CN1981934A - 一种催化剂涂层膜的制备方法 - Google Patents

一种催化剂涂层膜的制备方法 Download PDF

Info

Publication number
CN1981934A
CN1981934A CNA2005101301011A CN200510130101A CN1981934A CN 1981934 A CN1981934 A CN 1981934A CN A2005101301011 A CNA2005101301011 A CN A2005101301011A CN 200510130101 A CN200510130101 A CN 200510130101A CN 1981934 A CN1981934 A CN 1981934A
Authority
CN
China
Prior art keywords
catalyst
dispersion liquid
microporous barrier
resin
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005101301011A
Other languages
English (en)
Other versions
CN100515566C (zh
Inventor
杨新胜
董俊卿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BYD Co Ltd
Original Assignee
BYD Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CNB2005101301011A priority Critical patent/CN100515566C/zh
Application filed by BYD Co Ltd filed Critical BYD Co Ltd
Priority to JP2008544740A priority patent/JP2009518817A/ja
Priority to EP06828302A priority patent/EP1963013B1/en
Priority to AT06828302T priority patent/ATE460984T1/de
Priority to DE602006013036T priority patent/DE602006013036D1/de
Priority to PCT/CN2006/003380 priority patent/WO2007068199A1/en
Priority to US11/637,389 priority patent/US20070134407A1/en
Priority to US12/096,866 priority patent/US20080305250A1/en
Priority to KR1020087016612A priority patent/KR100978117B1/ko
Publication of CN1981934A publication Critical patent/CN1981934A/zh
Application granted granted Critical
Publication of CN100515566C publication Critical patent/CN100515566C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • B01D67/00791Different components in separate layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • B01D67/00793Dispersing a component, e.g. as particles or powder, in another component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/145Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing embedded catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/881Electrolytic membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/10Catalysts being present on the surface of the membrane or in the pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/38Hydrophobic membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Metallurgy (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

一种催化剂涂层膜的制备方法,该方法包括制备催化层,并且将两个催化层压合在一个质子交换膜的两面,得到催化剂涂层膜,其特征在于,制备催化层的过程包括:将微孔膜与催化剂分散液接触,得到含有催化剂的微孔膜;并且将含有催化剂的微孔膜与树脂分散液接触,得到催化层。在本发明提供的催化剂涂层膜的制备方法中,通过在微孔膜的微孔中分步骤地填充催化剂和树脂,从而使微孔膜内催化剂和树脂的分布一致,三者的结合牢固,并且微孔膜可以起疏水作用,可以改善一般膜电极的排水障碍问题。因此,制得的催化剂涂层膜即膜电极具有良好的性能和稳定性。

Description

一种催化剂涂层膜的制备方法
技术领域
本发明是关于一种催化剂涂层膜的制备方法。
背景技术
燃料电池是一种能量转换装置,它按电化学原理,把贮存在燃料(如氢气、低级醇等)和氧化剂(氧气)内的化学能转化成电能。燃料电池具有能量转换率高、环境友好等优点。而质子交换膜燃料电池(Proton ExchangeMembrane Fuel Cell,PEMFC)更具有低温运行、比功率高等优点,因此PEMFC不仅适用于建立分散电站,也适用于可移动动力源,如电动汽车、潜艇等,是军、民通用的新型动力源。
膜电极(Membrane Electrode Assembly,MEA)是燃料电池的核心部件,是燃料和氧化剂发生电化学反应产生电能的装置。通常把只含有催化层和质子交换膜的膜电极称为3层膜电极,也称催化剂涂层膜(Catalyst CoatedMembrane,CCM),而把含有气体扩散层、催化层和膜的膜电极称为5层膜电极,如图1所示,5层膜电极依次包括气体扩散层C、催化层B、质子交换膜A、催化层B和气体扩散层C。
质子交换膜(Proton Exchange Membrane,PEM)是膜电极的关键材料,起着传递质子和分隔反应气体的作用。目前应用最广的是美国杜邦公司的全氟磺酸(nafion)膜,nafion膜所特有的全氟结构,使得其具有优异的化学稳定性,这是保证燃料电池寿命的重要因素。但是,在实际应用中发现,由于nafion膜会发生吸水溶涨、失水收缩等问题,所以nafion膜在工作条件下会发生变形,并且nafion膜在吸水后,湿膜的强度会发生明显的下降,而燃料电池一般在高湿度的条件下工作,所以这些都成为了影响nafion膜使用寿命的重要因素。
为了改善这一问题,人们采取了复合材料的技术,来改善nafion膜的变形问题。例如,CN1178482A公开了一种复合膜,该复合膜包括膨体聚四氟乙烯(ePTFE)膜和充满整个膜的离子交换材料,其中离子交换材料至少部分为非离子型聚合物。具有复合结构的质子膜的稳定性得到了一定程度的提高。
但在进一步的研究中发现,由于膜电极中同样含有一定量nafion树脂,这部分树脂同样存在吸水溶涨-失水收缩的问题,这导致了电极内催化剂和nafion树脂结合界面的变化,从而引起电极的稳定性下降。另外,由于现有的以较薄的质子膜制备的膜电极多为催化剂涂层膜(Catalyst CoatedMembrane,CCM)结构,即催化层直接结合在质子交换膜的两个表面上,CCM内一般仅含有亲水性的nafion树脂和催化剂,而无疏水性物质如PTFE等,或有少量未烧结的颗粒PTFE,疏水效果很差,这给膜电极的排水造成了一定困难。电极催化层内的液态水需要积累到一定的量,才能依靠浓度梯度的差异向膜电极外扩散,这极大影响了膜电极的性能和稳定性。
为了改善这一问题,US6054230在制备催化层的过程中,引入ePTFE微孔膜作为催化层的支撑体,通过涂刷或涂布等方法,使催化剂/nafion分散液进入到PTFE的微孔内,形成具有微孔复合结构的催化层,并进一步制备成CCM。但在实际研究中发现,这种结构的催化层的实现很困难。这是因为:(1)在现有技术中,催化剂/nafion分散液的最小粒度为0.4-0.6微米,而ePTFE微孔膜的孔径一般为0.1-2微米,而且孔径分布不均匀,这造成了实际上很难使催化剂/nafion分散液完全进入ePTFE微孔膜的微孔内,催化剂和nafion形成的胶体会堵塞在ePTFE微孔膜的上半部分;(2)在催化剂/nafion分散液内,催化剂与呈胶体分散状态的nafion树脂之间没有很好的结合力,这使得在ePTFE微孔膜内施加催化剂/nafion分散液时,催化剂与nafion树脂胶体会分离,从而造成ePTFE微孔膜的下半部分为过量的nafion树脂所堵塞,而ePTFE微孔膜的上半部分为团聚的催化剂所堵塞,这造成了ePTFE微孔膜内催化剂和nafion树脂分布不均,很难实现良好的电极结构,同时也会给质子传递造成障碍,所以这样制备的膜电极性能和稳定性较差。
发明内容
本发明的目的是克服现有技术制得的膜电极性能和稳定性较差的缺点,提供一种催化剂涂层膜的制备方法,使用该方法制得的催化剂涂层膜即膜电极具有良好的性能和稳定性。
本发明提供的催化剂涂层膜的制备方法包括制备催化层,将两个催化层压合在一个质子交换膜的两面,得到催化剂涂层膜,其中,制备催化层的过程包括:
将微孔膜与催化剂分散液接触,得到含有催化剂的微孔膜;
将含有催化剂的微孔膜与树脂分散液接触,得到催化层。
在本发明提供的催化剂涂层膜的制备方法中,通过在微孔膜的微孔中分步骤地填充催化剂和树脂,从而使微孔膜内催化剂和树脂的分布一致,三者的结合牢固,并且微孔膜可以起疏水作用,可以改善一般催化剂涂层膜的排水障碍问题。因此,制得的催化剂涂层膜即膜电极具有良好的性能和稳定性。
附图说明
图1是表示5层膜电极的结构示意图;
图2是表示本发明制备的催化剂涂层膜的结构示意图。
具体实施方式
本发明提供的催化剂涂层膜的制备方法包括制备催化层,将两个催化层压合在一个质子交换膜的两面,得到催化剂涂层膜,其中,制备催化层的过程包括:
将微孔膜与催化剂分散液接触,得到含有催化剂的微孔膜;
将含有催化剂的微孔膜与树脂分散液接触,得到催化层。
按照本发明提供的催化剂涂层膜的制备方法,其中,所述微孔膜的结构和种类已为本领域技术人员所公知,例如,可以使用现有的各种ePTFE微孔膜。所述微孔膜的厚度优选为3-20微米,更优选为5-10微米;孔径优选为0.5-2微米,更优选为1-2微米;空隙率优选为70%-95%,更优选为90%-95%。
所述催化剂分散液中含有催化剂、醇和水。所述催化剂、醇、水的重量比为1∶10-500∶0-50,优选为1∶20-200∶1.5-20。
所述催化剂的种类已为本领域技术人员所公知,例如,可以使用纳米金属催化剂或碳载纳米金属催化剂,优选为选自纳米铂、纳米金、纳米钌、纳米银、纳米钴、碳载铂、碳载金、碳载钌、碳载银、碳载钴中的一种或几种。
所述醇选自异丙醇、乙醇、丙三醇中的一种或几种,优选为乙醇。
可以采用现有的各种方法将微孔膜与催化剂分散液接触,例如,将催化剂分散液涂布在微孔膜上或者将微孔膜放入催化剂分散液中进行浸渍,优选将催化剂分散液涂布在微孔膜上。优选在真空条件下将微孔膜与催化剂分散液接触,真空度为0.01-0.1兆帕,优选为0.04-0.08兆帕。此处的真空度的定义为绝对压力与大气压力之差的绝对值(绝对压力小于大气压力)。
催化剂分散液的用量使得催化剂在微孔膜中的含量为0.1-10毫克/平方厘米,优选为0.2-2毫克/平方厘米。
将微孔膜与催化剂分散液接触之后,还可以对含有催化剂的微孔膜进行干燥。可以使用现有的各种方法进行干燥,例如烘干、鼓风干燥,优选使用鼓风干燥,干燥温度为30-150℃,优选为40-100℃。
其中,微孔膜在与催化剂分散液接触之前,可以带有支撑体,所述支撑体为多孔或网格状结构,可以选自PET(聚对苯二甲酸乙二醇酯)毡、聚丙烯毡、聚乙烯网、PET无纺布中的一种。
所述树脂分散液含有树脂和溶剂。所述树脂和溶剂的种类已为本领域技术人员所公知,例如所述树脂可以为DUPONT公司生产的nafion树脂;所述溶剂为醇类溶剂,优选为异丙醇、乙醇、丙三醇中的一种或几种,更优选为乙醇。以树脂分散液的重量为基准,树脂的含量为0.01-3重量%,优选为0.02-2.5重量%。
可以采用现有的各种方法将含有催化剂的微孔膜与树脂分散液接触,例如,将树脂分散液涂布在微孔膜上或者将微孔膜放入树脂分散液中进行浸渍,优选将树脂分散液涂布在微孔膜上。优选在真空条件下将微孔膜与树脂分散液接触,真空度为0.01-0.1兆帕,优选为0.04-0.08兆帕。此处的真空度的定义为绝对压力与大气压力之差的绝对值(绝对压力小于大气压力)。
树脂分散液的用量使得树脂在微孔膜中的含量为0.03-20毫克/平方厘米,优选为0.2-7毫克/平方厘米。
将微孔膜与树脂分散液接触之后,还可以对微孔膜进行干燥。可以使用现有的各种方法进行干燥,例如烘干、鼓风干燥,优选使用鼓风干燥,干燥温度为25-200℃,优选为50-150℃。
将催化层与质子交换膜压合的方法和条件已为本领域技术人员所公知,例如可以采用平板热压法或双辊热压法。其中,压合的条件包括压合的温度为100-200℃,优选为120-170℃;压合的压力为0.1-10兆帕,优选为0.5-6兆帕。如果微孔膜带有支撑体,则在压合之前将支撑体剥离。
所述质子交换膜可以使用现有的各种用于燃料电池的质子交换膜。质子交换膜可以商购得到,例如由杜邦公司出品的Nafion膜,包括Nafion112膜、Nafion115膜、Nafion117膜、Nafion1035膜。也可以使用PTFE/nafion复合膜,如CN1178482A中公开的复合膜。
将催化层与质子交换膜压合之后,得到如图2所示的催化剂涂层膜,该催化剂涂层膜的结构为:催化层B/质子交换膜AA/催化层B。
下面通过实施例来更详细地描述本发明。
实施例1
该实施例用于说明本发明提供的催化剂涂层膜的制备方法。
(1)取Pt/C催化剂(Hispec8000,Johnson Matthey公司产品)0.1克,加0.2克去离子水润湿,再加入10克乙醇,超声振荡30分钟,形成催化剂分散液。
将PET网格支撑的ePTFE微孔膜(厚度5微米,上海大宫新材料有限公司产品)放在真空台上,ePTFE微孔膜有效面积为100厘米2。控制真空度为0.05兆帕,在ePTFE微孔膜上涂布上述得到的催化剂分散液,使分散液可达到ePTFE微孔膜的下表面。将含催化剂分散液的ePTFE微孔膜放在鼓风干燥箱内,50℃下进行干燥。重复上述步骤,直到全部催化剂分散液涂布完毕,干燥后称重可知ePTFE微孔膜内的催化剂量为0.92毫克/平方厘米。
(2)取0.6克市售nafion分散液(DE520,DUPONT公司产品,其中nafion树脂的含量为5重量%),在其中加入11.4克乙醇,磁力搅拌使混合均匀。将步骤(1)得到的含有催化剂的ePTFE微孔膜放在真空台上,控制真空度为0.05兆帕,在微孔膜上喷涂经稀释的nafion分散液,直到全部nafion分散液喷完。干燥后,将支撑体剥离,得到微孔-自支撑催化层,称重可知ePTFE微孔膜内的nafion树脂的增重为0.3毫克/平方厘米。
(3)将微孔-自支撑催化层裁成两个矩形,然后将其贴在一片厚度为30微米的nafion112膜(NR112,DUPONT公司产品)的中心区域,然后送入热压机进行热压2分钟,热压压力5兆帕,温度135℃,冷却后得到微孔复合催化剂涂层膜。
实施例2
该实施例用于说明本发明提供的催化剂涂层膜的制备方法。
(1)取Pt/C催化剂(Hispec8000,Johnson Matthey公司产品)0.2克,加入6克乙醇,超声振荡30分钟,形成催化剂分散液。
将PET网格支撑的ePTFE微孔膜(厚度5微米,上海大宫新材料有限公司产品)放在真空台上,ePTFE微孔膜有效面积为100厘米2。控制真空度为0.05兆帕,在ePTFE微孔膜上涂布上述得到的催化剂分散液,使分散液可达到ePTFE微孔膜的下表面。将含催化剂分散液的ePTFE微孔膜放在鼓风干燥箱内,80℃下进行干燥。重复上述步骤,直到全部催化剂分散液涂布完毕,干燥后称重可知ePTFE微孔膜内的催化剂量为1.10毫克/平方厘米。
(2)取16克市售nafion分散液(DE520,DUPONT公司产品,其中nafion树脂的含量为5重量%),在其中加入120克乙醇,磁力搅拌使混合均匀。将步骤(1)得到的含有催化剂的ePTFE微孔膜放在真空台上,控制真空度为0.05兆帕,在微孔膜上喷涂经稀释的nafion分散液,直到全部nafion分散液喷完。干燥后,将支撑体剥离,得到微孔-自支撑催化层,称重可知ePTFE微孔膜内的nafion树脂的增重为0.5毫克/平方厘米。
(3)将微孔-自支撑催化层裁成两个矩形,然后将其贴在一片厚度为30微米的nafion112膜(NR112,DUPONT公司产品)的中心区域,然后送入热压机进行热压2分钟,热压压力5兆帕,温度135℃,冷却后得到微孔复合催化剂涂层膜。

Claims (13)

1、一种催化剂涂层膜的制备方法,该方法包括制备催化层,并且将两个催化层压合在一个质子交换膜的两面,得到催化剂涂层膜,其特征在于,制备催化层的过程包括:
将微孔膜与催化剂分散液接触,得到含有催化剂的微孔膜;并且
将含有催化剂的微孔膜与树脂分散液接触,得到催化层。
2、根据权利要求1所述的方法,其中,所述微孔膜的厚度为3-20微米;孔径为0.5-2微米;空隙率为70%-95%。
3、根据权利要求1所述的方法,其中,所述催化剂分散液中含有催化剂、醇和水,所述催化剂、醇、水的重量比为1∶10-500∶0-50。
4、根据权利要求1所述的方法,其中,所述催化剂选自纳米铂、纳米金、纳米钌、纳米银、纳米钴、纳米铂-钌合金、纳米铂-钴合金、碳载铂、碳载金、碳载钌、碳载银、碳载钴、碳载铂-钌合金、碳载铂-钴合金中的一种或几种。
5、根据权利要求1所述的方法,其中,将微孔膜与催化剂分散液接触的方法是在真空条件下,将催化剂分散液涂布在微孔膜上;真空度为0.01-0.1兆帕。
6、根据权利要求1所述的方法,其中,催化剂分散液的用量使得催化剂在微孔膜中的含量为0.1-10毫克/平方厘米。
7、根据权利要求1所述的方法,其中,该方法在将微孔膜与催化剂分散液接触之后,还包括对含有催化剂的微孔膜进行干燥的步骤;干燥温度为30-150℃。
8、根据权利要求1所述的方法,其中,所述树脂分散液含有树脂和溶剂;以树脂分散液的重量为基准,树脂的含量为0.01-3重量%。
9、根据权利要求1所述的方法,其中,所述树脂分散液含有树脂和溶剂;树脂分散液的用量使得树脂在微孔膜中的含量为0.03-20毫克/平方厘米。
10、根据权利要求1所述的方法,其中,将微孔膜与树脂分散液接触的方法是在真空条件下,将树脂分散液涂布在微孔膜上;真空度为0.01-0.1兆帕。
11、根据权利要求1所述的方法,其中,该方法还包括对ePTFE微孔膜进行干燥的步骤,所述干燥的步骤在含有催化剂的微孔膜与树脂分散液接触之后;干燥温度为25-200℃。
12、根据权利要求1所述的方法,其中,在与催化剂分散液接触之前,微孔膜带有支撑体,并在压合之前将支撑体剥离;所述支撑体选自PET毡、聚丙烯毡、聚乙烯网、PET无纺布中的一种。
13、根据权利要求1所述的方法,其中,所述压合的方法为平板热压法或双辊热压法;压合的温度为100-200℃,压合的压力为0.1-10兆帕。
CNB2005101301011A 2005-12-12 2005-12-12 一种催化剂涂层膜的制备方法 Expired - Fee Related CN100515566C (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CNB2005101301011A CN100515566C (zh) 2005-12-12 2005-12-12 一种催化剂涂层膜的制备方法
EP06828302A EP1963013B1 (en) 2005-12-12 2006-12-12 Fabrication methods for catalyst coated membranes
AT06828302T ATE460984T1 (de) 2005-12-12 2006-12-12 Herstellungsverfahren für katalysatorbeschichtete membranen
DE602006013036T DE602006013036D1 (de) 2005-12-12 2006-12-12 Herstellungsverfahren für katalysatorbeschichtete membranen
JP2008544740A JP2009518817A (ja) 2005-12-12 2006-12-12 触媒被覆膜の製造方法
PCT/CN2006/003380 WO2007068199A1 (en) 2005-12-12 2006-12-12 Fabrication methods for catalyst coated membranes
US11/637,389 US20070134407A1 (en) 2005-12-12 2006-12-12 Fabrication methods for catalyst coated membranes
US12/096,866 US20080305250A1 (en) 2005-12-12 2006-12-12 Fabrication Methods for Catalyst Coated Membranes
KR1020087016612A KR100978117B1 (ko) 2005-12-12 2006-12-12 촉매 코팅 막의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005101301011A CN100515566C (zh) 2005-12-12 2005-12-12 一种催化剂涂层膜的制备方法

Publications (2)

Publication Number Publication Date
CN1981934A true CN1981934A (zh) 2007-06-20
CN100515566C CN100515566C (zh) 2009-07-22

Family

ID=38139707

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005101301011A Expired - Fee Related CN100515566C (zh) 2005-12-12 2005-12-12 一种催化剂涂层膜的制备方法

Country Status (8)

Country Link
US (2) US20070134407A1 (zh)
EP (1) EP1963013B1 (zh)
JP (1) JP2009518817A (zh)
KR (1) KR100978117B1 (zh)
CN (1) CN100515566C (zh)
AT (1) ATE460984T1 (zh)
DE (1) DE602006013036D1 (zh)
WO (1) WO2007068199A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107961619A (zh) * 2017-12-11 2018-04-27 项朝卫 多功能覆膜滤料的制备方法
CN109921034A (zh) * 2017-12-13 2019-06-21 中国科学院大连化学物理研究所 一种阴离子交换膜燃料电池分级有序催化层的制备方法及应用
CN115193625A (zh) * 2022-08-12 2022-10-18 上海明天观谛氢能科技有限公司 一种燃料电池膜电极的喷涂夹具及喷涂方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100285388A1 (en) * 2007-05-18 2010-11-11 Sim Composites Inc. Catalyst-coated proton exchange membrane and process of producing same
KR20090058406A (ko) * 2007-12-04 2009-06-09 한화석유화학 주식회사 연료전지용 독립 전극 촉매 층 및 이를 이용한 막-전극접합체의 제조방법
WO2010036234A1 (en) * 2008-09-23 2010-04-01 Utc Power Corporation Fuel cell using uv curable sealant
CZ2009152A3 (cs) * 2009-03-10 2010-11-10 Elmarco S.R.O. Vrstvený filtracní materiál a zarízení pro cištení plynného média
JP5705325B2 (ja) 2010-09-30 2015-04-22 ユーティーシー パワー コーポレイション ホットプレスされた直接堆積触媒層
JP2016129085A (ja) * 2013-04-26 2016-07-14 日産自動車株式会社 ガス拡散電極体、その製造方法ならびにこれを用いる燃料電池用膜電極接合体および燃料電池
US20170200954A1 (en) * 2015-09-16 2017-07-13 Uti Limited Partnership Fuel cells constructed from self-supporting catalyst layers and/or self-supporting microporous layers
EP3606740B1 (en) 2017-04-04 2021-09-29 W. L. Gore & Associates GmbH Dielectric composite with reinforced elastomer and integrated electrode
US11684702B2 (en) * 2019-05-24 2023-06-27 Conmed Corporation Gap control in electrosurgical instruments using expanded polytetrafluoroethylene

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1276633A (en) * 1916-01-25 1918-08-20 Charles Owen Forbes Permutation-lock.
US5234777A (en) * 1991-02-19 1993-08-10 The Regents Of The University Of California Membrane catalyst layer for fuel cells
US5242764A (en) * 1991-12-17 1993-09-07 Bcs Technology, Inc. Near ambient, unhumidified solid polymer fuel cell
US5399184A (en) * 1992-05-01 1995-03-21 Chlorine Engineers Corp., Ltd. Method for fabricating gas diffusion electrode assembly for fuel cells
JP3481010B2 (ja) * 1995-05-30 2003-12-22 ジャパンゴアテックス株式会社 高分子固体電解質膜/電極一体成形体及びその製法
US6054230A (en) * 1994-12-07 2000-04-25 Japan Gore-Tex, Inc. Ion exchange and electrode assembly for an electrochemical cell
JPH1171692A (ja) * 1997-07-01 1999-03-16 Fuji Electric Co Ltd イオン交換膜と電極の接合体の製作方法および製作装置
KR100263992B1 (ko) * 1998-02-23 2000-08-16 손재익 고체고분자 연료전지의 고분자막/전극 접합체 제조방법
GB9805815D0 (en) * 1998-03-19 1998-05-13 Johnson Matthey Plc Manufacturing process
JP2001160406A (ja) * 1999-12-06 2001-06-12 Toshiba Corp 固体高分子型燃料電池の電極およびその製造方法
US6524736B1 (en) * 2000-10-18 2003-02-25 General Motors Corporation Methods of preparing membrane electrode assemblies
JP2003132900A (ja) * 2001-10-22 2003-05-09 Ube Ind Ltd 金属分散炭素膜構造体、燃料電池用電極、電極接合体、及び燃料電池
US6855660B2 (en) * 2001-11-07 2005-02-15 De Nora Elettrodi S.P.A. Rhodium electrocatalyst and method of preparation
JP2003317729A (ja) * 2002-04-26 2003-11-07 Ube Ind Ltd 多孔質黒鉛フィルムを用いた燃料電池用電極、膜−電極接合体及び燃料電池
KR100480782B1 (ko) * 2002-10-26 2005-04-07 삼성에스디아이 주식회사 연료전지 단위체, 그 제조방법 및 상기 연료전지 단위체를채용한 연료전지
US7303835B2 (en) * 2003-01-15 2007-12-04 General Motors Corporation Diffusion media, fuel cells, and fuel cell powered systems
JP2004335459A (ja) * 2003-04-18 2004-11-25 Ube Ind Ltd 金属担持多孔質炭素膜、燃料電池用電極及びそれを用いた燃料電池
CN100401563C (zh) * 2003-07-02 2008-07-09 中山大学 一种质子交换膜燃料电池膜电极组件的制备方法
US7351444B2 (en) * 2003-09-08 2008-04-01 Intematix Corporation Low platinum fuel cell catalysts and method for preparing the same
CN100521313C (zh) * 2003-10-27 2009-07-29 中国科学院大连化学物理研究所 用于质子交换膜燃料电池的膜电极结构及其制备方法
CN1564353A (zh) * 2004-03-25 2005-01-12 天津大学 液态进料直接甲醇燃料电池的膜电极及其制备工艺
JP2005285496A (ja) * 2004-03-29 2005-10-13 Toyota Motor Corp 燃料電池用膜電極複合体およびそれを備えた燃料電池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107961619A (zh) * 2017-12-11 2018-04-27 项朝卫 多功能覆膜滤料的制备方法
CN107961619B (zh) * 2017-12-11 2021-02-09 中材科技膜材料(山东)有限公司 多功能覆膜滤料的制备方法
CN109921034A (zh) * 2017-12-13 2019-06-21 中国科学院大连化学物理研究所 一种阴离子交换膜燃料电池分级有序催化层的制备方法及应用
CN109921034B (zh) * 2017-12-13 2021-04-27 中国科学院大连化学物理研究所 一种阴离子交换膜燃料电池分级有序催化层的制备方法及应用
CN115193625A (zh) * 2022-08-12 2022-10-18 上海明天观谛氢能科技有限公司 一种燃料电池膜电极的喷涂夹具及喷涂方法

Also Published As

Publication number Publication date
JP2009518817A (ja) 2009-05-07
WO2007068199A1 (en) 2007-06-21
US20080305250A1 (en) 2008-12-11
CN100515566C (zh) 2009-07-22
KR20080080361A (ko) 2008-09-03
ATE460984T1 (de) 2010-04-15
EP1963013A4 (en) 2009-01-07
US20070134407A1 (en) 2007-06-14
DE602006013036D1 (de) 2010-04-29
EP1963013B1 (en) 2010-03-17
KR100978117B1 (ko) 2010-08-25
EP1963013A1 (en) 2008-09-03

Similar Documents

Publication Publication Date Title
CN100515566C (zh) 一种催化剂涂层膜的制备方法
KR101135479B1 (ko) 연료전지용 고분자 전해질막, 이의 제조방법, 및 이를포함하는 연료전지 시스템
CN102005582B (zh) 一种直接醇类燃料电池膜电极集合体的结构及制备方法
KR100442843B1 (ko) 연료전지 단위체, 그 제조 방법 및 이를 채용한 연료전지
KR100599799B1 (ko) 연료전지용 고분자 전해질막, 막-전극 접합체, 연료전지및 막-전극 접합체의 제조방법
CN100459256C (zh) 膜电极组件及其制备方法以及包含它的燃料电池系统
CN100452509C (zh) 催化层支撑质子交换膜燃料电池复合膜电极及其制备方法
US8399152B2 (en) Method of producing fuel cell catalyst layer
CN110504472A (zh) 一种提高催化剂利用率的直接甲醇燃料电池膜电极及其制备方法
CN111584880B (zh) 一种低铂质子交换膜燃料电池膜电极及其制备方法
CN101557001A (zh) 一种燃料电池膜电极及其制备方法
JP4655168B1 (ja) 燃料電池用電極触媒層の製造方法
CN100521317C (zh) 用于直接甲醇燃料电池的膜电极单元及其制造方法
CN101662032A (zh) 直接醇类燃料电池的膜电极集合体的阴极结构和制作方法
KR100696680B1 (ko) 연료전지용 고분자 전해질막 및 그 제조방법
CN103490081A (zh) 改性全氟磺酸质子交换膜、其制备方法和直接甲醇燃料电池膜电极及其制备方法
KR100689105B1 (ko) 캐필러리 공정을 이용한 연료전지의 촉매층 제조 방법
CN100568595C (zh) 一种催化剂涂层膜的制备方法
CN100486006C (zh) 一种质子交换膜燃料电池的膜电极制备方法
JP4045661B2 (ja) 電解質膜及びその製法とそれを用いた固体高分子電解質型燃料電池
CN111477922A (zh) 一种用于直接甲醇燃料电池的质子交换膜膜电极的制备
CN117577905A (zh) 一种组合式膜电极及制备方法
KR20080035293A (ko) 연료전지용 전극, 막-전극 접합체, 연료전지 및 그제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090722

CF01 Termination of patent right due to non-payment of annual fee