CN1969435B - 离子发生单元及离子发生装置 - Google Patents
离子发生单元及离子发生装置 Download PDFInfo
- Publication number
- CN1969435B CN1969435B CN2005800199156A CN200580019915A CN1969435B CN 1969435 B CN1969435 B CN 1969435B CN 2005800199156 A CN2005800199156 A CN 2005800199156A CN 200580019915 A CN200580019915 A CN 200580019915A CN 1969435 B CN1969435 B CN 1969435B
- Authority
- CN
- China
- Prior art keywords
- ion generating
- earth polar
- wire electrode
- generating unit
- insulated substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T23/00—Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere
Landscapes
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
- Electrostatic Separation (AREA)
Abstract
一个离子发生部件(4),包括有:在绝缘基板(41)上,有地极(42),高压电极(43),位于地极(42)表面的绝缘膜(44)和线状电极(45)。地极(42)被装置在绝缘基板(41)的靠外缘区域且有一对脚(42a、42b),这一对脚与线状电极(45)相平行,线状电极(45)位于这对脚(42a、42b)之间。地极(42)还包括有一个与端子(5b)相接的连接部分(42c)和一个与上部树脂外罩(3)相接的绝缘罩连接部分(42d)。绝缘膜(44)基本上覆盖了绝缘基板(41)的整个表面,却不覆盖高压电极(43)、地极(42)上的连接部分(42c)和绝缘罩连接部分(42d)。
Description
技术领域
本发明涉及用于空气清洁器和空调回路上的离子发生单元和离子发生装置。
背景技术
现有的一种此类型的离子发生装置在专利文献1中进行了记载,如图12所示,一种离子发生装置110包括有一个外罩120,一个安装在外罩120前端表面的放电电极112和一个对立电极114。一个高压电源118置于外罩120的顶部。高电压源118包含有一个产生高压的回路以产生放电电极112与对立电极114之间的高电压。
放电电极112包括有多个锯齿112a。放电电极112与对立电极114相互垂直,对立电极114固定在外罩120的底座120b上。对立电极114具有这样的一个结构,即将金属埋入介质陶瓷而成。放电电极112和对立电极114通过放电产生臭氧并通过使用一个交变高电压将空气转换为负离子。
专利文件1:日本专利申请公开号:特开平6-181087
然而,为了产生负离子,现有的离子发生装置需要向放电电极112提供一个-5KV至-7KV的高电压,但这会导致电源电路和绝缘结构的复杂化,因而产生离子发生装置的高造价的问题。
当介于-5KV至-7KV的高电压被供给放电电极112时,臭氧会随之产生,所以,要有选择地只产生负离子是不可能的。另外,供给放电电极112的是高压,所以还需要采取充分的安全保护措施。
此外,由于放电电极112和对立电极114相互垂直(有一个三维空间结构),所占据的空间很大,因此离子发生装置110的小型化也比较困难。
发明内容
发明要解决的问题
如前所述,本发明的目的是提供一个通过使用低电压可以产生正离子或负离子的离子发生单元及离子发生装置。
解决问题的方法
为了达到上述目的,本发明的离子发生单元包括:一个绝缘基板,其上有地极,还有一绝缘膜,覆盖在除了地极的一部分以外的地极其他区域;一个线状电极;一个绝缘外罩以容纳绝缘基板和线状电极,其中,所述线状电极安装在绝缘基板上以使得线状电极与地极相对,且地极没有被绝缘膜覆盖的部分与绝缘外罩相接。
在本发明的离子发生单元中,有一个带有连接部分的高压电极位于绝缘基板上,线状电极装置在高压电极上,绝缘膜基本上覆盖了绝缘基板的整个表面,而不覆盖高压电极、地极的连接部件和地极的绝缘罩连接部分。
通过使用线状电极(直径最好是100μm或更小),电子比较容易在线状电极的尾端集中,产生一个强电场。另外,该线状电极的抗拉强度最好为2500N/mm2或更大。此外,将地极没有被绝缘膜覆盖的部分,和绝缘基板连接到一起可以减少绝缘外罩的带电量,且可以防止由绝缘外罩的带电量所引起的离子发生部分的电场强度的减弱。
用绝缘膜覆盖地极表面可以达到这样的一种效果,即在基本上不改变离子产生数量的基础上抑制臭氧的生成,此外,绝缘膜将绝缘基板的基本整个表面覆盖,却不覆盖高压电极、地极的连接部件和绝缘罩连接部分,于是高压电极和地极间的间隙被绝缘膜覆盖,可以避免由于高电压电极和地极间的凝露产生的短路。
在本发明的离子发生装置中,最好将地极设置为与线状电极的线向方向基本平行具体地说,是绝缘基板的一侧可以有一个缺口,线状电极的尾端伸进缺口里面,地极安装在绝缘基板上,且有两个与线状电极基本平行的脚,这两个脚分布于此缺口的两侧,并且线状电极安装在两个脚之间。
绝缘外罩可以包括一个上部外罩和一个下部外罩,在这种情况下,最好在下部外罩上设一个与绝缘基板上地极的绝缘罩连接部分位置基本对应的凸起。或者,也可以在上部外罩设一个与绝缘基板上地极的绝缘罩连接部分位置基本上对应的突出部分。通过下部外罩的凸起对绝缘基板的挤压,和/或者通过上部外罩的突出部分与绝缘罩连接部分的连接,绝缘外罩与地极的绝缘罩连接部分的连接可靠性得到了改善。
上面所述的结构可以将线状电极和地极设计为二维结构,从而可以使离子发生部件变薄。
地极包括有一个电阻器,比如,一个氧化钌电阻或者是一个碳性电阻。这是因为,即使线状电极与地极建立了连接,此电阻器也可以降低由于短路而突然出现的发热或着火的风险。尤其是氧化钌是一种最适合的物质,因为即使在强电场情况下它也不会引起电子的迁移。
该离子发生单元还可以包括一个第一端子和一个第二端子,该第一端子与高压电极的连接部分建立连接且有一个用于连接引线的部分,而该第二端子与地极的连接部件建立连接且有一个用于连接引线的部分。第一端子和第二端子都被收纳在绝缘外罩内。
本发明的离子发生装置的特征在于包括一个如上所述的离子发生单元和一个用来产生负电压或正电压的高压电源。或者,本发明的离子发生装置的特征在于,具有分别连接固定到第一端子和第二端子上的引线,并具有一个用于产生负电压或正电压的高压电源和一个如上所述的离子发生单元。高压电源的输出电压的绝对值最好等于或者是小于2.5KV。
基于如上所述的结构,就可以获得一个低成本且小型化的离子发生装置。
有益效果
由于本发明的离子发生单元使用了细的线状电极,电子易于集中到线状电极的尾部,从而产生一个强电场。所以,负离子或者正离子就可以通过运用低于现有技术所需的电压而聚在一起。此外,将地极未被绝缘膜覆盖的部分与绝缘外罩连接起来可以减小绝缘外罩的带电量,并防止由于绝缘外罩的带电量引起的离子发生部分的电场强度的减弱。
将绝缘膜覆盖在地极的表面可以达到这样一种效果,即在基本上不改变离子发生数量的基础上抑制臭氧的产生。此外,通过将绝缘基板的几乎整个表面以绝缘膜覆盖,而高压电极、地极连接部件和地极的绝缘罩连接部分不被覆盖,使高压电极和地极之间的空隙被绝缘膜覆盖,因此可以避免由于高压电极和地极之间的凝露所产生的短路。这样就可得到一个低成本且小型化的离子发生单元和离子发生装置。
图的简要描述
图1是本发明的一个具体实施例的离子发生装置的分解透视图;
图2是图1所示的离子发生装置的横截面视图;
图3是图1所示的离子发生装置的外部透视图;
图4是图1所示的离子发生部件的一个平面示意图;
图5是上述离子发生部件的绝缘外罩的展开视图;
图6是在已安装状态下的绝缘外罩主要区域放大的横截面视图;
图7是在离子产生量为1,000,000个/cc的情况下供应电压与线状电极的直径的关系图;
图8是在与离子发生装置的距离为50cm处的离子产生的数量和输入电压的关系图;
图9是在与离子发生装置距离50cm处的离子产生的数量图;
图10是高压电源的电路示意图;
图11是离子发生部件的另一个具体实施例的示意图;
图12是一个现有的离子发生装置的外部透视图。
发明的最佳实施方式
下面结合附图对本发明的离子发生单元和离子发生装置的具体实施方式进行描述。
图1是离子发生装置1的分解透视图,图2是它的横截面视图,图3是它的一个外部透视图。如图1所示,离子发生装置1包括有一个绝缘外罩,一个离子发生部件4,第一端子5a,第二端子5b,引线7和8,和一个高压电源。其中上述外罩有一个下部树脂外罩2和一个上部树脂外罩3,二者通过其间的转轴25进行连接以形成一个完整的结构。而由下部树脂外罩2和上部树脂外罩3组成的绝缘外罩、离子发生部件4、第一端子5a和第二端子5b则组成了一个离子发生单元。在图1中,转轴25的为切开为上下两半的状态。
下部树脂外罩2有一个位于其一端的侧壁2a的进风口21和位于其另一端的侧壁2b的出风口22。另外,前端侧面2c有一个固定臂23。
上部树脂外罩3有一个在其一端的侧壁3a的进风口(未在图中示出)和一个在其另一端的侧壁3b的出风口32。前端侧壁3c有两个卡扣31。转轴25一端与下部树脂外罩2后部的外侧2d相连接,另一端与上部树脂外罩3后部的外侧3d相连接。将转轴25弯曲并且使卡扣31与固定臂23相扣使得上部树脂外罩3和下部树脂外罩2牢固地连接在一起形成一个可透气的绝缘外罩。
离子发生部件4和端子5a、端子5b位于上部树脂外罩3和下部树脂外罩2之间的空心部分,也就是说,如图2所示,离子发生部件4固定在设于上部树脂外罩内侧的基板支持台36和定位扣35之间。绝缘外罩的材料可以是PBT树脂、PC树脂等等,这些材料可以挤压成型且允许被处理成一个转轴。
如图4所示,离子发生部件4包括有,绝缘基板41,该基板上的一个地极42和一个高压电极43,在地极42表面的一个绝缘膜44,和一个线状电极45。矩形的绝缘基板41的一边被切开形成一个缺口41a。。例如体积为宽10.0mm×长20.0mm×高0.635mm的氧化铝基板、玻璃环氧化物基板等可用作绝缘基板41。线状电极45的一端被焊接到高压电极43上,且其尾端伸出缺口41a。线状电极45是直径极细的线,例如100μm或更小,包括钢琴线、钨丝、不锈钢丝和钛丝。直径等于或者小于100μm可以使得电子向线状电极45的尾端集中,从而促使强电场的形成。
线状电极45最好是用抗拉强度等于或大于2500N/mm2的不锈钢丝。抗拉强度大于或者等于2500N/mm2可以通过线性材料的合成比率和/或者制造成丝后通过加热处理来实现。抗拉强度等于或者大于2500N/mm2的线状电极45,其不易弯曲,在外部压力存在时展示出较好的修复功能,并防止偏离预定的位置。
地极42被装配在绝缘基板41的外部边缘,且有一对与线状电极45平行的脚42a和42b分布于绝缘基板41上缺口41a两侧的位置,线状电极45被装配在脚42a和42b之间。地极42还包括一个连接部分42c以与第二端子5b相接,和一个绝缘罩连接部分42d以与上部树脂外罩3的绝缘支持台36相接。绝缘罩连接部分42d远离脚42a和42b(高压放电部分),同时也远离线状电极45和高压电极43。线状电极45和高压电极43与地极42之间的距离尽可能大以保证不超过其绝缘耐压。绝缘罩连接部分42d突出至靠近绝缘基板41的边缘处,以达到在最小尺寸的绝缘基板41上也可以得到可靠连接的目的。
如图5、图6所示,与地极42的绝缘罩连接部分42d相连的支持台36上,有一个与绝缘罩连接部分42d位置相对的突出部分36a。此外,下部树脂外罩2有一个凸起24,该凸起24基本上与突出部分36a相契合。当绝缘外罩安装以后,凸起24贴紧绝缘基板41,突出部分36a则与绝缘罩连接部分42d紧接。在本实施例中,突出部分36a的高度t(见图6)是0.1mm。突出部分36a与绝缘罩连接部分42d紧接,就增加了绝缘外罩和地极42上的绝缘罩连接部分42d的连接的可靠性。特别是,下部树脂外罩2上的凸起24与突出部分36a在大致相对的位置上,从相对方向压紧绝缘基板41,使绝缘外罩和绝缘罩连接部分42d之间连接的可靠性得到了大大的改善。
凸起24和突出部分36a二者也可以只设其一。只设置突出部件24可以改善绝缘罩连接部分42d和绝缘外罩之间连接的可靠性;而只安装突出部分36a也可以改善绝缘罩连接部分42d和绝缘外罩之间连接的可靠性。
在图11所示的另一个具体实施例中,连接部分42c可以同时作为与上部树脂外罩3之间的的一个连接部分使用。在这种情况下,绝缘罩连接部分42d可以省略。
绝缘基板41的整个表面基本上都被绝缘膜44所覆盖,该绝缘膜44是通过丝网印刷完成的,而高压电极43、地极42上的连接部分42c和绝缘罩连接部分42d不被覆盖。绝缘膜44并不覆盖绝缘基板41的外缘区域,以提供一个丝网印刷时产生的位置误差空间。
绝缘膜44的材料可以是硅树脂、玻璃釉和环氧树脂等。地极42有大约50MΩ的阻抗。地极42的材料可以是氧化钌膏或者碳膏。其中,氧化钌是最适合的材料,因为即使在强电场情况下也不会引起电子的移动。
金属端子5a和5b分别都包括有一个固定部分51和底部52。固定部分51与在上部树脂外罩3的上表面3e上的固定部分33和34契合。第一端子5a的底部52接到高压电极43的连接部分43a。第二端子5b的底部52接到地极42的连接部分42c。
高压引线7的一端7a插入安装在上部树脂外罩3上的固定部件33的前表面的开口(未在图中示出),且芯线71与第一端子5a的固定部分51相接且是电连接。同样的,地线8的一端8a插入固定部分34的前表面的开口(未在图中示出),且芯线81与第二端子5b的固定部件51相接且是电连接。
高压引线7与高压电源的负极输出端相连。地线8与高压电源的接地端相连,高压电源提供一个负的直流电压,也可以提供一个交变电压,此交变电压上叠加了一个负的直流偏压。离子发生装置1被安装进空气清洁器、空调机之类的物体上。换句话说,高压电源被安装在空气清洁器的电源供应回路上,离子发生单元被安装在送风通道上,于是,空气清洁器等可以送出包含有负离子的空气。
具有如上所述结构的离子发生装置1可以在电压范围为-1.3KV至-2.5KV的条件下负离子。换句话说,当一个负电压被提供给线状电极45时,在线状电极45和地极42之间就产生了一个强电场。线状电极45的尾端的绝缘被击穿而进入电晕放电状态。此时,在线状电极45的尾端周围,空气中的分子进入电离状态,分解成正离子和负离子,正离子被线状电极45吸引,只留下负离子。
在具有较细尾端(较小的曲率半径)的线状电极45上电子更易于集中,且相对于尾端较粗的电极更易于产生较强的电场。所以,通过使用线状电极45,即使在低电压的条件下也可以产生负离子。
表1示出了当供给线状电极45的电压改变时产生的负离子数的测量结果 在这个测量中,用到了有名的艾伯特(Ebert)离子计数器。该测量是在与离子发生装置1相距30cm的下风区处进行的。风速是2.0m/s。作为对比,表1还示出了如图12所示的现有离子发生装置110所产生的负离子的测量数目,区别在于,其有连成一体的锯齿112a。
【表1】
供应电压(KV) | 对比例 | 具体实施例 |
-1.50 | ≤0.1 | 10-50 |
-1.75 | ≤0.1 | 50-95 |
-2.00 | ≤0.1 | 60-120 |
-2.25 | ≤0.1 | ≥120 |
-2.50 | ≤0.1 | ≥120 |
-2.75 | ≤0.1 | ≥120 |
-3.00 | ≤0.1 | ≥120 |
-3.25 | ≤0.1 | ≥120 |
-3.50 | 10-20 | ≥120 |
-3.75 | 60-100 | ≥120 |
(单位:×104个/cc)
表1揭示出即使在低电压状态下本实施例的离子发生装置1也产生了足够多的负离子。
如图12所示,现有的离子发生装置110的锯齿112a成铅笔状且其尖端很尖锐。因此,如果持续使用锯齿112a的话,尖端会随时间而钝化,正如铅笔尖被磨耗而变得圆化,其曲率半径会增大。由于曲率半径的增大,产生的离子数目就会减少。
相反,由于本实施例中的线状电极45有一个固定的直径,曲率半径就不会随着时间而改变。结果,产生的离子数目就会保持稳定。
图7是在产生的离子数目为1,000,000个/cc时的供应电压和线状电极45的直径关系图。该测量是在与离子发生装置1相距50cm下风区处进行的。风速是3.0m/s。该图揭示出,当线状电极45的直径是100μm或者更小时,在供给一个约为-2.0KV的低电压时,就会产生足够数目的负离子。
通常,当在强电场下产生离子时,其周围的绝缘体上将因有同一极性的离子而带电。由于周围的电荷具有与产生离子的强电场相同的极性,他们就会相互排斥从而使电场变弱。由于产生的离子数量与电场强度是成正比的,从而产生的离子数量就会减少。也就是说,因为提供给线状电极45的负电势与在绝缘外罩上的电荷的负电势具有相同的极性,产生的离子数量就减少了。
因此,离子发生装置1有这样一个结构,即地极42的绝缘罩连接部分42d与上部树脂外罩3的基板支持台36(突出部件36a)直接相接,绝缘外罩的电荷(负离子)就通过地极42流向地面。结果,绝缘外罩上的离子电荷减少,防上了由于绝缘外罩的电荷所引起的离子发生部件的电场强度的减弱,防止了产生的负离子数量的减少。
将绝缘膜44覆盖地极42的表面,可以在基本上不改变负离子产生数量的情况下抑制臭氧的产生。此外,由于绝缘膜基本上覆盖了绝缘外罩41的整个表面,而不覆盖高压电极43、地极42的连接部分42c和绝缘罩连接部分42d,高压电极43和地极42之间的空隙被绝缘膜44所覆盖,因此,可以避免高压电极43和地极42之间的凝露所产生的短路。
图8是一个在与离子发生装置1距离为50cm的下风区处离子产生数目和输入电压的关系图(实线所示)。风速是2~3m/s,且离子测量器的测量上限是1,230,000个/cc。作为对比,此图同时示出了具有与如图1所示离子发生装置同样结构的另一离子发生装置产生的离子数目(虚线所示),区别在于,该装置的地极42没有与绝缘外罩相连。该图表明,将地极42与绝缘外罩相连减小了产生离子的所需电压。该图同时表明,与地极42不与绝缘外罩相连的装置相比,本实施例的装置减小了要达到最大测量数值时所需要的电压。
图9是在输入电压固定在-2.5KV时,与离子发生装置1距离为50cm处产生的离子数目图(实线所示)。作为对比,该图同时示出了具有与如图1所示离子发生装置同样结构的另一离子发生装置产生的离子数目,区别在于,该装置地极42没有与绝缘外罩相连(虚线所示)。该图表明,将地极42与绝缘外罩相连增加了产生的离子数目。
因为供给线状电极45的电压可以降低,高压电源所需要的花费就可以减少。通常,当输出电压的绝对值等于或小于2.5KV时,电源回路和绝缘结构可以简化。例如,如图10所示,下面将讨论这样一种情况,通过变压器66将交流电路65中产生的交流电压升高,此外,这个电压在一个Cockcroft电路(一个由电容C和二极管D组成的电路,该电路可以使电压倍增并进行整流)中增大。在这种情况下,对于现有的离子发生装置,就需要通过变压器将电压放大为约-1KV至-1.5KV电压后,然后通过如图10(A)所示的Cockcroft电路67将这个电压扩大5倍,即将电压转换为-5KV至-7.5KV。相反,对于本实施例中的离子发生装置1,就只需要通过如图10(B)所示的Cockcroft电路68将电压扩大两倍,即将电压转换为-2KV至-3KV,于是Cockcroft电路中的电容C和二极管D的数量就可以减少,电路可以简化。
因为供应电压可以比以前的小,安全性也得到了改善。由于线状电极45和绝缘膜44在绝缘基板41上的构造为一个二维空间,所占据的体积就小,从而可以使装置小型化。
表2示出了在供给线状电极45的电压改变时产生的臭氧量的变化。该测量是在距离离子发生装置1为5mm处进行的。风速作0m/s算。作为对比,表2还示出了如图12所示的现有的离子发生装置110所产生的臭氧量,区别在于,其有连成一体的锯齿112a。
【表2】
供应电压(KV) | 对比示例 | 具体实施例 | |
无绝缘膜44 | 有绝缘膜44 | ||
-2.5 | - | <=0.01 | <=0.01 |
-3.0 | - | 4.0-5.0 | <=0.01 |
-3.5 | <=0.01 | >=5.0 | <=0.01 |
-4.0 | <=0.01 | >=5.0 | <=0.01 |
-4.5 | 0.8-0.1 | >=5.0 | <=0.01 |
-5.0 | 2.2-2.5 | >=5.0 | <=0.01 |
(单位:ppm)
表2揭示出在本实施例中的离子发生装置工作时产生的臭氧的量极少。此外,由于绝缘膜44覆盖了地极42,与在地极42和线状电极45之间仅仅只有空气的情况相比,此时在地极42和线状电极45之间的放电起始电压要高。从而可以抑制线状电极45的尾端和地极42之间的暗电流(这是漏电电流,而不是放电)。这样就可以减少与电流成正比的臭氧的产生量。
将绝缘膜44覆盖在地极42上,即使是在地极42和线状电极45之间的空隙出于小型化的目的而减小的情况下,也可防止地极42和线状电极45之间的异常放电。
图11是另一个离子发生部件4A的平面示意图。该离子发生部件4A的地极42只有一个平行于线状电极45的脚42a。绝缘膜44并没有覆盖绝缘基板41的整个表面,而只是覆盖地极42和其邻近的区域,连接部分42c可以保持不被覆盖。离子发生部件4A有一个特点,即连接部分42c与绝缘外罩的上部树脂外罩3是直接相接。
本发明并不局限于上面所述的具体实施方式,在不脱离本发明的主题范围的情况下可以作出多种修改。
例如,地极的绝缘罩连接部分的位置可以不局限于如上具体实施方式所述的位置,只要该位置能保证它能承受线状电极(高压电极)的电压而绝缘不被击穿。离子发生装置的线状电极的数目也不局限于1个,可以有2个或者更多。然而,当设置2个或者多个线状电极时,必须要注意他们之间的间隔,因为,如果线状电极间相隔的太近,电场的分布状态就无法掌握,放电的效率就会降低。本发明的装置不仅能提供负离子,还可以提供正离子。在产生正离子的情况下,需要使用一个产生正电压的高压电源,将该正电压供应给高压电极。
实用性
如上所述,本发明很适用于空气清洁器、空调等的离子发生回路上的离子发生单元和离子发生装置。特别是,本发明在一个较低的电压下产生负离子或正离子方面是很优异的。
Claims (14)
1.一个离子发生单元包括:
一个有地极的绝缘基板,该绝缘基板上有绝缘膜覆盖地极的一部分,且有一部分地极不被覆盖;
一个线状电极;
一个容纳上述绝缘基板和线状电极的绝缘外罩;
其中,上述线状电极被安装在绝缘基板上使得线状电极与地极相对,地极未被绝缘膜覆盖的部分与绝缘外罩相接。
2.根据权利要求1所述的离子发生单元,其特征在于,所述线状电极直径等于或小于100μm。
3.根据权利要求1或2所述的离子发生单元,其特征在于,所述线状电极的抗拉强度等于或大于2500N/mm2。
4.根据权利要求1或2所述的离子发生单元,其特征在于,有一个具有连接部分的高压电极被装置在绝缘基板上,所述线状电极装配在所述高压电极上,绝缘膜基本上覆盖了绝缘基板的整个表面,但不覆盖高压电极、所述地极的连接部分和地极的绝缘罩连接部分。
5.根据权利要求1或2所述的离子发生单元,其特征在于,地极基本上与线状电极的纵向相互平行。
6.根据权利要求1或2所述的离子发生单元,其特征在于,所述绝缘基板有一边有缺口,线状电极的一段伸出所述缺口,在绝缘基板上安装有地极,所述地极有两个基本上与线状电极相平行的脚,这两个脚分别处于所述缺口的两侧的绝缘基板处且线状电极位于这两个脚之间。
7.根据权利要求1或2所述的离子发生单元,其特征在于,绝缘外罩由上部外罩和下部外罩构成,该下部外罩有一个凸起,该凸起基本上与绝缘基板上地极的绝缘罩连接部分位置相对。
8.根据权利要求1或2所述的离子发生单元,其特征在于,绝缘外罩由上部外罩和下部外罩构成,且该上部外罩有一个与绝缘基板上地极的绝缘罩连接部分位置相对的突出部分。
9.根据权利要求1或2所述的离子发生单元,其特征在于,地极由电阻体做成。
10.根据权利要求4所述的离子发生单元,还包括有:
一个第一端子以与所述高压电极的连接部分紧密相接,并有一个与引线相互固定的部分,
一个第二端子以与地极的连接部分紧密相接,且有一个与引线相互固定的部分;
其中,所述第一端子和第二端子都被容纳在所述绝缘外罩内。
11.一个离子发生装置,其特征在于,包含权利要求1至9中任意一项所述的离子发生单元,且有一个高压电源以产生负电压或者正电压。
12.根据权利要求11所述的离子发生装置,其特征在于,高压电源的输出电压的绝对值等于或者小于2.5KV。
13.一个离子发生装置,其特征在于,包含有分别接到第一端子和第二端子上的引线,而且具有一个高压电源以产生一个负电压或者正电压,以及如权利要求10所述的离子发生单元。
14.根据权利要求13所述的离子发生装置,其特征在于,高压电源的输出电压的绝对值等于或者小于2.5KV。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP382063/2004 | 2004-12-28 | ||
JP2004382063 | 2004-12-28 | ||
JP2005215332 | 2005-07-26 | ||
JP215332/2005 | 2005-07-26 | ||
PCT/JP2005/019317 WO2006070526A1 (ja) | 2004-12-28 | 2005-10-20 | イオン発生ユニットおよびイオン発生装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1969435A CN1969435A (zh) | 2007-05-23 |
CN1969435B true CN1969435B (zh) | 2010-11-24 |
Family
ID=36614652
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2005800199156A Active CN1969435B (zh) | 2004-12-28 | 2005-10-20 | 离子发生单元及离子发生装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US7636229B2 (zh) |
EP (1) | EP1833131B1 (zh) |
JP (1) | JP4371142B2 (zh) |
KR (1) | KR100826453B1 (zh) |
CN (1) | CN1969435B (zh) |
WO (1) | WO2006070526A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008093475A1 (ja) * | 2007-01-31 | 2008-08-07 | Murata Manufacturing Co., Ltd. | イオン発生器 |
CN104112984A (zh) * | 2013-04-18 | 2014-10-22 | 无锡飘睿健康科技有限公司 | 一种净离子群发生装置 |
JP1588202S (zh) * | 2017-04-25 | 2017-10-16 | ||
SE543755C2 (en) * | 2019-11-27 | 2021-07-13 | Johnny Gentzel | Particle eliminator |
JP7524554B2 (ja) | 2020-02-28 | 2024-07-30 | 株式会社富士通ゼネラル | 放電装置および電気集塵装置 |
JP2023074240A (ja) * | 2021-11-17 | 2023-05-29 | シャープ株式会社 | 放電装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5377070A (en) * | 1992-07-13 | 1994-12-27 | Fuji Xerox Co., Ltd. | Charging apparatus for photoreceptor |
CN2609240Y (zh) * | 2003-03-19 | 2004-03-31 | 马久月 | 一种可有效提高释放浓度的负离子发生器 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3418501A (en) * | 1965-04-28 | 1968-12-24 | Centre Nat Rech Scient | High voltage electrostatic machinery |
US3761746A (en) * | 1971-11-08 | 1973-09-25 | Zenith Radio Corp | Poling of ferro-electric substrates |
FR2492212A1 (fr) | 1980-10-14 | 1982-04-16 | Onera (Off Nat Aerospatiale) | Procede et dispositifs pour transferer des charges electriques de signes differents dans une zone d'espace et application aux eliminateurs d'electricite statique |
JPS60122062A (ja) | 1983-12-05 | 1985-06-29 | Nippon Soken Inc | 空気清浄器 |
US4686370A (en) * | 1984-02-13 | 1987-08-11 | Biomed-Electronic Gmbh & Co. Medizinischer Geratebau Kg | Ionizing chamber for gaseous oxygen |
JPH01117240A (ja) * | 1987-10-30 | 1989-05-10 | Masao Iwanaga | 放電素子およびその応用装置 |
FR2632520B1 (fr) * | 1988-06-10 | 1990-09-14 | Rhone Poulenc Sante | Derives de la phenothiazine analgesiques |
US4837658A (en) * | 1988-12-14 | 1989-06-06 | Xerox Corporation | Long life corona charging device |
US5114677A (en) | 1989-04-03 | 1992-05-19 | Brunswick Corporation | Gas detection apparatus and related method |
US5079669A (en) | 1989-04-10 | 1992-01-07 | Williams Bruce T | Electrophotographic charging system and method |
JPH0734389B2 (ja) | 1990-10-17 | 1995-04-12 | 住友精密工業株式会社 | 被覆細線極型活性種発生装置 |
JPH0631099U (ja) * | 1992-09-24 | 1994-04-22 | 日本特殊陶業株式会社 | イオン発生装置 |
JPH06181087A (ja) | 1992-12-14 | 1994-06-28 | Ngk Spark Plug Co Ltd | 電界装置 |
JP4165910B2 (ja) * | 1996-06-06 | 2008-10-15 | 有限会社電装研 | 沿面放電型放電素子 |
JPH10261477A (ja) | 1997-03-18 | 1998-09-29 | Toto Ltd | 負イオン発生装置 |
JPH1119201A (ja) * | 1997-07-02 | 1999-01-26 | Kyowa Sangyo:Kk | イオン発生装置とその使用方法 |
JPH11191478A (ja) * | 1997-10-23 | 1999-07-13 | Toto Ltd | イオン発生装置 |
JP3876554B2 (ja) * | 1998-11-25 | 2007-01-31 | 株式会社日立製作所 | 化学物質のモニタ方法及びモニタ装置並びにそれを用いた燃焼炉 |
JP3759687B2 (ja) * | 2000-01-17 | 2006-03-29 | シャープ株式会社 | イオナイザ |
KR20020071053A (ko) * | 2001-03-02 | 2002-09-12 | 엘지전자 주식회사 | 후막 형성방법 |
WO2004019462A1 (ja) * | 2002-08-23 | 2004-03-04 | Daito Co., Ltd. | イオン発生装置 |
JP4114573B2 (ja) | 2003-08-13 | 2008-07-09 | 株式会社村田製作所 | イオン発生部品、イオン発生ユニットおよびイオン発生装置 |
-
2005
- 2005-10-20 JP JP2006550614A patent/JP4371142B2/ja active Active
- 2005-10-20 CN CN2005800199156A patent/CN1969435B/zh active Active
- 2005-10-20 WO PCT/JP2005/019317 patent/WO2006070526A1/ja active Application Filing
- 2005-10-20 EP EP05795860.5A patent/EP1833131B1/en active Active
- 2005-10-20 KR KR1020067023376A patent/KR100826453B1/ko active IP Right Grant
-
2006
- 2006-12-04 US US11/566,273 patent/US7636229B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5377070A (en) * | 1992-07-13 | 1994-12-27 | Fuji Xerox Co., Ltd. | Charging apparatus for photoreceptor |
CN2609240Y (zh) * | 2003-03-19 | 2004-03-31 | 马久月 | 一种可有效提高释放浓度的负离子发生器 |
Non-Patent Citations (1)
Title |
---|
JP平10-022055A 1998.01.23 |
Also Published As
Publication number | Publication date |
---|---|
US7636229B2 (en) | 2009-12-22 |
WO2006070526A1 (ja) | 2006-07-06 |
KR100826453B1 (ko) | 2008-04-29 |
JPWO2006070526A1 (ja) | 2008-06-12 |
EP1833131B1 (en) | 2018-10-10 |
EP1833131A4 (en) | 2013-10-16 |
CN1969435A (zh) | 2007-05-23 |
KR20070009677A (ko) | 2007-01-18 |
US20070091536A1 (en) | 2007-04-26 |
JP4371142B2 (ja) | 2009-11-25 |
EP1833131A1 (en) | 2007-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100555774C (zh) | 离子发生器件、离子发生单元和离子发生装置 | |
CN1969435B (zh) | 离子发生单元及离子发生装置 | |
CN101213714B (zh) | 离子发生器及其臭氧产生量的控制方法 | |
KR101111468B1 (ko) | 이온 생성 장치 | |
CN1791467B (zh) | 离子发生元件、离子发生装置、电气设备 | |
SE8700441L (zh) | ||
JPS6120484B2 (zh) | ||
JP2007294180A (ja) | イオン発生装置及びこれを備えた電気機器 | |
US4096544A (en) | Air ionizer | |
JP3987855B2 (ja) | イオン発生装置 | |
KR19990055592A (ko) | 전기집진기 | |
CN109415206B (zh) | 臭氧产生装置 | |
US10349505B2 (en) | High-voltage supply and an x-ray emitter having the high-voltage supply | |
CN101379667A (zh) | 离子发生器 | |
KR101841555B1 (ko) | 플라즈마를 이용한 이미용장치 | |
JP5223424B2 (ja) | 集塵装置 | |
EP1848076A1 (en) | Ion generator and method for controlling ozone amount | |
JPH0935890A (ja) | 静電気除去方法とその装置 | |
JP2006210311A (ja) | イオン発生部品、イオン発生ユニットおよびイオン発生装置 | |
JP2003203745A (ja) | イオン生成装置 | |
JP4610133B2 (ja) | ガスレーザ発振器における電極外放電検出方法 | |
CN115899934A (zh) | 离子风组件和空气处理设备 | |
JPH088040A (ja) | イオナイザの高圧放電回路 | |
JPH10218607A (ja) | オゾン発生器 | |
CN101341638A (zh) | 离子发生元件、离子发生单元及离子发生装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |