů a jejich přechodu na vyšší lineární fosforečnany. Výhodná teplota kalcinace v rozmezí 300 až 500 °C je dána tím, že Cyklo-tetrafosforečnan vzniká při teplotě nad 300 °C již dostatečnou rychlostí a zprvu se tvořící amorfní produkt přechází na mikrokrystajky, ' jež jsou z hlediska uvažovaného použití, jeho nejvhodnější formou. Do horní hranice této výhodné teplotní oblasti [500°CJ pak ještě nevzniká nebezpečí z možného přechodu cyklo-tetrafosforečnanových mikrokrystalků z tzv. nízkoteplotní modifikace, která je pro uvažované praktické použití výhodnější, na tzv. modifikace vysokoteplotní. Udržování tenze vodní páry v prostoru kalcinované směsi vyšší než 20 kPa je nutné pro zabránění vzniku nežádoucích kondenzačních vedlejších produktů a zabránění odštěpování a samostatné kondenzace fosforečné složky. Přítomná vodní pára jednotlivé kondenzační reakce poněkud zpomaluje, umožňuje jejich kvantitativnější průběh a zabraňuje také vzniku nežádoucí neporézní krusty na povrchu částeček kalcinované směsi, která by bránila kvantitativnímu průběhu dehydratačních reakcí. Výhodné je udržovat tenzi vodní páry nad 60 kPa, kdy je její působení v uvedeném směru dostatečné. Horní hranice pro výhodnou tenzi páry v prostoru kalcinované směsi — 100 kPa je dána především nutností zvýšených konstrukčních, materiálových i energetických nároků na kalcinační zařízení a vedení kalcinace, při použití vyšších tlaků, než je tlak atmosférický. Navíc zvýšené brzdění kondenzačních a dehydratačních reakcí v důsledku tenze vodní páry nad 100 kPa by opět neúměrně prodlužovalo dobu přípravy produktu.These drawbacks are overcome by the process for the preparation of disodium cyclotaphosphate according to the invention, which comprises calcining zinc oxide or zinc hydroxide or carbonate or a mixture thereof together with phosphoric acid, characterized in that the molar ratio of phosphate anions to zinc cations is 1.9 to 2 25: 1, preferably 2.0 to 2.05: 1, wherein the zinc compound is treated with phosphoric acid at a concentration of 30 to 90%, preferably 65 to 80% by weight. The resulting mixture is allowed to stand for at least 30 minutes before calcination and is then heated at a rate of less than 20 ° C / min, preferably 2 to 5 ° C / min to 220 to 800 ° C, preferably 300 to 500 And the water vapor pressure is maintained above 20 kPa, preferably 60 to 100 kPa, in the space of the calcined mixture. For the preparation of disodium cyclotrophosphate from completely pure raw materials, the molar ratio of phosphate and zinc ions would be exactly 2: 1 by exact stoichiometry. Depending on the purity of the phosphoric acid used (or the metal ion content) and the purity of the zinc raw material (metal admixtures), the ratio should be adjusted in the range of 1.9 to 2.25: 1, more preferably a small excess of phosphate anions ( 2 to 2.05: 1) than their lack of stoichiometry. A lower concentration of phosphoric acid would be more advantageous in terms of controlling the condensation reactions and hence the yield and purity of the product, but in turn would increase the energy requirement for evaporation of excess water and increase the volume of the starting mixture, moreover having the character of a slurry. Its calcination would then present technical problems, as opposed to calcination of a smaller volume mixture in the form of a solid or pasty, which arises when a phosphoric acid concentration is used in the upper part of said range. Preferably, therefore, an acid having a concentration of 65 to 80 wt. ° / o. The resulting mixture containing zinc and phosphate ions is allowed to stand for at least 30 minutes before calcination and is then heated at a rate of less than 20 ° C / min, preferably at 2 to 5 ° C / min to a temperature of 220 to 800 ° C, preferably to a temperature of 300 to 500 ° C, wherein the vapor pressure in the space of the calcined mixture is higher than 20 kPa, preferably 60 to 100 kPa. Leaving the mixture containing phosphate and zinc ions at least 30 minutes prior to calcination is necessary to allow the initial reaction of the zinc compound with phosphoric acid to be sufficiently carried out, i.e. a neutralization reaction using zinc hydroxide or, in particular, the decomposition reaction of zinc carbonate. since the released carbon dioxide and the resulting loosening of the mixture would complicate the calcination itself. The heating of the mixture at a rate of less than 20 ° C / min is selected so that the individual dehydration and condensation reactions successively taking place in the mixture can take place at or near the temperatures at which they occur at the slowest possible yield. Otherwise, unwanted cleavage of the intermediates would result in the release of the phosphorous component, which would then condense separately into polyphosphoric acids and thereby contaminate the main product and reduce its yield. When selecting a very low heating rate, a disproportionate increase in the product preparation time and thus a certain increase in material and energy requirements must be expected. In addition, it will be more difficult in this case to maintain sufficient water vapor pressure in the space of the calcined mixture and thereby prevent the possible breakdown of the intermediates. The lower limit of calcination temperature (220 ° C) is given by the temperature of the gradual formation of the first disodium cyclotrophosphate particles. The upper limit of the calcination temperature region (800 ° Cj) is related to the thermal stability of the cyclo-tetraphosphate, which melts at this temperature during the decomposition of the tetraphosphate cycles and their transition to higher linear phosphates. The preferred calcination temperature is 300-500 ° C. at a temperature above 300 [deg.] C., the pyrophosphate is formed at a sufficient rate and the amorphous product initially formed is converted into the microcrystals which are the most suitable form for the intended use. Keeping the water vapor pressure in the area of the calcined mixture higher than 20 kPa is necessary to prevent the formation of undesirable condensation by-products, possibly the transition from cyclo-tetraphosphate microcrystals from the so-called low-temperature modification, which is more advantageous for the intended practical use. The presence of water vapor slows down some condensation reactions somewhat, allows them to be more quantitative and also prevents the formation of undesired non-porous crust on the surface of the calcined mixture particles, which would prevent the quantitative course of dehydration reactions. It is advantageous to maintain the water vapor pressure above 60 kPa, when its action is sufficient in said direction. The upper limit for the advantageous vapor pressure in the area of the calcined mixture - 100 kPa is given mainly by the necessity of increased constructional, material and energy demands on the calcining device and the calcination line, when using higher pressures than atmospheric pressure. Moreover, increased braking of the condensation and dehydration reactions due to a water vapor pressure above 100 kPa would again disproportionately prolong the product preparation time.

Podstata způsobu podle vynálezu dále spočívá v tom, že se na produkt po kalcinaci působí kyselinou chlorovodíkovou, sírovou, dusičnou nebo fosforečnou. Tato operace se provádí jako ev. vyčištění získaného produktu při jeho potřebě ve zcela čisté podobě, například pro analytické či preparativní účely. Působením uvedených kyselin se odstraní všechny nežádoucí vedlejší produkty i ev. zbytky výchozí směsi, které tak přejdou do roztoku. Cyklo-tetrafosforečnan dizinečnatý působení těchto kyselin odolává a je tak po loužení kyselinami a po promytí vodou a usušení ve zcela čisté podobě. Jestliže se cyklo-tetrafosforečnan dizinečnatý připravuje pro použití k pigmentářským účelům či jako mikroprvkové hnojivo a zejména jestli se připravoval za podmínek podle vynálezu uvedených jako s výhodou, není třeba toto čištění provádět.Furthermore, the process according to the invention consists in treating the product after calcination with hydrochloric, sulfuric, nitric or phosphoric acid. This operation is performed as ev. purification of the obtained product in its pure form, for example for analytical or preparative purposes. The action of said acids removes all unwanted by-products and ev. residues of the starting mixture which thus pass into solution. Disodium cyclophosphate resists the action of these acids and is thus completely pure after leaching with acids and after washing with water and drying. If disodium cyclotrophosphate is prepared for use as a pigmentary fertilizer or as a micro-element fertilizer, and in particular if it has been prepared under the preferred conditions of the invention, such purification is not required.

Způsob umožňuje přípravu cyklo-tetrafosrforečnanu dizinečnatého za technologicky schůdných podmínek, s dostatečnou výtěžností a s dostatečnou čistotou produktu. Dovoluje použití i méně kvalitních surovin — zředěné a méně čisté kyseliny fosforečné i méně čisté zinečnaté sloučeniny. Za podmínek přípravy produktu podle vynálezu označených v předmětu vynálezu jako výhodné, lze připravit prakticky čistý cyklo-tetrafosforečnan dizinečnatý. V případě získání méně čistého produktu jej lze způsobem podle vynálezu vyčistit.The process makes it possible to prepare disodium cyclotrophosphate under technologically feasible conditions, with a sufficient yield and with a sufficient purity of the product. It also allows the use of lower quality raw materials - diluted and less pure phosphoric acid and less pure zinc compounds. Under the conditions of preparation of the product of the invention indicated to be preferred in the present invention, practically pure disodium cyclotrophosphate can be prepared. If less pure product is obtained, it can be purified according to the process of the invention.

Příklad 1Example 1

100 g oxidu zinečnatého (s obsahem 79 % Znj bylo smícháno s 278,6 g kyseliny fosforečné koncentrace 85 hmot. % H3PO4 a po 1 hodině ponechání v klidu byla směs zahřívána rychlostí 5 °C/min na teplotu 500 °C s výdrží 3 hodiny na této teplotě. Tenze páry v prostoru kalcinované směsi byla udržována 70 až 85 kPa. Produkt po kalcinaci obsahoval více než 95 % cyklo-tetrafosforečnanu dizinečnatého. Loužením za horka kyselinou chlorovodíkovou koncentrace 15 hmot. % HC1, promytím vodou a usušením při 100 °C bylo získáno 235,5 g čistého cyklo-tetrafosforečnanu dizinečnatého.100 g of zinc oxide (containing 79% Znj) was mixed with 278.6 g of 85 wt% H3PO4 phosphoric acid, and after 1 hour of rest, the mixture was heated at 5 ° C / min to 500 ° C for 3 hours. The vapor pressure in the space of the calcined mixture was maintained at 70 to 85 kPa The product after calcination contained more than 95% disodium cyclotrophosphate, by leaching with hot hydrochloric acid at a concentration of 15% by weight HCl, washing with water and drying at 100 ° C 235.5 g of pure disodium cyclotrophosphate were obtained.

Příklad 2Example 2

100 g uhličitanu zinečnatého (s obsahem 51 % Znj bylo smícháno s 235,2 g kyseliny fosforečné koncentrace 65 hmot. % H3PO4 a ponecháno v klidu 2 hodiny. Poté byla směs zahřívána rychlostí 3 °C/min na teplotu 450 °C s výdrží 4 hodin na této teplotě. Tenze vodní páry v prostoru kalcinované směsi byla udržována 80 až 95 kPa. Produkt obsahoval více než 97 % cyklo-tetrafosforečnanu dizinečnatého.100 g of zinc carbonate (containing 51% Znj) was mixed with 235.2 g of 65 wt.% H3PO4 phosphoric acid and left to stand for 2 hours. The mixture was then heated at 3 ° C / min to 450 ° C for 4 hours. The water vapor pressure in the space of the calcined mixture was maintained at 80 to 95 kPa and the product contained more than 97% disodium cyclotrophosphate.

Příklad 3Example 3

100 g kalů odpadního hydroxidu zinečnatého s obsahem 15 % Zn bylo smícháno se 120 g odpadní kyseliny fosforečné s obsahem 40 hmot. % H3PO4 a po 30 minutách stání byla směs zahřívána rychlostí l°C/min na teplotu 350 °C, s výdrží 2 hodiny na této teplotě. Tenze vodní páry byla v prostoru kalcinované směsi udržována na 30 až 40 kPa. Produkt obsahoval 85 % cyklo-tetrafosforečnanu dizinečnatého a byl dále za horka loužen kyselinou sírovou 10 % hmot. koncentrace, promyt vodou a sušen při 200 stupňů Celsia. Bylo získáno 41,3 g čistého cyklo-tetrafosforečnanu dizinečnatého.100 g of waste zinc hydroxide sludge containing 15% Zn were mixed with 120 g of waste phosphoric acid containing 40 wt. % H 3 PO 4 and after 30 minutes of standing, the mixture was heated at 1 ° C / min to 350 ° C for 2 hours at this temperature. The water vapor pressure was maintained at 30 to 40 kPa in the area of the calcined mixture. The product contained 85% disodium cyclotrophosphate and was further hot-leached with 10% sulfuric acid. concentration, washed with water and dried at 200 degrees Celsius. 41.3 g of pure disodium cyclotrophosphate were obtained.

Claims (2)

PREDMETSUBJECT 1. Způsob přípravy cyklo-tetrafosforečnanu dizinečnatého kalcinací oxidu nebo hydroxidu nebo uhličitanu nebo jejich směsi spolu s kyselinou fosforečnou vyznačující se tím, že molární poměr fosforečnanových aniontů k zinečnatým kationtům se udržuje 1,9 až 2,25 :1, s výhodou 2,0 až 2,05 : 1 a na zinečnatou sloučeninu se působí kyselinou fosforečnou, hmotnostní koncentrace 30 až 90 °/o, s výhodou 65 až 80 % hmot. koncentrace, získaná směs obsahující zinečnaté a fosforečnanové ionty se ponechá před kalvynAlezu cinací v klidu nejméně 30 minut a poté se začne zahřívat rychlostí menší než 20 °C/ /min, s výhodou rychlostí 2 až 5 °C/min na teplotu 220 až 800 °C, s výhodou na teplotu 300 až 500 °C, přičemž v prostoru kalcinované směsi se udržuje tenze vodní páry vyšší než 20 kPa, s výhodou 60 až 100 kPa.A process for the preparation of disodium cyclotrophosphate by calcination of an oxide or hydroxide or carbonate or a mixture thereof together with phosphoric acid, characterized in that the molar ratio of phosphate anions to zinc cations is maintained at 1.9 to 2.25: 1, preferably 2.0 % to 2.05: 1 and the zinc compound is treated with phosphoric acid, a concentration of 30 to 90% by weight, preferably 65 to 80% by weight. concentration, the resulting mixture containing zinc and phosphate ions is allowed to stand for at least 30 minutes before calvingnase and then heated at a rate of less than 20 ° C / min, preferably at 2 to 5 ° C / min to 220 to 800 ° C, preferably at a temperature of 300 to 500 ° C, wherein a water vapor pressure greater than 20 kPa, preferably 60 to 100 kPa, is maintained in the space of the calcined mixture. 2. Způsob podle bodu 1 vyznačující se tím, že se na produkt po kalcinaci působí kyselinou chlorovodíkovou, sírovou, dusičnou nebo fosforečnou.2. A process according to claim 1, wherein the product is treated with hydrochloric, sulfuric, nitric or phosphoric acid after calcination.
CS851788A 1984-07-27 1984-07-27 Preparation method of cyclo-tetraphosphate dizincate CS245829B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS851788A CS245829B1 (en) 1984-07-27 1984-07-27 Preparation method of cyclo-tetraphosphate dizincate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS851788A CS245829B1 (en) 1984-07-27 1984-07-27 Preparation method of cyclo-tetraphosphate dizincate

Publications (2)

Publication Number Publication Date
CS178885A1 CS178885A1 (en) 1985-11-13
CS245829B1 true CS245829B1 (en) 1986-10-16

Family

ID=5353153

Family Applications (1)

Application Number Title Priority Date Filing Date
CS851788A CS245829B1 (en) 1984-07-27 1984-07-27 Preparation method of cyclo-tetraphosphate dizincate

Country Status (1)

Country Link
CS (1) CS245829B1 (en)

Also Published As

Publication number Publication date
CS178885A1 (en) 1985-11-13

Similar Documents

Publication Publication Date Title
US3920796A (en) Method of preparing purified phosphates from impure phosphoric acid
CS245829B1 (en) Preparation method of cyclo-tetraphosphate dizincate
US2857245A (en) Method for the production of dicalcium phosphate
US4725369A (en) Process for the preparation of substantially crystalline calcium sodium metaphosphate
CS256885B1 (en) Method of dicadmium cyclo-tetraphosphate preparation
CS256245B1 (en) Method of dinickel cyclotetraphosphate preparation
CS256244B1 (en) Method of dimanganese cyclotetraphosphate preparation
HU176544B (en) Process for preparing ignited phosphate fertilizers containing alkali
CS257739B1 (en) Method of fussed calcium phosphate preparation with molecular proportion of p205-cao equalling to one
CS256243B1 (en) Method of dicobalt cyclotetraphosphate preparation
CS256246B1 (en) Method of dicopper cyclotetraphosphate preparation
CS257199B1 (en) Process for preparing ferrous cyclo-tetraphosphate
CS257743B1 (en) Method of double zinc-calcium cyclo-tetraphosphates preparation
CS257443B1 (en) Method of dimagnesium cyclo-tetraphosphate preparation
CS257746B1 (en) Method of double cobalt-calcium cyclo-tetraphosphates preparation
CA1110823A (en) Process for manufacture of phosphoric acid and phosphorus pentafluoride
US4997634A (en) Preparation of medium density, fast-dissolving, tetrasodium pyrophosphate
US4714600A (en) Process for production of phosphoric acid from dry matrix by SO3 treatment and extraction
CS274189B1 (en) Method of cobalt-zinc double cyclo-tetraphosphates preparation
CS264248B1 (en) Process for preparing double manganese-magnesium cyclo-tetraphosphates
CS257747B1 (en) Method of double manganous-calcium cyclo-tetraphosphates preparation
CS266785B1 (en) Method of cobalt-magnesium double cyclo-tetraphosphates preparation
CS266695B1 (en) Method of cadmium-calcium double cyclo-tetraphosphates preparation
CS258274B1 (en) High-temperature method of dinickel cyclo-tetraphosphate preparation
US4202867A (en) Process for manufacture of phosphoric acid and phosphorus pentafluoride