CN86108567A - 光学传感器 - Google Patents

光学传感器 Download PDF

Info

Publication number
CN86108567A
CN86108567A CN198686108567A CN86108567A CN86108567A CN 86108567 A CN86108567 A CN 86108567A CN 198686108567 A CN198686108567 A CN 198686108567A CN 86108567 A CN86108567 A CN 86108567A CN 86108567 A CN86108567 A CN 86108567A
Authority
CN
China
Prior art keywords
mentioned
layer
unit
diode
photodiode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN198686108567A
Other languages
English (en)
Inventor
梅丁·艾克蒂克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microsemi Semiconductor ULC
Original Assignee
Mitel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitel Corp filed Critical Mitel Corp
Publication of CN86108567A publication Critical patent/CN86108567A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及一种光敏二极管单元及其制作方法。二极管单元由构成阴极的第一层n型氢化非晶硅和构成阳极的第二层P+型材料组成,第二层位于第一层之上,并且是透光层。由于采用了氢化非晶硅,本发明的光敏二极管单元具有高光电导率,可控变化的光通道以及薄膜结构等特点。采用此种二极管单元组成的光敏二极管阵列容易制作,它运用简单的电路来寻址每一个二极管单元。其特征在于单元之间串扰很小,并具有最大的光灵敏度和宽的动态范围。

Description

本发明总的说来涉及各种光敏器件,尤其涉及由氢化非晶硅组成的光敏二极管元件。
当今,光电子学研究工作由于运用光敏器件而获得了许多进展。大量研究工作是通过研制由许多这类光敏探测器组成的光敏或光电阵列进行的。光敏阵列在远距离通信(如光纤、积成光学或图象发送装置)、民用图象处理(如固体摄象机)和工业运用(如光复印和传真设备)等领域具有大量的应用。
先有技术的光敏阵列一般采用由单晶硅制作的电荷耦合器件(CCD)。这种阵列结构复杂,光敏面积小,以及一般需要繁锁的制作工艺过程。同时,业已发现,对于短波长的光(兰光和紫外光)来说,CCD阵列的灵敏度也很差。此外,CCD阵列还具有以下一系列缺点:需要复杂的时钟控制电路,有限的动态范围,有限的光谱和照度灵敏度,阵列中相邻元件之间的串扰敏感性由于最大的允许光强很低因而容易饱和,对照度响应的线性差以及为克服高的暗电流而带来的补偿问题等。
本发明提供一种由氢化非晶硅(a-Si∶H)制作的光敏二极管元件,它克服了上面讨论的先有技术CCD器件的各种缺点。氢化非晶硅是一种具有很高光电导率的半导体材料,其典型值为104左右。随着所采用的制作工艺的不同,a-Si∶H的光学能带宽度可以在1.5电子伏特(ev)和2.2ev之间改变,而单晶硅的光学能带宽度为一个常数,约等于1.1ev左右。因此,在给定光照条件下,可将氢化非晶硅对不同光波长的灵敏度调至最佳状态。
由于其非晶结构的特点,a-Si∶H的光学吸收性能与典型地制作先有技术CCD元件的单晶硅的光学吸收性能相比较为优越。在可见光范围,为吸收给定量的光,采用a-Si∶H比采用单晶硅所需的膜层厚度差不多要薄一百倍。例如,厚度为1微米的a-Si∶H层,差不多将吸收95%的可见光,而为了获得同样大小的吸收,则要求单晶硅层的厚度约为100微米。
由于利用氢化非晶硅制作光敏元件只需要比较薄的膜层,因此利用这种材料可以制作出高效率的光敏阵列。各金属化接点可以排列在每一阵列单元的下面,从而导致了阵列单元的相互绝缘以及对每一单元的直接访问和寻址。
参考以下的详细描述并结合有关附图,将对本发明有更好的了解,这些附图是:
图1A是根据本发明第一实施例的光敏二极管单元简化截面图的最一般形式,
图1B是图1A所示的二极管单元的I-V特性的简化曲线,
图1C是根据本发明第二实施例的光敏二极管单元的简化截面图,
图2是根据本发明的一个优选实施例的光敏二极管单元的详细截面图,
图3是由根据本发明的光敏二极管单元组成的光敏二极管阵列的方框示意图。
参照图1A,可以对光敏二极管单元作如下说明,该二极管由一个阴极1和一个阳极2组成,阴极1由n型氢化非晶硅制作而成,阳极2为P+型氢化非晶硅,它最好是采用熟知的离子注入法注入n型阴极中。
高温玻璃层(pyroglass)3在P+型阳极2外面提供一透明涂层,外部接点4经过高温玻璃层3连接至阳极2上。
接点5排列在二极管单元的下面,经过一重掺杂的n+多晶硅层6与阴极1连接,在阴极和组成接点5的金属之间形成欧姆接触。
众所周知,根据半导体电子理论,由于在结点两侧扩散长度内热生成少数载流子的漂移,将有电流流过p-n结。少数载流子(如电子和空穴)扩散至结点周围的过渡区,并由此越过结点电场。当结点被能量大于半导体材料能带宽度(Eg)的光子照射时,由于电子-空穴对(EHP)的产生将有附加电流流过。
因此,当图1A所示的光敏二极管两端开路,且阳极2和阴极1受到透过高温玻璃层3的光照射时,光生少数载流子就会在接点4和5之间产生开路电压。随着光生EHP的增多,少数载流子浓度不断增加,开路电压亦不断增加,直至达到等于平衡接触电位的极限值,这是在结点两侧可能出现的最大正向偏压。在被光照射的结点两侧出现正向电压这一现象被称作光伏效应。
根据计划中的应用领域不同,图1A的光敏二极管单元可以工作在其I-V特性曲线的第三或第四象限,如图1B所示。在第四象限,结点电压为正,流过二极管单元的电流为页,这就是前述的光生电流。在此情况下,由二极管单元给出的功率正比于照度的大小。所产生的功率可以加至连接到接点4和5的外部电路上。
图1C示出的是另一个实施例,其中,通过在a-Si∶H的n-型层上沉积一层透明金属层7(比如金,铝,铬或铂等)以代替P+阳极的离子注入,从而形成肖特基势垒。就所有其它各方面而言,图3的实施例的功能基本上与上面参照图1A和1B描述的相同。
图2是根据图1A或图1C画出的光敏二极管单元的详细截面图。
根据优选的制作方法,第一层被沉积的是厚度大约为0.8微米的高温玻璃(氧化物)层8。随后沉积的是厚度大约为0.3微米的前述的n+多晶硅层6。然后将多晶硅层6进行掩模,并按照熟知的工艺进行腐蚀。
其次,沉积一层厚度约为0.3微米的第一金属化层5(金属I),随后再进行掩模和腐蚀。金属化层5在随后的沉积层下面一直延伸至外部阴极接点(未画出)以便二极管单元的对外连接。在腐蚀非晶硅层1的过程中,为了防止腐蚀多晶硅表面,金属化层5允许端点插测。
然后再沉积n-型氢化非晶硅阴极层1,其厚度最好为0.8微米,随后进行掩模和腐蚀,其中,金属化层5起着防腐蚀隔层的作用。
下一步制作工序是在n-型阴极1上建立起P+型层2以形成阳极。正如上面参照图1A和1C所进行的讨论那样,阳极层可以通过熟知的离子注入方法注入形成,或者在阴极层1的上面沉积一层透明的金属化薄层,以形成肖特基p-n势垒,然后再掩模和腐蚀。无论是那种情况,阳极层厚度最好约等于0.01微米。当要求具有较高的兰光和紫外光灵敏度时,最好采用肖特基型结构。
在前面各层的整个外面,沉积一层厚度约等于0.2微米的高温玻璃层3,然后进行接点掩模和腐蚀,从而将P+型阳极层联接起来。
高温玻璃层3的作用是钝化二极管单元,即防止它受潮和被腐蚀等。高温玻璃层3也起着抗反射涂层的作用,使光能最大限度透入器件之中。根据多层膜理论,由如层3提供的四分之一波长膜层的反射率R由下式给出:
R=( (nt-n1 2)/(nt+n1 2) )2
这里nt和n1分别为底层和抗反射四分之一波长膜层的折射指数。根据本发明的一个成功的试验样品可知,对于波长大约为0.7微米时,高温玻璃层3所需厚度大约为0.18微米,其中nt≈1.87,n1≈1.5。
最后,厚度大约为0.8微米的阳极金属化层4沉积在高温玻璃层3上,通过前述的接点掩模与p+型阳极层连接起来。这最上面的金属化层4呈花纹状,形成一系列开孔,从而使氢化非晶硅层能够被光照射。
最理想的情况是将图2所示的许多光敏二极管单元制作在一个芯片上,以形成图3所示的阵列或矩阵。
图示的光敏二极管阵列10含有许多行导体11,…12,13,许多列导体14,15,…16以及许多二极管20A-20I等组成,这些二极管分布在相应行导体和列导体的交点处。每一行导体相当于上面参考图2所讨论的金属化层4,而每一列导体则相当于金属化层5。
将多路行连接开关21接至相应行导体11,……12,13和地端,类似地,再将另一个多路开关22接至相应的列导体14,15,…16和探测电路23的输入端。
探测器电路23最好由一差分放大器24构成,该差分放大器有一个它的反向输入端和同相输入端,该反向输入端接至连接每个多路开关22的公共端点的节点上,同相输入端接地。在差分放大器24的输出端和其反向输入端之间接有反馈电阻25,输出电阻26接在差分放大器24的输出端和地之间。另外,放大器24的输出端还连接至图象输出端,用来传送产生的图象输出信号。
在一成功的阵列样品中,反馈电阻25和输出电阻26分别为1兆欧和50欧姆。
逻辑控制电路30分别接至行开关21和列开关22,用于依次接通各对行列开关,从而达到对各个二极管单元进行寻址。
工作时,当预定的一对行列开关接通后,二极管单元20A-20I中预定的某一单元就被寻址,于是该二极管阳极端经多路开关21的相应一路接地,阴极端经多路开关22的相应一路接至探测器23。
光生电流的大小由探测器23测得,其中该电流正比于被寻址的二极管单元所吸收的光的通量。通过控制电路30依次对二极管各单元进行寻址,于是借助于探测器23产生出图象输出信号,该输出信号对应于照射到二极管阵列10各单元上光通量的大小。
总而言之,依据本发明的光敏二极管单元和由这些单元组成的阵列其特征在于:制作方便,结构简单,能够借助于诸如移位寄存器直接寻址每一单元,以及具有很宽的动态范围(典型值约为1∶10000)等。另外,a-Si∶H对兰光和紫外光的灵敏度也较多晶硅为高。对于不同频率的最大灵敏度可以调节,由于花纹金属化层4提供了许多开孔以及金属化层5沿单元底部延伸,对于给定的单元尺寸,可使每一单元的光敏表面达到最大。
阵列10中的各个单元典型地如图2所示,相互隔绝,因此克服了CCD器件先有技术固有的相邻单元之间的串扰问题。在阵列10中使用的光敏二极管单元工作于二极管加载的电流方式,因而具有很好的线性响应。
掌握本发明的本领域的技术人员可能会想象出其它的实施方案或对本发明实施方案作出修改。所有这类修正实施方案都将包括在所附的权利要求书所限定的本发明的范围内。

Claims (14)

1、一种光敏二极管单元,包括构成阴极的第一层n-型材料和构成阳极的第二层P+型材料,该第二层位于第一层之上,是一种能透过光能的材料,该光敏二极管单元的特征在于,所述的第一层由氢化非晶硅制作而成,在经受上述光能照射后,它变成良导电体。
2、根据权利要求1所定义的光敏二极管单元,其特征在于,上述的第二层是由注入至上述第一层中的P+材料所构成。
3、根据权利要求1所定义的光敏二极管单元,其特征在于,上述的第二层由透明金属所构成,从而在结点处形成肖特基势垒,将所述的第一层和第二层分开。
4、根据权利要求1,2,或3所定义的光敏二极管单元,其特征进一步在于,其中包括一个第一金属化层,它在上述第一层下面形成阴极接点;还包括一个第二金属化层,它在上述第二层上面形成阳极接点,并具有一个或多个开孔,以便所述的第一层和第二层能接受光照。
5、根据权利要求2所定义的光敏二极管单元,其特征进一步在于,在上述的第二层上面有一个高温玻璃层。
6、根据权利要求1,2,或3所定义的光敏二极管单元,其特征进一步在于,在上述的第一层和第二层下面,有一氧化物衬底层。
7、根据权利要求1,2,或3所定义的光敏二极管单元,其特征进一步在于,在上述的第一层和第二层下面,有一高温玻璃衬底层。
8、一种根据权利要求1所定义的多个光敏二极管单元组成的光敏二极管阵列,其特征在于,该阵列排列成矩阵形式,而矩阵是由第一组列导体和第二组位于上述列导体之上的行导体组成,上述二极管单元中的各个二极管位于相应的所述行导体和列导体交叉点处,上述二极管单元中每个二极管阴极与相应的列导体相连,而其阳极与相应的行导体相连。
9、根据权利要求8所定义的光敏二极管阵列,其特征进一步在于,它是一种借助于上述的行导体和列导体寻址二极管单元中各个二极管的装置,同时也是探测上述被寻址单元中预定单元的光导并产生响应该光导的图象输出信号的装置。
10、根据权利要求9所定义的光敏二极管阵列,其特征在于,上述的寻址装置是由将上述各个行导体接地的第一个多路开关和将上述各个列导体接至所述探测器装置的另一个多路开关以及逻辑控制电路所组成,逻辑控制电路的作用是选择接通上述多路开关预定的一路,使得上述二极管单元中的各个单元能依次与地和所述探测装置串接,从而达到寻址目的。
11、根据权利要求10所定义的光敏二极管阵列,其特征在于,所述的探测器装置由一个连接至上述的另一多路开关的反向差分放大器组成,该放大器用于放大当所述二极管单元中某一单元被光照射后由于光导作用而产生的电流信号,并产生对应的上述图象输出信号。
12、一种制作光敏二极管单元的方法,其特征在于包括以下步骤:
(a)沉积和腐蚀一层第一金属化层,
(b)在上述的金属化层上面沉积和腐蚀一层n-型氢化非晶硅,形成上述二极管单元的阴极部分,
(c)将P+材料注入上述n-型层的预定部分,形成上述二极管单元的阳极部分,
(d)再沉积和腐蚀另一金属化层,用于连接上述P+注入部分,
(e)将上述的第一和另一金属化层分别同外部阴极和阳极接点连接起来。
13、根据权利要求12所定义的方法,其特征进一步在于还包括以下步骤,即在沉积上述第一金属化层之前,先沉积和腐蚀一层n+多晶硅,从而在上述的第一层和n-型之间形成欧姆接触。
14、根据权利要求12或13所定义的方法,其特征进一步在于它还包括下述步骤:在上述n-型层上面沉积和腐蚀一层第二金属化层,从而在它们之间形成一肖特基势垒,另外,在预先沉积好的上述各层整个外面沉积一层高温玻璃,经过上述的高温玻璃,形成连接上述第二金属化层和另一金属化层的接点。
CN198686108567A 1986-03-24 1986-12-27 光学传感器 Pending CN86108567A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA504,872 1986-03-24
CA000504872A CA1269164A (en) 1986-03-24 1986-03-24 Photosensitive diode with hydrogenated amorphous silicon layer

Publications (1)

Publication Number Publication Date
CN86108567A true CN86108567A (zh) 1987-10-07

Family

ID=4132728

Family Applications (1)

Application Number Title Priority Date Filing Date
CN198686108567A Pending CN86108567A (zh) 1986-03-24 1986-12-27 光学传感器

Country Status (8)

Country Link
US (2) US4866499A (zh)
JP (1) JPS62226672A (zh)
CN (1) CN86108567A (zh)
CA (1) CA1269164A (zh)
DE (3) DE3638018A1 (zh)
FR (1) FR2596203A1 (zh)
GB (1) GB2188482B (zh)
IT (1) IT1197971B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1295567C (zh) * 2004-12-06 2007-01-17 华中科技大学 一种柔性光学传感器的制作方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5223919A (en) * 1987-02-25 1993-06-29 U. S. Philips Corp. Photosensitive device suitable for high voltage operation
JPH01265574A (ja) * 1988-04-15 1989-10-23 Seiko Epson Corp 光電変換素子
US5280194A (en) * 1988-11-21 1994-01-18 Micro Technology Partners Electrical apparatus with a metallic layer coupled to a lower region of a substrate and metallic layer coupled to a lower region of a semiconductor device
JP2771019B2 (ja) * 1990-07-26 1998-07-02 セントラル硝子株式会社 滑雪性および着氷防止性に優れた被覆塗料組成物
US5260225A (en) * 1991-12-20 1993-11-09 Honeywell Inc. Integrated infrared sensitive bolometers
US5319182A (en) * 1992-03-04 1994-06-07 Welch Allyn, Inc. Integrated solid state light emitting and detecting array and apparatus employing said array
US5403729A (en) * 1992-05-27 1995-04-04 Micro Technology Partners Fabricating a semiconductor with an insulative coating
US5521420A (en) * 1992-05-27 1996-05-28 Micro Technology Partners Fabricating a semiconductor with an insulative coating
US20020197456A1 (en) * 1993-06-30 2002-12-26 Pope Edward J. A. Integrated electro-luminescent biochip
US5656547A (en) * 1994-05-11 1997-08-12 Chipscale, Inc. Method for making a leadless surface mounted device with wrap-around flange interface contacts
GB2302452B (en) * 1994-06-09 1998-11-18 Chipscale Inc Resistor fabrication
US6459450B2 (en) * 1998-06-24 2002-10-01 Intel Corporation Infrared filterless pixel structure
US6114739A (en) * 1998-10-19 2000-09-05 Agilent Technologies Elevated pin diode active pixel sensor which includes a patterned doped semiconductor electrode
US6413839B1 (en) * 1998-10-23 2002-07-02 Emcore Corporation Semiconductor device separation using a patterned laser projection
US6284557B1 (en) 1999-10-12 2001-09-04 Taiwan Semiconductor Manufacturing Company Optical sensor by using tunneling diode
US6693317B2 (en) 2001-07-13 2004-02-17 Taiwan Semiconductor Manufacturing Company Optical sensor by using tunneling diode
KR100670538B1 (ko) * 2004-12-30 2007-01-16 매그나칩 반도체 유한회사 광 특성을 향상시킬 수 있는 이미지센서 및 그 제조 방법
CN101345270B (zh) * 2007-07-13 2011-05-04 鸿富锦精密工业(深圳)有限公司 太阳能电池
ES2728054T3 (es) 2013-06-18 2019-10-22 Enable Injections Inc Aparato de transferencia e inyección de viales
US11673796B2 (en) * 2021-03-09 2023-06-13 Palo Alto Research Center Incorporated Scalable high-voltage control circuits using thin film electronics

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB929240A (en) * 1954-11-30 1963-06-19 Secr Aviation Improvements in or relating to photo-sensitive semi-conductor devices
NL6604087A (zh) * 1966-03-29 1967-10-02
US3604987A (en) * 1968-12-06 1971-09-14 Rca Corp Radiation-sensing device comprising an array of photodiodes and switching devices in a body of semiconductor material
US3902066A (en) * 1974-03-18 1975-08-26 Us Air Force Schottky barrier infrared detector arrays with charge coupled device readout
US4485389A (en) * 1978-03-08 1984-11-27 Energy Conversion Devices, Inc. Amorphous semiconductors equivalent to crystalline semiconductors
US4226898A (en) * 1978-03-16 1980-10-07 Energy Conversion Devices, Inc. Amorphous semiconductors equivalent to crystalline semiconductors produced by a glow discharge process
JPS54139342A (en) * 1978-04-20 1979-10-29 Canon Inc Information processing unit
US4246043A (en) * 1979-12-03 1981-01-20 Solarex Corporation Yttrium oxide antireflective coating for solar cells
JPS56115577A (en) * 1980-02-19 1981-09-10 Ricoh Co Ltd Photodetecting circuit
JPS5739588A (en) * 1980-08-22 1982-03-04 Fuji Photo Film Co Ltd Solid state image pickup device
IE52207B1 (en) * 1980-09-09 1987-08-05 Energy Conversion Devices Inc Method of grading the band gaps of amorphous alloys and devices
US4517733A (en) * 1981-01-06 1985-05-21 Fuji Xerox Co., Ltd. Process for fabricating thin film image pick-up element
US4633031A (en) * 1982-09-24 1986-12-30 Todorof William J Multi-layer thin film, flexible silicon alloy photovoltaic cell
US4698495A (en) * 1984-06-12 1987-10-06 Nec Corporation Amorphous silicon photo-sensor for a contact type image sensor
US4724323A (en) * 1984-10-04 1988-02-09 Canon Kabushiki Kaisha Image line sensor unit, photosensors for use in the sensor unit and method of making the photosensors
US4894700A (en) * 1985-04-09 1990-01-16 Fuji Xerox Co., Ltd. Image sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1295567C (zh) * 2004-12-06 2007-01-17 华中科技大学 一种柔性光学传感器的制作方法

Also Published As

Publication number Publication date
IT1197971B (it) 1988-12-21
DE8706818U1 (de) 1987-09-17
IT8622307A0 (it) 1986-11-12
GB8702075D0 (en) 1987-03-04
JPS62226672A (ja) 1987-10-05
DE3638018A1 (de) 1987-10-01
US4866499A (en) 1989-09-12
US4965212A (en) 1990-10-23
GB2188482A (en) 1987-09-30
CA1269164A (en) 1990-05-15
IT8622307A1 (it) 1988-05-12
GB2188482B (en) 1990-03-07
FR2596203A1 (fr) 1987-09-25
DE8700896U1 (de) 1987-08-20

Similar Documents

Publication Publication Date Title
CN86108567A (zh) 光学传感器
US4784701A (en) Multi-layered thin film solar cell
US4879251A (en) Method of making series-connected, thin-film solar module formed of crystalline silicon
Vieira et al. Three transducers embedded into one single SiC photodetector: LSP direct image sensor, optical amplifier and Demux device
US4412900A (en) Method of manufacturing photosensors
WO2009125688A1 (ja) 光電変換装置およびその製造方法、および固体撮像装置
US4467340A (en) Pre-multiplexed Schottky barrier focal plane
US4781765A (en) Photovoltaic device
US5751049A (en) Two-color infrared detector
JP3236624B2 (ja) 光感応性電子素子、その素子を使用したカラーセンサー、及びその素子の製造方法
US4244750A (en) Photovoltaic generator
US4980736A (en) Electric conversion device
US4453184A (en) Solid state imaging device
US4570332A (en) Method of forming contact to thin film semiconductor device
DE2818002C2 (de) Flüssigkristall-Lichtventil
JPH03148869A (ja) 光検知器
DE3217895A1 (de) Infrarot-strahlungsdetektor
CN113889554A (zh) 一种太阳能电池器件及其制造方法
CN1155108C (zh) 光检测器
Martins et al. Thin film position sensitive detectors: from 1D to 3D applications
JPS6341227B2 (zh)
CN1085373A (zh) 电荷耦合器件照相机中消除涂污的方法
de Cesare et al. Modeling and realization of a high-gain homojunction a-Si: H bulk barrier phototransistor
CN101271909B (zh) 图像传感器及其制作方法
Suzuki et al. High speed and high resolution contact-type image sensor using an amorphous silicon photodetector array

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication