WO2023223373A1 - ヒートポンプ装置 - Google Patents
ヒートポンプ装置 Download PDFInfo
- Publication number
- WO2023223373A1 WO2023223373A1 PCT/JP2022/020323 JP2022020323W WO2023223373A1 WO 2023223373 A1 WO2023223373 A1 WO 2023223373A1 JP 2022020323 W JP2022020323 W JP 2022020323W WO 2023223373 A1 WO2023223373 A1 WO 2023223373A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat
- refrigerant
- heat exchanger
- hot water
- indoor unit
- Prior art date
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 307
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 196
- 238000001514 detection method Methods 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 description 52
- 239000007788 liquid Substances 0.000 description 33
- 239000007789 gas Substances 0.000 description 31
- 238000001816 cooling Methods 0.000 description 30
- 238000010586 diagram Methods 0.000 description 22
- 239000012267 brine Substances 0.000 description 6
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000013589 supplement Substances 0.000 description 3
- 239000002918 waste heat Substances 0.000 description 3
- 238000004378 air conditioning Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000003809 water extraction Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B30/00—Heat pumps
- F25B30/02—Heat pumps of the compression type
Definitions
- the present disclosure relates to a heat pump device.
- the heat pump device disclosed in Patent Document 1 includes an outdoor unit as a heat source device, a plurality of indoor units, a water temperature increasing machine, and a heat medium converter interposed between the outdoor unit and the load side unit. , and a hot water storage tank connected to a water temperature heating machine.
- the load-side units are the indoor unit and the water temperature heater.
- the outdoor unit, the plurality of indoor units, the water temperature riser, and the heat medium converter are connected by refrigerant piping to form a refrigeration cycle.
- the cold or hot heat generated by the outdoor unit is delivered to the indoor unit and the water temperature heating machine via the heat medium converter.
- the water temperature riser and the hot water storage tank are connected by a heat medium pipe that conducts water.
- the heat pump device disclosed in Patent Document 1 is equipped with a compressor and a heat exchanger in a water temperature raising machine connected to an outdoor unit in order to achieve both hot water storage operation necessary for high-temperature hot water output and heating operation of the indoor unit. It is a two-way cycle. However, if the water temperature heating machine is a two-way cycle, the system may become complicated and manufacturing costs may increase.
- the present disclosure has been made in order to solve the above-mentioned problems, and even if the repeater connected to the heat source device is a one-cycle cycle, the hot water storage operation necessary for hot water dispensing and the indoor unit heating
- the purpose of the present invention is to provide a heat pump device that can perform both operations.
- a heat pump device includes a heat source device having a compressor, a flow path switching valve, and a heat source heat exchanger; a first relay device having a first heat exchanger, a first expansion mechanism, and a first pump; A first indoor unit having an indoor heat exchanger and a second expansion mechanism, and a hot water storage tank, wherein the first repeater and the first indoor unit are connected in parallel with the heat source device via refrigerant piping.
- the first relay machine and the hot water storage tank are connected by a first heat medium pipe to form a first heat medium circuit, and the refrigerant pipe has the compressor.
- the first relay machine and the first indoor unit are connected in series to the heat source machine so that refrigerant gas discharged from the machine flows into the first indoor unit via the first repeater.
- a flow path switching device is provided for switching to a state in which the flow path is changed.
- the first relay device and the first indoor unit are connected to the heat source device so that the refrigerant gas discharged from the compressor flows into the first indoor unit via the first relay device during heating operation. Since a flow path switching valve is provided to switch to a state where the machine is connected in series, the sensible heat that becomes high temperature can be used to store hot water in the first relay machine, and the latent heat can be used to store hot water in the first indoor unit. Can be used for heating purposes. Therefore, even if the repeater connected to the heat source device is a one-cycle cycle, it is possible to achieve both the hot water storage operation required for high-temperature hot water supply and the heating operation of the indoor unit.
- FIG. 2 is a refrigerant circuit diagram of the heat pump device according to the first embodiment.
- FIG. 2 is an explanatory diagram of the heat pump device according to Embodiment 1, showing a state in which a first repeater and a first indoor unit are connected in parallel to a heat source device.
- FIG. 2 is an explanatory diagram of the heat pump device according to Embodiment 1, showing a state in which a first repeater and a first indoor unit are connected in series to a heat source device.
- FIG. 2 is a ph diagram of the heat pump device according to the first embodiment during heating operation in a state where the first repeater and the first indoor unit are connected in series to the heat source device.
- FIG. 2 is a ph diagram of the heat pump device according to the first embodiment during cooling operation in a state where the first repeater and the first indoor unit are connected in series to the heat source device.
- FIG. 2 is a refrigerant circuit diagram of a heat pump device according to a second embodiment.
- FIG. 7 is an explanatory diagram showing a heat pump device according to Embodiment 2, in which a first relay device and a second relay device are connected in parallel to a heat source device.
- FIG. 7 is an explanatory diagram showing a heat pump device according to a second embodiment, in which a first relay device and a second relay device are connected in series to a heat source device.
- 3 is a refrigerant circuit diagram of a heat pump device according to Embodiment 3.
- FIG. 7 is an explanatory diagram showing a heat pump device according to Embodiment 3 in which a first relay device, a second relay device, and a first indoor unit are connected in parallel to a heat source device.
- FIG. 7 is an explanatory diagram showing a heat pump device according to Embodiment 3 in which a first relay device, a second relay device, and a first indoor unit are connected in series to a heat source device.
- FIG. 7 is a refrigerant circuit diagram of a heat pump device according to a fourth embodiment.
- FIG. 1 is a refrigerant circuit diagram of a heat pump device 100 according to the first embodiment.
- the heat pump device 100 according to the first embodiment includes a heat source device 1, a first relay device 2, a first indoor unit 3, a hot water storage tank 4, and a control device 5.
- the heat pump device 100 has a refrigerant circuit A in which a first repeater 2 and a first indoor unit 3 are connected in parallel to a heat source device 1 through a first refrigerant pipe 200 and a second refrigerant pipe 201. There is.
- a heat source device 1 and a first relay device 2 are connected by a first refrigerant pipe 200, and a first indoor unit 3 is connected to a second refrigerant pipe 201 branched from the first refrigerant pipe 200. is connected.
- a first indoor unit 3 is connected to a second refrigerant pipe 201 branched from the first refrigerant pipe 200.
- the refrigerant circulating in the refrigerant circuit A is R32, which has a high discharge temperature from the compressor 10.
- the refrigerant circulating in the refrigerant circuit A is not limited to R32, and may be other types of refrigerant. In this case, it is desirable to use a refrigerant with a high discharge temperature from the compressor 10.
- the heat pump device 100 has a first heat medium circuit B in which the first repeater 2 and the hot water storage tank 4 are connected by a first heat medium pipe 300.
- the heat medium circulating in the first heat medium circuit B is water supplied to the hot water storage tank 4.
- the heat source machine 1 includes a compressor 10, a flow path switching valve 11, a heat source heat exchanger 12, an accumulator 13, and a heat source blower 14.
- the first repeater 2 includes a first heat exchanger 20, a first expansion mechanism 21, and a first pump 22.
- the first indoor unit 3 includes a first indoor heat exchanger 30, a second expansion mechanism 31, and a first indoor blower 32.
- a compressor 10 In the refrigerant circuit A, a compressor 10, a flow path switching valve 11, a first heat exchanger 20, a first expansion mechanism 21, a heat source heat exchanger 12, and an accumulator 13 are connected by a first refrigerant pipe 200.
- the refrigerant circuit A includes a first refrigerant pipe 200 between the flow path switching valve 11 and the first heat exchanger 20, and a first refrigerant pipe 200 between the first expansion mechanism 21 and the heat source heat exchanger 12.
- Two refrigerant pipes 201 are branched and connected.
- a first indoor heat exchanger 30 and a second expansion mechanism 31 are connected by a second refrigerant pipe 201.
- the first heat exchanger 20, the hot water storage tank 4, and the first pump 22 are connected by a first heat medium pipe 300.
- the compressor 10 sucks the refrigerant flowing through the first refrigerant pipe 200 from the suction port.
- the compressor 10 compresses the sucked refrigerant and discharges it to the first refrigerant pipe 200 from the discharge port.
- Compressor 10 is, for example, an inverter compressor.
- the operating frequency may be arbitrarily changed using an inverter circuit or the like, and the refrigerant discharge capacity per unit time may be changed. In that case, the operation of the inverter circuit is controlled by the control device 5.
- the refrigerant discharged from the compressor 10 flows into the first heat exchanger 20 and the first indoor heat exchanger 30 via the flow path switching valve 11.
- the flow path switching valve 11 is, for example, a four-way valve, and has a function of switching the refrigerant flow path.
- the flow path switching valve 11 connects the refrigerant discharge side of the compressor 10 and the heat source heat exchanger 12 and connects the refrigerant suction side of the compressor 10 and the first indoor heat exchanger 30 during cooling operation. Switch the refrigerant flow path as follows. On the other hand, during heating operation, the flow path switching valve 11 connects the refrigerant discharge side of the compressor 10 to the first heat exchanger 20 and the first indoor heat exchanger 30, and connects the refrigerant suction side of the compressor 10 to the first heat exchanger 20 and the first indoor heat exchanger 30. The refrigerant flow path is switched to connect the heat source heat exchanger 12.
- the flow path switching valve 11 may be configured by combining a two-way valve or a three-way valve.
- the heat source heat exchanger 12 functions as an evaporator during heating operation, and exchanges heat between the refrigerant flowing inside and outdoor air.
- the heat source heat exchanger 12 also functions as a condenser during cooling operation, and exchanges heat between the refrigerant discharged from the compressor 10 and flowing inside and outdoor air.
- the heat source heat exchanger 12 sucks in outdoor air using the heat source blower 14, and discharges the air that has undergone heat exchange with the refrigerant to the outside.
- the accumulator 13 is installed upstream of the suction port of the compressor 10.
- the accumulator 13 separates the gas-liquid two-phase refrigerant flowing out from the evaporator into gas refrigerant and liquid refrigerant, and stores the liquid refrigerant that becomes surplus during operation.
- the heat source device 1 is provided with a temperature sensor 15 that detects the refrigerant discharge temperature of the compressor 10 and a temperature sensor 16 that detects the temperature around the heat source device 1 in the refrigerant circuit A.
- the detection values detected by each temperature sensor are transmitted to the control device 5 and used to control each component configuring the heat pump device 100.
- the first heat exchanger 20 exchanges heat between water, which serves as a heat medium, and a refrigerant.
- the first heat exchanger 20 serves as a flow path for the refrigerant circuit A and a flow path for the first heat medium circuit B. Therefore, the first heat exchanger 20 becomes a device that configures the refrigerant circuit A and a device that configures the first heat medium circuit B.
- the first heat exchanger 20 functions as a condenser, and exchanges heat between the refrigerant flowing from the compressor 10 side and water, and condenses the refrigerant circulating in the refrigerant circuit A to liquefy it or convert it into two-phase gas-liquid. At the same time, water circulating in the first heat medium circuit B is heated.
- the first expansion mechanism 21 depressurizes and expands the refrigerant flowing in the refrigerant circuit A, and is composed of, for example, an electronic expansion valve whose opening degree is variably controlled.
- the first pump 22 is one of the devices that constitute the first heat medium circuit B.
- the first pump 22 sucks water in the first heat medium circuit B, applies pressure, sends it out, and circulates the water.
- the capacity of the first pump 22 is changed by a pump inverter drive device (not shown).
- the pump inverter drive device changes the capacity of the first pump 22 by arbitrarily changing the drive frequency based on instructions from the control device 5.
- the first repeater 2 also includes a temperature sensor 23a that detects the refrigerant outlet temperature of the first heat exchanger 20 and a temperature sensor 23b that detects the refrigerant inlet temperature of the first heat exchanger 20 in the refrigerant circuit A. , is provided. Further, the first relay device 2 is provided with a temperature sensor 24a that detects the water outlet temperature of the first heat exchanger 20 and a temperature sensor 24b that detects the water inlet temperature in the first heat medium circuit B. ing. The detection values detected by each temperature sensor are transmitted to the control device 5 and used to control each component configuring the heat pump device 100.
- the first indoor heat exchanger 30 is an air heat exchanger.
- the first indoor heat exchanger 30 functions as a condenser during heating operation, and exchanges heat between the refrigerant discharged from the compressor 10 and indoor air. Further, the first indoor heat exchanger 30 functions as an evaporator during cooling operation, and performs heat exchange between the refrigerant flowing out from the second expansion mechanism 31 and indoor air.
- the heat source heat exchanger 12 sucks in outdoor air using the heat source blower 14, and discharges the air that has undergone heat exchange with the refrigerant to the outside.
- the second expansion mechanism 31 depressurizes and expands the refrigerant flowing in the refrigerant circuit A, and is composed of, for example, an electronic expansion valve whose opening degree is variably controlled.
- the first indoor unit 3 includes temperature sensors 33a and 33b that detect the refrigerant temperature at the entrance and exit of the first indoor heat exchanger 30 in the refrigerant circuit A, and a temperature sensor 34 that detects the temperature of the indoor space. It is provided. The detection value detected by the temperature sensor is transmitted to the control device 5 and used to control each component that constitutes the heat pump device 100.
- the hot water storage tank 4 stores water supplied via the water supply pipe 40 and hot water heated by the first heat exchanger 20.
- the hot water storage tank 4 is connected to the first repeater 2 via a first heat medium pipe 300.
- a water supply pipe 40 to which water is supplied from the outside is connected to the lower part of the hot water storage tank 4.
- a hot water outlet pipe 41 is connected to the upper part of the hot water storage tank 4 to discharge hot water heated by the first heat exchanger 20 to the outside.
- the hot water storage tank 4 is provided with a temperature detection means 42 for measuring the temperature of the stored hot water.
- the temperature detection means 42 is, for example, a thermistor or the like, and a plurality of temperature detection means 42 are provided at intervals in the height direction of the hot water storage tank 4.
- the control device 5 controls the operation of the entire heat pump device 100.
- the control device 5 is composed of a computer including a memory that stores data and programs necessary for control, and a CPU that executes the programs, dedicated hardware such as ASIC or FPGA, or both.
- the control device 5 controls each part of the heat pump device 100 based on detection information such as a temperature sensor included in the heat pump device 100 and instructions from a remote controller (not shown). Specifically, the control device 5 controls the drive frequency of the compressor 10, the rotational speed of the heat source blower 14, the first indoor blower 32, and the second indoor blower 72, switching of the flow path switching valve 11, the first expansion mechanism 21, The opening degree of the second expansion mechanism 31 and the third expansion mechanism 61, the driving frequency of the first pump 22 and the second pump 62, etc. are controlled.
- the heat pump device 100 has a two-way cycle by providing a compressor and a heat exchanger in the first repeater 2 in order to achieve both the hot water storage operation necessary for high-temperature hot water extraction and the heating operation of the first indoor unit 3. It is possible that However, in the heat pump device 100, if a compressor and a heat exchanger are installed in the first repeater 2 to create a binary cycle, the system may become complicated and the manufacturing cost may increase.
- the heat source device 1 is configured such that the refrigerant gas discharged from the compressor 10 flows into the first indoor unit 3 via the first relay device 2.
- a flow path switching device 8 is provided that switches the first repeater 2 and the first indoor unit 3 to a state in which they are connected in series.
- the flow path switching device 8 includes a connection pipe 80, a first switching valve 81, and a second switching valve 82.
- the connection pipe 80 includes a first refrigerant pipe 200 between the first expansion mechanism 21 and the heat source heat exchanger 12, and a second refrigerant pipe 201 between the flow path switching valve 11 and the first indoor heat exchanger 30. It is something that connects.
- the first switching valve 81 is a two-way valve. The first switching valve 81 connects the first refrigerant pipe 200 between the first expansion mechanism 21 and the heat source heat exchanger 12 to a position P1 where the connection pipe 80 and the first refrigerant pipe 200 are connected. It is provided between the position P2 where the refrigerant pipe 200 and the second refrigerant pipe 201 are connected.
- the second switching valve 82 is a three-way valve.
- the second switching valve 82 is provided at a connecting portion between the second refrigerant pipe 201 and the connecting pipe 80.
- the opening and closing of the first switching valve 81 and the second switching valve 82 are controlled by the control device 5.
- FIG. 2 is an explanatory diagram showing the heat pump device 100 according to the first embodiment, in which the first relay device 2 and the first indoor unit 3 are connected in parallel to the heat source device 1.
- FIG. 3 is an explanatory diagram showing the heat pump device 100 according to the first embodiment, in which the first relay device 2 and the first indoor unit 3 are connected in series to the heat source device 1.
- symbol 81 and 82 has shown the state where the valve was closed.
- the white color indicated by numerals 81 and 82 indicates a state in which the valve is open.
- the heat pump device 100 opens the first switching valve 81 and, among the second switching valves 82, the valve that connects the connection pipe 80 and the second refrigerant pipe 201. By closing, the first repeater 2 and the first indoor unit 3 can be connected in parallel to the heat source device 1.
- the first switching valve 81 is closed, and among the second switching valves 82, the valve connecting the first refrigerant pipe 200 and the second refrigerant pipe 201 is closed. Accordingly, the heat source device 1 can be switched to a state in which the first relay device 2 and the first indoor unit 3 are connected in series.
- the high-temperature, high-pressure gas refrigerant discharged from the compressor 10 passes through the flow path switching valve 11 and flows to the first heat exchanger 20 and the first indoor heat exchanger 30.
- the refrigerant flowing into the first heat exchanger 20 exchanges heat with the water flowing through the first heat medium circuit B, and is condensed and liquefied.
- the water flowing through the first heat medium circuit B is heated by the refrigerant flowing into the first heat exchanger 20 and stored in the hot water storage tank 4 .
- the refrigerant condensed and liquefied by the first heat exchanger 20 is depressurized by the first expansion mechanism 21 and becomes a low-pressure gas-liquid two-phase refrigerant, which flows to the heat source heat exchanger 12 .
- the refrigerant flowing into the first indoor heat exchanger 30 exchanges heat with air, condenses and liquefies, is depressurized by the second expansion mechanism 31, becomes a low-pressure gas-liquid two-phase refrigerant, and flows into the heat source heat exchanger 12.
- the gas-liquid two-phase refrigerant flowing into the heat source heat exchanger 12 exchanges heat with air to evaporate into gas, passes through the flow path switching valve 11 , and is sucked into the compressor 10 via the accumulator 13 .
- the high-temperature, high-pressure gas refrigerant discharged from the compressor 10 passes through the flow path switching valve 11 and flows to the first heat exchanger 20 .
- the refrigerant flowing into the first heat exchanger 20 exchanges heat with the water flowing through the first heat medium circuit B, becomes a gas-liquid two-phase refrigerant, and flows into the first indoor heat exchanger 30.
- the water flowing through the first heat medium circuit B is heated by the refrigerant flowing into the first heat exchanger 20 and stored in the hot water storage tank 4 .
- the refrigerant flowing into the first indoor heat exchanger 30 exchanges heat with air and is condensed and liquefied.
- the condensed and liquefied refrigerant is depressurized by the second expansion mechanism 31 and then flows to the heat source heat exchanger 12.
- the gas-liquid two-phase refrigerant flowing into the heat source heat exchanger 12 exchanges heat with air to evaporate into gas, passes through the flow path switching valve 11 , and is sucked into the compressor 10 via the accumulator 13 .
- FIG. 4 shows the heat pump device 100 according to the first embodiment, and shows the pH during heating operation in a state where the first relay device 2 and the first indoor unit 3 are connected in series to the heat source device 1. It is a line diagram.
- the first repeater 2 by connecting the first repeater 2 and the first indoor unit 3 in series, the first repeater 2 for the purpose of storing hot water
- High-temperature sensible heat can be used to produce high-temperature hot water
- the latent heat can be used for the first indoor unit 3 for heating purposes. Note that since sensible heat is utilized in the first repeater 2, the heat transfer coefficient of the refrigerant deteriorates.
- the heated hot water from the first repeater 2 is heated until the target temperature and target hot water storage amount are reached.
- a refrigerant with high sensible heat such as R32 refrigerant
- the first pump 22 of the first repeater 2 is operated so that the refrigerant outlet temperature of the first repeater 2 becomes the saturation temperature (CT) + ⁇ .
- CT saturation temperature
- the first heat medium circuit B for storing hot water circulates water between the hot water storage tank 4 and the first repeater 2 and gradually warms the water, so it can be heated during times when electricity consumption is low, such as at night. This will help level out power consumption.
- the flow path switching device 8 is switched so that the heat source device 1 is connected to the first relay device 3. and the first indoor unit 3 are connected in parallel, and the sensible heat can be used for heating. Furthermore, at night when the air conditioning load is low, latent heat can also be used in the first repeater 2, so hot water can be stored in parallel operation with air conditioning.
- the heat source device 1 A flow path switching device 8 is provided for switching the first repeater 2 and the first indoor unit 3 to a state in which they are connected in series. Therefore, the sensible heat that becomes high temperature can be used for the purpose of storing hot water in the first repeater 2, and the latent heat can be used for the purpose of heating the first indoor unit 3. Even if one repeater 2 is a one-way cycle, the hot water storage operation required for high-temperature hot water supply and the heating operation of the first indoor unit 3 can be made compatible. In addition, in the heat pump device 100 according to the first embodiment, by using the first repeater 2 as a one-way cycle, the system can be simplified compared to a conventional two-way cycle configuration. The total amount of refrigerant used can be reduced.
- the heat source device 1 and the first indoor unit 3 are connected in series.
- the high-temperature, high-pressure gas refrigerant discharged from the compressor 10 passes through the flow path switching valve 11, flows to the heat source heat exchanger 12, exchanges heat with air, and is condensed and liquefied.
- the condensed and liquefied refrigerant is depressurized by the second expansion mechanism 31 to become a low-pressure gas-liquid two-phase refrigerant, flows to the first indoor heat exchanger 30, exchanges heat with air, and evaporates into gas.
- the gasified refrigerant passes through the flow path switching valve 11 and is sucked into the compressor 10 via the accumulator 13.
- the operation of the heat pump device 100 during the cooling operation will be described, in which the first indoor unit 3 performs the cooling operation and the first heat medium circuit B performs the hot water storage operation.
- the heat source device 1, the first relay device 2, and the first indoor unit 3 are connected in series.
- the heat source heat exchanger 12 and the first indoor heat exchanger 30 function as an evaporator.
- the high-temperature, high-pressure gas refrigerant discharged from the compressor 10 passes through the flow path switching valve 11 and flows to the first heat exchanger 20 .
- the refrigerant flowing into the first heat exchanger 20 exchanges heat with the water flowing through the first heat medium circuit B, and is condensed and liquefied.
- the water flowing through the first heat medium circuit B is heated by the refrigerant flowing into the first heat exchanger 20 and stored in the hot water storage tank 4 .
- the condensed and liquefied refrigerant is depressurized by the first expansion mechanism 21 to become a low-pressure gas-liquid two-phase refrigerant, and flows to the first indoor heat exchanger 30.
- the refrigerant that has flowed into the first indoor heat exchanger 30 exchanges heat with the air and is evaporated and gasified, and then flows into the heat source heat exchanger 12 where it exchanges heat with the air and further evaporates and gasified. It passes through and is sucked into the compressor 10 via the accumulator 13. Note that, when the load balance between the evaporator and the condenser is not achieved, the heat source heat exchanger 12 supplements the load balance by assisting the evaporator and the condenser.
- FIG. 5 shows the heat pump device 100 according to the first embodiment, and shows the pH during cooling operation in a state where the first relay device 2 and the first indoor unit 3 are connected in series to the heat source device 1. It is a line diagram. As shown in FIG. 5, the heat pump device 100 according to the first embodiment connects the first repeater 2 and the first indoor unit 3 in series to the heat source device 1, so that the first repeater 2 and the first indoor unit 3 are connected in series.
- the heat exchanger 20 can be used as a condenser, and the first indoor heat exchanger 30 for cooling can be used as an evaporator, and hot water storage operation and cooling operation can be performed without waste heat.
- the purpose is to store heat of low-temperature water
- this can be achieved by using the heat source heat exchanger 12 as a condenser and making the first indoor heat exchanger 30 and the first heat exchanger 20 function as evaporators.
- FIG. 6 is a refrigerant circuit diagram of the heat pump device 101 according to the second embodiment. Note that the same components as those of the heat pump device 100 described in Embodiment 1 are given the same reference numerals, and the description thereof will be omitted as appropriate.
- the heat pump device 101 includes a heat source device 1, a first relay device 2, a second relay device 6, a second indoor unit 7, a hot water storage tank 4, A control device 5 is provided.
- the heat pump device 101 has a refrigerant circuit A1 in which a first relay device 2 and a second relay device 6 are connected in parallel to the heat source device 1 through a first refrigerant pipe 200 and a third refrigerant pipe 202. There is. Specifically, in the heat pump device 101, the heat source device 1 and the first relay device 2 are connected by a first refrigerant pipe 200, and the second relay device 6 is connected to a third refrigerant pipe 202 branched from the first refrigerant pipe 200. is connected.
- the refrigerant circulating in the refrigerant circuit A1 is R32, which has a high discharge temperature from the compressor 10.
- the refrigerant circulating in the refrigerant circuit A1 is not limited to R32, and may be other types of refrigerant. In this case, it is desirable to use a refrigerant with a high discharge temperature from the compressor 10.
- the heat pump device 101 includes a first heat medium circuit B in which the first repeater 2 and the hot water storage tank 4 are connected by a first heat medium pipe 300.
- the heat medium circulating in the first heat medium circuit B is water supplied to the hot water storage tank 4.
- the heat pump device 101 includes a second heat medium circuit C in which the second repeater 6 and the second indoor unit 7 are connected through a second heat medium pipe 301.
- a second heat medium circuit C in which the second repeater 6 and the second indoor unit 7 are connected through a second heat medium pipe 301.
- the heat medium circulating in the second heat medium circuit C is, for example, water, brine, or a mixture of brine and water.
- the heat source machine 1 includes a compressor 10, a flow path switching valve 11, a heat source heat exchanger 12, an accumulator 13, and a heat source blower 14.
- the first repeater 2 includes a first heat exchanger 20, a first expansion mechanism 21, and a first pump 22.
- the second relay device 6 includes a second heat exchanger 60, a third expansion mechanism 61, and a second pump 62.
- the second indoor unit 7 includes a second indoor heat exchanger 70, a flow rate adjustment device 71, and a second indoor blower 72.
- a compressor 10, a flow path switching valve 11, a first heat exchanger 20, a first expansion mechanism 21, a heat source heat exchanger 12, and an accumulator 13 are connected by a first refrigerant pipe 200.
- the refrigerant circuit A1 includes a first refrigerant pipe 200 between the flow path switching valve 11 and the first heat exchanger 20, and a first refrigerant pipe 200 between the first expansion mechanism 21 and the heat source heat exchanger 12.
- Three refrigerant pipes 202 are branched and connected.
- the second heat exchanger 60 and the third expansion mechanism 61 are connected by a third refrigerant pipe 202.
- first heat medium circuit B the first heat exchanger 20, the hot water storage tank 4, and the first pump 22 are connected by a first heat medium pipe 300.
- second heat medium circuit C a second heat exchanger 60, a second indoor heat exchanger 70, a flow rate adjustment device 71, and a second pump 62 are connected by a second heat medium pipe 301.
- Each component of the heat source device 1 and the first relay device 2 is the same as the configuration of the first embodiment.
- the second heat exchanger 60 exchanges heat between a heat medium and a refrigerant.
- the heat medium is, for example, water, brine, or a mixture of brine and water.
- the second heat exchanger 60 serves as a device constituting the refrigerant circuit A1 and a device constituting the second heat medium circuit C.
- the second heat exchanger 60 functions as a condenser during heating operation, for example, and exchanges heat between the refrigerant flowing from the compressor 10 side and the heat medium, and condenses the refrigerant into liquefaction or gas-liquid two-phase. to heat the heat medium.
- the second heat exchanger 60 functions as an evaporator during cooling operation, and exchanges heat between the refrigerant flowing out from the third expansion mechanism 61 and the heat medium, evaporates the refrigerant, and converts the heat medium into Cooling.
- the third expansion mechanism 61 depressurizes and expands the refrigerant flowing in the refrigerant circuit A1, and is composed of, for example, an electronic expansion valve whose opening degree is variably controlled.
- the second pump 62 is one of the devices that constitute the second heat medium circuit C.
- the second pump 62 sucks the heat medium in the second heat medium circuit C, applies pressure, sends it out, and circulates it.
- the capacity of the second pump 62 is changed by a pump inverter drive device (not shown).
- the pump inverter drive device changes the capacity of the second pump 62 by arbitrarily changing the drive frequency based on instructions from the control device 5.
- the second repeater 6 is provided with temperature sensors 63a and 63b that detect the temperature at the entrance and exit of the second heat exchanger 60 in the refrigerant circuit A1. Further, the second repeater 6 is provided with temperature sensors 64a and 64b that detect the temperature of the heat medium at the entrance and exit of the second heat exchanger 60 in the second heat medium circuit C. The detection values detected by each temperature sensor are transmitted to the control device 5 and used to control each component configuring the heat pump device 100.
- the second indoor heat exchanger 70 is a fin-tube heat exchanger that exchanges heat between indoor air in the indoor space supplied from the second indoor blower 72 and a heat medium.
- a heat medium warmer than air passes through the heat transfer tube of the second indoor blower 72, heating the indoor space.
- a heat medium cooler than air passes through the heat transfer tube of the second indoor blower 72, thereby cooling the indoor space.
- the second indoor blower 72 causes air in the indoor space to pass through the second indoor heat exchanger 70 and generates a flow of air that returns to the indoor space.
- the flow rate adjustment device 71 is composed of, for example, a two-way valve that can control the opening degree (opening area) of the valve.
- the flow rate adjustment device 71 controls the flow rate of the heat medium flowing into and out of the second indoor heat exchanger 70 by adjusting the opening degree. Then, the flow rate adjustment device 71 adjusts the amount of the heat medium to be passed through the second indoor heat exchanger 70 based on the temperature of the heat medium flowing into the second indoor unit 7 and the temperature of the heat medium flowing out.
- the two-indoor heat exchanger 70 is capable of exchanging heat with an amount of heat depending on the indoor heat load.
- the flow rate adjustment device 71 is installed on the piping on the heat medium outflow side of the second indoor heat exchanger 70, but it may also be installed on the heat medium inflow side of the second indoor heat exchanger 70. good.
- the second indoor unit 7 is provided with temperature sensors 73a and 73b that detect the temperature of the heat medium at the entrance and exit of the second indoor heat exchanger 70 in the second heat medium circuit C. Further, the second indoor unit 7 is provided with a temperature sensor 74 that detects the temperature of the indoor space. The detection values detected by each temperature sensor are transmitted to the control device 5 and used to control each component configuring the heat pump device 100.
- the heat source device 1 is configured such that the refrigerant gas discharged from the compressor 10 flows into the second relay device 6 via the first relay device 2.
- a flow path switching device 8 is provided that switches the first repeater 2 and the second repeater 6 to a state in which they are connected in series.
- the flow path switching device 8 includes a connection pipe 80, a first switching valve 81, and a second switching valve 82.
- the connection pipe 80 connects the first refrigerant pipe 200 between the first expansion mechanism 21 and the heat source heat exchanger 12 and the third refrigerant pipe 202 between the flow path switching valve 11 and the second heat exchanger 60. It is something to do.
- the first switching valve 81 is a two-way valve. The first switching valve 81 connects the first refrigerant pipe 200 between the first expansion mechanism 21 and the heat source heat exchanger 12 to a position P1 where the connection pipe 80 and the first refrigerant pipe 200 are connected. It is provided between the position P3 where the refrigerant pipe 200 and the third refrigerant pipe 202 are connected.
- the second switching valve 82 is a three-way valve.
- the second switching valve 82 is provided at a connecting portion between the third refrigerant pipe 202 and the connecting pipe 80.
- the opening and closing of the first switching valve 81 and the second switching valve 82 are controlled by the control device 5.
- FIG. 7 is an explanatory diagram showing a heat pump device 101 according to the second embodiment, in which the first relay device 2 and the second relay device 6 are connected in parallel to the heat source device 1.
- FIG. 8 is an explanatory diagram showing a heat pump device 101 according to the second embodiment, in which the first relay device 2 and the second relay device 6 are connected in series to the heat source device 1.
- symbol 81 and 82 has shown the state where the valve was closed.
- the white color indicated by numerals 81 and 82 indicates a state in which the valve is open.
- the heat pump device 101 opens the first switching valve 81 and, among the second switching valves 82, the valve that connects the connection pipe 80 and the third refrigerant pipe 202. By closing, the first relay device 2 and the second relay device 6 can be connected in parallel to the heat source device 1.
- the first switching valve 81 is closed, and among the second switching valves 82, the valve connecting the first refrigerant pipe 200 and the third refrigerant pipe 202 is closed. Accordingly, the heat source device 1 can be switched to a state in which the first relay device 2 and the second relay device 6 are connected in series.
- the high-temperature, high-pressure gas refrigerant discharged from the compressor 10 passes through the flow path switching valve 11 and flows to the first heat exchanger 20 and the second heat exchanger 60.
- the refrigerant flowing into the first heat exchanger 20 exchanges heat with the water flowing through the first heat medium circuit B, and is condensed and liquefied.
- the water flowing through the first heat medium circuit B is heated by the refrigerant flowing into the first heat exchanger 20 and stored in the hot water storage tank 4 .
- the refrigerant condensed and liquefied by the first heat exchanger 20 is depressurized by the first expansion mechanism 21 and becomes a low-pressure gas-liquid two-phase refrigerant, which flows to the heat source heat exchanger 12 .
- the refrigerant flowing into the second heat exchanger 60 exchanges heat with the heat medium flowing through the second heat medium circuit C, condenses and liquefies, is depressurized by the third expansion mechanism 61, and becomes a low-pressure gas-liquid two-phase refrigerant.
- the heat source flows to the heat exchanger 12 .
- the gas-liquid two-phase refrigerant flowing into the heat source heat exchanger 12 exchanges heat with air to evaporate into gas, passes through the flow path switching valve 11 , and is sucked into the compressor 10 via the accumulator 13 .
- the heat medium flowing through the second heat medium circuit C is heated by the refrigerant flowing into the second heat exchanger 60, and then flows into the second indoor heat exchanger 70, where it exchanges heat with indoor air in the indoor space. cooled down. After the flow rate of the cooled heat medium is adjusted by the flow rate adjustment device 71, it flows into the second heat exchanger 60 again.
- the high-temperature, high-pressure gas refrigerant discharged from the compressor 10 passes through the flow path switching valve 11 and flows to the first heat exchanger 20 .
- the refrigerant flowing into the first heat exchanger 20 exchanges heat with the water flowing through the first heat medium circuit B, becomes a gas-liquid two-phase refrigerant, and flows into the second heat exchanger 60.
- the water flowing through the first heat medium circuit B is heated by the refrigerant flowing into the first heat exchanger 20 and stored in the hot water storage tank 4 .
- the refrigerant flowing into the second heat exchanger 60 exchanges heat with the heat medium flowing through the second heat medium circuit C, condenses and liquefies, and is depressurized by the third expansion mechanism 61 to become a low-pressure gas-liquid two-phase refrigerant. It flows into exchanger 12.
- the gas-liquid two-phase refrigerant flowing into the heat source heat exchanger 12 exchanges heat with air to evaporate into gas, passes through the flow path switching valve 11 , and is sucked into the compressor 10 via the accumulator 13 .
- the heat medium flowing through the second heat medium circuit C is heated by the refrigerant flowing into the second heat exchanger 60, and then flows into the second indoor heat exchanger 70, where it exchanges heat with indoor air in the indoor space. cooled down. After the flow rate of the cooled heat medium is adjusted by the flow rate adjustment device 71, it flows into the second heat exchanger 60 again.
- the first repeater 2 for the purpose of storing hot water
- the sensible heat having a high temperature
- hot water can be tapped at a high temperature
- the latent heat can be used for the second repeater 6 for heating purposes.
- sensible heat since sensible heat is used in the first relay machine 2, the heat transfer coefficient of the refrigerant deteriorates, but it is possible to use a refrigerant with high sensible heat such as R32 refrigerant, and to increase the temperature from the first relay machine 2.
- By circulating the heated hot water between the first relay device 2 and the hot water storage tank 4 many times until it reaches the target temperature and target hot water storage amount, it is possible to store high-temperature water using sensible heat.
- the first pump 22 of the first repeater 2 is operated so that the refrigerant outlet temperature of the first repeater 2 becomes the saturation temperature (CT) + ⁇ .
- CT saturation temperature
- the first repeater 2 and the second repeater 6 have the same configuration, so they can be used depending on the system. Therefore, the development load can be reduced and manufacturing costs can be reduced.
- the flow path switching device 8 is switched so that the heat source device 1 is connected to the first relay device 7. and the second repeater 6 are connected in parallel, and the sensible heat can be used for heating.
- the second indoor unit 7 performs heating and cooling by exchanging heat between the refrigerant circulating in the refrigerant circuit A and the heat medium circulating in the second heat medium circuit C. It is the composition. Therefore, even if a slightly flammable refrigerant such as R32 is used in the refrigerant circuit A, there is no need to take indoor safety measures against the slightly flammable refrigerant.
- the heat pump device 101 allows the refrigerant gas discharged from the compressor 10 to flow into the second relay device 6 via the first relay device 2 during heating operation.
- a flow path switching device 8 is provided for switching the heat source device 1 to a state in which the first relay device 2 and the second relay device 6 are connected in series. Therefore, the sensible heat that becomes high temperature can be used for the purpose of storing hot water in the first repeater 2, and the latent heat can be used for the purpose of heating the second indoor unit 7. Even if one repeater 2 is a one-way cycle, the hot water storage operation required for high-temperature hot water supply and the heating operation of the second indoor unit 7 can be made compatible. Furthermore, in the heat pump device 101 according to the second embodiment, by using the first repeater 2 as a one-way cycle, the system can be simplified compared to the conventional two-way cycle configuration. The total amount of refrigerant used can be reduced.
- the high-temperature, high-pressure gas refrigerant discharged from the compressor 10 passes through the flow path switching valve 11, flows to the heat source heat exchanger 12, exchanges heat with air, and is condensed and liquefied.
- the condensed and liquefied refrigerant is depressurized by the third expansion mechanism 61 to become a low-pressure gas-liquid two-phase refrigerant, flows to the second heat exchanger 60, exchanges heat with the heat medium flowing through the second heat medium circuit C, and evaporates. Gasify.
- the gasified refrigerant passes through the flow path switching valve 11 and is sucked into the compressor 10 via the accumulator 13.
- the heat medium flowing through the second heat medium circuit C is cooled by the refrigerant flowing into the second heat exchanger 60, and then flows into the second indoor heat exchanger 70, where it exchanges heat with the indoor air in the indoor space. replaced and heated. After the flow rate of the heated heat medium is adjusted by the flow rate adjustment device 71, it flows into the second heat exchanger 60 again.
- the heat pump device 101 during the cooling operation, in which the second indoor unit 7 performs the cooling operation and the first heat medium circuit B performs the hot water storage operation.
- the heat source device 1, the first relay device 2, and the second relay device 6 are connected in series.
- the heat source heat exchanger 12 and the second heat exchanger 60 function as an evaporator.
- the high-temperature, high-pressure gas refrigerant discharged from the compressor 10 passes through the flow path switching valve 11 and flows to the first heat exchanger 20 .
- the refrigerant flowing into the first heat exchanger 20 exchanges heat with the water flowing through the first heat medium circuit B, and is condensed and liquefied.
- the water flowing through the first heat medium circuit B is heated by the refrigerant flowing into the first heat exchanger 20 and stored in the hot water storage tank 4 .
- the condensed and liquefied refrigerant is depressurized by the first expansion mechanism 21 to become a low-pressure gas-liquid two-phase refrigerant, and flows to the second heat exchanger 60 .
- the refrigerant flowing into the second heat exchanger 60 exchanges heat with the heat medium flowing through the second heat medium circuit C and becomes evaporated and gasified, and then flows into the heat source heat exchanger 12 where it exchanges heat with air and further evaporates into gas. It passes through the flow path switching valve 11 and is sucked into the compressor 10 via the accumulator 13. Note that, when the load balance between the evaporator and the condenser is not achieved, the heat source heat exchanger 12 supplements the load balance by assisting the evaporator and the condenser.
- the heat medium flowing through the second heat medium circuit C is cooled by the refrigerant flowing into the second heat exchanger 60, and then flows into the second indoor heat exchanger 70, where it exchanges heat with the indoor air in the indoor space. replaced and heated. After the flow rate of the heated heat medium is adjusted by the flow rate adjustment device 71, it flows into the second heat exchanger 60 again.
- the heat pump device 101 connects the first relay device 2 and the second relay device 6 in series to the heat source device 1, thereby providing a first heat exchanger for hot water storage.
- the container 20 can be used as a condenser, and the second heat exchanger 60 for cooling can be used as an evaporator, and hot water storage operation and cooling operation can be performed without waste heat.
- the purpose is to store heat of low-temperature water
- this can be achieved by using the heat source heat exchanger 12 as a condenser and making the second heat exchanger 60 and first heat exchanger 20 function as evaporators.
- FIG. 9 is a refrigerant circuit diagram of the heat pump device 102 according to the third embodiment. Note that the same components as those of heat pump apparatuses 100 and 101 described in Embodiments 1 and 2 are given the same reference numerals, and the description thereof will be omitted as appropriate.
- the heat pump device 102 includes a heat source device 1, a first relay device 2, a first indoor unit 3, a second relay device 6, and a second indoor unit 7. , a hot water storage tank 4 , and a control device 5 .
- the heat pump device 102 has a first relay device 2, a first indoor unit 3, a second relay device 6, a first refrigerant pipe 200, a second refrigerant pipe 201, and a third refrigerant pipe with respect to the heat source device 1. It has a refrigerant circuit A2 connected in parallel at 202.
- the heat source device 1 and the first relay device 2 are connected by a first refrigerant pipe 200, and the first indoor unit 3 is connected to a second refrigerant pipe 201 branched from the first refrigerant pipe 200. is connected.
- a second repeater 6 is connected to a third refrigerant pipe 202 branched from the second refrigerant pipe 201 .
- three first indoor units 3 are provided in parallel, but the invention is not limited to this, and the number may be one or two, or four or more.
- the refrigerant circulating in the refrigerant circuit A2 is R32, which has a high discharge temperature from the compressor 10. Note that the refrigerant circulating in the refrigerant circuit A2 is not limited to R32, and may be other types of refrigerant. In this case, it is desirable to use a refrigerant with a high discharge temperature from the compressor 10.
- the heat pump device 102 has a first heat medium circuit B in which the first repeater 2 and the hot water storage tank 4 are connected by a first heat medium pipe 300.
- the heat medium circulating in the first heat medium circuit B is water supplied to the hot water storage tank 4.
- the heat pump device 102 includes a second heat medium circuit C in which the second repeater 6 and the second indoor unit 7 are connected through a second heat medium pipe 301.
- a second heat medium circuit C in which the second repeater 6 and the second indoor unit 7 are connected through a second heat medium pipe 301.
- the heat medium circulating in the second heat medium circuit C is, for example, water, brine, or a mixture of brine and water.
- the heat source device 1, the first relay device 2, the first indoor unit 3, the second relay device 6, the second indoor unit 7, the hot water storage tank 4, and the control device 5 have the same configuration as described in the first and second embodiments above. It is.
- the compressor 10 In the refrigerant circuit A2, the compressor 10, the flow path switching valve 11, the first heat exchanger 20, the first expansion mechanism 21, the heat source heat exchanger 12, and the accumulator 13 are connected by a first refrigerant pipe 200.
- the refrigerant circuit A2 includes a first refrigerant pipe 200 between the flow path switching valve 11 and the first heat exchanger 20, and a first refrigerant pipe 200 between the first expansion mechanism 21 and the heat source heat exchanger 12.
- Two refrigerant pipes 201 are branched and connected.
- the first indoor heat exchanger 30 and the second expansion mechanism 31 are connected by a second refrigerant pipe 201.
- the refrigerant circuit A2 also includes a second refrigerant pipe 201 between the flow path switching valve 11 and the first indoor heat exchanger 30, and a second refrigerant pipe between the second expansion mechanism 31 and the heat source heat exchanger 12.
- a third refrigerant pipe 202 is branched from and connected to the third refrigerant pipe 201 .
- the second heat exchanger 60 and the third expansion mechanism 61 are connected by a third refrigerant pipe 202.
- the first heat medium circuit B the first heat exchanger 20, the hot water storage tank 4, and the first pump 22 are connected by a first heat medium pipe 300.
- a second heat exchanger 60, a second indoor heat exchanger 70, a flow rate adjustment device 71, and a second pump 62 are connected by a second heat medium pipe 301.
- a flow path switching device 8 is provided in the refrigerant pipe to switch the first repeater 2, the first indoor unit 3, and the second repeater 6 to a state in which they are connected in series.
- the flow path switching device 8 includes a connection pipe 80, a first switching valve 81, and a second switching valve 82.
- the connection pipe 80 includes a first refrigerant pipe 200 between the first expansion mechanism 21 and the heat source heat exchanger 12, and a second refrigerant pipe 201 between the flow path switching valve 11 and the branch position of the third refrigerant pipe 202. , to connect.
- the first switching valve 81 is a two-way valve. The first switching valve 81 connects the first refrigerant pipe 200 between the first expansion mechanism 21 and the heat source heat exchanger 12 to a position P1 where the connection pipe 80 and the first refrigerant pipe 200 are connected. It is provided between the position P2 where the refrigerant pipe 200 and the second refrigerant pipe 201 are connected.
- the second switching valve 82 is a three-way valve.
- the second switching valve 82 is provided at a connecting portion between the second refrigerant pipe 201 and the connecting pipe 80.
- the opening and closing of the first switching valve 81 and the second switching valve 82 are controlled by the control device 5.
- FIG. 10 shows a heat pump device 102 according to Embodiment 3, in which a first relay device 2, a second relay device 6, and a first indoor unit 3 are connected in parallel to a heat source device 1.
- FIG. 11 shows a heat pump device 102 according to Embodiment 3, in which a first relay device 2, a second relay device 6, and a first indoor unit 3 are connected in series to a heat source device 1.
- symbol 81 and 82 has shown the state where the valve was closed.
- the white color indicated by numerals 81 and 82 indicates a state in which the valve is open.
- the heat pump device 102 opens the first switching valve 81 and, among the second switching valves 82, the valve that connects the connection pipe 80 and the second refrigerant pipe 201.
- the first relay device 2, the first indoor unit 3, and the second relay device 6 can be connected in parallel to the heat source device 1.
- the first switching valve 81 is closed, and among the second switching valves 82, the valve connecting the first refrigerant pipe 200 and the second refrigerant pipe 201 is closed. Accordingly, the heat source device 1 can be switched to a state in which the first relay device 2, the first indoor unit 3, and the second relay device 6 are connected in series.
- the high-temperature, high-pressure gas refrigerant discharged from the compressor 10 passes through the flow path switching valve 11 and flows to the first heat exchanger 20, the first indoor heat exchanger 30, and the second heat exchanger 60.
- the refrigerant flowing into the first heat exchanger 20 exchanges heat with the water flowing through the first heat medium circuit B, and is condensed and liquefied.
- the water flowing through the first heat medium circuit B is heated by the refrigerant flowing into the first heat exchanger 20 and stored in the hot water storage tank 4 .
- the refrigerant condensed and liquefied by the first heat exchanger 20 is depressurized by the first expansion mechanism 21 and becomes a low-pressure gas-liquid two-phase refrigerant, which flows to the heat source heat exchanger 12 .
- the refrigerant flowing into the first indoor heat exchanger 30 exchanges heat with air to condense and liquefy, is depressurized by the second expansion mechanism 31, becomes a low-pressure gas-liquid two-phase refrigerant, and flows to the heat source heat exchanger 12.
- the refrigerant flowing into the second heat exchanger 60 exchanges heat with the heat medium flowing through the second heat medium circuit C, condenses and liquefies, and is depressurized by the third expansion mechanism 61 to become a low-pressure gas-liquid two-phase refrigerant.
- the heat source flows to the heat exchanger 12 .
- the gas-liquid two-phase refrigerant flowing into the heat source heat exchanger 12 exchanges heat with air to evaporate into gas, passes through the flow path switching valve 11 , and is sucked into the compressor 10 via the accumulator 13 .
- the heat medium flowing through the second heat medium circuit C is heated by the refrigerant flowing into the second heat exchanger 60, and then flows into the second indoor heat exchanger 70, where it exchanges heat with indoor air in the indoor space. cooled down. After the flow rate of the cooled heat medium is adjusted by the flow rate adjustment device 71, it flows into the second heat exchanger 60 again.
- the high-temperature, high-pressure gas refrigerant discharged from the compressor 10 passes through the flow path switching valve 11 and flows to the first heat exchanger 20 .
- the refrigerant flowing into the first heat exchanger 20 exchanges heat with the water flowing through the first heat medium circuit B, becomes a gas-liquid two-phase refrigerant, and flows into the first indoor heat exchanger 30 and the second heat exchanger 60.
- the water flowing through the first heat medium circuit B is heated by the refrigerant flowing into the first heat exchanger 20 and stored in the hot water storage tank 4 .
- the refrigerant flowing into the first indoor heat exchanger 30 exchanges heat with air to condense and liquefy, is depressurized by the second expansion mechanism 31, becomes a low-pressure gas-liquid two-phase refrigerant, and flows to the heat source heat exchanger 12. Further, the refrigerant flowing into the second heat exchanger 60 exchanges heat with the heat medium flowing through the second heat medium circuit C, condenses and liquefies, and is depressurized by the third expansion mechanism 61 to become a low-pressure gas-liquid two-phase refrigerant.
- the heat source flows to the heat exchanger 12 .
- the gas-liquid two-phase refrigerant flowing into the heat source heat exchanger 12 exchanges heat with air to evaporate into gas, passes through the flow path switching valve 11 , and is sucked into the compressor 10 via the accumulator 13 .
- the heat medium flowing through the second heat medium circuit C is heated by the refrigerant flowing into the second heat exchanger 60, and then flows into the second indoor heat exchanger 70, where it exchanges heat with indoor air in the indoor space. cooled down. After the flow rate of the cooled heat medium is adjusted by the flow rate adjustment device 71, it flows into the second heat exchanger 60 again.
- the first repeater 2, the first indoor unit 3, and the second repeater 6 are connected in series to store hot water.
- the first relay machine 2 By utilizing the high-temperature sensible heat in the first relay machine 2, it is possible to dispense hot water at a high temperature.
- sensible heat since sensible heat is used in the first relay machine 2, the heat transfer coefficient of the refrigerant deteriorates, but it is possible to use a refrigerant with high sensible heat such as R32 refrigerant, and to increase the temperature from the first relay machine 2.
- By circulating the heated hot water between the first relay device 2 and the hot water storage tank 4 many times until it reaches the target temperature and target hot water storage amount, it is possible to store high-temperature water using sensible heat.
- the flow rate of water is controlled by the first pump 22 of the first repeater 2 so that the refrigerant outlet temperature of the first repeater 2 becomes the saturation temperature + ⁇ .
- sensible heat can be efficiently used for storing hot water in the first relay machine 2, and latent heat can be used for heating the first indoor unit 3 and the second indoor unit 7.
- the first repeater 2 and the second repeater 6 have the same configuration, so they can be used depending on the system. Therefore, the development load can be reduced and manufacturing costs can be reduced.
- the flow path switching device 8 is switched to The first repeater 2, the first indoor unit 3, and the second repeater 6 are connected in parallel, and sensible heat can be used for heating.
- the second indoor unit 7 performs heating and cooling by exchanging heat between the refrigerant circulating in the refrigerant circuit A and the heat medium circulating in the second heat medium circuit C. It has a configuration. Therefore, even if a slightly flammable refrigerant such as R32 is used in the refrigerant circuit A, safety measures against the slightly flammable refrigerant are not required in the room where the second indoor unit 7 is installed. Further, in the second indoor unit 7, the heat medium circulates in the second heat medium circuit C as water or a liquid layer, so that noise generation can be suppressed.
- the refrigerant gas discharged from the compressor 10 passes through the first relay device 2 to the first indoor unit 3 and the second relay device.
- a flow path switching device 8 is provided for switching the heat source device 1 to a state in which the first relay device 2, the first indoor unit 3, and the second relay device 6 are connected in series so that the heat source device 6 flows into the heat source device 6. . Therefore, the sensible heat that becomes high temperature can be used for the purpose of storing hot water in the first repeater 2, and the latent heat can be used for the purpose of heating the first indoor unit 3 and the second indoor unit 7.
- the hot water storage operation necessary for hot water tapping and the heating operation of the first indoor unit 3 and the second indoor unit 7 can be made compatible.
- the heat pump device 102 according to the third embodiment by using the first repeater 2 as a one-way cycle, the system can be simplified compared to a conventional two-way cycle configuration, and The total amount of refrigerant used can be reduced.
- the high-temperature, high-pressure gas refrigerant discharged from the compressor 10 passes through the flow path switching valve 11, flows to the heat source heat exchanger 12, exchanges heat with air, and is condensed and liquefied. Further, the condensed and liquefied refrigerant is depressurized by the second expansion mechanism 31 to become a low-pressure gas-liquid two-phase refrigerant, flows to the first indoor heat exchanger 30, exchanges heat with air, and evaporates into gas.
- the refrigerant condensed and liquefied in the heat source heat exchanger 12 is depressurized in the third expansion mechanism 61 to become a low-pressure gas-liquid two-phase refrigerant, flows to the second heat exchanger 60, and the heat flowing through the second heat medium circuit C It exchanges heat with the medium and evaporates into gas.
- the refrigerant gasified in the first indoor heat exchanger 30 and the second heat exchanger 60 passes through the flow path switching valve 11 and is sucked into the compressor 10 via the accumulator 13.
- the heat medium flowing through the second heat medium circuit C is cooled by the refrigerant flowing into the second heat exchanger 60, and then flows into the second indoor heat exchanger 70, where it exchanges heat with the indoor air in the indoor space. replaced and heated. After the flow rate of the heated heat medium is adjusted by the flow rate adjustment device 71, it flows into the second heat exchanger 60 again.
- the first repeater 2, the first indoor unit 3, and the second repeater 6 are connected in series to the heat source device 1.
- the heat source heat exchanger 12, the first indoor heat exchanger 30, and the second heat exchanger 60 function as an evaporator.
- the high-temperature, high-pressure gas refrigerant discharged from the compressor 10 passes through the flow path switching valve 11 and flows to the first heat exchanger 20 .
- the refrigerant flowing into the first heat exchanger 20 exchanges heat with the water flowing through the first heat medium circuit B, and is condensed and liquefied.
- the water flowing through the first heat medium circuit B is heated by the refrigerant flowing into the first heat exchanger 20 and stored in the hot water storage tank 4 .
- the condensed and liquefied refrigerant is depressurized by the first expansion mechanism 21 to become a low-pressure gas-liquid two-phase refrigerant, flows to the first indoor heat exchanger 30, exchanges heat with air, and evaporates into gas.
- the refrigerant condensed and liquefied in the first heat exchanger 20 is depressurized in the third expansion mechanism 61 to become a low-pressure gas-liquid two-phase refrigerant, flows to the second heat exchanger 60, and flows through the second heat medium circuit C. It exchanges heat with a heating medium and evaporates into gas.
- the refrigerant that has been evaporated and gasified in the first indoor heat exchanger 30 and the second heat exchanger 60 flows to the heat source heat exchanger 12, exchanges heat with air, is further evaporated and gasified, and passes through the flow path switching valve 11. It is sucked into the compressor 10 via the accumulator 13. Note that, when the load balance between the evaporator and the condenser is not achieved, the heat source heat exchanger 12 supplements the load balance by assisting the evaporator and the condenser.
- the heat medium flowing through the second heat medium circuit C is cooled by the refrigerant flowing into the second heat exchanger 60, and then flows into the second indoor heat exchanger 70, where it exchanges heat with the indoor air in the indoor space. replaced and heated. After the flow rate of the heated heat medium is adjusted by the flow rate adjustment device 71, it flows into the second heat exchanger 60 again.
- the heat pump device 102 connects the first relay device 2, the first indoor unit 3, and the second relay device 6 in series to the heat source device 1, thereby achieving
- the first heat exchanger 20 for hot water storage can be used as a condenser, and the first indoor heat exchanger 30 and second heat exchanger 60 for cooling can be used as evaporators, allowing hot water storage operation and cooling operation to be performed without waste heat. It can be carried out.
- the heat source heat exchanger 12 functions as a condenser
- the first indoor heat exchanger 30, second heat exchanger 60, and first heat exchanger 20 function as an evaporator. This can be achieved by doing so.
- the first indoor unit 3 and the second indoor unit 7 have different structures, so they can be used depending on the purpose of heating and cooling the room.
- the first indoor unit 3 can be installed indoors for the purpose of energy saving.
- the second indoor unit 7 can be installed indoors, such as in a hospital, where it is not desirable to pass refrigerant piping into the living space.
- FIG. 12 is a refrigerant circuit diagram of the heat pump device 103 according to the fourth embodiment. Note that the same components as those of the heat pump apparatuses 100 to 102 described in Embodiments 1 to 3 are given the same reference numerals, and the description thereof will be omitted as appropriate.
- the heat pump device 103 includes a second heat medium pipe 301 on the heat medium inlet side of the second indoor heat exchanger 70, and a hot water outlet pipe. 41 and are connected by an auxiliary pipe 43.
- the auxiliary pipe 43 is provided with an on-off valve 44 . The opening and closing of the on-off valve 44 is controlled by the control device 5.
- the heat pump device 103 uses the hot water stored in the hot water storage tank 4 when the load on the second indoor unit 7 is insufficient or when heating starts, so that the second indoor unit 7 can perform heating. Capacity can be secured or temperature-immediate properties can be improved. Furthermore, when the second indoor unit 7 cannot perform the heating operation due to the defrost operation of the heat source device 1, the heating operation can be continued using hot water in the hot water storage tank 4, and heating operation is always possible. . Furthermore, when the load on the hot water supply side is small, by using the hot water stored in the hot water storage tank 4 for the heating side, the hot water stored in the hot water storage tank 4 can be used up, thereby suppressing wasteful hot water storage operation. be able to.
- heat pump device 103 according to the fourth embodiment can also be applied to the configuration of the heat pump device 102 of the third embodiment.
- the heat pump devices (100 to 103) have been described above based on the embodiments, the heat pump devices (100 to 103) are not limited to the configurations of the embodiments described above.
- the configuration of the heat pump device (100 to 103) described above is an example, and may include other components or may omit some components.
- the heat source device 1, the first relay device 2, the second relay device 6, and the hot water storage tank 4 may have two or more units.
- the heat pump devices (100 to 103) include a range of design changes and application variations that are commonly made by those skilled in the art without departing from the technical concept thereof.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
Abstract
ヒートポンプ装置は、圧縮機、流路切替弁及び熱源熱交換器を有する熱源機と、第1熱交換器、第1膨張機構及び第1ポンプを有する第1中継機と、第1室内熱交換器及び第2膨張機構を有する第1室内機と、貯湯タンクと、を備えている。ヒートポンプ装置は、熱源機に対して、第1中継機と第1室内機とが、冷媒配管で並列に接続されて冷媒回路が形成され、第1中継機と、貯湯タンクとが、第1熱媒体配管で接続されて第1熱媒体回路が形成されている。冷媒配管には、圧縮機から吐出された冷媒ガスが第1中継機を経由して第1室内機に流入するように、熱源機に対して第1中継機と第1室内機とが直列に接続された状態に切り替える流路切替装置が設けられている。
Description
本開示は、ヒートポンプ装置に関するものである。
従来から、ヒートポンプ装置は種々開示されており、実用に供されている。例えば特許文献1に開示されたヒートポンプ装置は、熱源機である室外機と、複数台の室内機と、水温昇温機と、室外機と負荷側ユニットとの間に介在する熱媒体変換機と、水温昇温機に接続されている貯湯タンクと、を有している。負荷側ユニットとは、室内機と水温昇温機である。室外機と、複数台の室内機と、水温昇温機と、熱媒体変換機とは、冷媒配管で接続され、冷凍サイクルを構成している。室外機で生成された冷熱あるいは温熱は、熱媒体変換機を介して室内機及び水温昇温機に配送される。水温昇温機と貯湯タンクとは、水を導通する熱媒体配管で接続されている。
特許文献1に開示されたヒートポンプ装置は、高温出湯に必要な貯湯運転と、室内機の暖房運転を両立させるために、室外機と接続された水温昇温機に圧縮機及び熱交換器を設けて2元サイクルとしている。しかしながら、水温昇温機を2元サイクルとすると、システムが複雑化し、製造コストが増加するおそれがある。
本開示は、上記のような課題を解決するためになされたものであり、熱源機と接続された中継機が1元サイクルであっても、高温出湯に必要な貯湯運転と、室内機の暖房運転を両立させることができるヒートポンプ装置を提供することを目的とする。
本開示に係るヒートポンプ装置は、圧縮機、流路切替弁及び熱源熱交換器を有する熱源機と、第1熱交換器、第1膨張機構及び第1ポンプを有する第1中継機と、第1室内熱交換器及び第2膨張機構を有する第1室内機と、貯湯タンクと、を備え、前記熱源機に対して、前記第1中継機と前記第1室内機とが、冷媒配管で並列に接続されて冷媒回路が形成され、前記第1中継機と、前記貯湯タンクとが、第1熱媒体配管で接続されて第1熱媒体回路が形成されており、前記冷媒配管には、前記圧縮機から吐出された冷媒ガスが前記第1中継機を経由して前記第1室内機に流入するように、前記熱源機に対して前記第1中継機と前記第1室内機とが直列に接続された状態に切り替える流路切替装置が設けられているものである。
本開示によれば、暖房運転時に、圧縮機から吐出された冷媒ガスが第1中継機を経由して第1室内機に流入するように、熱源機に対して第1中継機と第1室内機とが直列に接続された状態に切り替える流路切替弁が設けられているので、高温になる顕熱を第1中継機の貯湯目的で使用することができ、且つ潜熱を第1室内機の暖房目的で使用することができる。よって、熱源機と接続された中継機が1元サイクルであっても、高温出湯に必要な貯湯運転と、室内機の暖房運転を両立させることができる。
以下、図面を参照して、本開示の実施の形態について説明する。なお、各図中、同一又は相当する部分には、同一符号を付して、その説明を適宜省略又は簡略化する。また、各図に記載の構成について、その形状、大きさ、及び配置等は、適宜変更することができる。
実施の形態1.
図1は、実施の形態1に係るヒートポンプ装置100の冷媒回路図である。本実施の形態1に係るヒートポンプ装置100は、図1に示すように、熱源機1と、第1中継機2と、第1室内機3と、貯湯タンク4と、制御装置5と、を備えている。ヒートポンプ装置100は、熱源機1に対して、第1中継機2と第1室内機3とが、第1冷媒配管200及び第2冷媒配管201で並列に接続された冷媒回路Aを有している。具体的には、ヒートポンプ装置100は、熱源機1と第1中継機2とが第1冷媒配管200で接続され、該第1冷媒配管200から分岐した第2冷媒配管201に第1室内機3が接続されている。第1室内機3は、図示例の場合、3台を並列させて設けているが、これに限定されず、1台又は2台でもよいし、4台以上でもよい。冷媒回路Aを循環する冷媒は、圧縮機10からの吐出温度が高いR32が用いられている。なお、冷媒回路Aを循環する冷媒は、R32に限定されず、他の種類の冷媒でもよい。この場合、圧縮機10からの吐出温度が高い冷媒を使用することが望ましい。
図1は、実施の形態1に係るヒートポンプ装置100の冷媒回路図である。本実施の形態1に係るヒートポンプ装置100は、図1に示すように、熱源機1と、第1中継機2と、第1室内機3と、貯湯タンク4と、制御装置5と、を備えている。ヒートポンプ装置100は、熱源機1に対して、第1中継機2と第1室内機3とが、第1冷媒配管200及び第2冷媒配管201で並列に接続された冷媒回路Aを有している。具体的には、ヒートポンプ装置100は、熱源機1と第1中継機2とが第1冷媒配管200で接続され、該第1冷媒配管200から分岐した第2冷媒配管201に第1室内機3が接続されている。第1室内機3は、図示例の場合、3台を並列させて設けているが、これに限定されず、1台又は2台でもよいし、4台以上でもよい。冷媒回路Aを循環する冷媒は、圧縮機10からの吐出温度が高いR32が用いられている。なお、冷媒回路Aを循環する冷媒は、R32に限定されず、他の種類の冷媒でもよい。この場合、圧縮機10からの吐出温度が高い冷媒を使用することが望ましい。
また、ヒートポンプ装置100は、第1中継機2と貯湯タンク4とが、第1熱媒体配管300で接続された第1熱媒体回路Bを有している。第1熱媒体回路Bを循環する熱媒体は、貯湯タンク4に給水される水である。
熱源機1は、圧縮機10と、流路切替弁11と、熱源熱交換器12と、アキュムレーター13と、熱源送風機14と、を有している。第1中継機2は、第1熱交換器20と、第1膨張機構21と、第1ポンプ22と、を有している。第1室内機3は、第1室内熱交換器30と、第2膨張機構31と、第1室内送風機32と、を有している。
冷媒回路Aは、圧縮機10、流路切替弁11、第1熱交換器20、第1膨張機構21、熱源熱交換器12及びアキュムレーター13が第1冷媒配管200で接続されている。冷媒回路Aは、流路切替弁11と第1熱交換器20との間の第1冷媒配管200、及び第1膨張機構21と熱源熱交換器12との間の第1冷媒配管200から第2冷媒配管201が分岐して接続されている。冷媒回路Aは、第1室内熱交換器30と第2膨張機構31とが、第2冷媒配管201で接続されている。また、第1熱媒体回路Bは、第1熱交換器20、貯湯タンク4及び第1ポンプ22が、第1熱媒体配管300で接続されている。
圧縮機10は、第1冷媒配管200の中を流れる冷媒を吸入口から吸入する。圧縮機10は、吸入した冷媒を圧縮して、第1冷媒配管200に対して吐出口から吐出する。圧縮機10は、例えば、インバータ圧縮機である。圧縮機10がインバータ圧縮機の場合には、インバータ回路などにより、運転周波数を任意に変化させ、単位時間あたりの冷媒の吐出容量を変化させてもよい。その場合、インバータ回路の動作は、制御装置5により制御される。圧縮機10から吐出された冷媒は、流路切替弁11を介して、第1熱交換器20及び第1室内熱交換器30に流入される。
流路切替弁11は、一例として四方弁であり、冷媒の流路を切り換える機能を有するものである。流路切替弁11は、冷房運転時において、圧縮機10の冷媒吐出側と熱源熱交換器12とを接続すると共に、圧縮機10の冷媒吸入側と第1室内熱交換器30とを接続するように冷媒流路を切り換える。一方、流路切替弁11は、暖房運転時において、圧縮機10の冷媒吐出側と第1熱交換器20及び第1室内熱交換器30とを接続すると共に、圧縮機10の冷媒吸入側と熱源熱交換器12とを接続するように冷媒流路を切り換える。なお、流路切替弁11は、二方弁又は三方弁を組み合わせて構成してもよい。
熱源熱交換器12は、暖房運転時に蒸発器として機能し、内部を流れる冷媒と室外空気との間で熱交換を行う。また、熱源熱交換器12は、冷房運転時に凝縮器として機能し、圧縮機10から吐出されて内部を流れる冷媒と室外空気との間で熱交換を行う。熱源熱交換器12は、熱源送風機14によって室外空気を吸い込み、冷媒との間で熱交換した空気を外部に排出する。
アキュムレーター13は、圧縮機10の吸入口の上流側に設置される。アキュムレーター13は、蒸発器から流出した気液二相冷媒をガス冷媒と液冷媒とに分離し、運転中に余剰となった液冷媒を貯溜するものである。
また、熱源機1には、冷媒回路Aにおいて、圧縮機10の冷媒吐出温度を検出する温度センサ15と、熱源機1の周囲の温度を検出する温度センサ16と、が設けられている。各温度センサで検出された検出値は、制御装置5に送信され、ヒートポンプ装置100を構成する各構成要素の制御に用いられる。
第1熱交換器20は、熱媒体となる水と冷媒との熱交換を行うものである。第1熱交換器20は、冷媒回路Aの流路及び第1熱媒体回路Bの流路となる。したがって、第1熱交換器20は、冷媒回路Aを構成する機器及び第1熱媒体回路Bを構成する機器となる。第1熱交換器20は、凝縮器として機能し、圧縮機10側から流入した冷媒と水との熱交換を行い、冷媒回路Aを循環する冷媒を凝縮させて液化又は気液二相化させると共に、第1熱媒体回路Bを循環する水を加熱する。
第1膨張機構21は、冷媒回路A内を流れる冷媒を減圧して膨張させるものであり、一例として開度が可変に制御される電子膨張弁で構成される。
第1ポンプ22は、第1熱媒体回路Bを構成する機器の1つである。第1ポンプ22は、第1熱媒体回路Bにおいて、水を吸引し、圧力を加えて送り出して循環させる。第1ポンプ22の容量は、ポンプインバータ駆動装置(図示せず)によって変化される。ポンプインバータ駆動装置は、制御装置5からの指示に基づいて、駆動周波数を任意に変化させることにより、第1ポンプ22の容量を変化させる。
また、第1中継機2には、冷媒回路Aにおいて、第1熱交換器20の冷媒出口温度を検出する温度センサ23aと、第1熱交換器20の冷媒入口温度を検出する温度センサ23bと、が設けられている。また、第1中継機2には、第1熱媒体回路Bにおいて、第1熱交換器20の水出口温度を検出する温度センサ24aと、水入口温度を検出する温度センサ24bと、が設けられている。各温度センサで検出された検出値は、制御装置5に送信され、ヒートポンプ装置100を構成する各構成要素の制御に用いられる。
第1室内熱交換器30は、空気熱交換器である。第1室内熱交換器30は、暖房運転時に凝縮器として機能し、圧縮機10から吐出された冷媒と室内空気との間で熱交換を行う。また、第1室内熱交換器30は、冷房運転時に蒸発器として機能し、第2膨張機構31から流出した冷媒と室内空気との間で熱交換を行う。熱源熱交換器12は、熱源送風機14によって室外空気を吸い込み、冷媒との間で熱交換した空気を外部に排出する。
第2膨張機構31は、冷媒回路A内を流れる冷媒を減圧して膨張させるものであり、一例として開度が可変に制御される電子膨張弁で構成される。
また、第1室内機3には、冷媒回路Aにおいて、第1室内熱交換器30の出入口の冷媒温度を検出する温度センサ33a及び33bと、室内空間の温度を検出する温度センサ34と、が設けられている。温度センサで検出された検出値は、制御装置5に送信され、ヒートポンプ装置100を構成する各構成要素の制御に用いられる。
貯湯タンク4は、給水配管40を介して給水される水及び第1熱交換器20で加熱された湯水を貯留するものである。貯湯タンク4は、第1熱媒体配管300を介して第1中継機2に接続されている。貯湯タンク4の下部には、外部から水が給水される給水配管40接続されている。また、貯湯タンク4の上部には、第1熱交換器20で加熱された湯を外部へ出湯する出湯配管41が接続されている。また、貯湯タンク4には、貯湯した湯水の温度を測定する温度検出手段42が設けられている。温度検出手段42は、例えばサーミスタ等であり、貯湯タンク4の高さ方向に間隔をあけて複数設けられている。
制御装置5は、ヒートポンプ装置100全体の動作を制御するものである。制御装置5は、制御に必要なデータ及びプログラムを記憶するメモリと、プログラムを実行するCPUと、を備えるコンピュータ、ASIC又はFPGAなどの専用のハードウェア、もしくはその両方で構成される。制御装置5は、ヒートポンプ装置100が備える温度センサなどの検出情報、及びリモコン(図示せず)からの指示に基づいて、ヒートポンプ装置100の各部を制御する。具体的には、制御装置5は、圧縮機10の駆動周波数、熱源送風機14、第1室内送風機32及び第2室内送風機72の回転数、流路切替弁11の切り替え、第1膨張機構21、第2膨張機構31及び第3膨張機構61の開度、第1ポンプ22及び第2ポンプ62の駆動周波数等を制御する。
ところで、ヒートポンプ装置100は、高温出湯に必要な貯湯運転と、第1室内機3の暖房運転を両立させるために、第1中継機2に圧縮機及び熱交換器を設けて2元サイクルとすることが考えられる。しかしながら、ヒートポンプ装置100は、第1中継機2に圧縮機及び熱交換器を設置して2元サイクルとすると、システムが複雑化し、製造コストが増加するおそれがある。
そこで、本実施の形態1に係るヒートポンプ装置100では、圧縮機10から吐出された冷媒ガスが第1中継機2を経由して第1室内機3に流入するように、熱源機1に対して第1中継機2と第1室内機3とが直列に接続された状態に切り替える流路切替装置8が設けられている。
流路切替装置8は、接続配管80と、第1切替弁81と、第2切替弁82と、を有している。接続配管80は、第1膨張機構21と熱源熱交換器12と間における第1冷媒配管200と、流路切替弁11と第1室内熱交換器30と間における第2冷媒配管201と、を接続するものである。第1切替弁81は、2方弁である。第1切替弁81は、第1膨張機構21と熱源熱交換器12と間における第1冷媒配管200であって、接続配管80と第1冷媒配管200とが接続された位置P1と、第1冷媒配管200と第2冷媒配管201とが接続された位置P2との間に設けられている。第2切替弁82は、3方弁である。第2切替弁82は、第2冷媒配管201と接続配管80の接続部分に設けられている。第1切替弁81及び第2切替弁82は、制御装置5によって開閉が制御される。
図2は、実施の形態1に係るヒートポンプ装置100であって、熱源機1に対して第1中継機2と第1室内機3とが並列に接続された状態を示した説明図である。図3は、実施の形態1に係るヒートポンプ装置100であって、熱源機1に対して第1中継機2と第1室内機3とが直列に接続された状態を示した説明図である。なお、符号81及び82に示した黒色は、弁が閉じた状態を示している。また、符号81及び82に示した白色は、弁が開いた状態を示している。
本実施の形態1に係るヒートポンプ装置100は、図2に示すように、第1切替弁81を開き、且つ第2切替弁82のうち、接続配管80と第2冷媒配管201とを接続する弁を閉じることにより、熱源機1に対して、第1中継機2と第1室内機3とを並列に接続することができる。一方、ヒートポンプ装置100では、図3に示すように、第1切替弁81を閉じ、且つ第2切替弁82のうち、第1冷媒配管200と第2冷媒配管201とを接続する弁を閉じることにより、熱源機1に対して第1中継機2と第1室内機3とが直列に接続された状態に切り替えることができる。
ここで、熱源機1に対して、第1中継機2と第1室内機3とを並列に接続した場合における暖房運転時の動作について説明する。圧縮機10から吐出された高温高圧のガス冷媒は、流路切替弁11を通過して、第1熱交換器20及び第1室内熱交換器30へと流れる。第1熱交換器20に流れた冷媒は、第1熱媒体回路Bを流れる水と熱交換して、凝縮液化する。第1熱媒体回路Bを流れる水は、第1熱交換器20に流れた冷媒によって加熱されて貯湯タンク4に貯留される。第1熱交換器20によって、凝縮液化した冷媒は、第1膨張機構21で減圧され低圧の気液二相冷媒となり、熱源熱交換器12に流れる。一方、第1室内熱交換器30に流れた冷媒は、空気と熱交換して凝縮液化し、第2膨張機構31で減圧され低圧の気液二相冷媒となり、熱源熱交換器12に流れる。熱源熱交換器12に流れた気液二相冷媒は、空気と熱交換して蒸発ガス化し、流路切替弁11を通過し、アキュムレーター13を介して圧縮機10に吸入される。
次に、熱源機1に対して、第1中継機2と第1室内機3とを直列に接続した場合における暖房運転時の動作について説明する。圧縮機10から吐出された高温高圧のガス冷媒は、流路切替弁11を通過して、第1熱交換器20へと流れる。第1熱交換器20に流れた冷媒は、第1熱媒体回路Bを流れる水と熱交換して、気液二相冷媒となり、第1室内熱交換器30に流れる。第1熱媒体回路Bを流れる水は、第1熱交換器20に流れた冷媒によって加熱されて貯湯タンク4に貯留される。第1室内熱交換器30に流れた冷媒は、空気と熱交換して凝縮液化する。凝縮液化した冷媒は、第2膨張機構31で減圧された後、熱源熱交換器12に流れる。熱源熱交換器12に流れた気液二相冷媒は、空気と熱交換して蒸発ガス化し、流路切替弁11を通過し、アキュムレーター13を介して圧縮機10に吸入される。
図4は、実施の形態1に係るヒートポンプ装置100であって、熱源機1に対して第1中継機2と第1室内機3とが直列に接続された状態における暖房運転時のp-h線図である。本実施の形態1に係るヒートポンプ装置100では、図4に示すように、第1中継機2と第1室内機3とを直列に接続することで、貯湯を目的とする第1中継機2に温度が高い顕熱を利用して高温の出湯が可能となり、且つ暖房目的の第1室内機3に潜熱を利用することができる。なお、第1中継機2において顕熱を利用するため、冷媒の熱伝達率が悪くなる。しかし、R32冷媒のような顕熱が高温になる冷媒の利用し、且つ温度検出手段42の検出値に基づき、第1中継機2から昇温された湯を目標温度及び目標貯湯量になるまで第1中継機2と貯湯タンク4との間で何度も循環させることで、顕熱利用での高温水の貯湯を実現することができる。
また、本実施の形態1に係るヒートポンプ装置100では、第1中継機2の冷媒出口温度が、飽和温度(CT)+αの温度になるよう、第1中継機2の第1ポンプ22によって水の流量を制御することで、効率良く顕熱を第1中継機2の貯湯利用でき、且つ潜熱を第1室内機3の暖房利用に使用することが可能となる。
また、貯湯目的の第1熱媒体回路Bは、貯湯タンク4から第1中継機2の間で水を循環し、徐々に加温していくため、夜間等の電気消費が少ない時間に沸かしておくことで電力消費の平準化につながる。
また、本実施の形態1に係るヒートポンプ装置100では、暖房目的の第1室内機3の負荷が足りない場合に、流路切替装置8を切り替えて、熱源機1に対して第1中継機2と第1室内機3とが並列に接続された状態とし、顕熱を暖房側に利用することができる。また、空調負荷が少ない夜間の場合には、第1中継機2に潜熱も利用できるため、空調利用との並列運転で貯湯を行うこともできる。
以上のように、本実施の形態1に係るヒートポンプ装置100は、圧縮機10から吐出された冷媒ガスが第1中継機2を経由して第1室内機3に流入するように、熱源機1に対して第1中継機2と第1室内機3とが直列に接続された状態に切り替える流路切替装置8が設けられている。よって、高温になる顕熱を第1中継機2の貯湯目的で利用することができ、且つ潜熱を第1室内機3の暖房目的で利用することができるので、熱源機1と接続された第1中継機2が1元サイクルであっても、高温出湯に必要な貯湯運転と、第1室内機3の暖房運転を両立させることができる。また、本実施の形態1に係るヒートポンプ装置100は、第1中継機2を1元サイクルとすることで、従来の2元サイクルとした構成に比べて、システムを簡素化することができ、且つ使用する総冷媒量を削減することができる。
次に、ヒートポンプ装置100の冷房運転時の動作であって、第1熱媒体回路Bで貯湯運転しない場合について説明する。この場合、熱源機1と第1室内機3とが直列に接続されている。圧縮機10から吐出された高温高圧のガス冷媒は、流路切替弁11を通過して熱源熱交換器12へと流れて空気と熱交換して凝縮液化する。凝縮液化した冷媒は、第2膨張機構31で減圧され低圧の気液二相冷媒となり、第1室内熱交換器30へと流れて空気と熱交換して蒸発ガス化する。ガス化した冷媒は、流路切替弁11を通過し、アキュムレーター13を介して圧縮機10に吸入される。
次に、ヒートポンプ装置100の冷房運転時の動作であって、第1室内機3で冷房運転すると共に、第1熱媒体回路Bで貯湯運転する場合について説明する。この場合、図3に示すように、熱源機1と、第1中継機2と、第1室内機3とが直列に接続される。また、熱源熱交換器12及び第1室内熱交換器30は、蒸発器として機能する。圧縮機10から吐出された高温高圧のガス冷媒は、流路切替弁11を通過し、第1熱交換器20へと流れる。第1熱交換器20に流れた冷媒は、第1熱媒体回路Bを流れる水と熱交換して、凝縮液化する。第1熱媒体回路Bを流れる水は、第1熱交換器20に流れた冷媒によって加熱されて貯湯タンク4に貯留される。凝縮液化した冷媒は、第1膨張機構21で減圧され低圧の気液二相冷媒となり、第1室内熱交換器30に流れる。第1室内熱交換器30に流れた冷媒は、空気と熱交換して蒸発ガス化した後、熱源熱交換器12に流れて空気と熱交換して更に蒸発ガス化し、流路切替弁11を通過し、アキュムレーター13を介して圧縮機10に吸入される。なお、熱源熱交換器12は、蒸発器と凝縮器の負荷バランスが取れていない場合に、蒸発器と凝縮器の補助をすることで負荷バランスを補足する。
なお、貯湯タンク4の貯湯が十分に完了した場合には、熱源熱交換器12を凝縮器とすることで、貯湯が完了した後も冷房運転の継続が可能となる。なお、貯湯タンク4に設けられた温度検出手段42がすべて目標の貯湯温度を満たしている場合に、貯湯タンク4における貯湯が完了したと判断する。
図5は、実施の形態1に係るヒートポンプ装置100であって、熱源機1に対して第1中継機2と第1室内機3とが直列に接続された状態における冷房運転時のp-h線図である。図5に示すように、本実施の形態1に係るヒートポンプ装置100は、熱源機1に対して第1中継機2と第1室内機3とを直列に接続することにより、貯湯用の第1熱交換器20を凝縮器とし、冷房利用の第1室内熱交換器30を蒸発器として使用することができ、廃熱なく貯湯運転及び冷房運転を行うことができる。
ちなみに、低温水の蓄熱を目的とする場合には、熱源熱交換器12を凝縮器とし、第1室内熱交換器30及び第1熱交換器20を蒸発機として機能させることで実現できる。
実施の形態2.
次に、図6~図8を参照して、本実施の形態2に係るヒートポンプ装置101を説明する。図6は、実施の形態2に係るヒートポンプ装置101の冷媒回路図である。なお、実施の形態1で説明したヒートポンプ装置100と同一の構成要素については、同一の符号を付して、その説明を適宜省略する。
次に、図6~図8を参照して、本実施の形態2に係るヒートポンプ装置101を説明する。図6は、実施の形態2に係るヒートポンプ装置101の冷媒回路図である。なお、実施の形態1で説明したヒートポンプ装置100と同一の構成要素については、同一の符号を付して、その説明を適宜省略する。
本実施の形態2に係るヒートポンプ装置101は、図6に示すように、熱源機1と、第1中継機2と、第2中継機6と、第2室内機7と、貯湯タンク4と、制御装置5と、を備えている。ヒートポンプ装置101は、熱源機1に対して、第1中継機2と第2中継機6とが、第1冷媒配管200及び第3冷媒配管202で並列に接続された冷媒回路A1を有している。具体的には、ヒートポンプ装置101は、熱源機1と第1中継機2とが第1冷媒配管200で接続され、該第1冷媒配管200から分岐した第3冷媒配管202に第2中継機6が接続されている。冷媒回路A1を循環する冷媒は、圧縮機10からの吐出温度が高いR32が用いられている。なお、冷媒回路A1を循環する冷媒は、R32に限定されず、他の種類の冷媒でもよい。この場合、圧縮機10からの吐出温度が高い冷媒を使用することが望ましい。
また、ヒートポンプ装置101は、第1中継機2と貯湯タンク4とが、第1熱媒体配管300で接続された第1熱媒体回路Bを有している。第1熱媒体回路Bを循環する熱媒体は、貯湯タンク4に給水される水である。
また、ヒートポンプ装置101は、第2中継機6と、第2室内機7とが、第2熱媒体配管301で接続された第2熱媒体回路Cを有している。第2室内機7は、図示例の場合、2台を並列させて設けているが、これに限定されず、1台でもよいし、3台以上でもよい。第2熱媒体回路Cを循環する熱媒体は、例えば水、ブライン又はブラインと水の混合液等である。
熱源機1は、圧縮機10と、流路切替弁11と、熱源熱交換器12と、アキュムレーター13と、熱源送風機14と、を有している。第1中継機2は、第1熱交換器20と、第1膨張機構21と、第1ポンプ22と、を有している。第2中継機6は、第2熱交換器60と、第3膨張機構61と、第2ポンプ62と、を有している。第2室内機7は、第2室内熱交換器70と、流量調整装置71と、第2室内送風機72と、を有している。
冷媒回路A1は、圧縮機10、流路切替弁11、第1熱交換器20、第1膨張機構21、熱源熱交換器12、アキュムレーター13が第1冷媒配管200で接続されている。冷媒回路A1は、流路切替弁11と第1熱交換器20との間の第1冷媒配管200、及び第1膨張機構21と熱源熱交換器12との間の第1冷媒配管200から第3冷媒配管202が分岐して接続されている。冷媒回路A1は、第2熱交換器60と第3膨張機構61とが、第3冷媒配管202で接続されている。また、第1熱媒体回路Bは、第1熱交換器20、貯湯タンク4及び第1ポンプ22が、第1熱媒体配管300で接続されている。また、第2熱媒体回路Cは、第2熱交換器60、第2室内熱交換器70、流量調整装置71及び第2ポンプ62が第2熱媒体配管301で接続されている。
熱源機1及び第1中継機2の各構成要素は、上記実施の形態1の構成と同じである。
第2熱交換器60は、熱媒体と冷媒との熱交換を行うものである。熱媒体とは、例えば水、ブライン又はブラインと水の混合液等である。第2熱交換器60は、冷媒回路A1を構成する機器及び第2熱媒体回路Cを構成する機器となる。第2熱交換器60は、例えば、暖房運転時において凝縮器として機能し、圧縮機10側から流入した冷媒と熱媒体との熱交換を行い、冷媒を凝縮させて液化又は気液二相化させ、熱媒体を加熱する。一方、第2熱交換器60は、冷房運転時において蒸発器として機能し、第3膨張機構61から流出した冷媒と熱媒体との熱交換を行い、冷媒を蒸発させて気化させ、熱媒体を冷却する。
第3膨張機構61は、冷媒回路A1内を流れる冷媒を減圧して膨張させるものであり、一例として開度が可変に制御される電子膨張弁で構成される。
第2ポンプ62は、第2熱媒体回路Cを構成する機器の1つである。第2ポンプ62は、第2熱媒体回路Cにおいて、熱媒体を吸引し、圧力を加えて送り出して循環させる。第2ポンプ62の容量は、ポンプインバータ駆動装置(図示せず)によって変化される。ポンプインバータ駆動装置は、制御装置5からの指示に基づいて、駆動周波数を任意に変化させることにより、第2ポンプ62の容量を変化させる。
また、第2中継機6には、冷媒回路A1において、第2熱交換器60の出入口の温度を検出する温度センサ63a及び63bが設けられている。また、第2中継機6には、第2熱媒体回路Cにおいて、第2熱交換器60の出入口の熱媒体温度を検出する温度センサ64a及び64bが設けられている。各温度センサで検出された検出値は、制御装置5に送信され、ヒートポンプ装置100を構成する各構成要素の制御に用いられる。
第2室内熱交換器70は、第2室内送風機72から供給される室内空間における室内空気と熱媒体との間で熱交換を行うフィンチューブ式熱交換器である。暖房運転時においては、第2室内送風機72の伝熱管に空気よりも暖かい熱媒体が通過し、室内空間が暖房される。一方、冷房運転時においては、第2室内送風機72の伝熱管に空気よりも冷たい熱媒体が通過し、室内空間が冷房される。第2室内送風機72は、室内空間の空気を第2室内熱交換器70に通過させ、室内空間に戻す空気の流れを生成する。
流量調整装置71は、例えば、弁の開度(開口面積)を制御することができる二方弁などで構成されている。流量調整装置71は、開度を調整することで、第2室内熱交換器70を流入出する熱媒体の流量を制御する。そして、流量調整装置71は、第2室内機7へ流入する熱媒体の温度及び流出する熱媒体の温度に基づいて、第2室内熱交換器70を通過させる熱媒体の量を調整し、第2室内熱交換器70が、室内の熱負荷に応じた熱量による熱交換を行えるようにする。図6において、流量調整装置71は、第2室内熱交換器70の熱媒体の流出側の配管に設置されているが、第2室内熱交換器70の熱媒体の流入側に設置してもよい。
また、第2室内機7には、第2熱媒体回路Cにおいて、第2室内熱交換器70の出入口の熱媒体温度を検出する温度センサ73a及び73bが設けられている。また、第2室内機7には、室内空間の温度を検出する温度センサ74が設けられている。各温度センサで検出された検出値は、制御装置5に送信され、ヒートポンプ装置100を構成する各構成要素の制御に用いられる。
また、本実施の形態2に係るヒートポンプ装置101では、圧縮機10から吐出された冷媒ガスが第1中継機2を経由して第2中継機6に流入するように、熱源機1に対して第1中継機2と第2中継機6とが直列に接続された状態に切り替える流路切替装置8が設けられている。
流路切替装置8は、接続配管80と、第1切替弁81と、第2切替弁82と、を有している。接続配管80は、第1膨張機構21と熱源熱交換器12と間における第1冷媒配管200と、流路切替弁11と第2熱交換器60と間における第3冷媒配管202と、を接続するものである。第1切替弁81は、2方弁である。第1切替弁81は、第1膨張機構21と熱源熱交換器12と間における第1冷媒配管200であって、接続配管80と第1冷媒配管200とが接続された位置P1と、第1冷媒配管200と第3冷媒配管202とが接続された位置P3との間に設けられている。第2切替弁82は、3方弁である。第2切替弁82は、第3冷媒配管202と接続配管80の接続部分に設けられている。第1切替弁81及び第2切替弁82は、制御装置5によって開閉が制御される。
図7は、実施の形態2に係るヒートポンプ装置101であって、熱源機1に対して第1中継機2と第2中継機6とが並列に接続された状態を示した説明図である。図8は、実施の形態2に係るヒートポンプ装置101であって、熱源機1に対して第1中継機2と第2中継機6とが直列に接続された状態を示した説明図である。なお、符号81及び82に示した黒色は、弁が閉じた状態を示している。また、符号81及び82に示した白色は、弁が開いた状態を示している。
本実施の形態2に係るヒートポンプ装置101は、図7に示すように、第1切替弁81を開き、且つ第2切替弁82のうち、接続配管80と第3冷媒配管202とを接続する弁を閉じることにより、熱源機1に対して、第1中継機2と第2中継機6とを並列に接続することができる。一方、ヒートポンプ装置101では、図8に示すように、第1切替弁81を閉じ、且つ第2切替弁82のうち、第1冷媒配管200と第3冷媒配管202とを接続する弁を閉じることにより、熱源機1に対して第1中継機2と第2中継機6とが直列に接続された状態に切り替えることができる。
ここで、熱源機1に対して、第1中継機2と第2中継機6とを並列に接続した場合における暖房運転時の動作について説明する。圧縮機10から吐出された高温高圧のガス冷媒は、流路切替弁11を通過して、第1熱交換器20及び第2熱交換器60へと流れる。第1熱交換器20に流れた冷媒は、第1熱媒体回路Bを流れる水と熱交換して、凝縮液化する。第1熱媒体回路Bを流れる水は、第1熱交換器20に流れた冷媒によって加熱されて貯湯タンク4に貯留される。第1熱交換器20によって、凝縮液化した冷媒は、第1膨張機構21で減圧され低圧の気液二相冷媒となり、熱源熱交換器12に流れる。
一方、第2熱交換器60に流れた冷媒は、第2熱媒体回路Cを流れる熱媒体と熱交換して凝縮液化し、第3膨張機構61で減圧され低圧の気液二相冷媒となり、熱源熱交換器12に流れる。熱源熱交換器12に流れた気液二相冷媒は、空気と熱交換して蒸発ガス化し、流路切替弁11を通過し、アキュムレーター13を介して圧縮機10に吸入される。
第2熱媒体回路Cを流れる熱媒体は、第2熱交換器60に流れた冷媒によって加熱された後、第2室内熱交換器70に流れ、室内空間における室内空気との間で熱交換し冷却される。冷却された熱媒体は、流量調整装置71で流量が調整された後、再び第2熱交換器60に流入される。
次に、熱源機1に対して、第1中継機2と第2中継機6とを直列に接続した場合における暖房運転時の動作について説明する。圧縮機10から吐出された高温高圧のガス冷媒は、流路切替弁11を通過して、第1熱交換器20へと流れる。第1熱交換器20に流れた冷媒は、第1熱媒体回路Bを流れる水と熱交換して、気液二相冷媒となり、第2熱交換器60に流れる。第1熱媒体回路Bを流れる水は、第1熱交換器20に流れた冷媒によって加熱されて貯湯タンク4に貯留される。第2熱交換器60に流れた冷媒は、第2熱媒体回路Cを流れる熱媒体と熱交換して凝縮液化し、第3膨張機構61で減圧され低圧の気液二相冷媒となり、熱源熱交換器12に流れる。熱源熱交換器12に流れた気液二相冷媒は、空気と熱交換して蒸発ガス化し、流路切替弁11を通過し、アキュムレーター13を介して圧縮機10に吸入される。第2熱媒体回路Cを流れる熱媒体は、第2熱交換器60に流れた冷媒によって加熱された後、第2室内熱交換器70に流れ、室内空間における室内空気との間で熱交換し冷却される。冷却された熱媒体は、流量調整装置71で流量が調整された後、再び第2熱交換器60に流入される。
本実施の形態2に係るヒートポンプ装置101では、図7に示すように、第1中継機2と第2中継機6とを直列に接続することで、貯湯を目的とする第1中継機2に温度が高い顕熱を利用して、高温の出湯が可能となり、且つ暖房目的の第2中継機6に潜熱を利用することができる。なお、第1中継機2において顕熱を利用するため、冷媒の熱伝達率が悪くなるが、R32冷媒のような顕熱が高温になる冷媒の利用し、且つ第1中継機2から昇温された湯を目標温度及び目標貯湯量になるまで第1中継機2と貯湯タンク4との間で何度も循環させることで、顕熱利用での高温水の貯湯を実現することができる。
また、本実施の形態2に係るヒートポンプ装置101では、第1中継機2の冷媒出口温度が、飽和温度(CT)+αの温度になるよう、第1中継機2の第1ポンプ22によって水の流量を制御することで、効率良く顕熱を第1中継機2の貯湯利用でき、且つ潜熱を第2中継機6の暖房利用に使用することが可能となる。
また、本実施の形態2に係るヒートポンプ装置101では、第1中継機2と第2中継機6とが同じ構成なので、システムに応じて流用が可能である。よって、開発負荷を低減でき、製造時のコストが削減できる。
また、本実施の形態2に係るヒートポンプ装置101では、暖房目的の第2室内機7の負荷が足りない場合に、流路切替装置8を切り替えて、熱源機1に対して第1中継機2と第2中継機6とが並列に接続された状態とし、顕熱を暖房側に利用することができる。
また、本実施の形態2に係るヒートポンプ装置101では、冷媒回路Aを循環する冷媒と、第2熱媒体回路Cを循環する熱媒体とを熱交換させることにより、第2室内機7で冷暖房する構成である。よって、冷媒回路Aに微燃性冷媒であるR32等を使用しても、微燃性冷媒に対する室内の安全対策が不要となる。
以上のように、本実施の形態2に係るヒートポンプ装置101は、暖房運転時に、圧縮機10から吐出された冷媒ガスが第1中継機2を経由して第2中継機6に流入するように、熱源機1に対して第1中継機2と第2中継機6とが直列に接続された状態に切り替える流路切替装置8が設けられている。よって、高温になる顕熱を第1中継機2の貯湯目的で利用することができ、且つ潜熱を第2室内機7の暖房目的で利用することができるので、熱源機1と接続された第1中継機2が1元サイクルであっても、高温出湯に必要な貯湯運転と、第2室内機7の暖房運転を両立させることができる。また、本実施の形態2に係るヒートポンプ装置101は、第1中継機2を1元サイクルとすることで、従来の2元サイクルとした構成に比べて、システムを簡素化することができ、且つ使用する総冷媒量を削減することができる。
次に、ヒートポンプ装置101の冷房運転時の動作であって、第1熱媒体回路Bで貯湯運転しない場合について説明する。圧縮機10から吐出された高温高圧のガス冷媒は、流路切替弁11を通過して熱源熱交換器12へと流れて空気と熱交換して凝縮液化する。凝縮液化した冷媒は、第3膨張機構61で減圧され低圧の気液二相冷媒となり、第2熱交換器60へと流れ、第2熱媒体回路Cを流れる熱媒体と熱交換して、蒸発ガス化する。ガス化した冷媒は、流路切替弁11を通過し、アキュムレーター13を介して圧縮機10に吸入される。一方、第2熱媒体回路Cを流れる熱媒体は、第2熱交換器60に流れた冷媒によって冷却された後、第2室内熱交換器70に流れ、室内空間における室内空気との間で熱交換し加熱される。加熱された熱媒体は、流量調整装置71で流量が調整された後、再び第2熱交換器60に流入される。
次に、ヒートポンプ装置101の冷房運転時の動作であって、第2室内機7で冷房運転すると共に、第1熱媒体回路Bで貯湯運転する場合について説明する。この場合、図8に示すように、熱源機1と、第1中継機2と、第2中継機6とが直列に接続される。また、熱源熱交換器12及び第2熱交換器60は、蒸発器として機能する。圧縮機10から吐出された高温高圧のガス冷媒は、流路切替弁11を通過し、第1熱交換器20へと流れる。第1熱交換器20に流れた冷媒は、第1熱媒体回路Bを流れる水と熱交換して、凝縮液化する。第1熱媒体回路Bを流れる水は、第1熱交換器20に流れた冷媒によって加熱されて貯湯タンク4に貯留される。凝縮液化した冷媒は、第1膨張機構21で減圧され低圧の気液二相冷媒となり、第2熱交換器60に流れる。第2熱交換器60に流れた冷媒は、第2熱媒体回路Cを流れる熱媒体と熱交換して蒸発ガス化した後、熱源熱交換器12に流れて空気と熱交換して更に蒸発ガス化し、流路切替弁11を通過し、アキュムレーター13を介して圧縮機10に吸入される。なお、熱源熱交換器12は、蒸発器と凝縮器の負荷バランスが取れていない場合に、蒸発器と凝縮器の補助をすることで負荷バランスを補足する。
一方、第2熱媒体回路Cを流れる熱媒体は、第2熱交換器60に流れた冷媒によって冷却された後、第2室内熱交換器70に流れ、室内空間における室内空気との間で熱交換し加熱される。加熱された熱媒体は、流量調整装置71で流量が調整された後、再び第2熱交換器60に流入される。
なお、貯湯タンク4の貯湯が十分に完了した場合には、熱源熱交換器12を凝縮器とすることで、貯湯が完了した後も冷房運転の継続が可能となる。なお、貯湯タンク4に設けられた温度検出手段42がすべて目標の貯湯温度を満たしている場合に、貯湯タンク4における貯湯が完了したと判断する。
以上のように、本実施の形態2に係るヒートポンプ装置101は、熱源機1に対して第1中継機2と第2中継機6とを直列に接続することにより、貯湯用の第1熱交換器20を凝縮器とし、冷房利用の第2熱交換器60を蒸発器として使用することができ、廃熱なく貯湯運転及び冷房運転を行うことができる。
ちなみに、低温水の蓄熱を目的とする場合には、熱源熱交換器12を凝縮器とし、第2熱交換器60及び第1熱交換器20を蒸発機として機能させることで実現できる。
実施の形態3.
次に、図9~図11を参照して、本実施の形態3に係るヒートポンプ装置102を説明する。図9は、実施の形態3に係るヒートポンプ装置102の冷媒回路図である。なお、実施の形態1及び2で説明したヒートポンプ装置100及び101と同一の構成要素については、同一の符号を付して、その説明を適宜省略する。
次に、図9~図11を参照して、本実施の形態3に係るヒートポンプ装置102を説明する。図9は、実施の形態3に係るヒートポンプ装置102の冷媒回路図である。なお、実施の形態1及び2で説明したヒートポンプ装置100及び101と同一の構成要素については、同一の符号を付して、その説明を適宜省略する。
本実施の形態3に係るヒートポンプ装置102は、図9に示すように、熱源機1と、第1中継機2と、第1室内機3と、第2中継機6と、第2室内機7と、貯湯タンク4と、制御装置5と、を備えている。ヒートポンプ装置102は、熱源機1に対して、第1中継機2と、第1室内機3と、第2中継機6と、が第1冷媒配管200、第2冷媒配管201及び第3冷媒配管202で並列に接続された冷媒回路A2を有している。具体的には、ヒートポンプ装置102は、熱源機1と第1中継機2とが第1冷媒配管200で接続され、該第1冷媒配管200から分岐した第2冷媒配管201に第1室内機3が接続されている。そして、第2冷媒配管201から分岐した第3冷媒配管202に、第2中継機6が接続されている。第1室内機3は、図示例の場合、3台を並列させて設けているが、これに限定されず、1台又は2台でもよいし、4台以上でもよい。冷媒回路A2を循環する冷媒は、圧縮機10からの吐出温度が高いR32が用いられている。なお、冷媒回路A2を循環する冷媒は、R32に限定されず、他の種類の冷媒でもよい。この場合、圧縮機10からの吐出温度が高い冷媒を使用することが望ましい。
また、ヒートポンプ装置102は、第1中継機2と貯湯タンク4とが、第1熱媒体配管300で接続された第1熱媒体回路Bを有している。第1熱媒体回路Bを循環する熱媒体は、貯湯タンク4に給水される水である。
また、ヒートポンプ装置102は、第2中継機6と、第2室内機7とが、第2熱媒体配管301で接続された第2熱媒体回路Cを有している。第2室内機7は、図示例の場合、2台を並列させて設けられているが、これに限定されず、1台でもよいし、3台以上でもよい。第2熱媒体回路Cを循環する熱媒体は、例えば水、ブライン又はブラインと水の混合液等である。
熱源機1、第1中継機2、第1室内機3、第2中継機6、第2室内機7、貯湯タンク4、制御装置5は、上記実施の形態1及び2で説明した構成と同じである。
冷媒回路A2は、圧縮機10、流路切替弁11、第1熱交換器20、第1膨張機構21、熱源熱交換器12、アキュムレーター13が第1冷媒配管200で接続されている。冷媒回路A2は、流路切替弁11と第1熱交換器20との間の第1冷媒配管200、及び第1膨張機構21と熱源熱交換器12との間の第1冷媒配管200から第2冷媒配管201が分岐して接続されている。冷媒回路A2は、第1室内熱交換器30と第2膨張機構31とが、第2冷媒配管201で接続されている。
また、冷媒回路A2は、流路切替弁11と第1室内熱交換器30との間の第2冷媒配管201、及び第2膨張機構31と熱源熱交換器12との間の第2冷媒配管201から第3冷媒配管202が分岐して接続されている。冷媒回路A2は、第2熱交換器60と第3膨張機構61とが、第3冷媒配管202で接続されている。また、第1熱媒体回路Bは、第1熱交換器20、貯湯タンク4及び第1ポンプ22が、第1熱媒体配管300で接続されている。また、第2熱媒体回路Cは、第2熱交換器60、第2室内熱交換器70、流量調整装置71、第2ポンプ62が第2熱媒体配管301で接続されている。
本実施の形態3に係るヒートポンプ装置102では、圧縮機10から吐出された冷媒ガスが第1中継機2を経由して第1室内機3及び第2中継機6に流入するように、熱源機1に対して、第1中継機2と、第1室内機3及び第2中継機6と、が直列に接続された状態に切り替える流路切替装置8が冷媒配管に設けられている。
流路切替装置8は、接続配管80と、第1切替弁81と、第2切替弁82と、を有している。接続配管80は、第1膨張機構21と熱源熱交換器12と間における第1冷媒配管200と、流路切替弁11と第3冷媒配管202の分岐位置との間における第2冷媒配管201と、を接続するものである。第1切替弁81は、2方弁である。第1切替弁81は、第1膨張機構21と熱源熱交換器12と間における第1冷媒配管200であって、接続配管80と第1冷媒配管200とが接続された位置P1と、第1冷媒配管200と第2冷媒配管201とが接続された位置P2との間に設けられている。第2切替弁82は、3方弁である。第2切替弁82は、第2冷媒配管201と接続配管80の接続部分に設けられている。第1切替弁81及び第2切替弁82は、制御装置5によって開閉が制御される。
図10は、実施の形態3に係るヒートポンプ装置102であって、熱源機1に対して第1中継機2と第2中継機6と第1室内機3とが並列に接続された状態を示した説明図である。図11は、実施の形態3に係るヒートポンプ装置102であって、熱源機1に対して第1中継機2と、第2中継機6及び第1室内機3と、が直列に接続された状態を示した説明図である。なお、符号81及び82に示した黒色は、弁が閉じた状態を示している。また、符号81及び82に示した白色は、弁が開いた状態を示している。
本実施の形態3に係るヒートポンプ装置102は、図10に示すように、第1切替弁81を開き、且つ第2切替弁82のうち、接続配管80と第2冷媒配管201とを接続する弁を閉じることにより、熱源機1に対して、第1中継機2と、第1室内機3と、第2中継機6と、を並列に接続することができる。一方、ヒートポンプ装置102では、図11に示すように、第1切替弁81を閉じ、且つ第2切替弁82のうち、第1冷媒配管200と第2冷媒配管201とを接続する弁を閉じることにより、熱源機1に対して第1中継機2と、第1室内機3及び第2中継機6と、が直列に接続された状態に切り替えることができる。
ここで、熱源機1に対して、第1中継機2と、第2中継機6と、第1室内機3と、を並列に接続した場合における暖房運転時の動作について説明する。圧縮機10から吐出された高温高圧のガス冷媒は、流路切替弁11を通過して、第1熱交換器20、第1室内熱交換器30及び第2熱交換器60へと流れる。第1熱交換器20に流れた冷媒は、第1熱媒体回路Bを流れる水と熱交換して、凝縮液化する。第1熱媒体回路Bを流れる水は、第1熱交換器20に流れた冷媒によって加熱されて貯湯タンク4に貯留される。第1熱交換器20によって、凝縮液化した冷媒は、第1膨張機構21で減圧され低圧の気液二相冷媒となり、熱源熱交換器12に流れる。
一方、第1室内熱交換器30に流れた冷媒は、空気と熱交換して凝縮液化し、第2膨張機構31で減圧され低圧の気液二相冷媒となり、熱源熱交換器12に流れる。また、第2熱交換器60に流れた冷媒は、第2熱媒体回路Cを流れる熱媒体と熱交換して凝縮液化し、第3膨張機構61で減圧され低圧の気液二相冷媒となり、熱源熱交換器12に流れる。熱源熱交換器12に流れた気液二相冷媒は、空気と熱交換して蒸発ガス化し、流路切替弁11を通過し、アキュムレーター13を介して圧縮機10に吸入される。
第2熱媒体回路Cを流れる熱媒体は、第2熱交換器60に流れた冷媒によって加熱された後、第2室内熱交換器70に流れ、室内空間における室内空気との間で熱交換し冷却される。冷却された熱媒体は、流量調整装置71で流量が調整された後、再び第2熱交換器60に流入される。
次に、熱源機1に対して第1中継機2と、第1室内機3及び第2中継機6と、を直列に接続した場合における暖房運転時の動作について説明する。圧縮機10から吐出された高温高圧のガス冷媒は、流路切替弁11を通過して、第1熱交換器20へと流れる。第1熱交換器20に流れた冷媒は、第1熱媒体回路Bを流れる水と熱交換して、気液二相冷媒となり、第1室内熱交換器30と第2熱交換器60に流れる。第1熱媒体回路Bを流れる水は、第1熱交換器20に流れた冷媒によって加熱されて貯湯タンク4に貯留される。
第1室内熱交換器30に流れた冷媒は、空気と熱交換して凝縮液化し、第2膨張機構31で減圧され低圧の気液二相冷媒となり、熱源熱交換器12に流れる。また、第2熱交換器60に流れた冷媒は、第2熱媒体回路Cを流れる熱媒体と熱交換して凝縮液化し、第3膨張機構61で減圧され低圧の気液二相冷媒となり、熱源熱交換器12に流れる。熱源熱交換器12に流れた気液二相冷媒は、空気と熱交換して蒸発ガス化し、流路切替弁11を通過し、アキュムレーター13を介して圧縮機10に吸入される。
第2熱媒体回路Cを流れる熱媒体は、第2熱交換器60に流れた冷媒によって加熱された後、第2室内熱交換器70に流れ、室内空間における室内空気との間で熱交換し冷却される。冷却された熱媒体は、流量調整装置71で流量が調整された後、再び第2熱交換器60に流入される。
本実施の形態3に係るヒートポンプ装置102では、図11に示すように、第1中継機2と、第1室内機3及び第2中継機6と、を直列に接続することで、貯湯を目的とする第1中継機2に温度が高い顕熱を利用して、高温の出湯が可能となる。なお、第1中継機2において顕熱を利用するため、冷媒の熱伝達率が悪くなるが、R32冷媒のような顕熱が高温になる冷媒の利用し、且つ第1中継機2から昇温された湯を目標温度及び目標貯湯量になるまで第1中継機2と貯湯タンク4との間で何度も循環させることで、顕熱利用での高温水の貯湯を実現することができる。
また、本実施の形態3に係るヒートポンプ装置102では、第1中継機2の冷媒出口温度が、飽和温度+αの温度になるよう、第1中継機2の第1ポンプ22によって水の流量を制御することで、効率良く顕熱を第1中継機2の貯湯利用でき、且つ潜熱を第1室内機3及び第2室内機7の暖房利用に使用することが可能となる。
また、本実施の形態3に係るヒートポンプ装置102では、第1中継機2と第2中継機6とが同じ構成なので、システムに応じて流用が可能である。よって、開発負荷を低減でき、製造時のコストが削減できる。
また、本実施の形態3に係るヒートポンプ装置102では、暖房目的の第1室内機3及び第2室内機7の負荷が足りない場合に、流路切替装置8を切り替えて、熱源機1に対して第1中継機2と、第1室内機3及び第2中継機6とが並列に接続された状態とし、顕熱を暖房側に利用することができる。
また、本実施の形態3に係るヒートポンプ装置102では、冷媒回路Aを循環する冷媒と、第2熱媒体回路Cを循環する熱媒体とを熱交換させることにより、第2室内機7で冷暖房する構成を有する。よって、冷媒回路Aに微燃性冷媒であるR32等を使用しても、第2室内機7を設置した室内においては、微燃性冷媒に対する安全対策が不要となる。また、第2室内機7は、熱媒体が水又は液層として第2熱媒体回路Cを循環するため、騒音の発生を抑制できる。
以上のように、本実施の形態3に係るヒートポンプ装置102は、暖房運転時に、圧縮機10から吐出された冷媒ガスが第1中継機2を経由して第1室内機3及び第2中継機6に流入するように、熱源機1に対して第1中継機2と第1室内機3及び第2中継機6とが直列に接続された状態に切り替える流路切替装置8が設けられている。よって、高温になる顕熱を第1中継機2の貯湯目的で利用することができ、且つ潜熱を第1室内機3及び第2室内機7の暖房目的で利用することができるので、熱源機1と接続された第1中継機2が1元サイクルであっても、高温出湯に必要な貯湯運転と、第1室内機3及び第2室内機7の暖房運転を両立させることができる。また、本実施の形態3に係るヒートポンプ装置102は、第1中継機2を1元サイクルとすることで、従来の2元サイクルとした構成に比べて、システムを簡素化することができ、且つ使用する総冷媒量を削減することができる。
次に、ヒートポンプ装置102の冷房運転時の動作であって、第1熱媒体回路Bで貯湯運転しない場合について説明する。圧縮機10から吐出された高温高圧のガス冷媒は、流路切替弁11を通過して熱源熱交換器12へと流れて空気と熱交換して凝縮液化する。また、凝縮液化した冷媒は、第2膨張機構31で減圧され低圧の気液二相冷媒となり、第1室内熱交換器30へと流れて空気と熱交換して蒸発ガス化する。また、熱源熱交換器12で凝縮液化した冷媒は、第3膨張機構61で減圧され低圧の気液二相冷媒となり、第2熱交換器60へと流れ、第2熱媒体回路Cを流れる熱媒体と熱交換して、蒸発ガス化する。第1室内熱交換器30及び第2熱交換器60でガス化した冷媒は、流路切替弁11を通過し、アキュムレーター13を介して圧縮機10に吸入される。
一方、第2熱媒体回路Cを流れる熱媒体は、第2熱交換器60に流れた冷媒によって冷却された後、第2室内熱交換器70に流れ、室内空間における室内空気との間で熱交換し加熱される。加熱された熱媒体は、流量調整装置71で流量が調整された後、再び第2熱交換器60に流入される。
次に、ヒートポンプ装置102の冷房運転時の動作であって、第1室内機3及び第2室内機7で冷房運転すると共に、第1熱媒体回路Bで貯湯運転する場合について説明する。この場合、図11に示すように、熱源機1に対して、第1中継機2と、第1室内機3及び第2中継機6とが直列に接続される。また、熱源熱交換器12、第1室内熱交換器30及び第2熱交換器60は、蒸発器として機能する。圧縮機10から吐出された高温高圧のガス冷媒は、流路切替弁11を通過し、第1熱交換器20へと流れる。第1熱交換器20に流れた冷媒は、第1熱媒体回路Bを流れる水と熱交換して、凝縮液化する。第1熱媒体回路Bを流れる水は、第1熱交換器20に流れた冷媒によって加熱されて貯湯タンク4に貯留される。凝縮液化した冷媒は、第1膨張機構21で減圧され低圧の気液二相冷媒となり、第1室内熱交換器30へと流れて空気と熱交換して蒸発ガス化する。また、第1熱交換器20で凝縮液化した冷媒は、第3膨張機構61で減圧され低圧の気液二相冷媒となり、第2熱交換器60へと流れ、第2熱媒体回路Cを流れる熱媒体と熱交換して、蒸発ガス化する。第1室内熱交換器30及び第2熱交換器60で蒸発ガス化した冷媒は、熱源熱交換器12に流れて空気と熱交換して更に蒸発ガス化し、流路切替弁11を通過し、アキュムレーター13を介して圧縮機10に吸入される。なお、熱源熱交換器12は、蒸発器と凝縮器の負荷バランスが取れていない場合に、蒸発器と凝縮器の補助をすることで負荷バランスを補足する。
一方、第2熱媒体回路Cを流れる熱媒体は、第2熱交換器60に流れた冷媒によって冷却された後、第2室内熱交換器70に流れ、室内空間における室内空気との間で熱交換し加熱される。加熱された熱媒体は、流量調整装置71で流量が調整された後、再び第2熱交換器60に流入される。
なお、貯湯タンク4の貯湯が十分に完了した場合には、熱源熱交換器12を凝縮器とすることで、貯湯が完了した後も冷房運転の継続が可能となる。なお、貯湯タンク4に設けられた温度検出手段42がすべて目標の貯湯温度を満たしている場合に、貯湯タンク4における貯湯が完了したと判断する。
以上のように、本実施の形態3に係るヒートポンプ装置102は、熱源機1に対して第1中継機2と、第1室内機3及び第2中継機6とを直列に接続することにより、貯湯用の第1熱交換器20を凝縮器とし、冷房利用の第1室内熱交換器30及び第2熱交換器60を蒸発器として使用することができ、廃熱なく貯湯運転及び冷房運転を行うことができる。
ちなみに、低温水の蓄熱を目的とする場合には、熱源熱交換器12を凝縮器とし、第1室内熱交換器30、第2熱交換器60及び第1熱交換器20を蒸発機として機能させることで実現できる。
また、本実施の形態3に係るヒートポンプ装置102では、第1室内機3と第2室内機7とで構造が異なるので、冷暖房する室内の用途に応じて使い分けることができる。例えば、第1室内機3は、省エネ性の目的で室内に設置することができる。一方、第2室内機7は、居室空間へ冷媒配管を通したくない病院等の室内に設置することができる。
実施の形態4.
次に、図12を参照して、本実施の形態4に係るヒートポンプ装置103を説明する。図12は、実施の形態4に係るヒートポンプ装置103の冷媒回路図である。なお、実施の形態1~3で説明したヒートポンプ装置100~102と同一の構成要素については、同一の符号を付して、その説明を適宜省略する。
次に、図12を参照して、本実施の形態4に係るヒートポンプ装置103を説明する。図12は、実施の形態4に係るヒートポンプ装置103の冷媒回路図である。なお、実施の形態1~3で説明したヒートポンプ装置100~102と同一の構成要素については、同一の符号を付して、その説明を適宜省略する。
本実施の形態4に係るヒートポンプ装置103は、上記実施の形態2のヒートポンプ装置101の構成に加えて、第2室内熱交換器70の熱媒体入口側における第2熱媒体配管301と、出湯配管41と、が補助配管43で接続されている。補助配管43には、開閉弁44が設けられている。開閉弁44は、制御装置5によって開閉が制御される。
本実施の形態4に係るヒートポンプ装置103は、第2室内機7の負荷の足りない場合又は暖房の立上がり時に、貯湯タンク4に貯められた湯を使うことで、第2室内機7での暖房能力の確保又は即温性を向上させることができる。また、熱源機1がデフロスト運転により、第2室内機7が暖房運転を行えないときに、貯湯タンク4の湯を使用して暖房運転を継続することができ、常時、暖房運転が可能となる。更に、出湯側の負荷が小さい場合には、貯湯タンク4に貯めた湯を暖房側に使用することで、貯湯タンク4に貯めた湯を使いきることができるので、貯湯運転の無駄を抑制することができる。
なお、本実施の形態4に係るヒートポンプ装置103は、上記実施の形態3のヒートポンプ装置102の構成に適用することもできる。
以上、実施の形態に基づいてヒートポンプ装置(100~103)を説明したが、ヒートポンプ装置(100~103)は上述した実施の形態の構成に限定されるものではない。上記したヒートポンプ装置(100~103)の構成は、一例であって、他の構成要素を含んでもよいし、構成要素を一部省略してもよい。例えば熱源機1、第1中継機2、第2中継機6及び貯湯タンク4は、2台以上有していてもよい。要するに、ヒートポンプ装置(100~103)は、その技術的思想を逸脱しない範囲において、当業者が通常に行う設計変更及び応用のバリエーションの範囲を含むものである。
1 熱源機、2 第1中継機、3 第1室内機、4 貯湯タンク、5 制御装置、6 第2中継機、7 第2室内機、8 流路切替装置、10 圧縮機、11 流路切替弁、12 熱源熱交換器、13 アキュムレーター、14 熱源送風機、15、16 温度センサ、20 第1熱交換器、21 第1膨張機構、22 第1ポンプ、23a、23b、24a、24b 温度センサ、30 第1室内熱交換器、31 第2膨張機構、32 第1室内送風機、33a、33b 温度センサ、34 温度センサ、40 給水配管、41 出湯配管、42 温度検出手段、43 補助配管、44 開閉弁、60 第2熱交換器、61 第3膨張機構、62 第2ポンプ、63a、63b、64a、64b 温度センサ、70 第2室内熱交換器、71 流量調整装置、72 第2室内送風機、73a、73b 温度センサ、74 温度センサ、80 接続配管、81 第1切替弁、82 第2切替弁、100、101、102、103 ヒートポンプ装置、200 第1冷媒配管、201 第2冷媒配管、202 第3冷媒配管、300 第1熱媒体配管、301 第2熱媒体配管、A、A1、A2 冷媒回路、B 第1熱媒体回路、C 第2熱媒体回路。
Claims (6)
- 圧縮機、流路切替弁及び熱源熱交換器を有する熱源機と、
第1熱交換器、第1膨張機構及び第1ポンプを有する第1中継機と、
第1室内熱交換器及び第2膨張機構を有する第1室内機と、
貯湯タンクと、を備え、
前記熱源機に対して、前記第1中継機と前記第1室内機とが、冷媒配管で並列に接続されて冷媒回路が形成され、
前記第1中継機と、前記貯湯タンクとが、第1熱媒体配管で接続されて第1熱媒体回路が形成されており、
前記冷媒配管には、前記圧縮機から吐出された冷媒ガスが前記第1中継機を経由して前記第1室内機に流入するように、前記熱源機に対して前記第1中継機と前記第1室内機とが直列に接続された状態に切り替える流路切替装置が設けられている、ヒートポンプ装置。 - 圧縮機、流路切替弁及び熱源熱交換器を有する熱源機と、
第1熱交換器、第1膨張機構及び第1ポンプを有する第1中継機と、
第2熱交換器、第3膨張機構及び第2ポンプを有する第2中継機と、
第2室内熱交換器及び流量調整装置を有する第2室内機と、
貯湯タンクと、を備え、
前記熱源機に対して、前記第1中継機と前記第2中継機とが、冷媒配管で並列に接続されて冷媒回路が形成され、
前記第1中継機と、前記貯湯タンクとが、第1熱媒体配管で接続されて第1熱媒体回路が形成され、
前記第2中継機と、前記第2室内機とが、第2熱媒体配管で接続されて第2熱媒体回路が形成されており、
前記冷媒配管には、前記圧縮機から吐出された冷媒ガスが前記第1中継機を経由して前記第2中継機に流入するように、前記熱源機に対して前記第1中継機と前記第2中継機とが直列に接続された状態に切り替える流路切替装置が設けられている、ヒートポンプ装置。 - 圧縮機、流路切替弁及び熱源熱交換器を有する熱源機と、
第1熱交換器、第1膨張機構及び第1ポンプを有する第1中継機と、
第1室内熱交換器及び第2膨張機構を有する第1室内機と、
第2熱交換器、第3膨張機構及び第2ポンプを有する第2中継機と、
第2室内熱交換器及び流量調整装置を有する第2室内機と、
貯湯タンクと、を備え、
前記熱源機に対して、前記第1中継機と、前記第1室内機と、前記第2中継機と、が冷媒配管で並列に接続されて冷媒回路が形成され、
前記第1中継機と、前記貯湯タンクとが、第1熱媒体配管で接続されて第1熱媒体回路が形成され、
前記第2中継機と、前記第2室内機とが、第2熱媒体配管で接続されて第2熱媒体回路が形成されており、
前記冷媒配管には、前記圧縮機から吐出された冷媒ガスが前記第1中継機を経由して前記第1室内機及び前記第2中継機に流入するように、前記熱源機に対して前記第1中継機と、前記第1室内機及び前記第2中継機と、が直列に接続された状態に切り替える流路切替装置が設けられている、ヒートポンプ装置。 - 前記貯湯タンクは、貯留した湯水を外部へ出湯する出湯配管を有しており、
前記第2熱交換器の熱媒体入口側における第2熱媒体配管と、前記出湯配管と、が補助配管で接続されており、
前記補助配管には、開閉弁が設けられている、請求項2又は3に記載のヒートポンプ装置。 - 前記貯湯タンクには、前記貯湯タンク内の湯水の温度を検出する温度検出手段が前記貯湯タンクの高さ方向に沿って複数設けられている、請求項1~4のいずれか一項に記載のヒートポンプ装置。
- 前記冷媒回路が流れる冷媒は、R32である、請求項1~5のいずれか一項に記載のヒートポンプ装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/020323 WO2023223373A1 (ja) | 2022-05-16 | 2022-05-16 | ヒートポンプ装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/020323 WO2023223373A1 (ja) | 2022-05-16 | 2022-05-16 | ヒートポンプ装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023223373A1 true WO2023223373A1 (ja) | 2023-11-23 |
Family
ID=88834772
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/020323 WO2023223373A1 (ja) | 2022-05-16 | 2022-05-16 | ヒートポンプ装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023223373A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01247966A (ja) * | 1988-03-28 | 1989-10-03 | Sanyo Electric Co Ltd | 空気調和装置 |
WO2011048695A1 (ja) * | 2009-10-23 | 2011-04-28 | 三菱電機株式会社 | 空気調和装置 |
WO2013111179A1 (ja) * | 2012-01-24 | 2013-08-01 | 三菱電機株式会社 | 空気調和装置 |
CN206540334U (zh) * | 2017-02-20 | 2017-10-03 | 魏志民 | 太阳能蓄热型空气源热泵除霜系统 |
JP2020046108A (ja) * | 2018-09-18 | 2020-03-26 | 株式会社コロナ | 冷暖房機能付き給湯機 |
-
2022
- 2022-05-16 WO PCT/JP2022/020323 patent/WO2023223373A1/ja unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01247966A (ja) * | 1988-03-28 | 1989-10-03 | Sanyo Electric Co Ltd | 空気調和装置 |
WO2011048695A1 (ja) * | 2009-10-23 | 2011-04-28 | 三菱電機株式会社 | 空気調和装置 |
WO2013111179A1 (ja) * | 2012-01-24 | 2013-08-01 | 三菱電機株式会社 | 空気調和装置 |
CN206540334U (zh) * | 2017-02-20 | 2017-10-03 | 魏志民 | 太阳能蓄热型空气源热泵除霜系统 |
JP2020046108A (ja) * | 2018-09-18 | 2020-03-26 | 株式会社コロナ | 冷暖房機能付き給湯機 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9534807B2 (en) | Air conditioning apparatus with primary and secondary heat exchange cycles | |
JP5642207B2 (ja) | 冷凍サイクル装置及び冷凍サイクル制御方法 | |
JP5627606B2 (ja) | ヒートポンプシステム | |
JP3858015B2 (ja) | 冷媒回路及びヒートポンプ給湯機 | |
US9003817B2 (en) | Air-conditioning hot-water supply system, and heat pump unit | |
US8991204B2 (en) | Refrigerating apparatus | |
JP5373964B2 (ja) | 空調給湯システム | |
US9140459B2 (en) | Heat pump device | |
KR101147268B1 (ko) | 냉난방 및 급탕용 히트펌프시스템 및 그 제어방법 | |
JP5455521B2 (ja) | 空調給湯システム | |
WO2011080805A1 (ja) | ヒートポンプシステム | |
JP5395950B2 (ja) | 空気調和装置および空調給湯システム | |
JP5572711B2 (ja) | 空調給湯システム | |
US11268737B2 (en) | Refrigeration cycle apparatus | |
JP5335131B2 (ja) | 空調給湯システム | |
WO2012114461A1 (ja) | 空調給湯システム及び空調給湯システムの制御方法 | |
US10436463B2 (en) | Air-conditioning apparatus | |
US20130061622A1 (en) | Refrigerating and air-conditioning apparatus | |
JP6640695B2 (ja) | 冷暖房機能付きヒートポンプ給湯機 | |
JP5283586B2 (ja) | 空気調和装置 | |
WO2023223373A1 (ja) | ヒートポンプ装置 | |
KR100643689B1 (ko) | 히트 펌프 공기조화기 | |
JP2013084073A (ja) | 自動販売機 | |
JPWO2013008365A1 (ja) | 空気調和装置 | |
JP2012117690A (ja) | 蓄熱式空気調和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22942578 Country of ref document: EP Kind code of ref document: A1 |