CN1946975A - 热泵装置 - Google Patents

热泵装置 Download PDF

Info

Publication number
CN1946975A
CN1946975A CNA200580013440XA CN200580013440A CN1946975A CN 1946975 A CN1946975 A CN 1946975A CN A200580013440X A CNA200580013440X A CN A200580013440XA CN 200580013440 A CN200580013440 A CN 200580013440A CN 1946975 A CN1946975 A CN 1946975A
Authority
CN
China
Prior art keywords
mentioned
generator
decompressor
current
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA200580013440XA
Other languages
English (en)
Other versions
CN100449228C (zh
Inventor
松井敬三
长谷川宽
西脇文俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN1946975A publication Critical patent/CN1946975A/zh
Application granted granted Critical
Publication of CN100449228C publication Critical patent/CN100449228C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

本发明实现回收效率高、高可靠性的热泵装置以及动力回收装置。热泵装置由使动作流体膨胀的膨胀机(711)、为了由膨胀机(711)回收动力而设置并发电三相交流电的永磁式同步发电机(710)、把其交流电变换成直流电的同时具有通过开关元件群(709)的通断而使发电机(710)以预定的目标转数旋转的功能的第1变换器(708)构成,把发电的电力连接到由整流电路(702)以及平滑电容器(703)把交流电源(701)整流·平滑了的直流电力线上,消耗在通过电机驱动装置(704)使压缩机(707)旋转的电动机(706)的驱动中,有效地进行动力回收。

Description

热泵装置
技术领域
本发明涉及在膨胀机上连接发电机进行动力回收的热泵装置。
背景技术
作为现有的一般蒸汽压缩式冷冻装置,有图10所示的结构。图10的蒸汽压缩式冷冻装置由压缩机101、散热器102、膨胀阀103以及蒸发器104构成。这些单元由管路连接,制冷剂像图示的中空箭头那样循环。
上述蒸汽压缩式冷冻装置的运行原理如下。由压缩机101增加制冷剂的压力及温度,接着,制冷剂进入到散热器102被冷却。然后,把处于高压状态的制冷剂由膨胀阀103节流成蒸发压力,在蒸发器104中吸热汽化。而且,从蒸发器104出来的制冷剂返回到压缩机101。本装置中,作为制冷剂使用不破坏臭氧层,地球温暖化系数极小的二氧化碳。
然而,以二氧化碳为制冷剂的蒸汽压缩式制冷装置与一般使用的以氟利昂为制冷剂的冷冻装置相比较,作为能量效率的效率系数(COP)低。进而,在考虑了同等制冷能力的情况下,需要比以氟利昂为制冷剂的冷冻装置更多的电功率。因此,作为能量需要大量的化石燃料,即使减小制冷剂自身的地球温暖化系数,其结果也排放出大量的二氧化碳。从而,需要提高以二氧化碳为制冷剂的蒸汽压缩式冷冻装置的COP,当前已经提出了各种结构或者方法。
作为提高COP的装置提出了以下的方案(专利文献1到3)。
图11所示的冷冻装置由原动机205驱动压缩机201,由压缩机201压缩了的制冷剂在散热器202中冷却,然后,通过安装了膨胀比控制单元203的膨胀机204。膨胀机204经过主轴213辅助压缩机201的驱动。制冷剂在膨胀机204内膨胀,在蒸发器206内从外部吸热汽化了以后,再次返回到压缩机201。由压缩机201、散热器202、膨胀机204以及蒸发器206构成的回路由管路207连接。另外,为了提高性能和可靠性,有时还设置分油器208和储液器209。
膨胀比控制单元203由运算单元210控制。作为向该运算单元210的输入,为了检测散热器202出口一侧的制冷剂状态,安装温度传感器211和压力传感器212。
在这样结构的冷冻装置中,通过使用膨胀机204,用基于制冷剂膨胀的力来辅助压缩机201的驱动,因此能够降低所使用的能量总量,提高COP。
即,如图12所示的表示作为制冷剂使用了二氧化碳的冷冻循环中的制冷剂的状态的压力-焓状态图,即所谓的莫利尔(モリエル)线图那样,在把现有的膨胀阀用作为膨胀单元的情况下,进行等焓膨胀,通过膨胀机进行等焓膨胀(图中的虚线表示),利用由膨胀机回收的动力,能够提高总效率。
另外,在图13所示的冷冻装置中,在散热器402中冷却由用原动机405驱动的压缩机401压缩了的制冷剂,然后,通过膨胀机403时,使与该膨胀机403连接的发电机404发电(专利文献1、专利文献2)。而且,成为制冷剂在膨胀机403内膨胀、在蒸发器406内从外部吸热汽化了以后再次返回到压缩机401的结构。
该装置由制冷剂的膨胀产生的力使发电机404旋转发电,通过利用其电力来降低所使用的能量总量,由此能够提高COP。
进而,作为这种发电机404,使用了励磁装置(专利文摘4)。
图14以及图15表示在专利文献4中公开的冷冻装置。该冷冻装置如图14所示,在按照压缩机501、冷凝器502、储液器503、膨胀机504以及蒸发器505的顺序循环制冷剂的结构中,膨胀机504中具备与其驱动轴连接在同轴上的发电机506,具备在蒸发器505的出口上设置的检测制冷剂的过热度的过热度检测单元512、根据其信号控制发电机506的励磁电流的控制单元511、把由发电机506发生的交流变换成直流的整流器508、以及回收直流电的蓄电器510。
在这种冷冻装置的情况下,通过调整发电机506的励磁电流(即,在励磁绕组中流过的电流量)控制发电机506,根据发电机506的负荷转矩的增减,进行膨胀机504的旋转控制,调整制冷剂流量,同时,由蓄电器510高效地回收由发电机506发生的电力。
即,发电机506成为由固定在转子另一端上的驱动轴输入驱动力进行发电的结构。在发电机506中具备电刷,电刷具有在集电环上滑动、向转子绕组供给励磁电流的功能。如果通过制冷剂的膨胀旋转使驱动轴旋转,则根据供给到转子绕组上的励磁电流而产生磁场,在定子绕组中发生电动势,该电动势作为交流电从定子绕组输出。
另外,用于生成发电机506的励磁电流的励磁单元507成为图15所示的电路结构,成为把控制单元511输出的励磁电流控制信号作为输入信号、从励磁单元507把励磁电流作为输出信号供给到发电机506的结构。
即,在npn型的晶体管Tr604(以下,称为Tr604)的基极上,加入从控制单元511输出的励磁电流控制信号。另外,Tr604的发射极连接发电机506的负端子,Tr604的集电极经过电阻605连接发电机506的转子绕组602。另外,晶体管Tr603(以下,称为Tr603)的基极连接Tr604的集电极,Tr603的发射极连接发电机506的负端子,Tr603的集电极经过转子绕组602连接发电机506的正端子。由此,如果从控制单元511施加到Tr604的基极上的励磁电流控制信号增大,则Tr604导通,使流过转子绕组602的励磁电流增大,反之,如果减少施加到Tr604的基极上的励磁电流控制信号,则使励磁电流减少。
进而,输出励磁电流控制信号的控制单元511成为根据冷冻循环的温度信息等而控制输出到励磁单元507的励磁电流控制信号以使成为适当的制冷剂流量的结构。例如,在制冷剂循环量少的情况下,减少发电机506的励磁电流,减少负荷转矩,使膨胀机504的转数增加。反之,在循环量多的情况下,增加发电机506的励磁电流,增大负荷转矩,使膨胀机504的转数减少。另外,由发电机506发电的交流电压经过整流器508变换成直流电压,经过可变负载电阻506控制成充电电压几乎为恒定,把蓄电器510充电。
这样,通过由具备转子绕组602和在转子绕组602上供给励磁电流的励磁单元507的发电机506控制其励磁电流,控制膨胀机504的转数。
另外,在专利文献5中记载了:在使用AC-DC变换器(可变速逆变器)把与风车轴结合的永磁式同步发电机的输出进行变换的风力发电机中,通过控制可变速逆变器,进行发电机的输出电压和其转数的可变速控制。
进而,在专利文献6中记载了:根据永磁式同步发电机的输出电流和端子电压,由位置推定器推定磁极位置,在此基础上控制发电机的转矩。
专利文献1:特开2000-241033号公报
专利文献2:特开2000-249411号公报
专利文献3:特开2001-165513号公报
专利文献4:特开平1-168518号公报
专利文献5:特开2000-345952号公报
专利文献6:特开2002-354896号公报
然而,在专利文件4记载的结构的情况下,由于在发电机的转子中具备励磁单元或者绕组,因此重量大,而且其结构复杂。另外,由于在励磁单元中流过电流,因此存在转子内的功率损失,发电效率降低。
另外,由于通过调整励磁电流控制发电机的转数,因此对于超过了狭窄的励磁电流的调整范围的转数,不能够控制膨胀机。从而,难以产生出制冷循环的最佳状态,难以使制冷循环的效率为最佳。
另外,专利文献5中记载的发电机的控制的情况下,由于在转子中没有励磁元件和绕组,因此转子一侧的重量减少,而且,减少转子内的电流损失,从而发电效率提高,但是,并没有记载有关检测发电机的磁极位置的方法。在使用了没有励磁单元等的永磁式同步发电机的情况下,为了控制该发电机需要检测发电机的磁极位置。为了进行发电机的磁极位置检测,当前不可缺少是使用编码器等旋转位置传感器。因此,例如如果是膨胀机与发电机的一体型构造的情况,则由于编码器而需要把旋转轴伸出到壳体以外,从而,需要对于压力的轴密封等的对策,使可靠性降低。
另外,在专利文献6中公开了:在风力发电机等中,为了与永磁式同步发电机的旋转速度无关把直流电压保持为恒定,不使用编码器,通过电流推定磁极位置,控制发电机的技术。然而,在热泵装置中,不仅需要使发电机的输出为最大,还需要一边有效地利用发电机的输出,一边使制冷循环的效率成为最佳的控制。
另外,由于是在起动等时不能够强制地使膨胀机旋转的结构,因此使冷冻循环的可靠性降低。
发明内容
从而,本发明是为了解决上述的课题而作出的,其目的是提供减少转子一侧的重量,而且在转子中没有励磁单元和绕组,从而,由于在转子中不通电,没有转子内的功率损失,因此发电效率提高,进而,转子一侧的结构简单,成本降低,能够灵活地运用发电机的有效性的热泵装置。
另外,其它的目的在于提供效率高、可靠性高的热泵装置。即,能够以大范围的转数控制膨胀机,谋求效率的优化,能够在没有旋转位置传感器的情况下控制永磁式同步发电机,从密封性等的观点出发谋求提高可靠性,能够在起动时强制地使膨胀机旋转,改善起动性,谋求提高冷冻循环的可靠性。
第1方案的热泵装置具有:压缩制冷剂的压缩机、冷却由压缩机压缩了的上述制冷剂的散热器、使通过了散热器的制冷剂膨胀的膨胀机、使由膨胀机膨胀了的制冷剂蒸发的蒸发器、使制冷剂在压缩机、散热器、膨胀机以及蒸发器中循环的制冷剂管路、设置在压缩机与膨胀机之间检测制冷剂的压力的压力传感器、设置在压缩机与膨胀机之间检测制冷剂的温度的温度传感器、与膨胀机连接的永磁式同步发电机、检测在永磁式同步发电机中流过的电流的电流传感器、把永磁式同步发电机输出的交流电变换成直流电,根据由电流传感器检测出的电流值推定永磁式同步发电机的磁极位置,同时,使用电流值以及磁极位置把永磁式同步发电机的转数控制为预定值的第1变换器、根据来自压力传感器以及温度传感器的信号控制第1变换器的发电机转数控制单元。
依据第1方案,用第1变换器把永磁式同步发电机的转数控制为预定的值,能够由与膨胀机连接的永磁式同步发电机进行电力回收。由于在永磁式同步发电机中没有励磁单元等,因此发电机的重量减少,而且发电效率高,由此能够实现总效率高、成本低的热泵装置。另外,能够优化热泵装置的循环效率。
第2方案的热泵装置在第1方案的热泵装置中,根据由电流传感器检测出的电流值推定永磁式同步发电机的磁极位置以及转数的同时,使用电流值、磁极位置以及转数把永磁式同步发电机的电流值以及转数控制为预定的值。
依据上述第2方案,能够没有旋转位置传感器而控制永磁式同步发电机的转数,由此,能够把发电机和膨胀机构成为一体收容在同一个壳体内,能够实现密封性出色、可靠性高的热泵装置。
第3方案的热泵装置在第1方案的热泵装置中,还具有,把商用电源的交流变换成直流的第2变换器、把从第1以及第2变换器输出的直流连接到逆变器的输入端,变换成预定频率的交流而驱动压缩机的逆变器。
依据上述第3方案,作为压缩机的驱动电力能够利用膨胀机的发电电力,能够成为简单的结构,同时,能够高效地回收电力。
第4方案的热泵装置在第1方案的热泵装置中,还具有设置在压缩机与膨胀机之间检测制冷剂的压力以及温度的压力传感器以及温度传感器、根据来自压力传感器以及温度传感器的信号而控制发电机的电流值使得制冷剂的压力成为最佳压力的发电机电流控制单元。
依据上述第4方案,能够优化热泵装置的循环效率。
第5方案的热泵装置在第1方案的热泵装置中,还具有设置在压缩机与膨胀机之间检测制冷剂的压力以及温度的压力传感器以及温度传感器、根据来自压力传感器以及温度传感器的信号控制发电机的发电量以使制冷剂的压力成为最佳压力的发电机发电量控制单元。
依据上述第5方案,能够优化热泵装置的循环效率。
第6方案的热泵装置在第1方案的热泵装置中,在膨胀机的起动时,由第1变换器使发电机牵引驱动。
依据上述第6方案,能够平滑地进行系统动作开始时的膨胀机的起动,能够提高系统的可靠性。
第7方案的热泵装置在第1方案的热泵装置中,在压缩机起动后的预定时间以后开始进行基于上述第1变换器的发电机的运行。
依据上述第7方案,能够迅速地进行系统的上升。
第8方案的热泵装置在第1方案的热泵装置中,制冷剂是二氧化碳。
依据上述第8方案,由于避免降低热泵装置的效率系数(COP),因此作为制冷剂使用二氧化碳,能够有助于防止地球变暖。
第9方案的动力回收装置具有使动作流体膨胀的膨胀机、与膨胀机连接的永磁式同步发电机;检测在永磁式同步发电机中流过的电流的电流传感器;把永磁式同步发电机输出的交流电变换成直流电,根据由电流传感器检测出的电流值而推定永磁式同步发电机的磁极位置,同时,使用电流值以及磁极位置把永磁式同步发电机的转数控制为预定的值的第1变换器。
依据上述第9方案,由第1变换器把永磁式同步发电机的转数控制为预定的值,能够由与膨胀机连接的永磁式同步发电机进行电力回收。由于在永磁式同步发电机中没有励磁单元等,因此发电机的重量减少,而且发电效率升高,由此能够实现总效率高、成本低的热泵装置。
依据本发明的热泵装置,能够在发电机中不设置励磁单元,减少发电机转子一侧的重量。另外,依据该装置,由于没有转于内的功耗,因此发电效率升高,进而,能够实现转子一侧的结构简单,低成本的动力回收系统。另外,通过由第1变换器进行的发电机的通断控制,能够在大范围内进行经过了发电机的膨胀机的控制,能够谋求提高动力回收效率或者冷冻系统效率。
附图说明
图1是表示本发明实施形态1的热泵装置的结构框图。
图2是图1所示的热泵装置的第1变换器的详细的结构框图。
图3是表示本发明实施形态2的热泵装置的结构框图。
图4表示对于散热器出口压力和温度的制冷循环的效率的一个例子。
图5是决定图3所示的热泵装置中的膨胀机转数的流程图。
图6是起动图3所示的热泵装置中的膨胀机时的状态转移图。
图7是表示本发明实施形态3的热泵装置的结构框图。
图8是图7所示的热泵装置的第1变换器的详细的结构框图。
图9是决定图7所示的热泵装置中的发电机电流的流程图。
图10是表示现有的蒸汽压缩式冷冻装置的结构图。
图11是表示现有的冷冻装置的结构图。
图12是表示使用了二氧化碳的冷冻循环中的制冷剂的状态的莫利尔图。
图13是表示现有的其它冷冻装置的结构图。
图14是表示现有的冷冻装置的结构图。
图15是表示现有的冷冻装置的励磁单元的电路图。
符号的说明
701、911、1210:交流电源
702、912、1211:整流电路
703、802、913、1212、1402:平滑电容器
704、906、1206:电机驱动装置
705、709:开关元件群
706、905、1205:电动机
707、907、1201:压缩机
708、908、1208:第1变换器
710、907、1207:发电机
711、903、1203:膨胀机
801、1401:直流电源
803a~803f、1404a~1403f:开关元件
804a 804f、1404a  1404f:返流二极管
805a、805b、1405a、1405b:电流传感器
806、1406:二轴电流变换单元
807、1407:转子位置转数推定单元
808、1408:基本驱动器
809、1409:正弦波电压输出单元
810、1410:电流控制单元
811、1411:电流指令生成单元
812:转数控制单元
813a、813b、1413a、1413b:分压电阻
902、1202:散热器
903、1203:膨胀机
904、1204:蒸发器
909:膨胀机转数决定单元
910:膨胀机起动单元
914、1213:制冷剂管路
915、1214:压力传感器
916、1215:温度传感器
1209:发电机电流决定单元
具体实施方式
(实施形态1)
参照附图说明本发明的热泵装置的一个实施形态。
本实施形态的热泵装置构成为具备使动作流体膨胀的膨胀机711、与膨胀机711连接的永磁式同步发电机710(以下,称为发电机710)、把发电机710输出的交流电变换成直流电的同时具有控制发电机710的驱动的功能的第1变换器708。
进而,构成为包括压缩机707、驱动压缩机707的电动机706、控制电动机706的电机驱动装置704、把由整流电路702以及平滑电容器703从交流电源701变换了的直流电或者来自第1变换器708的直流电经过电机驱动装置704供给到电动机706的电源电路。
下面,说明上述结构的动作。
图1中,由整流电路702把来自商用电源的交流电源701的输入整流成直流后的直流电压被平滑电容器703平滑了电压以后,由电机驱动装置704变换成三相交流电压,由此驱动电动机706。通过对电动机706的驱动,压缩机707起到压缩作用。电机驱动装置704由用于把直流电压变换成交流的开关元件群705等构成,通过以PWM(脉宽调制)方式使开关元件群705接通和断开以实现预定的交流频率,从而能够输出任意的交流。另外,在本实施形态中,整流电路702以及平滑电容器703的结构是第2变换器,电机驱动装置704的结构相当于逆变器。
另一方面,在为了由膨胀机711回收动力而设置的发电机710上连接用于把由发电机710发电的三相交流电变换成直流的第1变换器708。该第1变换器708具有如下功能,即,把由发电机710发电的交流电变换成直流的同时,通过以PWM方式通断在内部构成的开关元件群709,从而使发电机710以所提供的目标转数旋转的功能。根据控制该发电机710的转数的功能,能够经过发电机710控制膨胀机711的转数,由此,在使用了膨胀机711的热泵装置中,能够以最佳的转数驱动其膨胀机711。即,通过第1变换器708的通断控制,能够进行发电机710的即膨胀机711的大范围的旋转控制。
另外,来自第1变换器708的直流输出线并联连接到从整流电路702经过平滑电容器703得到的直流电力线上。由此,从第1变换器708再生了的电力被消费成电机驱动装置704的驱动能量。
如果把从交流电源701经过整流电路702输入的功率记为Win,把在电机驱动装置704中消耗的功率记为Wn,把由第1变换器708再生的功率记为Wg,则下式成立。
Win+Wg=Wn……(式1)
这里,如果考虑在热泵装置中的冷冻循环中设置该压缩机707和膨胀机711的情况,则通常由于压缩机707的功耗量Wn比由膨胀机711产生的再生功率Wg大,因此来自交流电源701的输入功率Win是正的值。
从而,即使把第1变换器708的输出连接到第2变换器的输出端,对于交流电源701也不会流过再生电流,因此即使没有特别的系统协同动作的控制装置,平滑电容器703的电压也不会过多上升。从而,依据这样简单结构的本实施形态的热泵装置,能够高效地回收由发电机710得到的电力。
进而,从第1变换器708的结构及其动作对于本实施形态进行补充说明。图2是图1所示的热泵装置的第1变换器的详细的结构框图。
该第1变换器708由两个电流传感器805a、805b,开关元件803a、803b、803c、803d、803e、803f以及返流二极管804a、804b、804c、804d、804e、804f成对的变换电路和由二轴电流变换单元806、转子位置转数推定单元807、基本(ベ一ス)驱动器808、正弦波电压输出单元809、电流控制单元810、电流指令生成单元811以及转数控制单元812组成的控制电路构成。
而且,发电机710的三相交流的发电输出连接成经过第1变换器708例如供给到直流电源801以及平滑电容器802的一侧。这里,直流电源801以及平滑电容器802相当于图1中的整流电路702以及平滑电容器703。进而,三相的交流输出由第1变换器708变换成直流。这时,根据从外部提供的目标转数的信息进行控制,以使发电机710的转数成为目标转数。
即,根据从电流传感器805a、805b得到的发电机710的电流信息而推定的发电机710的磁极位置的信息、发电机710的转数的信息和从外部提供的目标转数的信息来决定第1变换器708的开关元件803a~803f的通断图形。进而,该通断图形信号由基本驱动器808变换成用于电驱动开关元件803a~803f的驱动信号,根据这些驱动信号,各开关元件803a~803f进行动作。
下面,说明第1变换器708的动作。
首先,使用以下公式(式2),由转数控制单元812根据与当前的转数ω(后述的推定转数ωm)的误差而运算电流指令I*,以实现从外部提供的目标转数ω*。作为运算方法,依据一般的PI控制方式。
I*=Gpω×(ω*-ω)+Giω×∑(ω*-ω)……(式2)
这里,Gpω、Giω是速度控制比例增益、积分增益,ω是转数,ω*是目标转数,I*是电流指令。
进而,电流指令生成单元811根据运算出的电流指令值I*,通过以下公式,运算用于实现电流相位角的d轴电流指令Id*、q轴电流指令Iq*。
Id*=I*×sin(β)                ……(式3)
Iq*=I*×cos(β)                ……(式4)
这里,β是电流相位角。
另一方面,由电流传感器805a、805b检测出的发电机710的相电流Iu、Iv由二轴电流变换单元806根据以下公式(式5),变换成在发电机710的磁矩中有贡献的输出电流Iq和与其正交的d轴电流Id的二轴电流。
【数1】
i a = 3 2 × i u
i b = 1 2 × ( i u + 2 × i v )
i d i q = cos ( θ ) sin ( θ ) - sin ( θ ) cos ( θ ) i u i h
……(式5)
这里,θ是转子位置(发电机的磁极位置)。
而且,电流控制单元810使用所提供的电流指令Id*、Iq*和电流值Id、Iq,根据以下公式进行控制运算以实现电流指令,把输出电压Vd、Vq进行输出。
Vd=Gpd×(Id*-Id)+Gid×∑(Id*-Id)        ……(式6)
Vq=Gpq×(Iq*-Iq)+Giq×∑(Iq*-Iq)        ……(式7)
这里,Vd、V q是d轴电压、q轴电压,Gpd、Gid是d轴电流控制比例增益、积分增益,Gpq、Giq是q轴电流控制比例增益、积分增益。
其次,从所求出的两个方向的输出Vd、Vq,使用按照后述的方法推定的转子位置闸,根据一般的二相三相变换,用以下公式(式8)进行变换,求三相输出电压Vu、Vv、Vw,以使输出波形成为正弦波。
【数2】
V v V h = cos ( θ ) - sin ( θ ) sin ( θ ) cos ( θ ) V d V q
V u V v V w = 2 3 0 - 1 6 1 2 - 1 6 - 1 2 V w V b
……(式8)
这里,Vu、Vv、Vw是U相、V相、W相的电压,θ是转子位置。
进而,正弦波电压输出单元809根据输出电压Vd、Vq和由转子位置转数推定单元807推定的转子位置的信息,把用于驱动发电机710的驱动信号输出到基本驱动器808。而且,基本驱动器808根据其驱动信号输出用于驱动开关元件803a~803f的信号。由此,按照成为目标的转数(速度)驱动发电机710。
下面,说明转子位置转数推定单元807的动作。
首先,从由电流传感器805a、805b检测出的电流,得到在各相的绕组中流过的相电流(Iu、Iv、Iw)。另外,从由正弦波电压输出单元809输出的三相的占空比值Du、Dv、Dw和从分压电阻813a、813b得到的电源电压Vdc,根据以下公式求施加在各相的绕组上的相电压(vu、vv、vw)。
vu=Du×Vdc                    ……(式9)
vv=Dv×Vdc                    ……(式10)
vw=Dw×Vdc                    ……(式11)
从这些值,根据以下公式(式12)、(式13)、(式14)的运算,求在各相的绕组中感应的感应电压值eu、ev、ew。
eu=vu-R·iu-L·d(iu)/dt       ……(式12)
ev=vv-R·iv-L·d(iv)/dt       ……(式13)
ew=vw-R·iw-L·d(iw)/dt       ……(式14)
这里,R是电阻,L是电感。另外,d(iu)/dt、d(iv)/dt、d(iw)/dt分别是iu、iv、iw的时间微分。
接着,使用运算出的感应电压eu、ev、ew,推定转子位置θ和推定转数ωm。这是通过使用感应电压的误差修正电机驱动装置所识别的推定角度θm,从而使其收敛到真值,推定转子位置θ的方法。另外,从推定角度θm还进行推定转数ωm的推定。
首先,按照以下公式求各相的感应电压基准值(eum、evm、ewm)。
eum=em·sin(θm+βT)
evm=em·sin(θm+βT·-120°)
ewm=em·sin(θm+βT-240°)     ……(式15)
这里,em感应电压振幅值em是通过与感应电压值eu、ev、ew一致而求出。
其次,使用以下公式(式16),从各相的感应电压值es减去各相的感应电压基准值esm,求偏差ε。
ε=es-esm                ……(式16)
这里,s是相(u/v/w)。
这里,由于如果该偏差ε成为0则推定角度θm成为真值,因此使偏差ε收敛为0那样,例如用在PI运算中收敛偏差ε的方法,作为推定转子位置θ(推定磁极位置)求推定角度θm的真值。另外,通过运算推定角度θm的变动值,能够把推定转数ωm进行推定。另外,由于如果是从业人员则是了解该推定方法,因此省略其说明。
如以上说明的那样,在本实施形态的热泵装置中,第1变换器例如使用电流传感器或者转子位置转数推定单元等,推定发电机的磁极位置以及转数,根据这些推定磁极位置和推定转数,控制没有励磁单元等的永磁式同步发电机的转数,即膨胀机的转数,能够有效地进行由与膨胀机连接的发电机进行的电力回收。由此,由于在该发电机的转子一侧没有励磁单元或者绕组,因此发电机的重量减少,而且由于没有由励磁单元等产生的功耗,因此发电效率提高,进而能够提供结构简单,成本降低的热泵装置。
另外,在本实施形态中,由于能够不用位置传感器而知道发电机的磁极位置,因此例如不需要编码器用的轴密封等,能够把膨胀机和发电机收容在密闭一体型壳体中,实现可靠性(密封性)高的热泵装置。
(实施形态2)
参照附图说明在冷冻循环中使用了本发明的热泵装置时的实施形态。图3是表示本发明实施形态2的热泵装置的结构框图。
本实施形态的热泵装置构成为具备压缩制冷剂的压缩机901、冷却由压缩机901压缩了的制冷剂的散热器902、使通过了散热器902的制冷剂膨胀的膨胀机903、使由膨胀机903膨胀了的制冷剂蒸发的蒸发器904、以及使制冷剂在以上的各单元设备之间循环的制冷剂管路914,具备与膨胀机903连接的永磁式同步发电机907(以下,称为发电机907)、把发电机907输出的交流电变换成直流电的同时具有控制发电机907的驱动的功能的第1变换器908。
另外,构成为包括驱动压缩机901的电动机905、控制电动机905的电机驱动装置906、经过电机驱动装置906向电动机905供给由整流电路912以及平滑电容器913从交流电源911变换了的直流电或者来自第1变换器908的直流电的电源电路、以及由膨胀机转数决定单元909、膨胀机起动单元910、检测制冷剂的压力的压力传感器915以及检测制冷剂的温度的温度传感器916构成并向第1变换器908输出信号的控制电路。
另外,压力传感器915以及温度传感器916设置在作为热泵循环的高压一侧的压缩机901和膨胀机903之间,在本实施形态的情况下,把它们设置在散热器902的出口。
另外,与发电机907连接的第1变换器908是与实施形态1的第1变换器708相同的结构,省略其说明。
下面,说明上述结构的动作。
图3中,通过由电机驱动装置906和电动机905驱动的压缩机901来压缩了的制冷剂在散热器902中被冷却,然后,在通过膨胀机903时膨胀,使连接在该膨胀机903上的发电机907旋转。而且,在膨胀机903内膨胀了的制冷剂在蒸发器904内从外部吸热汽化了以后,再次返回到压缩机901。另外,该回路由制冷剂管路914连接。
而且,由整流电路912把来自交流电源911的输入整流成直流后的直流电压被平滑电容器913平滑了以后,由电机驱动装置906变换成三相的交流电压,由此驱动电动机905。通过电动机905的驱动,压缩机901发挥压缩作用。另外,根据制冷剂的膨胀力发生的膨胀机903的转矩成为发电机907的旋转力,进行发电。由该发电机907发电的电力由第1变换器908变换成直流以后,供给到平滑电容器913的两端。这样,由与膨胀机903连接的发电机907发电的电力作为压缩机901的电机驱动的辅助动力使用。
这里,发电机907即膨胀机903的转数由第1变换器908控制。另外,压缩器907的转数由电机驱动装置906控制。
另外,在第1变换器908中,从膨胀机转数决定单元909提供目标转数。该膨胀机转数决定单元909根据从压力传感器915以及温度传感器916检测出的散热器902的出口温度以及出口压力的值,决定最佳的膨胀机转数(目标转数)。该最佳的膨胀机转数通过图4的对于散热器出口压力和散热器出口温度的本制冷循环的效率的数据来决定。
如该图所示,本制冷循环的效率是根据散热器902的出口压力以及出口温度而成为最大的点不同,连接了该点的线是图中的最佳效率压力线。使用该压力线,通过计测散热器出口温度,作为该时刻的散热器出口压力,求最佳压力。
下面,说明膨胀机转数决定单元909的动作。图5是决定图3所示的热泵装置中的膨胀机转数的流程图,表示膨胀机转数决定单元909中的使循环效率为最大的膨胀机转数值的决定顺序。
首先,在步骤101中输入所测定的散热器出口的压力以及温度的值。而且,根据图4所示的最佳压力的数据,运算使效率成为最大的最佳压力的值(步骤102)。接着,在步骤103中判定所测定的当前的出口压力是否大于最佳压力。在出口压力比最佳压力大的情况下,提高膨胀机903的目标转数以降低出口压力(步骤104)。例如,以后述的初始转数指令n1作为初始值,进行使其增加的运算,置换成下一次控制的目标转数。而且,把用于使出口压力降低的目标转数输出到第1变换器908(步骤105)。由此,膨胀机903中的入口、出口的压力差降低,其结果,冷冻循环中的高压一侧的压力降低。
另外,在出口压力比最佳压力小的情况下,降低膨胀机903的目标转数以使出口压力上升(步骤106)。而且,把出口压力上升的目标转数输出到第1变换器908(步骤107)。由此,膨胀机903中的入口、出口的压力差增加,作为其结果,冷冻循环中的高压一侧的压力上升。
通过反复进行这些控制,散热器902的出口压力成为使冷冻循环的效率为最大的预定的最佳压力值。
另外,上述的步骤102相当于从散热器出口压力、散热器出口温度、最佳压力的数据计算最佳压力的最佳值计算单元。
如上所述,在本实施形态的热泵装置中,使第1变换器908根据来自膨胀机转数决定单元909的目标转数,控制发电机907的转数(即,膨胀机903的转数),以使制冷剂的压力成为预定的最佳压力值,从而能够优化热泵装置的循环效率。
另外,依据本实施形态,通过进行循环效率的优化,提高效率系数(COP),能够在热泵装置中作为制冷剂使用二氧化碳,在防止地球变暖方面发挥作用。
下面,说明膨胀机起动单元910的动作。图6是起动图3所示的热泵装置中的膨胀机时的状态转移图,表示膨胀机起动单元910中的起动时的转数设定顺序。即,表示了从起动时到恒稳时的散热器出口压力、膨胀机转数、发电机电流的转移例。
图6中,在热泵装置的起动时,当压缩机901的转数上升时,散热器出口压力逐渐开始上升。这时,在起动了压缩机901以后到时刻t1的期间,在第1变换器908中执行使发电机907中流过的电流为(±0)的控制,进行在发电机907上不加入负荷转矩的发电停止运行。
即,通过具有在压缩机901起动后的预定时间以后的时刻t1开始由第1变换器908进行的发电机907的发电运行的功能,从而在该期间,使膨胀机903平滑旋转,发挥原本的膨胀功能,加速热泵系统的上升。
然后,在时刻t1的定时,把膨胀机903的初始转数指令(目标转数的初始值)设定为n1由此,实现超过膨胀机903的起动负荷的发电机907的动力运行模式的驱动,进行平滑的膨胀机903的旋转。
从该时刻t1到能够充分得到膨胀力的时刻t2的期间,由第1变换器908进行控制,以使膨胀机903中的发电机907的电流流向动力运行一侧,即,从电源电路向发电机907的方向(在发电机中输入电气的电流方向)流动。即,通过第1变换器908具有使发电机907动力运行地驱动的功能,从而在起动等时,强制地使把发电机作为电动机使用的膨胀机旋转,平滑地进行膨胀机903的起动,谋求提高冷冻循环的可靠性。
进而,在膨胀力增大了的时刻t2以后,由第1变换器908进行控制,以使发电机907的电流流向再生一侧,即从发电机907向电源电路的方向(从发电机输出电气的正的电流方向)流动。由此,实现发电机907的再生模式的驱动,开始由发电机907进行的电力回收。
而且,从时刻t3,解除初始转数指令n1的设定,使膨胀机转数决定单元909输出正规的目标转数,执行使出口压力成为最佳压力值的控制。即,进行恒稳运行,散热器出口压力、膨胀机转数以及发电机电流逐渐上升,到达最佳压力值、目标转数以及目标电流。
这样,依据本实施形态,通过起动时的发电机907的发电停止运行或者动力运行模式驱动,可以得到迅速的系统上升或者平滑的膨胀机903的起动,能够提供可靠性高的热泵装置。另外,还可以是不设置时间差、在压缩机起动的同时进行发电机的动力运行方式的驱动的结构,也能够得到与上述相同的效果。
(实施形态3)
参照附图说明在冷冻循环中使用了本发明的热泵装置时的其它实施形态。图7是表示本发明实施形态3的热泵装置的结构框图。
本实施形态的热泵装置构成为具备压缩制冷剂的压缩机1201、冷却由压缩机1201压缩了的制冷剂的散热器1202、使通过了散热器1202的制冷剂膨胀的膨胀机1203、蒸发由膨胀机1203膨胀了的制冷剂的蒸发器1204、使制冷剂在以上的各单元设备之间循环的制冷剂管路1213,具备与膨胀机1203连接的永磁式同步发电机1207(以下,称为发电机1207)、把发电机1207输出的交流电变换成直流电的同时具有控制发电机1207的驱动的功能的第1变换器1208。
另外,构成为包括驱动压缩机的1201的电动机1205、控制电动机1205的电机驱动装置1206、经过电机驱动装置1206向电动机1205供给由整流电路1211以及平滑电容器1212从交流电源1210变换了的直流电或者来自第1变换器1208的直流电的电源电路、以及由发电机电流决定单元1209、在散热器1202的出口检测制冷剂的压力的压力传感器1214以及在散热器1202的出口检测制冷剂的温度的温度传感器1205等构成并向第1变换器1208输出信号的控制电路。
下面,说明用于控制与膨胀机连接的发电机的电流的第1变换器的结构。图8是图7所示的热泵装置的第1变换器的详细的结构框图。
该第1变换器1208由两个电流传感器1405a,1405b、开关元件1403a,1403b,1403c,1403d,1403e,1403f以及返流二极管1404a,1404b,1404c,1404d,1404e,1404f成对的变换电路、以及由二轴电流变换单元1406、转子位置转数推定单元1407、基本驱动器1408、正弦波电压输出单元1409、电流控制单元1410以及电流指令生成单元1411组成的控制电路构成。另外,图中1413a、1413b是分压电阻。
而且,发电机1207的三相交流的发电输出连接成使得经过第1变换器1208,例如供给到直流电源1401以及平滑电容器1402一侧。这里,直流电源1401以及平滑电容器1402相当于图7中的整流电路1211以及平滑电容器1212。进而,三相的交流输出由第1变换器1208变换成直流。这时,根据从外部提供的目标转数的信息进行控制,使得发电机1207的转数成为目标转数。
即,根据从电流传感器1405a、1405b得到的发电机1207的电流信息而推定的发电机1207的磁极位置的信息、发电机1207的电流的信息和从外部提供的目标转数的信息来决定第1变换器1208的开关元件1403a~1403f的通断图形。进而,把该通断图形信号由基本驱动器1408变换成用于电驱动开关元件1403a~1403f的驱动信号,根据这些驱动信号,各开关元件1403a~1403f进行动作。
而且,电流指令生成单元1411根据以下公式运算用于实现电流相位角的d轴电流指令Id*、q轴电流指令Iq*,以实现从外部提供的目标电流。
Id*=I*×sin(β)                ……(式3)
Iq*=I*×cos(β)                ……(式4)
这里,I*是电流指令,β是电流相位角。
用于实现d轴电流指令Id*、q轴电流指令Iq*的方法等与实施形态1中表示的第1变换器708相同。根据以上的结构,能够实现发电机1207的电流控制。
下面,说明上述结构的动作。
图7中,通过由电机驱动装置1206和电动机1205驱动的压缩机1201压缩了的制冷剂在散热器1202中冷却,然后,在通过膨胀机1203时膨胀,使连接在该膨胀机1203上的发电机1207旋转。而且,在膨胀机1203内膨胀了的制冷剂在蒸发器1204内从外部吸热汽化了以后,再次返回到压缩机1201。另外,该回路由制冷剂管路1213连接。
而且,由整流电路1211把来自交流电源1210的输入整流成直流后的直流电压被平滑电容器1212平滑了以后,由电机驱动装置1206变换成三相的交流电压,通过由此驱动电动机1205,从而压缩机1201发挥压缩作用。另外,根据制冷剂的膨胀力,经过膨胀机1203使发电机1207旋转,进行发电。由该发电机1207发电的电力由第1变换器1208变换成直流以后,供给到平滑电容器1212以及电动机1205。这样,由发电机1207发电的电力作为压缩机1201的电机驱动的辅助动力而被使用。
进而,在本实施形态中,由第1变换器1208进行控制膨胀机1203的转矩的动作。即,在第1变换器1208中从发电机电流决定单元1209提供发电机1207的目标电流。发电机电流决定单元1209从压力传感器1214以及温度传感器1215检测出的散热器1202的出口温度以及出口压力的值,决定最佳的发电机电流(目标电流)。从图4所示的对于散热器出口压力和散热器出口温度的本冷冻循环的效率的数据决定该最佳的发电机电流,求该最佳的发电机电流使得本冷冻循环的效率成为最大。
下面,说明发电机电流决定单元1209的动作。图9是决定图7所示的热泵装置中的发电机电流的流程图,表示发电机电流决定单元1209中的使循环效率为最大的发电机电流值的决定顺序。
首先,在步骤201中输入所测定的散热器出口的压力以及温度的值。而且,根据图4所示的最佳压力的数据,运算使效率成为最大的最佳压力的值(步骤202)。接着,在步骤203中判定所测定的当前的出口压力是否大于最佳压力。在出口压力比最佳压力大的情况下,增加发电机1207的目标电流以降低出口压力(步骤204)。而且,通过把用于使出口压力降低了的目标电流输出到第1变换器1208(步骤205),降低冷冻循环中的高压一侧的压力。
另外,在出口压力比最佳压力小的情况下,降低发电机1207的目标电流以使出口压力上升(步骤206)。而且,把出口压力上升了的目标电流输出到第1变换器1208(步骤207)。由此,冷冻循环中的高压一侧的压力上升。
通过反复进行这些控制,散热器1202的出口压力成为使冷冻循环的效率为最大的预定的最佳压力值。
另外,由于发电机1207的电流值表示膨胀机1203的转矩,因此根据目标电流变更膨胀机的转矩。膨胀机1203的转矩是根据膨胀机1203的入口侧压力和出口侧压力的值而决定的值,通过控制膨胀机1203的转矩,实际上控制膨胀机入口以及出口的压力。从而,通过设定发电机1207的目标电流,能够控制膨胀机1203的入口以及出口的压力。
如上所述,在本实施形态的热泵装置中,根据由第1变换器1208按照来自发电机电流决定单元1209的目标电流,控制发电机1207的电流(即,膨胀机1203的转矩),使得制冷剂的压力成为预定的最佳压力值,能够优化热泵装置的循环效率。
另外,本实施形态的发电机1207的电流控制也是由第1变换器1208的通断控制进行的发电机1207的转数控制,能够在大范围内控制膨胀机1203。
而也可以是代替发电机电流决定单元1205决定目标电流,根据以下公式,发电机电力决定单元(未图示)决定目标发电电力的结构,根据最佳压力值调整由发电机1207发生的电量,使制冷剂的压力成为最佳压力值的方式也是有效的。
电力量W=目标电流×转数            ……(式17)
即,通过决定目标发电电力,能够控制与膨胀机1203连接的发电机1207的回收电量。
即,通过使第1变换器构成为根据来自发电机电力决定单元的目标发电电力、控制永磁式同步发电机的发电电力使得制冷剂的压力成为预定的最佳压力值,能够优化热泵装置的循环效率。
另外,上述发电机1207的发电电力控制也是基于通断控制的转数控制,能够以大范围的转数控制膨胀机1203。
另外,在本实施形态中,以电流传感器计测发电机的三相交流内的两线电流的结构进行了说明,而即使是由第1变换器的直流部分中的电流传感器构成的结构也能够实现同样的功能,得到同样的效果,这一点是很明确的。
如上所述,本发明适用于具有膨胀机的冷冻装置,例如适于冷暖风装置或者热水供给机等热泵式冷冻装置。

Claims (9)

1.一种热泵装置,其特征在于具有:
压缩制冷剂的压缩机;
冷却由上述压缩机压缩了的上述制冷剂的散热器;
使通过了上述散热器的上述制冷剂膨胀的膨胀机;
使由上述膨胀机膨胀了的上述制冷剂蒸发的蒸发器;
使上述制冷剂在上述压缩机、上述散热器、上述膨胀机以及上述蒸发器中循环的制冷剂管路;
设置在上述压缩机与上述膨胀机之间检测上述制冷剂的压力的压力传感器;
设置在上述压缩机与上述膨胀机之间检测上述制冷剂的温度的温度传感器;
连接在上述膨胀机上的永磁式同步发电机;
检测在上述永磁式同步发电机中流过的电流的电流传感器;
把上述永磁式同步发电机输出的交流电变换成直流电,根据由上述电流传感器检测出的电流值而推定上述永磁式同步发电机的磁极位置,同时,使用上述电流值以及上述磁极位置把上述永磁式同步发电机的转数控制成预定值的第1变换器;
根据来自上述压力传感器以及上述温度传感器的信号而控制上述第1变换器的发电机转数控制单元。
2.根据权利要求1所述的热泵装置,其特征在于,
上述第1变换器根据由上述电流传感器检测出的电流值而推定上述永磁式同步发电机的磁极位置以及转数的同时,使用上述电流值、上述磁极位置以及转数把上述永磁式同步发电机的电流值以及上述转数控制成预定的值。
3.根据权利要求1所述的热泵装置,其特征在于还具有:
把商用电源的交流变换成直流的第2变换器;
把从上述第1以及第2变换器输出的直流连接到逆变器的输入端,变换成预定频率的交流而驱动上述压缩机的逆变器。
4.根据权利要求1所述的热泵装置,其特征在于还具有:
设置在上述压缩机与上述膨胀机之间检测上述制冷剂的压力以及温度的压力传感器以及温度传感器;
根据来自上述压力传感器以及上述温度传感器的信号而控制上述发电机的电流值以使上述制冷剂的压力成为最佳压力的发电机电流控制单元。
5.根据权利要求1所述的热泵装置,其特征在于还具有:
设置在上述压缩机与上述膨胀机之间检测上述制冷剂的压力以及温度的压力传感器以及温度传感器;
根据来自上述压力传感器以及上述温度传感器的信号而控制上述发电机的发电量以使上述制冷剂的压力成为最佳压力的发电机发电量控制单元。
6.根据权利要求1所述的热泵装置,其特征在于,
在上述膨胀机的起动时,由上述第1变换器使上述发电机动力运行地驱动。
7.根据权利要求1所述的热泵装置,其特征在于,
在上述压缩机起动以后的预定时间以后开始进行基于上述第1变换器的上述发电机的运行。
8.根据权利要求1所述的热泵装置,其特征在于,
上述制冷剂是二氧化碳。
9.一种动力回收装置,其特征在于具有:
使动作流体膨胀的膨胀机;
与上述膨胀机连接的永磁式同步发电机;
检测在上述永磁式同步发电机中流过的电流的电流传感器;
把上述永磁式同步发电机输出的交流电变换成直流电,根据由电上述流传感器检测出的电流值而推定上述永磁式同步发电机的磁极位置,同时,使用上述电流值以及上述磁极位置把上述永磁式同步发电机的转数控制成预定值的第1变换器。
CNB200580013440XA 2004-04-27 2005-04-26 热泵装置 Expired - Fee Related CN100449228C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP130567/2004 2004-04-27
JP2004130567 2004-04-27

Publications (2)

Publication Number Publication Date
CN1946975A true CN1946975A (zh) 2007-04-11
CN100449228C CN100449228C (zh) 2009-01-07

Family

ID=35197069

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200580013440XA Expired - Fee Related CN100449228C (zh) 2004-04-27 2005-04-26 热泵装置

Country Status (5)

Country Link
US (1) US7669430B2 (zh)
EP (1) EP1764566A4 (zh)
JP (1) JP3963940B2 (zh)
CN (1) CN100449228C (zh)
WO (1) WO2005103584A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103671052A (zh) * 2012-08-29 2014-03-26 株式会社神户制钢所 发电装置及发电装置的控制方法
CN104052366A (zh) * 2014-07-08 2014-09-17 四川科陆新能电气有限公司 一种双馈电机转子电压的估算方法及系统
CN104061737A (zh) * 2014-07-10 2014-09-24 安徽红叶节能电器科技有限公司 一种二氧化碳家用电冰箱
CN104075522A (zh) * 2014-07-10 2014-10-01 安徽红叶节能电器科技有限公司 一种二氧化碳家用电冰箱循环风机的能量供给方法
CN104180585A (zh) * 2014-09-15 2014-12-03 安徽红叶节能电器科技有限公司 一种二氧化碳家用电冰箱循环风机的能量供给方法
CN105191115A (zh) * 2013-01-23 2015-12-23 特灵国际有限公司 用于避免过热的变频驱动器操作

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4770399B2 (ja) * 2005-10-31 2011-09-14 パナソニック株式会社 ヒートポンプ装置
JP4665736B2 (ja) * 2005-11-30 2011-04-06 パナソニック株式会社 冷凍サイクル装置の制御方法およびそれを用いた冷凍サイクル装置
JP2007183078A (ja) * 2006-01-10 2007-07-19 Ebara Corp 冷凍機及び冷凍装置
JP2007255327A (ja) * 2006-03-23 2007-10-04 Nippon Soken Inc 膨張機制御装置
JP4817972B2 (ja) * 2006-06-02 2011-11-16 パナソニック株式会社 冷凍サイクル装置
JP2007327696A (ja) * 2006-06-08 2007-12-20 Daikin Ind Ltd 冷凍装置
JP2007327697A (ja) * 2006-06-08 2007-12-20 Daikin Ind Ltd 冷凍装置
JP4910530B2 (ja) * 2006-07-18 2012-04-04 パナソニック株式会社 冷凍サイクル装置
JP4946292B2 (ja) * 2006-09-13 2012-06-06 パナソニック株式会社 電力変換装置およびそれを用いたヒートポンプ機器
KR101325398B1 (ko) * 2007-03-28 2013-11-04 엘지전자 주식회사 전동 압축기 및 그를 포함한 공기 조화 장치
US20080286134A1 (en) * 2007-05-16 2008-11-20 Steven Regalado Submersible pumping systems and methods for deep well applications
KR101395890B1 (ko) * 2007-10-18 2014-05-15 엘지전자 주식회사 공기조화기의 전동기 제어장치 및 그 제어 방법
WO2009101818A1 (ja) * 2008-02-15 2009-08-20 Panasonic Corporation 冷凍サイクル装置
CN104676992B (zh) 2008-05-15 2017-07-11 Xdx创新制冷有限公司 减少除霜的浪涌式蒸汽压缩传热系统
WO2010110982A2 (en) * 2009-03-27 2010-09-30 Carrier Corporation A system and method for controlling a refrigeration system
CN102459911B (zh) 2009-06-11 2015-06-10 三菱电机株式会社 制冷剂压缩机以及热泵装置
US8694131B2 (en) * 2009-06-30 2014-04-08 Mitsubishi Electric Research Laboratories, Inc. System and method for controlling operations of vapor compression system
CN101726135B (zh) * 2009-11-15 2013-05-08 广东工业大学 具有两种工作模式的空调系统及其控制方法
AU2011258052B2 (en) 2010-05-27 2016-06-16 XDX Global, LLC Surged heat pump systems
US8953296B2 (en) * 2011-11-14 2015-02-10 Rockwell Automation Technologies, Inc. AC pre-charge circuit
WO2015125240A1 (ja) * 2014-02-19 2015-08-27 三菱電機株式会社 直流電源装置および、それを備えた電動機駆動装置、ならびに、それを備えた冷凍サイクル適用機器
WO2015194426A1 (ja) * 2014-06-20 2015-12-23 日立工機株式会社 液体吐出装置
GB201513936D0 (en) * 2015-08-06 2015-09-23 Tree Associates Ltd Engine
CN106982016B (zh) * 2016-01-15 2021-11-26 松下知识产权经营株式会社 涡轮压缩机装置
KR20240140583A (ko) * 2023-03-17 2024-09-24 엘에스일렉트릭(주) 복수 모터의 소프트 스타트 제어 방법과, 이를 이용하는 인버터

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6129647A (ja) * 1984-07-20 1986-02-10 株式会社東芝 冷凍サイクル
JPH01168518A (ja) * 1987-12-22 1989-07-04 Nippon Denso Co Ltd 車両用冷凍装置
JP2000241033A (ja) * 1999-02-23 2000-09-08 Aisin Seiki Co Ltd 蒸気圧縮式冷凍装置
JP2000249411A (ja) * 1999-02-25 2000-09-14 Aisin Seiki Co Ltd 蒸気圧縮式冷凍装置
US6321564B1 (en) * 1999-03-15 2001-11-27 Denso Corporation Refrigerant cycle system with expansion energy recovery
JP2000345952A (ja) * 1999-06-04 2000-12-12 Mitsubishi Heavy Ind Ltd 風力多極発電機及び風力発電方法
JP2001165513A (ja) * 1999-12-03 2001-06-22 Aisin Seiki Co Ltd 冷凍空調機
RU2196238C2 (ru) * 2000-08-16 2003-01-10 ТУЗОВА Алла Павловна Способ утилизации энергии расширения природного газа
JP2002354896A (ja) * 2001-05-29 2002-12-06 Toyo Electric Mfg Co Ltd 永久磁石形同期発電機の制御装置
JP2003348875A (ja) * 2002-05-27 2003-12-05 Matsushita Electric Ind Co Ltd 電動機駆動装置
JP2004144399A (ja) 2002-10-25 2004-05-20 Matsushita Electric Ind Co Ltd 冷凍サイクル装置
US7327123B2 (en) * 2005-02-02 2008-02-05 Magnetic Applications, Inc. Controller for AC generator
JP4077868B2 (ja) * 2005-10-26 2008-04-23 松下電器産業株式会社 膨張機を用いたヒートポンプ応用機器

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103671052A (zh) * 2012-08-29 2014-03-26 株式会社神户制钢所 发电装置及发电装置的控制方法
CN103671052B (zh) * 2012-08-29 2015-12-23 株式会社神户制钢所 发电装置及发电装置的控制方法
CN105191115A (zh) * 2013-01-23 2015-12-23 特灵国际有限公司 用于避免过热的变频驱动器操作
CN105191115B (zh) * 2013-01-23 2017-12-01 特灵国际有限公司 用于避免过热的变频驱动器操作
CN104052366A (zh) * 2014-07-08 2014-09-17 四川科陆新能电气有限公司 一种双馈电机转子电压的估算方法及系统
CN104061737A (zh) * 2014-07-10 2014-09-24 安徽红叶节能电器科技有限公司 一种二氧化碳家用电冰箱
CN104075522A (zh) * 2014-07-10 2014-10-01 安徽红叶节能电器科技有限公司 一种二氧化碳家用电冰箱循环风机的能量供给方法
CN104180585A (zh) * 2014-09-15 2014-12-03 安徽红叶节能电器科技有限公司 一种二氧化碳家用电冰箱循环风机的能量供给方法

Also Published As

Publication number Publication date
WO2005103584A1 (ja) 2005-11-03
JP3963940B2 (ja) 2007-08-22
US20070266720A1 (en) 2007-11-22
EP1764566A1 (en) 2007-03-21
US7669430B2 (en) 2010-03-02
EP1764566A4 (en) 2012-03-28
JPWO2005103584A1 (ja) 2008-03-13
CN100449228C (zh) 2009-01-07

Similar Documents

Publication Publication Date Title
CN1946975A (zh) 热泵装置
CN1278483C (zh) 电动机控制装置
CN1279690C (zh) 一种热电联产装置的控制系统
CN1258257C (zh) 电动机驱动装置和使用该电动机驱动装置的冷冻装置
CN1183654C (zh) 电源装置及使用了该电源的空调机
CN1237688C (zh) 电动机、电动车辆和混合电动车辆
CN1507145A (zh) 电动机控制装置
CN1463484A (zh) 逆变器控制方法及控制装置
CN1175553C (zh) 电源装置和使用该电源装置的空气调节器
CN1090738C (zh) 空调器的控制装置
CN1571265A (zh) 电动机驱动装置
CN1517514A (zh) 具有制冷循环和兰金循环的蒸汽压缩制冷剂循环系统
CN101220754B (zh) 发电装置
CN101039042A (zh) 电力变换器、电力变换系统和控制方法
CN1144413A (zh) 动车发电系统
TW200536249A (en) System and method for increasing output horsepower and efficiency in a motor
CN1604455A (zh) 电动机驱动装置
CN1306232C (zh) 燃气热泵式空调装置
CN1701500A (zh) 三相功率变换装置以及功率变换装置
JP2001272135A (ja) エンジンヒートポンプの排熱回収機構
Wang et al. A controllable power distribution strategy for open winding hybrid excitation generator system
CN1819440A (zh) 用于控制供应给电负载的电源的方法和系统
US11732934B2 (en) Heat of compression energy recovery system using a high speed generator converter system
JP6982532B2 (ja) 冷凍サイクル装置
EP3845749A1 (en) Starter/generator arrangements for gas turbine engines

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090107

Termination date: 20130426