JP3236624B2 - 光感応性電子素子、その素子を使用したカラーセンサー、及びその素子の製造方法 - Google Patents

光感応性電子素子、その素子を使用したカラーセンサー、及びその素子の製造方法

Info

Publication number
JP3236624B2
JP3236624B2 JP51427596A JP51427596A JP3236624B2 JP 3236624 B2 JP3236624 B2 JP 3236624B2 JP 51427596 A JP51427596 A JP 51427596A JP 51427596 A JP51427596 A JP 51427596A JP 3236624 B2 JP3236624 B2 JP 3236624B2
Authority
JP
Japan
Prior art keywords
layer
partial
conductive
layers
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP51427596A
Other languages
English (en)
Other versions
JPH10507877A (ja
Inventor
ボーム,マルクス
Original Assignee
ボーム,マルクス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボーム,マルクス filed Critical ボーム,マルクス
Publication of JPH10507877A publication Critical patent/JPH10507877A/ja
Application granted granted Critical
Publication of JP3236624B2 publication Critical patent/JP3236624B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/041Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L31/00
    • H01L25/043Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • H01L31/1055Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type the devices comprising amorphous materials of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Light Receiving Elements (AREA)
  • Escalators And Moving Walkways (AREA)
  • Gyroscopes (AREA)
  • Luminescent Compositions (AREA)
  • Color Image Communication Systems (AREA)
  • Color Television Image Signal Generators (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は、非晶質シリコンおよびその合金をベースと
し、2つの逆直列に配列したp−i−nもしくはn−i
−pもしくはショットキー接触(Schottkey−contact)
構造からなり、活性層はそれぞれの光の入射方向と直交
するように配置されており、光入射方向に見て第一の構
造領域では青色光により発生した電荷キャリアが第一
(V1)の電圧に対して集積し、光入射方向に見て第二の
構造領域では緑色或いは赤色光によりそれぞれ発生した
電荷キャリアが第二(V2)或いは第三の電圧に対して集
積し、2つの真性導電層の少なくとも1つが2つの部分
層からなる素子に関するものである。
背景技術 このタイプの素子は、「新しいタイプの薄膜カラーイ
メージセンサー」、Q.ZHU,H.Stiebig,P.Rieve,J.Giehl,
M.Sommer,M.Bohm;Conference Europto−Sensors and Co
ntrol for Advanced Automation II、Frankfurt/Main,2
0−24 June 1994の論文から知られている。
結晶質シリコンの素子と比較して、非晶質シリコン
(a−Si:H)をベースとした光感応性電子素子は、可視
光の吸収が非常に増加しているという優位性を有する。
基本的に、そのような光感応性電子素子は、相互に逆直
列に接続した2つのPINダイオード(NIPIN或いはPINIP
の二態様が知られている)からなるか、或いは相互に逆
直列に接続した2つの金属・半導体接合(ショットキー
接触)からなる。
技術的にみて、そのような素子は、PECVD(プラズマ
化学気相成長法)プロセスの手段によって低温(典型的
には250℃)で多数のa−Si:H層を分離することによっ
て製造される。最初に堆積により例えば絶縁基板、通常
ガラス上に半透明電導性酸化層(TCO)を接続し、半透
明電導性酸化層には後に前記素子に外部から電圧を付与
するための接触を造る。交番磁界を与えることで、シリ
コン基と水素に分解されるSiH4(シラン)ガスによって
PECVDリアクターでプラズマを発生する。このプロセス
において、水素を含む非晶質薄膜として基板上にシリコ
ンが凝縮する。これを出発にして、ホスフィンの添加に
よって、nドープ層を製造でき、或いはジボランを添加
することによってPドープ層を製造できる。加えて、シ
ランにメタン(CH4)を添加することによって非晶質シ
リコンの禁制帯幅(band gap)を増加させるか、或いは
ゲルマン(GeH4)を添加することによって前記禁制帯幅
を減少させることは良く知られている。
このような方法で製造された、所望の層の順序をも
つ、多層素子に、光入射方向が前記層の平面に対して直
角であるような方向において可視光が放射によって浸透
する。前記センサー材の吸収係数は、入射光の波長およ
びセンサー材の禁制帯幅に依存するため、半導体材料に
入る光の浸透深さに差を生じる。これは、緑色或いは赤
色光よりも非常に小さい浸透深さ(吸収長さ)を青色光
(波長約450nm)が有することに繋がる。前記素子に付
与する外部直流電圧の大きさ及び極をそれぞれ選択する
ことによって、およびその結果の内部の電界により、こ
の素子のスペクトル感度が得られる。例えば、前記要素
に各々の電圧を付与することによって、多層構造におけ
るRGB光(赤、緑、青)に対する感度が得られる。ここ
において、素子の長さに沿って光発生電荷キャリアの主
な集積領域および結果としてのスペクトル感度は、付与
する外部電圧に依存して変化する。
三色センサーに関してNIPIN構造を適正化するため
に、前記Pドープ中間層の両面上に、追加的に真性導電
性欠陥層を備えることが上述したレポートで知られてお
り、その厚み領域においては禁制帯幅が真性導電層のま
まのものと比較して増加している(例えば、1.74eVから
1.9eV)。これは、光入射方向の前方でのNIP構造で緑/
青分離の改良に繋がるか、或いは光入射方向に見て後方
のPIN構造で赤/緑分離の改良に繋がる(所謂バンド−
ギャップエンジニアリング)。
米国特許第5,311,047号から、NIPIN構造を持つ非晶質
シリコンをベースとした光感応性電子素子が知られてい
る。
Applied Physics Letters 52(4)1988,275−277か
ら、NIPINタイプの異質接合素子(フォトトランジスタ
ー)が知られており、それは2つの追加的に挿入した真
性導電層を含む。このことから、第一接合においては好
ましくは青色光を、第二接合においては好ましくは緑色
或いは赤色光を吸収することが知られている。前記第二
の真性導電層は、青色吸収の増加を助長する。
発明の開示 本発明の目的は、冒頭で述べたタイプの電子的素子と
同様に、経済的加工条件の下で、RGB色を感知する素子
が、出力信号に対して無視しうる赤外線/紫外線寄与を
以てRGB色に対して高いスペクトル分離の態様で作られ
ることを確実にする製造方法を記述することである。
本発明によれば、電界の存在下で、電荷キャリアに対
する異なる集積長さを有する2つの部分層によって目的
が達成され、それは光入射方向に見て前方にある部分層
において、電荷キャリアの移動度と寿命の高い積が、そ
して光入射方向に見て後方にある部分層において、電荷
キャリアの移動度と寿命の低い積が存在するような方
法、或いは2つの真性導電層の少なくとも1つが2つの
部分層から形成され、特にSiXGe1-Xによる各々のドーピ
ングを基にした上記部分層が、少なくとも係数10で相互
に異なったμ−τ積であるように異なる移動度を有して
いて、ここで高いμ−τ積を有する部分層が光入射方向
の前方にあるような方法である。
本発明は、素子の2つの真性導電層の少なくとも1つ
を2つの部分層に分割することによって、青色/緑色分
離或いは緑色/赤色の分離を改善することを特徴として
いる。既知のプロセス(例えば、禁制帯幅の部分的増加
を通して吸収或いは再結合特性に影響を及ぼすことによ
る「バンドギャップエンジニアリング」)、或いは追加
的な欠陥層と共同することによるものと比較して、本発
明によるμ−τ積の変化がスペクトル分離の著しい改善
および所望の線形的特性を可能にするという決定的利点
を有する。
この結果、三原色を光強度が高い場合と低い場合の両
方において確実に分離することができる。本発明による
解決は、それぞれのスペクトルピークに対する光起電力
と光子流の間で線形的な関係を持つ素子に帰着する。こ
れは、前記光子流の強さの数オーダーに渡ってのことで
ある。これを越えると、スペクトルピークの線形的な相
互依存はない。一方の線形性と他方のスペクトルピーク
の線形独立が、照度の種々の条件下で色認識に、実際に
そのような素子を使用することを可能にした大きな理由
である。
光入射方向で見て後方構造における電荷キャリアの自
由移動度が低い領域を組み込むことによって、電荷キャ
リアは高い電圧および従って高い電界の間でのみ抽出す
ることができる。短い波長の光によって前方部において
発生した正孔(holes)は、中間層にドリフトする。後
方部において再結合する相手が発生しないという理由か
ら、電子は後方構造の障壁層(barrier layer)に届
く。長い波長の光(赤)は、この領域に支配的に発生
し、そのために電荷キャリアは低いμ−τ積の結果とし
て再結合する。高い電界強度を伴った場合のみ正孔が中
間層にドリフトすることを可能としている。その結果、
赤色/緑色分離が後方構造において起こる。
この部分層において、前記バンド内で異なった自由移
動度(free mobilities)を持つ適切な素材および合金
(例えば、a−Si:H/a−SiXGe(1-X):H)を組み込むと、
低電圧では電荷キャリアは、低いμ−τ積により不十分
にしか捕集できない。対照的に、これらの電荷キャリア
は、高電圧の場合において優先して集めることができ
る。
高いμ−τ積を有する部分層において、好ましくは緑
色の光子が集められ、一方光入射方向に見て後方領域に
おいて、好ましくは赤色の電荷キャリアが集められる。
a−Si:H/a−Si(C):H及びa−SiXGe(1-X):Hの波長に
依存しての異なる屈折率のため、後方の真性導電層の前
方部分層に関して、或る厚みの領域が赤色光子よりも緑
色光子を吸収するように決めることができる。発生した
電荷キャリアは、低い負電圧で抽出することができ、最
大スペクトル感応性を決める。高い負電圧である場合に
は、前記最大スペクトル感応性は、この真性導電層の後
方部分層で発生した電荷キャリアによって決定される。
長い波長の光に対する最大スペクトル感応性は、SiXG
e1-X素材の層の厚さによって、この領域におけるゲルマ
ニウム量によって、及び場合によっては濃淡によって設
定することができる。
本発明による素子を使用した場合、3つの異なった電
圧を付与することによって、前記素子における種々の深
さに位置する3つの空間電荷領域が結果として得られ、
それ故に顕著なスペクトル選択性をもたらす。特別な利
点として、前記線形性は、発光強度の強さの5桁のオー
ダーを遙に越えて延びている。加えて、本発明による素
子は、低い暗電流と高いダイナミックレンジ(dynamic
range)(>120dB,1000ルックスに対して)を有する。
更なる利点は、顧客の特別な注文によって前記スペクト
ル感応性をプリセットできることである。特に重要な点
は、追加的な光学フィルターを使用することなくスペク
トル成分の選択が可能であるという事実である。
好ましい実施態様は従属クレームに述べられている。
NIPIN或いはPINIP構造は、本発明によれば、異なった
μ−τ積を有する部分層によって修正した光感応性素子
の好ましい変形例として考慮することができる。技術的
には、μ−τ変更は、好ましくは非晶質シリコンにゲル
マニウムを合金化するとによって達成される(A−SiXG
e1-X:H)。
量子効率の改善と同様に青色/赤色分離を改善するた
めには、光入射方向に見て前方構造の真性導電層が、炭
化された層(a−Si(C):H)から構成されても良く、
そのためにμ−τ最適化に加えて、禁制帯幅の順応も起
こる。
本発明の特に好ましい実施態様によると素子はカラー
センサーの一部であり、ここで素子を含むサンドイッチ
構造は集積回路の表面上に配置してある。低温PECVD技
術により製造した多層素子に結晶質素子(例えば、ASI
C)を組み合わせると、経済的に製造可能で、かつ画像
生成カラーセンサー(picture−yielding color senso
r)として高い解像度を達成する単純な組合せとなる。
ここにおいて、集積回路或いはASICのミクロ構造によれ
ば、光感応性素子の各表面要素が、単一のピクセル画素
として作用する。色選択性は、電圧によって設定される
し、また前記ピクセル面積の領域に付与した回路によっ
てあらかじめ設定可能である。この結果は、非晶質シリ
コンを基にした光学センサーに結晶質シリコンで作成し
た伝統的なASICの利点を組み合わせた、いわゆるASIC上
の薄膜(TFA)である。
図面の簡単な説明 本発明は、以下のように更に詳細に図面によって説明
される。
図1は、先行技術による光感応性電子素子の層構成を
例示した模式図である。
図2は、図1による要素の動作の態様を例示した模式
図であり、 図2aは、多層素子の個々の層の空間的配列を示し、 図2bは、U>0での電界強さの局部的推移を示し、そ
して 図2cは、U<0での電界強さの局部的推移を示す。
図3は、本発明による光感応性電子素子の層構成を例
示した模式図である。
図4は、図3による要素の動作の態様を例示した模式
図であり、 図4aは、多層素子の個々の層の空間的な配列を示し、 図4bは、U>0での電界強さの局部的推移を示し、そ
して 図4cは、U<0での電界強さの局部的推移と、同様に
μ−τ積の局部的推移を示す。そして、 図5は、本発明による光感応性電子素子の層構造と集
積回路の組み合わせを例示して示した模式図である。
発明を実施するための最良の形態 図1は、NIPIN層の連続順をキャリア(ガラス)上に
堆積したNIPIN層システムの断面部である。ガラス基板
は、光透過性、導電性酸化物を含むTCO層で後に被覆す
る。これの上に、引き続き個々の非晶質シリコン層を図
1に示す順序で堆積する。
堆積のプロセスは、非晶質シリコンを比較的低温(約
250℃)で所望の層厚に堆積する既知のPECVD技術の手段
で行われる。
背面接触(back contact)は、付与した外部電圧U
が、要素内を流れる電流Iを起動するアルミニウム電極
で行われ、そしてTCO層が基準電位(reference potenti
al)を形成する。このような方法において、配列は2つ
のPINダイオードの逆に接続した組合せのように機能す
る。
図1に示したように、光入射はガラス基板を通してNI
PIN層に前記層の表面に対して直角に入る。
半導体構造の模式図が図2aに示されている。NIPIN素
子の障壁層を形成しているnドープ領域においては、強
いドーピングがある。これらの領域においては、高い欠
陥密度(defect densities)に関連し、電子と正孔との
間には高い再結合の可能性があるために電荷キャリアの
集積は行われない。この位置において、図2bおよび図2c
のそれぞれに示したようにドーピング濃度が一定である
と仮定すると、電界強さの線形的増加が起こる。空間電
荷がないと想定される真性導電性領域は、電界強さが空
間でほぼ一定に分布しており、ここで移動性の電荷キャ
リア、欠陥および不純物による空間電荷に対する寄与が
無視できる。電界の手段によって光発生電荷キャリアが
1次光電流として集められる。熱的に発生した電荷キャ
リアは暗電流に寄与する。NIPIN構造は、2つの逆直列
に接続したPINダイオードからなると見なすことができ
るため、電圧の主な低下はブロッキングの方向において
分極したダイオードの領域で起こる。反対に、透過方向
で分極したダイオードにおける電界は無視しうる。図2b
および図2cから分かるように、熱的に発生した電荷キャ
リアは無視すると仮定すると、中間のp層の領域に存在
する電界強さは、付与した電圧Uの関数であり、p層の
中心の或る位置において、電界強さが零となる点を有す
ることになる。
前記要素に外部から付与した電圧に依存して、電界強
さの推移は、図2bのように(U>0)なるか、或いは図
2cのように(U<0)なるかのどちらかとなる。もし、
ここで、図2bのように正の電圧、例えば+2V、が図1に
示す要素に付与された場合、ブロッキングの方向で前面
のダイオードが分極し、そのために、電荷キャリアが分
離されて内部に強い電界を形成する。この領域は、光入
射方向に見て前方に位置しているため、低い吸収長さ、
すなわち青色の光を有する光のスペクトル成分がそこに
吸収される。
対照的に、負電圧が素子に付与された場合には、空間
電荷領域が後方のPINダイオード領域内に形成され、そ
のために、そこでは大きな浸透(penetration)深さを
有する緑色或いは赤色のスペクトル範囲内である光を吸
収することになる。
ここから始まって、図3は本発明による光感応性電子
素子の態様を示している。図1に関連して示される素子
を補充するものとして、図3によるように、光入射方向
に見て真性導電後方層は、2つの部分的な層、I、IIに
再分割される。部分層Iにおいては部分層IIよりも大き
なμ−τ積が存在するため再分割が起こる。この関係
は、太線で描かれたμ−τ特性によって、図4cから明ら
かであり、前記領域I、IIの段階がそれから認識でき
る。
前記素子の同一の基本的機能と別のやり方で、これは
以下の操業態様に繋がる。
図4bに関連して、青色光によって発生した電荷キャリ
アは、前記素子に正の外部電圧が付与されるというそれ
らの状況下で好んで再び集められる。
対照的に、図4cは前記素子に負電圧Uが付与された場
合を示している。負電圧量が比較的低い場合、例えば前
記素子に−0.5ボルトの電圧が付与された場合を最初に
調査してみる。第二の真性導電層の後方領域(部分層I
I)における低い自由移動度およびそれから派生する低
いμ−τ積を有する材料を組み込むことによって、高い
浸透深さを有する光(赤色光に対応)によって発生した
電荷キャリアの集積は悪化する。それ故に、そのような
電圧の場合には、好んで緑色光子によって発生した電荷
キャリアは集積される。その理由は、部分層Iはゲルマ
ニウムを含まないので、禁制帯幅はそこで大きくなり過
ぎて赤色光子は吸収されないか、或いは十分に吸収され
ないこととなるためである。
対照的に、もし負電圧の量が上昇すると、赤色の電荷
キャリアが好んで集積される。この事実によって、部分
層IIの禁制帯幅は追加的にゲルマニウムを含む層の結果
として狭くなり、赤色の光子が特にそこに十分吸収され
ることになる。
このように、後方の真性導電層領域におけるμ−τ積
の段階は、赤色/緑色分離において大きな改善をもたら
し、そして、それ故に前方の真性導電層領域において起
こる青色吸収と組み合わせて非常に高いスペクトル分離
感度を有する三色センサーの可能性を提供しうる。
上述したように、本発明による素子の基本機能を始め
として、好ましくは以下の改良が同様に提供される。
光入射方向に見て前方に位置するNIPダイオードの真
性導電層は、炭化した層から構成することができ、その
ために改善された青色/赤色分離がもたらされる。暗電
流を軽減するために、狭い禁制帯幅を有する領域をこの
真性導電層内に備えることができる。
最大の量子効率を改善するために、光入射方向におけ
る前方構造のn層は、炭化されるか、或いはミクロ結晶
質層として造られ、それによって前記中間P層がまた炭
化される。
加えて、青色吸収に関して第一の構造の感応性は、前
記真性導電層と中間のp層との間の遷移領域において僅
かなドーピングによって短い波長に向かって動かすこと
ができる。
スペクトル選択性を適正化するために、段階化したa
−SiXGE1-X:H層或いは更にドープされない層はa−SiXG
E1-X:H層の後方或いは前方に置かれることとなる。
図3の内容で述べられた前記素子から始まって、図5
に示された色彩画像センサーは、集積回路の最上部にAS
ICの形で、基板として置かれた前述した多層構造を造り
出すことができる。前記製造プロセスは、絶縁層および
金属層を相互連結することによって行われる。
ここにおいて、蒸着層順序は、図1或いは図3のそれ
ぞれに関連して述べられたものと逆向きである。
図5に従って、光はその場合上から前記構造体に入
る。結晶質のASIC構造による光学的セルの選択に依存し
て、各ピクセル要素に対し、付与された電圧に依存して
異なったスペクトル挙動をもたらす。このような方法
で、照射された光は、ピクセルからピクセル(pixel by
pixel)へと、そのスペクトル成分に関して分析され、
そしてこのような方法で転換された光信号は電気的に次
のプロセスに付される。
フロントページの続き (56)参考文献 特開 平3−234068(JP,A) 特開 昭62−42470(JP,A) 米国特許5311047(US,A) Applied Physics L etters,52(4),25 Jan. 1988,p.275−277,H.K.Tsai et al.,”Amorphous SiC/Si three−colo r detector" IEEE Transactions on Electron Devic es,42(1995)May,p.835− 840,G.De Cesare,”Tu nable Photodetecto rs Based on Amorph ous Si/SiC Heteros tructures” Sensors and Control for A utomation(1994),22−24 June,Proceeding of the SPIE,p.301−310, Q.Zhu et al.,”New Type of Thin Film Color Image Senso r" (58)調査した分野(Int.Cl.7,DB名) H01L 31/00 - 31/119 H01L 27/14 - 27/148

Claims (15)

    (57)【特許請求の範囲】
  1. 【請求項1】非晶質シリコンおよびその合金を基とし、
    2つの逆直列に配列されたp−i−nもしくはn−i−
    pもしくはショットキー接触(Schottkey−contact)構
    造を含み、活性層はそれぞれの光入射方向と直交するよ
    うに配置されており、光入射方向に見て第一の構造領域
    では青色光により発生した電荷キャリアが第一の電圧に
    対して集積し、光入射方向に見て第二の構造領域には緑
    色或いは赤色光によりそれぞれ発生した電荷キャリアが
    第二或いは第三の電圧に対して集積し、2つの真性導電
    層の少なくとも1つが2つの部分層からなる光感応性電
    子構成素子であって、 光入射方向に見て前方に位置する部分層(I)では電荷
    キャリア移動度と寿命の積(μ−τ積)が高い積である
    のに対して、光入射方向に見て後方に位置する部分層
    (II)では、電荷キャリア移動度と寿命の積が、その比
    較において1/10以下であり、それにより電界の存在下で
    2つの部分層(I、II)は前記電荷キャリアに対して異
    なる集積長さを有し、そのため光入射方向で見て前方に
    位置する部分層(I)では緑色光が、光入射方向で見て
    後方に位置する部分層(II)では赤色光がそれぞれ多く
    吸収されることを特徴とする光感応性電子素子。
  2. 【請求項2】前記2つの部分層におけるμ−τ積の比が
    1:10〜1:100であることを特徴とする請求項1記載の素
    子。
  3. 【請求項3】第一の部分層のおけるμ−τ積の値が10-7
    cm2V-1と10-6cm2V-1の間にあり、かつ第二の部分層にお
    いては10-8cm2V-1と10-7cm2V-1の間にあることを特徴と
    する請求項1又は2に記載の素子。
  4. 【請求項4】外部原子、特にa−SiXGe(1-X):Hを組み込
    むことによって真性導電性非晶質シリコンに関する電荷
    キャリア移動度に影響を及ぼすことにより、前記μ−τ
    積の設定が起こることを特徴とする請求項1から3まで
    のいずれか1項に記載の素子。
  5. 【請求項5】ガラス基板に付与される層が、 (a)n導電性a−Si:H層、 (b)第一の真性導電性a−Si:H層、 (c)p導電性a−Si:H層、 (d)高いμ−τ積を有する第一の部分層と前記第一の
    部分層に比較して低いμ−τ積を有する第二の部分層か
    らなる第二の真性導電性a−Si:H層、 (e)n導電性a−Si:H層、 の連続順であることを特徴とする請求項1から4までの
    いずれか1項に記載の素子。
  6. 【請求項6】ガラス基板に付与される層が、 (a)p導電性a−Si:H層、 (b)第一の真性導電性a−Si:H層、 (c)n導電性a−Si:H層、 (d)高いμ−τ積を有する第一の部分層と前記第一の
    部分層に比較して低いμ−τ積を有する第二の部分層か
    らなる第二の真性導電性a−Si:H層、 (e)p導電性a−Si:H層、 の連続順であることを特徴とする請求項1から5までの
    いずれか1項に記載の素子。
  7. 【請求項7】ガラス基板とn−i−p−i−n或いはp
    −i−n−i−p層の連続順の間に透明な導電性酸化物
    (TCO)の更なる層が設けられていることを特徴とする
    請求項1から6までのいずれか1項に記載の素子。
  8. 【請求項8】少なくとも1つの真性導電層の領域に増加
    した禁制帯幅を有する更なるa−Si(C):Hの真性導電
    層が設けられていることを特徴とする請求項1から7ま
    でのいずれか1項に記載の素子。
  9. 【請求項9】a−Si:Hの真性導電層の替わりに1.72〜1.
    95eVの範囲内の増加した禁制帯幅を有するa−Si
    (C):Hの真性導電層が設けられていることを特徴とす
    る請求項1から8までのいずれか1項に記載の素子。
  10. 【請求項10】ドープされたa−Si:H層の替わりにミク
    ロ結晶質或いは炭化された非晶質シリコン層が設けられ
    ていることを特徴とする請求項1から9までのいずれか
    1項に記載の素子。
  11. 【請求項11】前記素子を形成しているサンドイッチ構
    造が集積回路の表面上に堆積されていることを特徴とす
    る請求項1から10までのいずれか1項に記載の素子を使
    用しているカラーセンサー。
  12. 【請求項12】前記集積回路がASICであることを特徴と
    する請求項11記載のカラーセンサー。
  13. 【請求項13】キャリア基板として、クオーツ、金属、
    シリコンウエファー、GaAs或いはプラスチックが使用さ
    れることを特徴とする請求項11又は12記載のカラーセン
    サー。
  14. 【請求項14】非晶質シリコンを基にし、PECVD技術に
    よりガラス基板を第一ドーピング処理層、第一真性導電
    層、ドーピング処理中間層、第二真性導電層およびドー
    ピング処理障壁層を含む多重層で被覆することによっ
    て、2つの互いに逆直列関係のp−i−nもしくはn−
    i−p接合を形成する光感応性電子素子の製造方法にお
    いて、2つの真性導電層のうちの少なくとも一方の真性
    導電層が、共同する外部原子、特にSiXGe1-Xを基にして
    2つの部分層から構成され、2つの部分層におけるμ−
    τ積が互いに少なくとも係数10だけ異なるように移動度
    の違いを上記2つの部分層が有し、光入射方向に見て高
    いμ−τ積を有する部分層が前方にあることを特徴とす
    る光感応性電子素子の製造方法。
  15. 【請求項15】前記2つの部分層におけるμ−τ積の比
    が、1:20〜1:100の間であることを特徴とする請求項14
    記載の製造方法。
JP51427596A 1994-10-30 1995-08-31 光感応性電子素子、その素子を使用したカラーセンサー、及びその素子の製造方法 Expired - Fee Related JP3236624B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4441444.7 1994-10-30
DE4441444 1994-10-30
PCT/EP1995/003421 WO1996013865A1 (de) 1994-10-30 1995-08-31 Drei-farbensensor

Publications (2)

Publication Number Publication Date
JPH10507877A JPH10507877A (ja) 1998-07-28
JP3236624B2 true JP3236624B2 (ja) 2001-12-10

Family

ID=6533797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51427596A Expired - Fee Related JP3236624B2 (ja) 1994-10-30 1995-08-31 光感応性電子素子、その素子を使用したカラーセンサー、及びその素子の製造方法

Country Status (10)

Country Link
EP (1) EP0788661B1 (ja)
JP (1) JP3236624B2 (ja)
AT (1) ATE181458T1 (ja)
AU (1) AU3519395A (ja)
CA (1) CA2204124C (ja)
DE (1) DE59506249D1 (ja)
DK (1) DK0788661T3 (ja)
ES (1) ES2132711T3 (ja)
GR (1) GR3031207T3 (ja)
WO (1) WO1996013865A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2217177C (en) * 1995-04-07 2002-02-19 Fujitsu General Limited Drive method and drive circuit of display device
DE19637126C2 (de) * 1995-09-12 1999-07-22 Markus Prof Dr Ing Boehm Variospektral-Vielfarbendiode
DE19613820A1 (de) * 1996-04-09 1997-10-23 Forschungszentrum Juelich Gmbh Struktur mit einer pin- oder nip-Schichtenfolge
DE19633175C2 (de) * 1996-08-17 2003-04-10 Forschungszentrum Juelich Gmbh Selbstpolung bei Perowskiten vom Typ ABO¶3¶
PT878091E (pt) 1996-10-31 2003-01-31 Markus Bohm Sensor de imagens a cores para uma exposicao de curta duracao
EP0948817A1 (de) * 1996-11-18 1999-10-13 Böhm, Markus, Prof. Dr.-Ing. Farbbildsensor in ladungsverschiebetechnik
DE19714054A1 (de) * 1997-04-05 1998-10-08 Daimler Benz Ag SiGe-Photodetektor mit hohem Wirkungsgrad
WO1998047181A1 (de) * 1997-04-14 1998-10-22 Boehm Markus Elektromagnetischer strahlungssensor mit hohem lokalkontrast
DE19723177A1 (de) 1997-06-03 1998-12-10 Daimler Benz Ag Spannungsgesteuerter wellenlängenselektiver Photodetektor
DE19737561C1 (de) * 1997-08-28 1999-04-15 Forschungszentrum Juelich Gmbh Mehrfarbensensor
WO2002013510A2 (en) * 2000-08-04 2002-02-14 Foveon, Inc. All-electronic high-resolution digital still camera
DE10048447B4 (de) * 2000-09-29 2006-05-18 Premosys Gmbh Verfahren und Vorrichtung zum Testen von selbstleuchtenden optoelektronischen Komponenten
US7541627B2 (en) 2004-03-08 2009-06-02 Foveon, Inc. Method and apparatus for improving sensitivity in vertical color CMOS image sensors
DE102004018549B4 (de) * 2004-04-14 2008-08-21 Forschungszentrum Jülich GmbH Photodetektor mit spannungsabhängiger spektraler Empfindlichkeit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5311047A (en) * 1988-11-16 1994-05-10 National Science Council Amorphous SI/SIC heterojunction color-sensitive phototransistor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Applied Physics Letters,52(4),25 Jan.1988,p.275−277,H.K.Tsai et al.,"Amorphous SiC/Si three−color detector"
IEEE Transactions on Electron Devices,42(1995)May,p.835−840,G.De Cesare,"Tunable Photodetectors Based on Amorphous Si/SiC Heterostructures" Sensors and Control for Automation(1994),22−24 June,Proceeding of the SPIE,p.301−310,Q.Zhu et al.,"New Type of Thin Film Color Image Sensor"

Also Published As

Publication number Publication date
WO1996013865A1 (de) 1996-05-09
AU3519395A (en) 1996-05-23
GR3031207T3 (en) 1999-12-31
ES2132711T3 (es) 1999-08-16
EP0788661A1 (de) 1997-08-13
CA2204124A1 (en) 1996-05-09
DE59506249D1 (de) 1999-07-22
CA2204124C (en) 2002-12-17
DK0788661T3 (da) 1999-11-22
EP0788661B1 (de) 1999-06-16
JPH10507877A (ja) 1998-07-28
ATE181458T1 (de) 1999-07-15

Similar Documents

Publication Publication Date Title
US6310382B1 (en) Multicolor sensor
JP3236624B2 (ja) 光感応性電子素子、その素子を使用したカラーセンサー、及びその素子の製造方法
US5923049A (en) Trichromatic sensor
US5998806A (en) Three-color sensor with a pin or nip series of layers
Zhu et al. Bias sensitive a-Si (C): H multispectral detectors
JPH0652802B2 (ja) 受光装置
US20140217540A1 (en) Fully depleted diode passivation active passivation architecture
Eberhardt et al. Three-color sensor based on amorphous nipin layer sequence
US4980736A (en) Electric conversion device
US5155351A (en) Photoelectric transfer device
US4453184A (en) Solid state imaging device
JPH0429372A (ja) 半導体光検出装置
JP2838906B2 (ja) 光電変換装置
Knipp et al. Amorphous silicon based nipiin structure for color detection
US5260560A (en) Photoelectric transfer device
EP0495414A1 (en) Photoelectric converting device and image processing apparatus utilizing the same
Zhu et al. A Novel α-Si (C): H Color Sensor Array
Stiebig et al. Transient behavior of optimized nipiin three-color detectors
De Cesare et al. a-Si: H/a-SiC: H heterostructure for bias-controlled photodetectors
Servati et al. Low dark current and blue enhanced a-Si: H∕ a-Si C: H heterojunction n-i-δ i-p photodiode for imaging applications
JPH06224459A (ja) 受光素子
Palma Multilayer color detectors
Knipp et al. Thin film color sensors in multichannel technology
JPH05343661A (ja) カラー光センサ
JPH03253082A (ja) 光電変換装置

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees