CN2419594Y - Optical Measuring Instrument for Object Vibration Amplitude - Google Patents
Optical Measuring Instrument for Object Vibration Amplitude Download PDFInfo
- Publication number
- CN2419594Y CN2419594Y CN 00217068 CN00217068U CN2419594Y CN 2419594 Y CN2419594 Y CN 2419594Y CN 00217068 CN00217068 CN 00217068 CN 00217068 U CN00217068 U CN 00217068U CN 2419594 Y CN2419594 Y CN 2419594Y
- Authority
- CN
- China
- Prior art keywords
- light
- beam splitter
- vibration amplitude
- measuring instrument
- lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 25
- 230000010287 polarization Effects 0.000 claims abstract description 37
- 239000013078 crystal Substances 0.000 claims abstract description 23
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 claims description 3
- 229910002113 barium titanate Inorganic materials 0.000 claims description 3
- FAYIAZWDTNGQRX-UHFFFAOYSA-N [Na].[K].[Sr].[Ba] Chemical compound [Na].[K].[Sr].[Ba] FAYIAZWDTNGQRX-UHFFFAOYSA-N 0.000 claims description 2
- WOIHABYNKOEWFG-UHFFFAOYSA-N [Sr].[Ba] Chemical compound [Sr].[Ba] WOIHABYNKOEWFG-UHFFFAOYSA-N 0.000 claims description 2
- 239000004065 semiconductor Substances 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 239000007787 solid Substances 0.000 claims 1
- 238000005259 measurement Methods 0.000 description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- -1 argon ion Chemical class 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000003667 anti-reflective effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Images
Landscapes
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
一种物体振动振幅的光学测量仪,包括沿光源发射光束的前进方向上,依次置有第一透镜、第二透镜、分束器、偏振分束器、偏振变换器至被测物体。由被测物体第一次反射的带有斑纹噪音的光束经偏振分束器反射后,由第四透镜会聚至光折变晶体。光折变晶体产生的相位共轭光由偏振分束器反射到被测物体,被测物体反射的相位共轭光不再带有斑纹噪音。因此,无论是表面光滑或粗糙的被测物体,其振动振幅均可以亚纳米分辨率地检测。
An optical measuring instrument for the vibration amplitude of an object includes a first lens, a second lens, a beam splitter, a polarization beam splitter, and a polarization converter arranged in sequence along the forward direction of the light beam emitted by a light source to the object to be measured. The light beam with speckle noise reflected by the object to be measured for the first time is reflected by the polarization beam splitter and then converged to the photorefractive crystal by the fourth lens. The phase conjugate light generated by the photorefractive crystal is reflected to the object to be measured by the polarization beam splitter, and the phase conjugate light reflected by the object to be measured no longer has speckle noise. Therefore, regardless of whether the surface of the object to be measured is smooth or rough, its vibration amplitude can be detected with sub-nanometer resolution.
Description
本实用新型涉及到物体振动振幅的测量仪,特别是此测量仪不仅适用于表面光滑的被测物体,而且适用于表面粗糙的被测物体。The utility model relates to a measuring instrument for the vibration amplitude of an object, in particular, the measuring instrument is not only suitable for the measured object with a smooth surface, but also suitable for the measured object with a rough surface.
在先技术中,作为一种有效的非接触性精密测量仪,激光干涉仪已得到了广泛的应用。使用传统的零差或高精度的外差干涉测量仪进行测量时,为了得到高信噪比的干涉信号,被测物体的表面为接近镜面的光滑面是必要的。然而多数被测物体的表面是粗糙的。从这样的表面反射的光含大量斑纹噪音,这给高精度测量造成困难。比如日本新泻(Niigata)大学的铃木孝昌(Takamasa Suzuki)先生提出的用来测量振动的干涉仪,(参见在先技术:Takamasa Suzuki,Takao Okada,OsamiSasaki,and Takeo Maruyama,“Real-time vibration measurement using a feedback typeof laser diode interferometer with an optical fiber,”Opt.Eng.,1997,36(9),2496-2502.)如果其中的被测物体为粗糙表面的物体,则无法实现振动振幅的高质量测量。另外,此干涉仪的振动振幅测量精度最好的情况下也仅为40纳米(4×1O-8米)。In the prior art, as an effective non-contact precision measuring instrument, laser interferometer has been widely used. When using a traditional homodyne or high-precision heterodyne interferometer for measurement, in order to obtain an interference signal with a high signal-to-noise ratio, it is necessary for the surface of the measured object to be a smooth surface close to a mirror. However, the surface of most measured objects is rough. Light reflected from such surfaces contains a large amount of speckle noise, which makes high-precision measurements difficult. For example, Mr. Suzuki Xiaochang (Takamasa Suzuki) of Niigata University in Japan proposed an interferometer for measuring vibrations, (see prior art: Takamasa Suzuki, Takao Okada, OsamiSasaki, and Takeo Maruyama, "Real-time vibration measurement using a feedback type of laser diode interferometer with an optical fiber,"Opt.Eng.,1997,36(9),2496-2502.) If the object to be measured is an object with a rough surface, the high quality of the vibration amplitude cannot be achieved Measurement. In addition, the vibration amplitude measurement accuracy of this interferometer is only 40 nanometers (4×1O -8 meters) in the best case.
本实用新型的目的就是为了克服上述在先技术中的不足,提供一种测量物体振动振幅的光学测量仪,它将利用相位共轭光的相位补偿特性,结合正弦相位调制的结构,实现亚纳米(10-10米至10-12米)精度地测量物体振动振幅,而且被测物体的表面无论是光滑的或粗糙的均可测量。The purpose of this utility model is to overcome the deficiencies in the above-mentioned prior art and provide an optical measuring instrument for measuring the vibration amplitude of an object. It will use the phase compensation characteristics of phase conjugate light and combine the structure of sinusoidal phase modulation to realize sub-nanometer (10 -10 meters to 10 -12 meters) to accurately measure the vibration amplitude of the object, and the surface of the measured object can be measured whether it is smooth or rough.
本实用新型的物体振动振幅的光学测量仪,其结构如图1所示。它包括光源1,沿着光源1发射的线偏振光束G0的前进方向上与光源1同光轴O-O地依次置有第一透镜2,第二透镜3和分束器5。光束G0经分束器5分成透射光束Gt1和反射光束Gf1,在透射光束Gt1前进的光路上依次置有偏振分束器8,和偏振变换器11照射到被测物体12。在分束器5相对光源1的反射面上的反射光束Gf1的光路上置有参考衰减反射器4。沿分束器5相对被测物体12的反射面上的反射光束Gf2的光路上置有第三透镜6和光电接收元件7。光电接收元件7输出的电信号通过放大器13和数据采集卡14输入计算机15。在偏振分束器8相对被测物体12反射面的反射方向与光源1光轴O-O垂直的方向上置有第四透镜9。在第四透镜9的焦点处置有光折变晶体10。也就是说由被测物体12反射后透过偏振变换器11的偏振光束Gp2的偏振方向与第一次透过偏振变换器11前的光束Gp1的偏振方向垂直。偏振光束Gp2由偏振分束器8反射后经第四透镜9会聚至光折变晶体10上。由光折变晶体10产生的相位共轭光经第四透镜9准直后被偏振分束器8反射,透过偏振变换器11后第二次照射到被测物体12上,由被测物体12反射回来的相位共轭光经偏振变换器11后,偏振方向与第一次入射被测物体12前的光束Gp1偏振方向相同。此光束透过偏振分束器8后返回至分束器5,再由分束器5反射经第三透镜6会聚至光电接收元件7上。The optical measuring instrument of the vibration amplitude of the object of the present utility model has a structure as shown in Fig. 1 . It includes a
上面所说的光源1是指在本实用新型的测量装置中可以使光折变晶体10产生相位共轭光的、具有某一特定波长的激光光源,是气体激光器,或者是半导体激光器,或者是固体激光器等。The
所说的参考衰减反射器4是光束反射元件,其反射率满足在测量时与分束器5配合后,光电接收元件7接收到的物体光和参考光的光强比接近于1∶1。所以参考衰减反射器是由两面分别镀析光膜和增透膜的平行平板401与衰减片404构成,如图2所示。或者是由两面分别镀析光膜和增透膜的平行平板401和两个起偏器402、403构成,如图1所示。或者是仅由一块两面分别镀析光膜和增透膜的平行平板构成。Said
所说的分束器5是指能够将入射光按一定的分束比分成两束光的元件,是分光棱镜,或者是两面分别镀析光膜和增透膜的平行平板等。
所说的光电接收元件7是光电二极管,或者是光电池等光电转换器件。The
所说的偏振分束器8是能够将偏振方向相互垂直的两束光分开,也就是说,在本实用新型中,如图1和图2所示,让偏振方向为A的光束透过,让偏振方向与A垂直的另一束光被反射。是偏振分光棱镜,或者是偏振平行平板等。Said polarizing
所说的光折变晶体10是指光源1发射的光束经过上述各光学元件照射到该光折变晶体10上后,能够产生自抽运相位共轭光的光折变晶体,是钛酸钡(BaTiO3)晶体,或者是钾钠铌酸锶钡(KNSBN)晶体,或者是铌酸锶钡晶体等。The so-called
所说的偏振变换器11是指一束偏振光通过它,由被测物体12反射,返回再次通过它后偏振方向改变90度的光学元件,是法拉第旋转器,或者是四分之一波片等。The so-called polarization converter 11 refers to an optical element that passes a beam of polarized light through it, is reflected by the measured
如图1和图2所示的结构,当光源1发出的偏振方向为A的线偏振光G0由第一透镜2和第二透镜3扩束后,透过分束器5的光束Gt1,经过偏振分束器8和偏振变换器11照射到被测物体12上。被测物体12反射的含有大量斑纹噪音的光束透过偏振变换器11后,其偏振方向变为B的偏振光束Gp2的偏振方向与偏振方向A垂直。偏振光束Gp2经偏振分束器8反射后,由第四透镜9会聚至光折变晶体10。由光折变晶体10产生的相位共轭光经第四透镜9准直,由偏振分束器8反射,再透过偏振变换器11后照射到被测物体12,由于相位共轭光具有相位补偿特性,因此第二次由被测物体12反射的相位共轭光不再含有斑纹噪音。同时,此相位共轭光透过偏振变换器11后偏振方向重新变为A,此光束透过偏振分束器8后由分束器5反射,然后由第三透镜6会聚至光电接收元件7上,这束光称为物体光。由光源1发出的线偏振光束G0经分束器5反射后的反射光束Gf1照射到参考衰减反射器4上。参考衰减反射器4的反射光束再透过分束器5后,由第三透镜6会聚至光电接收元件7,由参考衰减反射器4反射的光束称为参考光。参考光和物体光相干涉。由光电接收元件7接收后输出的电信号由放大器13放大后,数据采集卡14将放大器13输出的模拟电信号转换为数字信号后存储在计算机15中以进行数据处理。With the structure shown in Figure 1 and Figure 2, when the linearly polarized light G 0 emitted by the
光电接收元件7检测到的干涉信号The interference signal detected by the
I(t)=I0(t)+S0(t)cos[zcos(ωct+θ)+α0 +α(t)], (1)其中,I0(t)与S0(t)分别为干涉信号直流分量与交流分量的振幅,α0为被测物体12静止时干涉信号的相位。α(t)为被测物体12振动引入的相位变化。ωc为正弦相位调制的频率,t为时间,θ为调制信号的初始相位。干涉信号相位调制的振幅z=4πa/λ0,其中a为待测振动振幅,λ0为光源1的中心波长。对式(1)进行傅立叶变换求得z值。被测物体12的振动振幅I(t)=I 0 (t)+S 0 (t)cos[zcos(ω c t+θ)+α 0 +α(t)], (1) Among them, I 0 (t) and S 0 ( t) are the amplitudes of the DC component and the AC component of the interference signal, respectively, and α 0 is the phase of the interference signal when the measured
a=λ0z/4π。 (2)z的测量精度达到0.01rad是较容易实现的。若采用波长为514nm的氩离子激光器,振幅的测量精度为0.4nm。若z的测量精度提高到0.001rad,则振幅的测量精度提高到0.04nm(4×10-11米)。a=λ 0 z/4π. (2) It is relatively easy to realize that the measurement accuracy of z reaches 0.01rad. If an argon ion laser with a wavelength of 514nm is used, the measurement accuracy of the amplitude is 0.4nm. If the measurement accuracy of z is increased to 0.001rad, the measurement accuracy of the amplitude is increased to 0.04nm (4×10 -11 meters).
本实用新型的优点是:The utility model has the advantages of:
1.由于本实用新型的测量仪中含有光折变晶体10,产生具有相位补偿特性的相位共轭光,能够消除被测物体12带来的斑纹噪音。因此本实用新型的测量仪对无论是表面光滑的或粗糙的被测物体12均适用,大大扩大了测量对象的范围。使被测物体12的表面由接近镜面的光滑面扩大到不锈钢、铝板等一般的比较粗糙的表面。1. Since the measuring instrument of the present invention contains the
2.由于本实用新型的测量仪中含有光折变晶体10,产生具有相位补偿特性的相位共轭光,能够消除被测物体12带来的斑纹噪音。即使被测表面是粗糙表面,其测量的分辨率仍可达到亚纳米。因此,测量精度高。即使被测表面是粗糙表面,测量精度仍可达到亚纳米量级(10-10米至10-12米)。2. Since the measuring instrument of the present invention contains the
3.本实用新型的测量仪结构简单、紧凑、合理。3. The measuring instrument of the utility model has a simple, compact and reasonable structure.
附图说明Description of drawings
图1为本实用新型的物体振动振幅的光学测量仪的示意图,其中参考衰减反射器4是由两面分别镀析光膜和增透膜的平行板401和两个起偏器402和403构成。Fig. 1 is the schematic diagram of the optical measuring instrument of the vibration amplitude of the object of the present invention, wherein the
图2为本实用新型的测量仪的结构示意图,其中参考衰减反射器4是由两面分别镀有析光膜和增透膜的平行平板401与衰减片404构成。Fig. 2 is a schematic structural view of the measuring instrument of the present invention, wherein the
实施例:Example:
如图2所示的结构。其中光源1为波长514nm的氩离子气体激光器,分束器5是一面镀析光膜、另一面镀增透膜的平行平板。光电接受元件7为光电二极管。偏振分束器8是偏振分光棱镜。参考衰减反射器4由两面分别镀有析光膜和增透膜的平行平板401与衰减片404构成。偏振变换器11是法拉第旋转器。光折变晶体10是钛酸钡(BaTiO3)晶体。被测物体12为具有粗糙表面的铝板。测得该铝板的振动振幅为130nm,测量精度为0.5nm,分辨率小于5×10-10米。The structure shown in Figure 2. Wherein the
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 00217068 CN2419594Y (en) | 2000-03-30 | 2000-03-30 | Optical Measuring Instrument for Object Vibration Amplitude |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 00217068 CN2419594Y (en) | 2000-03-30 | 2000-03-30 | Optical Measuring Instrument for Object Vibration Amplitude |
Publications (1)
Publication Number | Publication Date |
---|---|
CN2419594Y true CN2419594Y (en) | 2001-02-14 |
Family
ID=33582704
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 00217068 Expired - Fee Related CN2419594Y (en) | 2000-03-30 | 2000-03-30 | Optical Measuring Instrument for Object Vibration Amplitude |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN2419594Y (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101620764B (en) * | 2009-06-15 | 2012-11-07 | 上海华魏光纤传感技术有限公司 | Distributed optical fiber vibration sensing system based on polarization beam splitting detection and sensing method |
CN104819767A (en) * | 2014-09-24 | 2015-08-05 | 绍兴文理学院 | Low noise micro-cantilever beam thermal vibration signal measuring device |
CN105203199A (en) * | 2015-06-30 | 2015-12-30 | 庄重 | Ultra-high sensitivity vibration sensor based on micro-nano scale material optical mechanical and electrical system |
CN106338334A (en) * | 2016-09-26 | 2017-01-18 | 中北大学 | Dual acousto-optic modulation phase conjugate heterodyne detection device |
CN110346304A (en) * | 2019-06-26 | 2019-10-18 | 华中科技大学 | A kind of optical fiber polarisation spectrum analysis system based on timeslot multiplex |
-
2000
- 2000-03-30 CN CN 00217068 patent/CN2419594Y/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101620764B (en) * | 2009-06-15 | 2012-11-07 | 上海华魏光纤传感技术有限公司 | Distributed optical fiber vibration sensing system based on polarization beam splitting detection and sensing method |
CN104819767A (en) * | 2014-09-24 | 2015-08-05 | 绍兴文理学院 | Low noise micro-cantilever beam thermal vibration signal measuring device |
CN104819935A (en) * | 2014-09-24 | 2015-08-05 | 绍兴文理学院 | Micro-cantilever heat vibration signal measuring device |
CN105203199A (en) * | 2015-06-30 | 2015-12-30 | 庄重 | Ultra-high sensitivity vibration sensor based on micro-nano scale material optical mechanical and electrical system |
CN106338334A (en) * | 2016-09-26 | 2017-01-18 | 中北大学 | Dual acousto-optic modulation phase conjugate heterodyne detection device |
CN106338334B (en) * | 2016-09-26 | 2019-01-15 | 中北大学 | A kind of dual-acousto-optic phase modulation conjugation heterodyne detection device |
CN110346304A (en) * | 2019-06-26 | 2019-10-18 | 华中科技大学 | A kind of optical fiber polarisation spectrum analysis system based on timeslot multiplex |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021017098A1 (en) | Differential laser interferometric nanometer displacement measurement apparatus and method employing sinusoidal phase modulation | |
CN100429475C (en) | Method and apparatus for reducing heterodyne interference nonlinear error first harmonic component | |
US4688940A (en) | Heterodyne interferometer system | |
CN101995211B (en) | On-line debugging device and method for single frequency laser polarization interferometer | |
JP2997047B2 (en) | Optical measuring device | |
CN108168465A (en) | A kind of light path laser heterodyne interferometry roll angle high precision measuring device and method altogether | |
CN104897270A (en) | Michelson heterodyne laser vibrometer based on single acousto-optic modulation and polarizing beamsplitting | |
JPH07311182A (en) | Evaluation of sample by measurement of thermo-optical displacement | |
CN101893448A (en) | A Method to Eliminate or Reduce Nonlinear Error in Laser Heterodyne Interferometry | |
JPH09119815A (en) | Method and device for measuring film thickness | |
CN104931124B (en) | Based on dual-acousto-optic modulation and the Michelson heterodyne laser vialog of polarization spectro | |
CN110879040A (en) | Displacement measurement method of Michelson heterodyne interferometer based on dual acousto-optic modulators | |
CN1477379A (en) | Laser vibration detection method and its implementing device | |
US7324209B2 (en) | Apparatus and method for ellipsometric measurements with high spatial resolution | |
CN2419594Y (en) | Optical Measuring Instrument for Object Vibration Amplitude | |
JPH06229922A (en) | Very accurate air refractometer | |
JPH0339605A (en) | Optical surface shape measuring instrument | |
CN215339483U (en) | Gas molecule absorption signal enhancement system | |
CN106338334A (en) | Dual acousto-optic modulation phase conjugate heterodyne detection device | |
CN1122836C (en) | Sub-nanometer resolution phase conjugate interference measuring device for object vibration amplitude | |
CN202101764U (en) | Mach-Zehnder point diffraction interferometer | |
CN106643478A (en) | Displacement measurement optical system | |
CN1148575C (en) | Semiconductor laser interferometry device for real-time measurement of thickness and refractive index | |
CN115542629A (en) | Phase amplification method, system and test method based on nonlinear optical harmonic | |
CN1147702C (en) | All fiber optic displacement measuring instrument |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |