CN88101287A - 建筑物空调系统 - Google Patents
建筑物空调系统 Download PDFInfo
- Publication number
- CN88101287A CN88101287A CN88101287.4A CN88101287A CN88101287A CN 88101287 A CN88101287 A CN 88101287A CN 88101287 A CN88101287 A CN 88101287A CN 88101287 A CN88101287 A CN 88101287A
- Authority
- CN
- China
- Prior art keywords
- air
- liquid
- heat pipe
- evaporimeter
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0266—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/02—Actuating devices; Operating means; Releasing devices electric; magnetic
- F16K31/06—Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/80—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
- F24F11/83—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/80—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
- F24F11/83—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
- F24F11/84—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/06—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
- F24F3/08—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with separate supply and return lines for hot and cold heat-exchange fluids i.e. so-called "4-conduit" system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/06—Control arrangements therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B25/00—Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
- F25B25/005—Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B29/00—Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
- F25B29/003—Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Air Conditioning Control Device (AREA)
- Other Air-Conditioning Systems (AREA)
- Air-Conditioning For Vehicles (AREA)
Abstract
涉及建筑物空调系统,有不同楼层上的若干空调器,重力降温热管将空调器蒸发器和层顶冷热量源连接,重力加热热管将空调器冷凝器和地下室中的热量源连接。热管在蒸发器进口和冷凝器出口设流量控制阀。每一空调器有热敏电阻检测回流空气温度,液高检测开关检测蒸发器热介质高度。对流量控制阀根据热敏电阻及液高检测开关的信号分别进行控制。
Description
本发明一般有关建筑物的空调系统,具体有关的类型的空调系统,其热量传递通过重力型热管进行。
一般,在建筑物空调系统中,用水作热量源设备和各个空调器之间传递热量的热介质。但这类用水在一旦有空调器漏水时,便发生麻烦。因此近来对于建筑物空调系统,已经考虑采用诸如氟里昂之类的挥发物质,作为直接在热量源设备和各个空调器的热交器之间直接流通的热介质,从而依靠物质的挥发性减少麻烦。
本发明人提出过这类空调系统,利用一种重力型的热管。(参见中国专利申请第87107689号)。
这空调系统有一个第一储热箱作冷储热器,安装在空调建筑物的一个高处,例如在房顶上;一个第二储热箱作热储热器,安装在同一建筑物的低处,例如地下室中;有若干空调器,安装在作为冷储热器的第一储热箱和作为热储热器的第二储热箱之间各空调居室中,或安装在各楼层顶附近的一个地方;有重力型热管将空调器和第一及第二储热箱连接。重力型热管的主要设计,是使热介质因热介质的物态变化在自然重力下通过热管循环。
在上述空调系统,将循环热介质的流量调节,按照各空调居室中的热负荷,控制加温和降温的状况。但应注意在控制热介质流量时有某些问题。例如,安装在不同楼层上的空调器,其液态热介质有不同的落差,造成各空调器不能有相同的热交换条件。具体而言,由于低楼层的空调器接受较大的落差,便极难用节流阀之类控制流量。节流阀过分节流时,空调器中的热介质不足。与此相反,假如这空调器中用于蒸气的热管被液体热介质充满时,已蒸发的热介质的畅顺流动就受到阻碍,使空调器中的热交换不能有效进行,便造成降温不良。此外,在使落差增大的状态下,气态的热介质的温度增高,便不能充分降温。
而且,当各空调居室中的热负荷差异时,各居室中的加热和降温运转,必须按照其具体的热负荷分别调节,因此,例如当空调系统作降温运转,而空调器受到较大的热负荷时,交换的热量和热介质的蒸汽量增大,因而热管中蒸汽的阻力增大,也就是,由于需要较大热介质流量的管路或空调器有较大的阻力,因而有大量的热介质供给其他的没有大热负荷,也不需要大量热介质的管路或空调器,因此是不利的。
因此,本发明的目的,是提出一种建筑物空调系统,其中有若干分别安装在不同楼层上的空调器,有重力型热管进行热量传递,对不同楼层的各空调器可分别作精确控制,按需要调节各空调地点中空气的温度。
为达到这目的,提出一种建筑物空调系统,其中有下列各项:
一个冷热热量源安装在建筑物的高处,
一个热热量源安装在建筑物的低处,
安装在该冷和热热量源之间的不同高度上的空调器,各有一个冷凝器作空调地点空气加热的热交换器,一个蒸发器作空调地点空气冷却的热交换器,有一个风扇将空气通过该冷凝器和蒸发器吹入空调地点,
一个重力型降温热管,用以将空调器的蒸发器和冷热量源连接,其中充满热介质在里面循环;
一个重力型加热热管,用以将空调器的冷凝器和热热量源连接,其中充满热介质在里面循环;
温度传感器,感测空调地点中空气温度;
流量控制阀,分别布置在热管内位于蒸发器的进口和冷凝器的出口;
液体高度感测装置,检测蒸发器液态热介质的预定高度;
控制器,分别根据温度传感器和液高检测装置供给的检测信号,控制流量控制阀,使空调地点中的空气达一个设定点。
设置上述的空调系统后,加热运转由有热热量源,空调器和加热热管的第一自然循环管路进行,降温运转可由有冷热量源,空调器和降温热管的第二自然循环管路进行。供入冷凝器和蒸发器的热介质流由相应的流量控制阀控制。阀进行控制,使回入各空调器的回流空气达到要求的温度。例如,当回流空气的温度高于设定点时,与蒸发器对应的流量控制阀开放,或开度增大,而对应于冷凝器的控制阀关闭。相反,当回流空气的温度低于设定点时,与冷凝器对应的流量控制阀开放,或开度增大,而对应于蒸发器的控制阀关闭。如上文所述,由于对应于热介质供给流量的流量控制阀,是按各空调器的热负荷控制,便可防止先有技术中的问题,即一方面又不将需要量的热介质向某些空调器作足够的供给,而另方面供给另一些空调器的热介质又超过需要量。应注意流量控制阀可用开关控制器或用连续或步进控制器控制。此外,还可对对应于蒸发器的流量控制阀作控制,使热介质的液高不超过预定值。例如,当阀开放,通过这阀进入蒸发器的液态热介质达到预定高度时,液高检测装置测得这状况便产生关阀信号。因此,根据回流空气和设定值之间的温差,以及液高检测装置供给的检测信号,控制供给蒸发器的热介质。
本发明的这个和其他的目的和特点,从下文关于理想实施方案的叙述,参看附图,便可清晰了解,附图内容如下:
图1为本发明一个理想实施方案中的建筑物空调系统的流程,
图2简示流量控制阀和风扇相对于回入空调器的回流空气温度的运转,
图3简示第一蒸发器和第一冷凝器相应于回流空气温度的运转,
图4为空调器主要部分的放大图,
图5为图4所示空调器改型的放大,
图6为示本发明第二实施方案的流程,
图7为用于图1中的空调系统的流量控制阀一个实施方案的剖视,
图8为沿图7,线Ⅷ-Ⅷ的剖视。
在对本发明作说明前,应注意到在附图的全部若干视图中,相似的部件用相同的标号和符号标示。
现参看附图,在图1中示本发明建筑物空调系统的流程。这系统的安装位置根据高度规格进行。空调器1在建筑物的不同楼层上的空调居室中安装。空调器1有一个第一冷凝器2,作为空调居室中空气加热热交换器,有一个第一蒸发器3,作空调居室空气降温热交换器。和第一冷凝器2一起形成加热热介质循环回路的第二蒸发器5,安装在低于全部空调器1的安装位置的位置上。和第一蒸化器3一起形成降温热介质循环回路的第二冷凝器4,安装在高于全部空调器1的安装位置的位置上。在每一热介质循环回路中,蒸发器和冷凝器通过相应的热管6、8、及7、9互相连接。第二冷凝器4放在冷热量源中,冷热量源采用冰水式储热器10,安装在诸如房顶的高处,而第二个蒸发器5放在一个热热量源中,热热量源是热水式储热器11,安装在诸如建筑物地下室等的低处。形成有低温能或高温能的储热器10及11的热量源装置,是热泵致冷装置14,配有制冰装置12和热水装置13。在冰水式储热器10和制冰装置12之间,设有液浆泵15,将制冰装置12制成的冰用液浆泵15压入冰水式储热器10。在热水式储热器11和热水装置13之间设一个热水热量回收泵16,将热水压入储热器11。图中17表示一个受液器,18为膨胀阀,19为空冷热交换器,20为压缩机。
空调器1除有上述第一冷凝器2和第一蒸发器3外,还有风扇21和一个热敏电阻22,热敏电阻检测风扇21抽吸的回入空调居室的空气的温度。流量控制阀23及24设在第一蒸发器3的进口和第一冷凝器2的出口。一个液高检测器26安装在第一蒸发器3的一个高位上。热敏电阻22和液高检测器26的检测信号供给控制器25。控制器25根据信号运算,取得流量控制阀23及24的适当开度,和风扇21的适当转速,产生与之相应的指令信号,向流量控制阀23及24和风扇21输出。
图2概示与第一冷凝器2及第一蒸发器3相应的阀24及23的开度,以及与空调居室中回流空气温度相应的风扇21的转速。在图2中,上方示相应于第一冷凝器2的阀24的运转,中部示相应于第一蒸发器3的阀23的运转,下方示风扇21的运转。在这实施方案中,空调居室中温度的理想值设定为SP。当回流空气温度升到设定点SP以上时,降温运转开始。
在这实施方案中,流量控制阀23及24分别为开关阀。当回流空气温度在设定点SP以上时,与第一冷凝器2对应的阀24关闭,与第一蒸发器3对应的阀23开放,进行降温运转。与之相反,当回流空气温度在设定点SP以下时,阀24开放,阀23关闭,进行加热运转。也就是,降温运转和加热运转围绕设定点SP互相变换。在这种变换中,在阀23或24开放时,和设定点SP比较的温差较大,而当阀23或24关闭时,和设定点SP比较的温差较小。就是当运转从降温转变为加热,如图2中实线所示,表示阀23关闭的一个点仅略低于设定点SP,然后在阀24开放时,作表示的一个点则在设定点SP以下很远。与此相反,当运转从加热向降温变化时,则如图2中双点线所示,表示阀24关闭的点仅略高于设定点SP,然后在阀23开放时,作表示的一个点则在设定点SP以下很远。这里应注意,甚至当回流空气降温不大,不能停止降温运转时,例如热介质在第一蒸发器3中充注很多,液高检测器26便发出信号,将阀23关闭。
对风扇21作控制,作三级速度的旋转,即高速,中速及低速。无论在降温或加热运转中,离设定点SP越远,回流空气温度越高,因此风扇21的转速越高。实线表示从降温向加热运转的转变,而双点线表示从加热向降温运转的转换。风扇转速从高速向低速转变时,转变点距设定点SP较近,而从低速向高速转变时,则距离较远。并且,对风扇21进行控制,当与第一冷凝器2对应的阀24,和与第一蒸发器3对应的阀23分别开放时,基本在同一时间,风扇转速从低速转变为中速。
否则如图3所示,也可以保持风扇21转速恒定,而仅控制阀23及24的开度,根据回流空气温度相对于设定点SP的逐渐增高,控比例增大开度。应从图3中看到,实线表示阀23的运转,而虚线表示阀24的运转。
图4为空调器1的放大视图,详示第一蒸发器3和液高检测装置,第一冷凝器,风扇和热敏电阻略去。第一蒸发器3有一个下集流管3b,和液态热介质热管7连接,流量控制阀23设在热管中的与下集流管3b相邻的位置上,一根盘管3c和下集流管3b相连,构成换热器的主要部分,一个上集流管3a和盘管3c及气态热介质热管9相连。液高检测装置有一个旁路7a,和两热管7及9连接,在旁路7a的预定高度上安装的液高检测开关26,检测旁路7a中热介质的液高,也就测到盘管3c中的液高。当开关26检测到液态热介质的状态达到预定的水平时,开关26产生一个检测信号,供给控制器25,使阀23关闭。
在一个实施方案中,流量控制阀22为一个电磁阀,型式为开关26,安装在旁路7a的一个高度上,以便检测液态热介质达到超过最高翅片3d相当多的状态。这里应注意到为了取得有效的降温运转,必须使盘管3c中充注的液态热介质达到的高度,相当于最高的翅片。此外,还必须使与上集流管3a内部接通的气态热介质热管9的进口7b,不被液态热介质占据,也就是至少集流管7b的上部由气体占据。假如液态热介质占据进口7b,在盘管3a和上集流管3a中蒸发的气体便不能迅速流入热管9。
空调器1不运转时阀23关闭。当热敏电阻22检测到的温度比设定点SP低时,即使热介质的液高低于预定高度,阀23也将关闭。液高由开关26检测。
否则,也可将第一蒸发器3,在空调器1的壳体中,沿一个倾斜平面安装,如图5所示。
在图1所示的实施方案中,每一空调器1设一个液高检测装置。与上述相反,如图6所示,当将第一冷凝器2省却时,假如全部空调器可按同工况运转,则可用一个液高检测装置,控制同一楼层上的一组空调器。在这实施方案中,一个共用的旁路7a′和两个热管7及9连接。另加一个开关型流量控制阀23a,放在热管7的适当部分中,向每一空调器供给液态热介质。液高检测开关26和各热敏电阻22产生的信号,供给(图6中未示的)控制器,控制器控制阀23及23a。在这实施方案中,各蒸发器3中热介质的液高,由旁路7a′中的热介质的液高代表。因此,各蒸发器3中热介质的液高,基本由开关26的信号控制。
在上述实施方案中,用液高检测开关26检测第一蒸发器3中热介质的液高。与上述相反,对蒸发器3中热介质液高的检测,也可用一种系统,其中有一对温度传感器(未示)分别放在热介质蒸发器3的进口和出口。具体而言,假如液态热介质不达到预定的高度,即蒸发器3的出口,则过热并从出口通过的气体的温度,高于安装在蒸发器3进口处的下传感器检测到的液态热介质的温度。与上述相反,当液态热介质达到蒸发器3的出口的预定高度,从而上传感器感测到的液态热介质的温度,与下传感器则到的热介质的温度相同。因此,通过比较上下传感器感测到的温度,便可进行液高检测。
在用上述的系统时,由于阀23及24的开度,分别根据回流空气实际温度和设定点的差别控制,也就是由于对热介质有控制,使热介质流的阻力随阀23及24的开度变化,而不随热交换量或蒸汽量变化,因此,便可向要求供给热介质的空调器供给必需的热介质流量。此外,甚至在有若干不同高度上,也就是在建筑物的不同楼层上安装的空调器时,第一蒸发器3中热介质的液高,由液高检测装置和流量控制阀23控制,保持恒定,各空调器中热介质的落差也可保持恒定。因此,在建筑物不同楼层上的各空调中,相应蒸发器中液态热介质,在基本相同的压力下,可在基本相同的温度下汽化,产生相同的降温运转。
而且,使用上述系统时,降湿运转进行时可用第一蒸发器3进行过冷降湿,而用第一冷凝器2进行再加热。在这情况下,将阀23及24开放。
否则在图1中,当位置低的空调器中的热介质的落差非常大的时候,最好在阀23上游的每一个分支液体热管中加一个减压阀。
图7及图8示流量控制阀的一个举例,用在上述空调系统中极为理想。将这电磁阀23d放在液态热介质热管7中。阀23d有壳体23f,从水平热管7向下伸。壳23f中放一个阀23j,可作上下活动。阀有一个活塞件或支承件23g,一个柔性袋23i固定在支承件23g的顶部,其中充注磁性液23h。一个半圆形电磁铁23e固定在热管7的上外侧上,位置高于阀23j。
在阀23j中,当电磁铁23e激磁时,磁液23h被激励的电磁铁23i吸引,整个阀23j被从壳体23f向上推,将热管7关闭。袋23i为柔性,故和热管的内缘表面,也就是密封表面紧密接触,从而将热管7严紧密封。如图7及8所示,由于当阀23j将热管7关闭时,支承件23g留在壳23f内,便可防止整个阀23j因热介质流的压力,而离开预定的位置。即使有一些诸如尘土之类的异物卡在阀23j的袋23i和热管7的密封表面之间,袋23i很容易变形,适应异物的形状,形成严密的密封。电磁铁23e的励磁终止后,将阀23i从电磁铁23e上释放,阀23i在重力作用下落入壳23f,于是热管7开放。当整个阀23j进入壳23f后,热管开放的口的直径和热管7本身的直径相同。因此,优点是阀的压力损失小于通常电磁阀。
Claims (5)
1、一种建筑物空调系统中有下列各项:
一个安装在该建筑物高处的冷热量源(10,4),
一个安装在该建筑物低处的热热量源(11,5),
空调器(1),安装在该冷和热热量源之间,其每个各有一个冷凝器(2)作对空调地点空气加热的热交换器,一个蒸发器(3)作对空调点空气降温的热交换器,一个风扇(21)将空气通过该冷凝器(2)和蒸发器(3),吹入空调地点,
一个重力型降温热管(7,9),该空调器(1)的蒸发器(3)藉以和该冷热量源(10,4)接通,并有热介质充注,在里面循环,
一人重力型加热热管(6,8),该空调器(1)的冷凝器(2)藉以和该热热量源(11,5)接通,并有热介质充注,在里面循环,
温度传感器(22)检测空调地点中空气的温度,
流量控制阀(23,24,23a)分别布置在该蒸发器(31)的进口和该冷凝器(2)出口的热管(7,9,6,8)中,
液高检测装置(7a,26,7a′),检测蒸发器(3)中液态热介质的预定液高,
控制器(25),根据温度传感器(22)和液高检测装置(7a,26,7a′)供给的检测信号,分别控制流量控制阀(23,24,23a),从而空调地点的空气符合设定点。
2、如权利要求1中之空调系统,而特征为风扇(21)的转速由该控制器(25)根据该温度传感器的检测信号控制。
3、如权利要求1中之空调系统,而特征为该液高检测装置有下列各项:
一个旁路(7a)和液态热介质降温热管(7)连接,也和气态热介质降温热管(9)连接,并与该蒸发器(3)并联,
一个液高检测开关(26)检测该旁路(7a)中液态热介质的高度。
4、如权利要求3中之空调系统,而特征为该液高检测开关(26)安装在该旁路(7a)上,以检测达到该蒸发器(3)最高翅片高度的液态热介质。
5、如权利要求1中之空调系统,而特征为该流量按制阀(23,24)中有下列各项:
一个壳体(23f),从该水平伸展的液态热介质热管(7)向下方伸展,
一个电磁铁(23e)在该壳体(23f)上方的一个位置上,围绕该热管(7)的周围,
一个阀(23e)放在该壳体(23f)内,在壳内上下活动,阀中有一个支承件(23g)和一个柔性袋,固定在该支承件23g的顶部上,袋中放磁液(23h)。
特征在于当该电磁铁(23e)激励时,该电磁铁(23a)吸引该阀(23j),使该袋(23i)和该热管(7)的内周缘紧密接触,关闭该热管(7)。
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5708087 | 1987-03-12 | ||
JP57080/87 | 1987-03-12 | ||
JP265909/87 | 1987-10-20 | ||
JP62265909A JPH01108487A (ja) | 1987-10-20 | 1987-10-20 | 電磁弁 |
JP276568/87 | 1987-10-31 | ||
JP62276568A JPH0810066B2 (ja) | 1987-10-31 | 1987-10-31 | ビル空調システム |
Publications (2)
Publication Number | Publication Date |
---|---|
CN88101287A true CN88101287A (zh) | 1988-09-21 |
CN1009858B CN1009858B (zh) | 1990-10-03 |
Family
ID=27296135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN88101287A Expired CN1009858B (zh) | 1987-03-12 | 1988-03-09 | 建筑物空调系统 |
Country Status (9)
Country | Link |
---|---|
US (1) | US4843832A (zh) |
EP (1) | EP0281762B1 (zh) |
KR (1) | KR950003786B1 (zh) |
CN (1) | CN1009858B (zh) |
AU (1) | AU599760B2 (zh) |
CA (1) | CA1295129C (zh) |
DE (1) | DE3871995T2 (zh) |
ES (1) | ES2033348T3 (zh) |
MX (1) | MX167565B (zh) |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT392532B (de) * | 1989-03-13 | 1991-04-25 | Zortea Rembert | Einrichtung zum transport von waerme fuer heiz- bzw. kuehlzwecke |
US5607013A (en) * | 1994-01-27 | 1997-03-04 | Takenaka Corporation | Cogeneration system |
EP0709625A3 (en) * | 1994-10-28 | 1997-12-17 | IMI Air Conditioning Limited | Heating and cooling system and pump therefor |
JPH08296873A (ja) * | 1995-03-02 | 1996-11-12 | Sanden Corp | 空気調和装置 |
US6062035A (en) * | 1995-10-24 | 2000-05-16 | Daikin Industries, Ltd. | Air conditioner |
US5907956A (en) * | 1996-10-31 | 1999-06-01 | Sanyo Electric Co., Ltd. | Air conditioning system |
US6006528A (en) * | 1996-10-31 | 1999-12-28 | Sanyo Electric Co., Ltd. | Air conditioning system |
JPH10197171A (ja) * | 1996-12-27 | 1998-07-31 | Daikin Ind Ltd | 冷凍装置及びその製造方法 |
KR100538557B1 (ko) * | 1997-11-19 | 2006-02-28 | 산요덴키가부시키가이샤 | 공기조화장치 및 그것의 운전 방법 |
US7287398B2 (en) * | 2001-09-25 | 2007-10-30 | Alsius Corporation | Heating/cooling system for indwelling heat exchange catheter |
US6581403B2 (en) * | 2001-09-25 | 2003-06-24 | Alsius Corporation | Heating/cooling system for indwelling heat exchange catheter |
US6266964B1 (en) * | 2000-01-10 | 2001-07-31 | American Standard International Inc. | Use of electronic expansion valve to maintain minimum oil flow |
CZ301374B6 (cs) * | 2001-05-16 | 2010-02-03 | Uniflair International S. A. | Klimatizacní systém |
KR100402366B1 (ko) * | 2001-08-31 | 2003-10-17 | 진금수 | 히트 펌프 시스템 |
US6792766B2 (en) * | 2002-10-04 | 2004-09-21 | Cascade Manufacturing, L.P. | Zone demand controlled dual air conditioning system and controller therefor |
WO2004063654A2 (en) * | 2003-01-10 | 2004-07-29 | Hurley Paul A | Thermal energy transfer panel |
ITBO20030037A1 (it) * | 2003-01-29 | 2004-07-30 | Frigor System Di Calzoni | Dispositivo per la climatizzazione ambientale |
EP2314956A1 (en) * | 2003-12-05 | 2011-04-27 | Liebert Corporation | Cooling system for high density heat load |
FR2871559B1 (fr) * | 2004-06-14 | 2006-09-22 | Georges Favier | Coeur de pompe a chaleur compact de type eau/eau |
FR2903480A1 (fr) * | 2006-07-05 | 2008-01-11 | Daniel Negroni | Recuperateur de chaleur en sortie de groupe a condensation a air ou eau de pompe a chaleur pour chauffer l'eau |
US7891575B2 (en) * | 2006-11-03 | 2011-02-22 | Sami Samuel M | Method and apparatus for thermal storage using heat pipes |
CN100458293C (zh) * | 2007-07-05 | 2009-02-04 | 南京大学 | 自循环式蓄冷空调系统 |
KR100804424B1 (ko) * | 2007-09-18 | 2008-02-20 | 주식회사신우이엔지 | 공기조화장치 |
JP4780479B2 (ja) * | 2008-02-13 | 2011-09-28 | 株式会社日立プラントテクノロジー | 電子機器の冷却システム |
US20090255997A1 (en) * | 2008-04-13 | 2009-10-15 | Richard Goldmann | Apparatus and Method for Flexibly and Efficiently Varying Air Temperatures in Multiple Rooms |
JP5359057B2 (ja) * | 2008-06-26 | 2013-12-04 | アイシン精機株式会社 | コージェネレーションシステム |
EP2310751B1 (en) * | 2008-07-03 | 2017-05-17 | Jeffrey A. Weston | Thermal gradient fluid header for multiple heating and cooling systems |
TWI360631B (en) * | 2009-03-13 | 2012-03-21 | Ind Tech Res Inst | Air condition system |
US8176360B2 (en) | 2009-08-11 | 2012-05-08 | Texas Memory Systems, Inc. | Method and apparatus for addressing actual or predicted failures in a FLASH-based storage system |
SG171566A1 (en) * | 2009-12-01 | 2011-06-29 | Hitachi Plant Technologies Ltd | Cooling method and cooling system of electronic device |
US20130125565A1 (en) * | 2011-11-17 | 2013-05-23 | Optimum Energy,Llc | Systems and methods for reducing energy consumption of a chilled water distribution system |
US11536507B2 (en) | 2011-11-17 | 2022-12-27 | Optimum Energy, Llc | Systems and methods for reducing energy consumption of a chilled water distribution system |
US9273874B2 (en) * | 2012-04-03 | 2016-03-01 | Qutaibah Al-Mehaini | Air conditioning and venting system |
DE102012011519A1 (de) * | 2012-06-08 | 2013-12-12 | Yack SAS | Klimaanlage |
IN2015DN03895A (zh) * | 2012-12-03 | 2015-10-02 | Nec Corp | |
US10094584B2 (en) * | 2013-02-07 | 2018-10-09 | Honeywell International Inc. | Building management system with programmable IR codes |
US10330335B2 (en) * | 2013-02-07 | 2019-06-25 | Honeywell International Inc. | Method and system for detecting an operational mode of a building control component |
US9879873B2 (en) * | 2013-02-07 | 2018-01-30 | Honeywell International Inc. | Building control system with distributed control |
US10088186B2 (en) * | 2013-02-07 | 2018-10-02 | Honeywell International Inc. | Building management system with power efficient discrete controllers |
US10359791B2 (en) * | 2013-02-07 | 2019-07-23 | Honeywell International Inc. | Controller for controlling a building component of a building management system |
US9920963B1 (en) * | 2017-01-12 | 2018-03-20 | Alexander P Rafalovich | System for conditioning air with temperature and humidity control and heat utilization |
KR102280276B1 (ko) * | 2020-03-20 | 2021-07-22 | 주식회사 월드원하이테크 | 히트펌프 시스템 및 이를 이용한 냉난방 시스템 |
CN113418255A (zh) * | 2021-07-12 | 2021-09-21 | 中国科学院广州能源研究所 | 用于数据中心的可再生能源及余热综合利用系统及方法 |
CN113654112A (zh) * | 2021-08-05 | 2021-11-16 | 南京佳力图机房环境技术股份有限公司 | 一种多模式切换二级空调系统及运行方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1642015A (en) * | 1921-06-04 | 1927-09-13 | Delco Light Co | Refrigerating apparatus |
US1572858A (en) * | 1925-04-25 | 1926-02-09 | Royce A Ruess | Flooded horizontal refrigerating coil |
US3127929A (en) * | 1961-05-29 | 1964-04-07 | Trane Co | Air conditioning system with one pipe heating and cooling |
US3461907A (en) * | 1966-08-18 | 1969-08-19 | Charles P Wood Jr | Liquid level control device for refrigeration systems |
US3378062A (en) * | 1966-10-27 | 1968-04-16 | Trane Co | Four pipe heat pump apparatus |
DD103958A1 (zh) * | 1973-02-02 | 1974-02-12 | ||
US4143642A (en) * | 1976-09-24 | 1979-03-13 | Vapor Corporation | High temperature thermal storage system utilizing solar energy units |
US4237859A (en) * | 1977-04-25 | 1980-12-09 | Goettl Adam D | Thermal energy storage and utilization system |
US4270362A (en) * | 1977-04-29 | 1981-06-02 | Liebert Corporation | Control system for an air conditioning system having supplementary, ambient derived cooling |
US4393663A (en) * | 1981-04-13 | 1983-07-19 | Gas Research Institute | Two-phase thermosyphon heater |
US4406138A (en) * | 1981-11-18 | 1983-09-27 | Honeywell Inc. | Load management control air conditioning system |
JPS6192908A (ja) * | 1984-10-12 | 1986-05-10 | Diesel Kiki Co Ltd | 車輛用空気調和装置 |
JPS63118546A (ja) * | 1986-11-05 | 1988-05-23 | Takenaka Komuten Co Ltd | ビル空調システム |
-
1988
- 1988-02-04 DE DE8888101622T patent/DE3871995T2/de not_active Expired - Fee Related
- 1988-02-04 US US07/152,427 patent/US4843832A/en not_active Expired - Lifetime
- 1988-02-04 EP EP88101622A patent/EP0281762B1/en not_active Expired - Lifetime
- 1988-02-04 ES ES198888101622T patent/ES2033348T3/es not_active Expired - Lifetime
- 1988-02-16 KR KR1019880001612A patent/KR950003786B1/ko not_active IP Right Cessation
- 1988-02-23 CA CA000559610A patent/CA1295129C/en not_active Expired - Lifetime
- 1988-02-24 MX MX1053388A patent/MX167565B/es unknown
- 1988-03-07 AU AU12746/88A patent/AU599760B2/en not_active Ceased
- 1988-03-09 CN CN88101287A patent/CN1009858B/zh not_active Expired
Also Published As
Publication number | Publication date |
---|---|
AU1274688A (en) | 1988-09-15 |
KR880011535A (ko) | 1988-10-28 |
CA1295129C (en) | 1992-02-04 |
DE3871995D1 (de) | 1992-07-23 |
ES2033348T3 (es) | 1993-03-16 |
MX167565B (es) | 1993-03-30 |
EP0281762B1 (en) | 1992-06-17 |
US4843832A (en) | 1989-07-04 |
EP0281762A3 (en) | 1989-06-07 |
KR950003786B1 (ko) | 1995-04-18 |
CN1009858B (zh) | 1990-10-03 |
EP0281762A2 (en) | 1988-09-14 |
AU599760B2 (en) | 1990-07-26 |
DE3871995T2 (de) | 1993-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN88101287A (zh) | 建筑物空调系统 | |
FI96237B (fi) | Parannuksia lämmitys- ja jäähdytysjärjestelmissä | |
CN100467975C (zh) | 空调装置 | |
CN1008768B (zh) | 建筑物的空调系统 | |
KR20070111919A (ko) | 지열을 이용한 공기조화 시스템 | |
WO2011108068A1 (ja) | 空調給湯システム | |
CN106949666A (zh) | 热泵系统及其控制方法 | |
KR100502283B1 (ko) | 공조장치 | |
JP2000274896A (ja) | 膨張弁の異常検知方法及び空調装置 | |
JPH0321813B2 (zh) | ||
JPH1163561A (ja) | 冷媒自然循環式熱交換システム | |
KR102213179B1 (ko) | 복합열원을 이용한 다중사이클 냉난방장치 | |
PL191519B1 (pl) | Sposób regulacji parametrów powietrza w pomieszczeniach klimatyzowanych, zwłaszcza w przechowalniach produktów wrażliwych na warunki klimatyczne, układ do regulacji parametrów powietrza w pomieszczeniach klimatyzowanych, zwłaszcza w przechowalniach produktów wrażliwych na warunki klimatyczne oraz urządzenie do regulacji parametrów powietrza w pomieszczeniach klimatyzowanych, zwłaszcza w przechowalniach produktów wrażliwych na warunki klimatyczne | |
WO2023223373A1 (ja) | ヒートポンプ装置 | |
JP3630892B2 (ja) | 空調装置 | |
JPS62261862A (ja) | ヒ−トポンプシステム | |
JP3433306B2 (ja) | 熱媒循環式空調システムにおける冷房運転の改良 | |
KR20240029595A (ko) | 히트펌프 시스템 및 그 제어방법 | |
JP2780546B2 (ja) | 熱搬送装置 | |
JP3276529B2 (ja) | 熱搬送装置 | |
CN118775972A (zh) | 一种无除湿功能的地板下送风空调与除湿盘管的耦合系统 | |
EA043362B1 (ru) | Способ управления температурой в пространстве внутри здания | |
JPH04273954A (ja) | 冷凍サイクルの冷媒量調整装置 | |
JPS6249542B2 (zh) | ||
JPS5918359A (ja) | 冷暖房給湯装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C13 | Decision | ||
C14 | Grant of patent or utility model | ||
C15 | Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993) | ||
C19 | Lapse of patent right due to non-payment of the annual fee |