CN206134690U - 一种选择区域外延生长界面改善结构 - Google Patents
一种选择区域外延生长界面改善结构 Download PDFInfo
- Publication number
- CN206134690U CN206134690U CN201620765231.6U CN201620765231U CN206134690U CN 206134690 U CN206134690 U CN 206134690U CN 201620765231 U CN201620765231 U CN 201620765231U CN 206134690 U CN206134690 U CN 206134690U
- Authority
- CN
- China
- Prior art keywords
- gan
- layer
- growth
- selection region
- epitaxial growth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000012010 growth Effects 0.000 title claims abstract description 53
- 239000000758 substrate Substances 0.000 claims abstract description 20
- 229910002704 AlGaN Inorganic materials 0.000 claims description 18
- 238000005036 potential barrier Methods 0.000 claims description 12
- 230000008021 deposition Effects 0.000 claims description 8
- 238000003780 insertion Methods 0.000 claims description 3
- 230000037431 insertion Effects 0.000 claims description 3
- 229910052594 sapphire Inorganic materials 0.000 claims description 2
- 239000010980 sapphire Substances 0.000 claims description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 2
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 13
- 238000005516 engineering process Methods 0.000 abstract description 9
- 239000004065 semiconductor Substances 0.000 abstract description 7
- 230000004888 barrier function Effects 0.000 abstract description 4
- 239000013078 crystal Substances 0.000 abstract description 4
- 239000012535 impurity Substances 0.000 abstract description 4
- 230000009286 beneficial effect Effects 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 15
- 238000000151 deposition Methods 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000001451 molecular beam epitaxy Methods 0.000 description 3
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- 230000007773 growth pattern Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000001259 photo etching Methods 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 208000012868 Overgrowth Diseases 0.000 description 1
- 229910004205 SiNX Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000000231 atomic layer deposition Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- -1 quantum well Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- HYXGAEYDKFCVMU-UHFFFAOYSA-N scandium(III) oxide Inorganic materials O=[Sc]O[Sc]=O HYXGAEYDKFCVMU-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
本实用新型涉及半导体外延工艺的技术领域,更具体地,涉及一种选择区域外延生长界面改善结构。一种选择区域外延生长界面改善结构,其中,包括衬底、在衬底上生长应力缓冲层、在应力缓冲层上生长GaN缓冲层、在GaN缓冲层上沉积一层SiO2作为掩膜层;在未被掩蔽的区域沉积低气压生长的GaN插入层,在低气压生长的GaN插入层上沉积常规生长的GaN沟道层;在GaN沟道层上沉积AlGaN势垒层。与传统选择区域外延相比的有益效果是:由于GaN插入层提高受主C杂质浓度,隔绝选区外延层中导电通道。此外,由于在低生长气压时横向生长速度大于大于纵向生长速度,能获得相对更低的位错密度及更平整的材料表面,进而提高GaN沟道层和AlGaN势垒层的晶体质量。从而改善选择区域外延的界面问题并提高器件性能。
Description
技术领域
本实用新型涉及半导体外延工艺的技术领域,更具体地,涉及一种选择区域外延生长界面改善结构。
背景技术
选择区域生长(SAG)技术在半导体外延生长和器件制造领域都有着广泛的应用。在半导体外延生长方面,可利用SAG技术实现侧向外延,降低贯穿至材料表面的位错密度而控制晶体质量。在半导体器件制造方面,SAG技术可用于平面工艺中特殊结构的制备,比如HBT的基极或发射极、AlGaN/GaN HFET中的n型高掺欧姆接触区和p-n结型HFET中的p-GaN层等等。2011 年,Yuhua Wen等人还提出了一种基于选择区域外延方法的凹槽栅增强型器件的实现方法,避免了等离子体刻蚀制备凹槽对器件有源区的损伤,有助于增加器件的可靠性和稳定性。另外,一些半导体微纳结构,如量子井,量子点也会涉及到选择区域外延。
选择区域外延一般需要在衬底材料上通过掩膜层图形化来选择需要生长的区域,但是这种掩膜工艺过程会引入生长界面问题。首先,选择区域外延的材料和衬底上原有的材料间存在不可避免的生长界面,GaN材料表面的本征氧化物及吸附的杂质会引入缺陷态。此外,III/V族化合物半导体材料选择区域外延生长时常选用SiO2作为掩膜材料,而PECVD等方法制备SiO2的高温环境会导致Si和O元素在生长界面处残留,在外延层中引入施主掺杂,使得选择区域外延获得的异质结构与一次型外延生长相比出现载流子面密度过高,电子迁移率降低的现象,直接影响制备的电子器件的性能。与SAG技术在其他方面的应用对比,用于生长异质结构AlGaN/GaN势垒层的挑战性更大。因为:(1)选择区域外延层厚度在几十个纳米左右,导电沟道在生长界面附近,容易受到界面处非理想因素的影响。(2)选择区域外延层随着应力释放极易形成层岛生长模式,将直接影响到晶体质量以及异质结界面处的2DEG浓度和迁移率。因此有必要寻求一种选择区域生长界面保护结构,以克服传统工艺中的缺点。
发明内容
本实用新型为克服上述现有技术所述的至少一种缺陷,提供一种选择区域外延生长界面改善结构,可以有效调控界面性能,降低选区外延材料漏电及肖特基二极管反向漏电流。
为解决上述技术问题,本实用新型采用的技术方案是:一种选择区域外延生长界面改善结构,其中,包括衬底、在衬底上生长应力缓冲层、在应力缓冲层上生长GaN缓冲层、在GaN缓冲层上沉积一层SiO2作为掩膜层;在未被掩蔽的区域沉积低气压生长的GaN插入层,在低气压生长的GaN插入层上沉积常规生长的GaN沟道层;在GaN沟道层上沉积AlGaN势垒层。
进一步的,所述的衬底为 Si 衬底、蓝宝石衬底、碳化硅衬底、GaN自支撑衬底中的任一种。所述的应力缓冲层为AlN、AlGaN、GaN的任一种或组合;应力缓冲层厚度为10 nm~5 μm。所述的GaN缓冲层为非故意掺杂的GaN外延层或掺杂的高阻GaN外延层,所述掺杂高阻层的掺杂元素为碳或铁;GaN缓冲层厚度为100 nm~20 μm。所述的低气压生长的GaN插入层厚度为10nm~300 nm。所述的常规生长的GaN沟道层,厚度为5-100 nm。所述的AlGaN势垒层,厚度为5-50 nm;所述的AlGaN势垒层材料为AlInN、AlInGaN、AlN中的一种或任意几种的组合。所述的AlGaN势垒层中与GaN沟道层之间还插入一AlN薄层,厚度为1-10 nm。
在选择区域外延AlGaN势垒层之前沉积低气压生长的GaN插入层。由于GaN缓冲层表面存在的大量的悬挂键,在此之上生长的GaN外延层必然会产生缺陷。而低生长气压时横向生长速度大于大于纵向生长速度,界面引起的缺陷会被限制在界面附近,同时低压生长GaN中C浓度增加,C作为受主杂质可以有效隔绝区外延层中导电沟道。具体包含以下步骤:
S1. 提供一种衬底;
S2. 在衬底上生长应力缓冲层;
S3. 在应力缓冲层上生长GaN缓冲层;
S4. 在GaN缓冲层上沉积一层SiO2,作为掩膜层;
S5. 采用光刻显影技术及湿法腐蚀去除需要外延AlGaN的区域的介质层,实现对掩膜层的图形化;
S6. 在未被掩蔽的区域沉积低气压生长的GaN插入层;
S7. 在低气压生长的GaN插入层上沉积常规生长的GaN沟道层;
S8. 在GaN沟道层沉积AlGaN势垒层,并刻蚀去掉掩膜层。
步骤S2中的应力缓冲层、步骤S3中的GaN缓冲层、步骤S6中的GaN插入层步骤S7中的GaN沟道层及步骤S8中的AlGaN势垒层的生长方法为金属有机化学气相沉积法、分子束外延法等高质量成膜方法;所述步骤S4中掩膜层的生长方法为等离子体增强化学气相沉积法、原子层沉积法、物理气相沉积法或磁控溅射法。
在步骤S1中的衬底可以是单一成分的衬底或具有不同成分的多层外延层。
在步骤S2中,应力缓冲层为金属有机化学气相沉积法或分子束外延法生长。
在步骤S3中,GaN缓冲层为金属有机化学气相沉积法或分子束外延法生长。
在步骤S4中,所述掩膜层是通过等离子体增强化学气相沉积或原子层沉积或物理气相沉积或者磁控溅镀法形成。优选地,在步骤4)中所述介质层可以为SiO2、SiNx、Al2O3、HfO2、MgO、Sc2O3、AlHfOx、HfSiON中的任一种。
在步骤S5中,所述光刻胶为正性或负性光刻胶。
在步骤S6-S8中所述选择区域外延层为金属有机化学气相沉积法或分子束外延法生长。
与现有技术相比,有益效果是:本实用新型提供一种选择区域外延AlGaN/GaN异质结的生长界面改善结构。与传统选择区域外延相比的有益效果是:由于GaN插入层提高受主C杂质浓度,隔绝选区外延层中导电通道。此外,由于在低生长气压时横向生长速度大于大于纵向生长速度,能获得相对更低的位错密度及更平整的材料表面,进而提高GaN沟道层和AlGaN势垒层的晶体质量。从而改善选择区域外延的界面问题并提高器件性能。
附图说明
图1-8为本发明实施例1的制作方法工艺示意图。
具体实施方式
附图仅用于示例性说明,不能理解为对本专利的限制;为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。附图中描述位置关系仅用于示例性说明,不能理解为对本专利的限制。
实施例1
如图8所示为本实施例的选择区域外延结构示意图,其结构由下往上依次包括衬底1,应力缓冲层2,GaN缓冲层3,GaN插入层4,GaN沟道层5,AlGaN势垒层6。上述选择区域外延结构的制作方法如图1-图8所示,包括以下步骤:
1)提供一种衬底1;如图1所示。
2)在衬底1上生长应力缓冲层2;如图2所示。
3)在应力缓冲层上生长GaN缓冲层3;如图3所示。
4)在GaN缓冲层3上沉积一层SiO2,作为掩膜层7;如图4所示。
5)采用光刻显影技术及湿法腐蚀去除需要外延AlGaN的区域的介质层, 实现对掩膜层的图形化。如图5所示。
6)在未被掩蔽的区域沉积低气压生长的GaN插入层4。如图6所示。
7)在低气压生长的GaN插入层4上沉积常规生长的GaN沟道层5。如图7所示。
8)在GaN沟道层5沉积AlGaN势垒层6,并刻蚀去掉掩膜层。如图8所示。
至此,完成了整个选择区域外延材料的制备过程。图8即为实施例1的材料结构示意图。实施例1所示制备得到的材料呈现明显的台阶流生长方式、表面粗糙度小。
显然,本实用新型的上述实施例仅仅是为清楚地说明本实用新型所作的举例,而并非是对本实用新型的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本实用新型的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本实用新型权利要求的保护范围之内。
Claims (8)
1.一种选择区域外延生长界面改善结构,其特征在于,包括衬底(1)、在衬底(1)上生长应力缓冲层(2)、在应力缓冲层上生长GaN缓冲层(3)、在GaN缓冲层(3)上沉积一层SiO2作为掩膜层(7);在未被掩蔽的区域沉积低气压生长的GaN插入层(4),在低气压生长的GaN插入层(4)上沉积常规生长的GaN沟道层(5);在GaN沟道层(5)上沉积AlGaN势垒层(6)。
2.根据权利要求1所述的一种选择区域外延生长界面改善结构,其特征在于:所述的衬底(1)为 Si 衬底、蓝宝石衬底、碳化硅衬底、GaN自支撑衬底中的任一种。
3.根据权利要求1所述的一种选择区域外延生长界面改善结构,其特征在于:所述的应力缓冲层厚度为10 nm~5 μm。
4.根据权利要求1所述的一种选择区域外延生长界面改善结构,其特征在于:所述的GaN缓冲层(3)为非故意掺杂的GaN外延层或掺杂的高阻GaN外延层;GaN缓冲层厚度为100nm~20 μm。
5.根据权利要求1所述的一种选择区域外延生长界面改善结构,其特征在于:所述的低气压生长的GaN插入层(4)厚度为10nm~300 nm。
6.根据权利要求1所述的一种选择区域外延生长界面改善结构,其特征在于:所述的常规生长的GaN沟道层(5),厚度为5-100 nm。
7.根据权利要求1所述的一种选择区域外延生长界面改善结构,其特征在于:所述的AlGaN势垒层(6),厚度为5-50 nm。
8.根据权利要求1所述的一种选择区域外延生长界面改善结构,其特征在于:所述的AlGaN势垒层(6)中与GaN沟道层(5)之间还插入一AlN薄层,厚度为1-10 nm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201620765231.6U CN206134690U (zh) | 2016-07-20 | 2016-07-20 | 一种选择区域外延生长界面改善结构 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201620765231.6U CN206134690U (zh) | 2016-07-20 | 2016-07-20 | 一种选择区域外延生长界面改善结构 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN206134690U true CN206134690U (zh) | 2017-04-26 |
Family
ID=58562555
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201620765231.6U Active CN206134690U (zh) | 2016-07-20 | 2016-07-20 | 一种选择区域外延生长界面改善结构 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN206134690U (zh) |
-
2016
- 2016-07-20 CN CN201620765231.6U patent/CN206134690U/zh active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6999197B2 (ja) | 複合バリア層構造に基づくiii族窒化物エンハンスメント型hemt及びその製造方法 | |
CN100511706C (zh) | 基于组份渐变GaN MISFET的GaN器件及制备方法 | |
JP4786730B2 (ja) | 電界効果型トランジスタおよびその製造方法 | |
CN105914232B (zh) | T栅N面GaN/AlGaN鳍式高电子迁移率晶体管 | |
JP2007165431A (ja) | 電界効果型トランジスタおよびその製造方法 | |
US20090045439A1 (en) | Heterojunction field effect transistor and manufacturing method thereof | |
CN105932041B (zh) | N面GaN基鳍式高电子迁移率晶体管及制作方法 | |
CN106711212B (zh) | 基于Si衬底AlGaN/GaN异质结基的增强型HEMT器件及其制造方法 | |
CN206301802U (zh) | 一种选区外延高质量的AlGaN/GaN生长结构 | |
JP2019033155A (ja) | 窒化物半導体トランジスタの製造方法 | |
CN106206297A (zh) | 一种选区外延高质量的AlGaN/GaN生长方法 | |
KR20150091706A (ko) | 질화물 반도체 소자 및 그 제조 방법 | |
CN112510087A (zh) | p型栅增强型GaN基HEMT器件及其制备方法 | |
TWI797814B (zh) | 半導體結構及其製作方法 | |
CN206697485U (zh) | 基于Si衬底AlGaN/GaN异质结基的增强型HEMT器件 | |
CN106024588A (zh) | 一种选择区域外延生长界面改善方法 | |
JP2016219690A (ja) | 13族窒化物半導体基板 | |
KR20150000753A (ko) | 질화물 반도체 소자 및 그 제조 방법 | |
KR20150012119A (ko) | 질화물 반도체 소자 및 그 제조 방법 | |
CN206134690U (zh) | 一种选择区域外延生长界面改善结构 | |
CN212257405U (zh) | 增强型GaN HEMT器件 | |
CN212542443U (zh) | 一种氮化镓晶体管结构及氮化镓基外延结构 | |
JP2015126034A (ja) | 電界効果型半導体素子 | |
CN106887495A (zh) | 发光二极管的外延片及其制作方法 | |
CN111640672A (zh) | 增强型氮化镓基高电子迁移率晶体管及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |