CN1936102A - 通过电泳沉积制备纳米结构复合电极的方法以及所制备的产品 - Google Patents

通过电泳沉积制备纳米结构复合电极的方法以及所制备的产品 Download PDF

Info

Publication number
CN1936102A
CN1936102A CNA2006101085093A CN200610108509A CN1936102A CN 1936102 A CN1936102 A CN 1936102A CN A2006101085093 A CNA2006101085093 A CN A2006101085093A CN 200610108509 A CN200610108509 A CN 200610108509A CN 1936102 A CN1936102 A CN 1936102A
Authority
CN
China
Prior art keywords
electrode
compound
group
nano particle
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006101085093A
Other languages
English (en)
Other versions
CN1936102B (zh
Inventor
K·J·叶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meditech Ltd
Original Assignee
Meditech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meditech Ltd filed Critical Meditech Ltd
Publication of CN1936102A publication Critical patent/CN1936102A/zh
Application granted granted Critical
Publication of CN1936102B publication Critical patent/CN1936102B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • C25D15/02Combined electrolytic and electrophoretic processes with charged materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/045Electrochemical coating; Electrochemical impregnation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/045Electrochemical coating; Electrochemical impregnation
    • H01M4/0457Electrochemical coating; Electrochemical impregnation from dispersions or suspensions; Electrophoresis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8853Electrodeposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12542More than one such component
    • Y10T428/12549Adjacent to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12625Free carbon containing component

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

提供了一种通过电泳沉积制备纳米结构复合电极的方法及由此制备的产品。在溶液中,导电材料和活性材料通过超声波而被悬浮成为稳定的悬浮液。导电材料包含官能化碳多壁纳米管。活性材料包含合成的纳米颗粒。通过将电解质添加到稳定悬浮液内来将表面电荷施加到活性材料。以相反的平行方向,将至少两个电极引入稳定悬浮液内。形成于电极之间的直流电场足以引起在电极上形成导电材料和活性材料。

Description

通过电泳沉积制备纳米结构复合电极的方法以及所制备的产品
相关申请的交叉参考
[0001]这是一个非临时专利申请,要求在美国法典第35篇第119(e)款规定下于2005年8月5日提交的序列号为60/706,059的美国临时专利申请的优先权,该临时专利申请的公开内容以参考的形式并入本文。
技术领域
[0002]本发明一般涉及纳米结构复合电极的制备,且特别涉及通过电化学沉积技术制备纳米结构复合电极的方法以及所制备的产品,上述电化学沉积技术诸如为电泳沉积(EPD)、电解沉积(ELD)、及电镀。
发明背景
[0003]电化学能量存储或产生装置包括电池、电容器和超级电容器,以及燃料电池。电池的特征在于可提供的以安培小时计的额定容量。电容器和超级电容器的特征在于可在单一一次放电中提供的能量或功率密度,这是电池能量或功率对重量或体积的比率。
[0004]所有能量存储或产生装置都包括一对电极以及被置于电极之间传导电流的电解质。电极是电导体,在其表面上发生从电子传导到离子传导的变化。阴极电极包含在放电期间被还原的活性材料,而阳极电极则包含在放电期间被氧化的活性材料。传统的电极,特别是阴极,其特征在于低电导率,这取决于所用装置和材料的类型。例如,用于锂离子电池的过渡金属基氧化锂电极以及用于超级电容器的非晶态过渡金属基氧化物电极均有阴极电导率低的缺点。
[0005]为补偿低电极电导率,经常向基体添加导电填料诸如碳以提高电导率。对碳填料的需求及其数量可取决于所使用的特定氧化物,且填料的体积可高达全部阴极混合物的百分之四十到五十,这取决于相对碳密度和其它阴极组分。碳填料还需要粘合剂,这能够进一步降低电导率且因此而降低存储装置的比能。
[0006]随着填料浓度增加,碳颗粒会凝团(clump)和聚集,而均匀分散即成为问题。由于暴露给电解质的接触表面积的比例减少,不均匀分散能够损害电极性能和寿命。结果便是,提高能量存储装置性能的现有方法一般集中在电极构造上。
[0007]2003年9月9日授予Lee等人的美国专利第6,616,875号公开了一种生产用于超级电容器的金属氧化物电极的方法。通过吸收高锰酸钾到导电材料诸如碳或活性炭中,并与溶液混合形成非晶态氧化锰,来形成非晶态氧化锰电极。导电的碳被用作活性材料,且需要粘合剂来补偿氧化锰的低电导率。
[0008]2004年3月9日授予Ogura等人的美国专利第6,703,163号公开了一种锂电池和电极。多个碳纳米管被分散于包含导电聚合物和有机化合物的导电基体中,该有机化合物含有在电极处用于电化学反应的二硫基(disulfide group)。碳纳米管沿基体的轴向方向导电,从而减少电阻并将电导率提高到导电聚合物之上。然而,碳纳米管也起到填料作用并且需要粘合剂。
[0009]2002年5月28日授予Sheme等人的美国专利第6,395,427号公开了用于制备可充电锂电池的阴电(negative)活性材料以及方法。该阴电活性材料包含晶体碳芯和半晶体碳壳。非晶态或晶体碳被混合成催化剂成分,并且凝聚(agglomerated)从而形成能够提供微孔通道以改善电解质浸渍的碳芯颗粒。然而,碳芯颗粒起到填料作用并且能够导致不均匀扩散。
[0010]因此,需要制备和提供具有增大的电导率和提高的功率密度而不依赖于基体中的碳与粘合剂的能量存储装置电极。
发明内容
[0011]通过包括电泳沉积(EPD)、电解沉积(ELD)、及直接沉积的电化学技术,复合电极包含被组装到碳纳米管表面上的纳米尺寸颗粒。所得电极的特征是具有高孔隙率的有序化结构,从而通过经由碳纳米管实现较快且均匀的扩散并改善反应路径,提高了能量存储或产生装置的性能。所述电极可被用于锂离子电池、超级电容器和燃料电池,以及其它能量存储或产生装置。
[0012]一个实施方案提供了一种通过电泳沉积制备纳米结构复合电极的方法和以此制备的产品。溶液中的导电材料和活性材料通过超声波作用被悬浮而成为稳定悬浮液。所述导电材料包含官能化碳多壁纳米管。所述活性材料包含合成纳米颗粒。通过添加电解质到稳定悬浮液内,向活性材料施加表面电荷。以平行方向,将至少两个电极引入稳定悬浮液内。在电极之间形成直流电场,该电场足以引起导电材料和活性材料形成于电极上。
[0013]一个进一步的实施方案提供了一种通过直接沉积制备纳米结构复合电极的方法以及以此制备的产品。含锰盐溶剂中的包含官能化碳多壁纳米管的导电材料和活性材料通过超声波作用被悬浮而成为胶体悬浮液。一层胶体悬浮液被直接沉积到至少一个电极,包括导电金属箔上,随后进行干燥。电极被退火从而使胶体悬浮液分解成为非晶态沉积物,包括合成的纳米颗粒。
[0014]一个更进一步的实施方案提供了一种通过电泳和电解沉积的组合制备纳米结构复合电极的方法以及以此制备的产品。乙醇中的导电材料,包括官能化碳多壁纳米管,通过超声波作用被悬浮而成为稳定悬浮液。包含金属盐的电解质被添加到稳定悬浮液中。以平行方向,将两个电极,包括作为电极的导电金属箔,引入稳定悬浮液内。在电极之间形成直流电场,该电场足以引起导电材料和活性材料形成于电极上。
[0015]复合电极中的纳米颗粒被沉积到纳米管上,从而形成有序的纳米结构,这提供了有效传导网。此外,具有高纵横比的高度导电纳米管可被用作导电添加剂,从而即便是在低体积条件下也能形成有效导电通道,用于以低容量损失实现快速充电和放电。类似地,碳纳米管的高纵横比和缠结显著提高电极孔隙率。电解质离子进入复合活性物质(composite active mass)变成为有利的,同时保持了碳纳米管所提供的提高的电导率。因此,电池电极容量和电容器或超级电容器电极电容得到了显著提高。
[0016]根据以下详细描述,本发明的更多的其它实施方案对本领域技术人员将会变得更明显,在详细描述中,通过说明实施本发明的最佳方式描述了本发明的实施方案。如将会认识到的,本发明能够有其它和不同的实施方案,且其若干细节能够在各种显而易见的方案中进行修改,这都不背离本发明的精神和范围。因此,附图和详细描述应被视为说明性的而非限定性的。
附图说明
[0017]图1是功能图,其以示例方式显示了由缠结态纳米管和吸引的纳米颗粒形成的导电通道网。
[0018]图2是TEM图像,显示了包括LiCoO2的纳米颗粒。
[0019]图3和图4是TEM图像,显示了通过EPD或ELD制备的复合电极的纳米结构。
[0020]图5A-B是曲线图,显示了复合电极的循环伏安图。
[0021]图6A-B是曲线图,显示了超级电容器的循环伏安图。
[0022]图7和8是曲线图,显示了复合电极的循环伏安图。
具体实施方式
[0023]碳纳米管(CNTs)的特征在于高电导率、化学稳定性、低质量密度、及大表面积。CNTs通常具有1000以上纵横比并且在被用作导电填料时要求较低逾渗阈值。在电极中仅需要相对低体积分数的CNTs来形成有效的导电通道网,以便以低容量损失实现较快的充电和放电。电池额定容量(rate capability)和电容器功率密度可因此而得到提高。
[0024]图1为功能图10,此图以示例方式显示了由缠结态纳米管11和吸引的纳米颗粒12形成的导电通道网13。为清楚起见,放大了其中纳米管11与纳米颗粒12的相对尺寸和位置。以高比表面积CNTs来形成复合电极,由于CNTs的高纵横比和缠结而显著提高了电极孔隙率。由于CNTs所提供的开放的电极网和电导率,从电解质到复合活性物质的离子可进入性是有利的。在具有有序结构的复合电极中,纳米颗粒附着到CNTs的表面。因此,纳米管作为导体的功能得到了充分利用而且获得了高度有效的导电通路。结果就是,电容器和电池的电极容量以及电容器和超级电容器的电极电容得到了显著提高。最后,用这种技术形成的膜提供了CNTs的灵活性和缠结,从而确保了良好的复合电极机械性能。
[0025]在一个实施方案中,通过EPD来制各高度导电的多壁碳纳米管(MWNTs)电极,以在导电金属箔上形成薄膜电极,上述导电金属箔例如为镍、铝、或铜箔,它们可被用作集电器。这种电极可在电池、超级电容器、或燃料电池应用中被用作电极。这种薄膜电极还可被用作目前工艺水平电池中的基极电极以提高性能。
[0026]在一个实施方案中,所制备的复合电极包括作为导电填料的高度导电多壁碳纳米管(MWNTs)以及作为活性元件的纳米尺寸颗粒。纳米尺寸颗粒通过EPD、ELD、或直接沉积被组装到纳米管的表面上,以在导电金属箔上形成薄膜复合电极,上述导电金属箔例如为镍、铝、或铜箔,它们可被用作集电器。纳米颗粒可由LiCoO2、LiMnO2、LiNiO2、LixMn1-yNiyO2组成,用于锂离子电池;可由非晶态MnO2或RuO2组成,用于超级电容器;而且可由Pt或Ru组成,用于燃料电池。
[0027]纳米颗粒是通过低温合成制成的。例如,为合成LiCoO2纳米颗粒,用柠檬酸将硝酸锂和钴溶解于蒸馏水中,这被用作燃烧合成的燃料。上述溶液被置于热板上,以使水蒸发并自燃,从而通过化合作用形成疏松粉末。图2为TEM图像20,显示了由LiCoO2构成的纳米颗粒。TEM图像20的比例尺为50nm。参看TEM图像20,如图所示,LiCoO2纳米颗粒的尺寸在500℃温度条件下退火三个小时之后约为20-30nm。制成纳米颗粒的其它方法也是可能的。
实施例1
[0028]电泳沉积(EPD)是一种胶体工艺。原料是通过带电粒子的运动,直接由稳定悬浮液成形的,上述带电粒子在直流电场作用下朝向电极被分散于液体中。CNTs和纳米颗粒凝聚从而在电极上形成沉积物。
[0029]在一个实施方案中,带电的CNTs和纳米颗粒通过向上沉积而在溶液中与沉淀物间隔开。两个导电金属箔,例如,铜箔,以平行方向被引入稳定悬浮液内,其中一个金属箔优选叠置于另一个匹配的箔的上方。金属箔被连接到直流电源并被用作EPD电极。
[0030]可制备具有不同浓度碳纳米管的稳定悬浮液。为制备稳定悬浮液,预定量的回流官能化(refluxed functionalized)CNTs、LiCoO2纳米颗粒、及诸如Mg(NO3)2或等效硝酸盐之类的电解质,被放置在含有作为溶剂的乙醇的烧杯中。溶液经声波处理约30分钟。在一个典型实验中,15mg官能化的MWNTs通过超声波被分散于200ml乙醇中。为在MWNTs上产生表面电荷,10-5~10-4摩尔(mol)的Mg(NO3)2被添加到稳定悬浮液内作为电解质。一旦稳定悬浮液可用,大约20-45伏的直流电即被施加到电极上。最佳电流约为60-80mA。
[0031]图3和图4为TEM图像30、40,它们显示了通过EPD制备的复合电极的纳米结构。TEM图像40的比例尺为1.0μm。TEM图像30、40均显示复合阴极膜,其中复合阴极膜分别由15wt%和10wt%浓度的LiCoO2/MWNTs合成物中的MWNTs和LiCoO2纳米颗粒组成。当复合电极中的MWNTs的百分率约为15wt%时,MWNTs往往用作组装纳米颗粒的模板,并可获得有序化结构。然而,当复合电极中MWNTs的百分率约为10wt.%时,有序化程度降低。有序结构有助于形成具有较高浓度CNTs的样本,这是因为有较多的可供纳米颗粒附着的可用表面。此外,在EPD过程中CNTs移动比纳米颗粒快并起到纳米电极作用以便将纳米颗粒沉积到EPD电极上。当稳定悬浮液内CNTs的浓度较低时,纳米颗粒倾向于直接沉积到EPD电极上从而形成一层膜,在这层膜上CNTs和纳米颗粒以规则方式混合在一起。
实施例2
[0032]电解沉积(ELD)也是一种在电极反应中由金属盐溶液形成薄膜的胶体工艺。在一个实施方案中,为制备非晶态MnO2(a-MnO2)复合电极,使官能化MWNTs悬浮在含锰盐的溶剂中。在官能化MWNTs的各壁上官能团的存在,使Mn2+离子得以被容易地吸收。在一个典型实验中,在DMF中制备浓度为5mg/ml的MWNTs的胶体悬浮液并添加约30mg的Mn(NO3)2·6H2O。为进行电化学测量,将1M Na2SO4水溶液用作电解质。此悬浮液进行声波处理约30分钟。通过在镍箔上直接沉积0.10ml胶体悬浮液并在室温条件下干燥制备复合电极。在干燥之后,所述电极在加热炉中,被以5℃/分钟的加热速率加热到250℃,并保持在250℃大约30分钟。在加热过程中,Mn(NO3)2作为气体被释放且生成非晶态MnO2产物。
[0033]图5A-B是曲线图,显示了复合电极的循环伏安图50、60。x轴表示电压。y轴表示以毫安(mA)为单位的电流。循环伏安图50、60是以扫描速率50mV/s获得的,对应于超级电容器。首先参考图5A,其中显示的超级电容器带有由MnO2构成的复合电极。复合电极中的活性材料约为1.4mg,包括大约0.5mg的CNTs和大约0.9mg的MnO2纳米管。接下来参考图5B,其中显示超级电容器带有由纯CNTs构成的电极。电极中的活性材料是大约0.5mg的CNTs。复合电极超级电容器所产生的电流明显大于纯CNTs电极超级电容器所产生的电流。复合电极超级电容器的电容约为46法/克(F/g),这大约两倍于纯CNTs电极超级电容器的电容,纯CNTs电极超级电容器的电容约为20F/g。
[0034]图6A-B是曲线图,显示了超级电容器的循环伏安图70、80。循环伏安图70、80分别是以100mV/s和250mV/s扫描速率获得的,对应于带有由MnO2构成的复合电极的超级电容器。两图中超级电容器的CV(循环伏安图)形状仍然接近于矩形,即便是以高扫描速率获取也是如此,并可得到约20-25kW/kg的最大功率密度。
[0035]最后,图7和8是曲线图,显示了复合电极的循环伏安图90、100。循环伏安图90、100分别是以500毫伏/秒(Mv/s)和5Mv/s扫描速率获得的,对应于带有由MnO2构成的复合电极的超级电容器。如果以较低扫描速率计算的话,可获得大约70F/g的电容,诸如参考图8所示。
实施例3
[0036]也可通过结合EPD和ELD,来制备用于超级电容器的由a-MnO2构成的复合电极。官能化MWNTs带有负电荷,且当将其加入金属盐溶液中时可容易地用阳离子充电。在一个典型实验中,4.5mg的官能化MWNTs通过超声波而被分散在60ml乙醇中并且10mg的Mn(NO3)2被加入悬浮液内作为电解质。
[0037]根据经验,在电极上通过MWNT沉积形成得到的膜表现出强粘合力,并且不需要粘合剂。由于最底部沉积层中的MWNTs与电极集电器直接电性接触,因此从电极材料到集电器的直接电通路是可利用的,并且接触电阻以及内部电阻达到最小。进一步的实施方案
[0038]除了由纯MWNTs构成的电极导体,在进一步的实施方案中,通过改变碳纳米管的体积百分比,碳纳米管混合物与炭黑粒子能够被接合(engaged)。
[0039]此外,在更进一步的实施方案中,水或其它有机溶剂而不是乙醇,能够被用来制备碳纳米管的悬浮液。
[0040]此外,在更进一步的实施方案中,其它硝酸盐而不是Mg(NO3)2,可在EPD过程中被用作电解质以使得纳米颗粒和纳米管充电。
[0041]而且,法拉第反应的活性部位可被延伸到复合电极中接触点周围区域。从MWNTs与活性纳米颗粒表面之间的接触点流出的电子参与到法拉第反应中。因此,从复合电极可获得超级电容器的较大电容或是锂离子电池的较大能量或功率容量。
[0042]类似地,用胶体技术诸如EPD、ELD、或直接沉积形成的复合电极,例如在被用作电容器集电器时,显示出对电极的强粘合力,并且无需粘合剂。由于MWNT的最底部沉积层中的MWNTs和纳米颗粒膜是直接连接到集电器的,接触电阻和内部电阻达到最小,这使得电容器功率密度和锂离子电池比率容量得到了提高。
[0043]尽管参考其实施方案特别显示和描述了本发明,本领域技术人员会认识到,可在形式上和细节上对所述本发明内容进行其它改变而不背离本发明的精神和范围。

Claims (25)

1.一种通过电泳沉积制备纳米结构复合电极的方法,包括:
通过超声波,使得溶液中包括官能化碳多壁纳米管的导电材料和包括合成的纳米颗粒的活性材料悬浮,而成为稳定悬浮液;
通过将电解质添加到所述稳定悬浮液中,向所述活性材料施加表面电荷;
以相反的平行方向,将至少两个电极,包括导电金属箔,引入所述稳定悬浮液内;以及
在所述电极之间形成直流电场,其强度足以在所述电极上形成导电材料和所述活性材料。
2.根据权利要求1所述的方法,进一步包括:
使得至少一个所述电极相对于其它电极叠置定向,以便向上沉积所述导电材料和所述活性材料。
3.根据权利要求1所述的方法,其中所述直流电场是通过施加介于20-45伏之间的直流电压和介于60-80mA之间的电流来形成的。
4.根据权利要求1所述的方法,其中所述碳多壁纳米管的百分率包括10wt%与15wt%之间的范围。
5.根据权利要求1所述的方法,其中所述电解质包括化合物,该化合物选自包含介于10-5与10-4摩尔之间范围的Mg(NO3)2的组。
6.根据权利要求1所述的方法,其中所述导电金属箔选自包含镍、铝、或铜的组。
7.根据权利要求1所述的方法,进一步包括:
将碱金属和过渡金属溶解到柠檬酸水溶液中;
从所溶解的溶液中蒸发掉水;以及
通过自燃燃烧和退火来形成所述合成的纳米颗粒。
8.根据权利要求7所述的方法,其中所述合成的纳米颗粒包括化合物,该化合物选自包含LiCoO2、LiMnO2、LiNiO2、及LixMn1-yNiyO2的组。
9.根据权利要求7所述的方法,其中所述合成的纳米颗粒包括化合物,该化合物选自包含二氧化锰和二氧化钌的组。
10.根据权利要求7所述的方法,其中所述合成的纳米颗粒包括化合物,该化合物选自包含铂和钌的组。
11.根据权利要求7所述的方法,其中所述退火在约500℃温度进行约三个小时。
12.一种根据权利要求1所述方法制备的纳米结构复合电极。
13.一种通过直接沉积制备纳米结构复合电极的方法,包括:
通过超声波,使得含锰盐溶剂中包括官能化碳多壁纳米管的导电材料和活性材料悬浮,成为胶体悬浮液;
直接沉积一层所述胶体悬浮液到至少一个电极,包括导电金属箔上,随后进行干燥;以及
退火所述电极,以将所述胶体悬浮液分解成包括合成的纳米颗粒的非晶态沉积物。
14.根据权利要求13所述的方法,其中所述退火是以大约5℃/分钟的加热速率提供的,并在大约250℃温度保持约30分钟。
15.根据权利要求13所述的方法,其中所述活性材料包括化合物,该化合物选自包含Mn(NO3)2·6H2O的组。
16.根据权利要求13所述的方法,其中所述合成的纳米颗粒包括化合物,该化合物选自包含非晶态MnO2的组。
17.一种根据权利要求13所述方法制备的纳米结构复合电极。
18.一种通过电泳和电解质沉积的组合制备纳米结构复合电极的方法,包括:
通过超声波,使得乙醇中包含官能化碳多壁纳米管的导电材料悬浮,成为稳定悬浮液;
将包含金属盐的电解质添加到所述稳定悬浮液内;
以平行方向,将至少两个电极,包括导电金属箔,引入所述稳定悬浮液内;且
在所述电极之间形成直流电场,其强度足以在所述电极上形成导电材料和所述活性材料。
19.根据权利要求18所述的方法,进一步包括:
使得至少一个所述电极相对于其它电极叠置定向,以便向上沉积所述导电材料和所述活性材料。
20.根据权利要求18所述的方法,其中所述直流电场是通过施加介于20-45伏之间的直流电压和介于60-80mA之间的电流来形成的。
21.根据权利要求18所述的方法,其中所述碳多壁纳米管的百分率包括10wt%与15wt%之间的范围。
22.根据权利要求18所述的方法,其中所述电解质包含化合物,该化合物选自包含Mn(NO3)2的组。
23.根据权利要求18所述的方法,其中所述合成的纳米颗粒包含化合物,该化合物选自包含非晶态MnO2的组。
24.根据权利要求18所述的方法,其中所述导电金属箔选自包含镍、铝、或铜的组。
25.一种根据权利要求18所述方法制备的纳米结构复合电极。
CN200610108509.3A 2005-08-05 2006-08-03 通过电泳沉积制备纳米结构复合电极的方法以及所制备的产品 Expired - Fee Related CN1936102B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US70605905P 2005-08-05 2005-08-05
US60/706,059 2005-08-05
US11/484,083 US7828619B1 (en) 2005-08-05 2006-07-10 Method for preparing a nanostructured composite electrode through electrophoretic deposition and a product prepared thereby
US11/484,083 2006-07-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201410654981.1A Division CN104538198A (zh) 2005-08-05 2006-08-03 纳米结构复合电极

Publications (2)

Publication Number Publication Date
CN1936102A true CN1936102A (zh) 2007-03-28
CN1936102B CN1936102B (zh) 2014-12-10

Family

ID=37953831

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201410654981.1A Pending CN104538198A (zh) 2005-08-05 2006-08-03 纳米结构复合电极
CN200610108509.3A Expired - Fee Related CN1936102B (zh) 2005-08-05 2006-08-03 通过电泳沉积制备纳米结构复合电极的方法以及所制备的产品

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201410654981.1A Pending CN104538198A (zh) 2005-08-05 2006-08-03 纳米结构复合电极

Country Status (3)

Country Link
US (2) US7828619B1 (zh)
CN (2) CN104538198A (zh)
TW (1) TWI332667B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103400933A (zh) * 2013-08-20 2013-11-20 温州大学 基于电泳法的碳基纳米薄膜热电化学电极的制备方法
CN103534841A (zh) * 2011-02-16 2014-01-22 瓦尔达微创新有限责任公司 用于电池组,特别是用于锂-离子-电池组的电极及其制造
CN104393245A (zh) * 2014-12-10 2015-03-04 厦门大学 一种锂离子电池用多孔结构纳米硅基负极的制备方法
CN105280937A (zh) * 2009-04-06 2016-01-27 24M技术公司 采用氧化还原液流电池的燃料系统
CN107450248A (zh) * 2012-02-14 2017-12-08 伊英克加利福尼亚有限责任公司 用于电泳显示器的微杯设计
CN108315804A (zh) * 2018-04-17 2018-07-24 东北大学 一种用于制备四氧化三锰涂层的电泳液及电泳沉积工艺
CN110211810A (zh) * 2019-05-08 2019-09-06 广州理文科技有限公司 基于冠醚超分子捆绑银离子的多孔纳米镍网络结构、超电容电极及超级电容的制造方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4737474B2 (ja) * 2007-09-07 2011-08-03 日本電気株式会社 半導体素子
TWI459622B (zh) * 2007-11-15 2014-11-01 Atomic Energy Council Preparation of Thin Film Fuel Cell Electrode Using Nano Carbide Carrier Catalyst by Low Voltage Electrophoresis
CN101556888B (zh) * 2008-04-11 2011-01-05 鸿富锦精密工业(深圳)有限公司 热发射电子源的制备方法
US11909077B2 (en) 2008-06-12 2024-02-20 Massachusetts Institute Of Technology High energy density redox flow device
US8722226B2 (en) 2008-06-12 2014-05-13 24M Technologies, Inc. High energy density redox flow device
US8748216B2 (en) * 2010-10-25 2014-06-10 Imra America, Inc. Non-vacuum method for fabrication of a photovoltaic absorber layer
US9780354B2 (en) * 2010-12-21 2017-10-03 Condalign As Battery electrode material and method for making the same
US20120236467A1 (en) * 2011-03-16 2012-09-20 Vanderbilt University, Center For Technology Transfer And Commercialization Ultracapacitor, methods of manufacturing and applications of the same
DE102011100724A1 (de) * 2011-05-06 2012-11-08 Li-Tec Battery Gmbh Elektrode für Lithiumionen-Batterien
EP2709770A4 (en) * 2011-05-19 2014-12-03 Univ Northeastern ELECTRODE ON CARBON CANNOR BASE AND RECHARGEABLE BATTERY
US9150736B2 (en) * 2012-11-27 2015-10-06 Ppg Industries Ohio, Inc. Methods of coating an electrically conductive substrate and related electrodepositable compositions
US9870844B2 (en) 2012-11-27 2018-01-16 Ppg Industries Ohio, Inc. Methods of coating an electrically conductive substrate and related electrodepositable compositions
FR2982082B1 (fr) * 2011-11-02 2013-11-22 Fabien Gaben Procede de fabrication de batteries en couches minces entierement solides
FR2982084B1 (fr) * 2011-11-02 2013-11-22 Fabien Gaben Procede de fabrication d'electrodes de batteries entierement solides
EP2780494A2 (en) 2011-11-16 2014-09-24 Nanoridge Materials, Incorporated Metal enhanced with conductive nanomaterial
EP2621000B1 (de) * 2012-01-27 2018-10-17 Future Carbon GmbH Verfahren zur Herstellung einer Suspension sowie Elektrode
US9484573B2 (en) * 2012-12-31 2016-11-01 West Virginia University Composite anode of lithium-ion batteries
FR3000616B1 (fr) * 2012-12-31 2015-01-02 I Ten Procede de fabrication de batteries tout solide en structure multicouches
CN103887522A (zh) * 2014-04-05 2014-06-25 南开大学 一种二氧化锰修饰微生物燃料电池活性炭空气阴极的制备
CA2981481C (en) 2014-04-25 2023-09-12 South Dakota Board Of Regents High capacity electrodes
JP2018088331A (ja) * 2016-11-28 2018-06-07 本田技研工業株式会社 二次電池用電極
US10468674B2 (en) 2018-01-09 2019-11-05 South Dakota Board Of Regents Layered high capacity electrodes
FR3080957B1 (fr) 2018-05-07 2020-07-10 I-Ten Electrodes mesoporeuses pour dispositifs electrochimiques en couches minces
US20230360863A1 (en) * 2020-10-19 2023-11-09 Fastcap Systems Corporation Advanced lithium-ion energy storage device
CN116130612A (zh) * 2021-11-12 2023-05-16 宁德时代新能源科技股份有限公司 一种正极材料、正极极片、二次电池、电池模块、电池包及用电装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5041199A (en) * 1990-04-04 1991-08-20 Gould Inc. Process for producing electrodeposited electrodes for use in electrochemical cells
US5338430A (en) * 1992-12-23 1994-08-16 Minnesota Mining And Manufacturing Company Nanostructured electrode membranes
US6703163B2 (en) 1998-03-31 2004-03-09 Celanese Ventures Gmbh Lithium battery and electrode
US6339528B1 (en) 1999-09-16 2002-01-15 Ness Capacitor Co., Ltd. Metal oxide electrode for supercapacitor and manufacturing method thereof
US6395427B1 (en) 1999-11-04 2002-05-28 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and method of preparing same
US7252749B2 (en) 2001-11-30 2007-08-07 The University Of North Carolina At Chapel Hill Deposition method for nanostructure materials
CN1303260C (zh) * 2004-04-23 2007-03-07 清华大学 一种碳纳米管薄膜的电泳沉积制备方法
US20060217025A1 (en) 2005-03-28 2006-09-28 Teco Nanotech Co., Ltd. Method for enhancing homogeneity of carbon nanotube electron emission source made by electrophoresis deposition

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105280937A (zh) * 2009-04-06 2016-01-27 24M技术公司 采用氧化还原液流电池的燃料系统
CN105280937B (zh) * 2009-04-06 2018-04-10 24M技术公司 采用氧化还原液流电池的燃料系统
CN103534841A (zh) * 2011-02-16 2014-01-22 瓦尔达微创新有限责任公司 用于电池组,特别是用于锂-离子-电池组的电极及其制造
CN103534841B (zh) * 2011-02-16 2017-03-22 瓦尔达微创新有限责任公司 用于电池组,特别是用于锂‑离子‑电池组的电极及其制造
CN107450248A (zh) * 2012-02-14 2017-12-08 伊英克加利福尼亚有限责任公司 用于电泳显示器的微杯设计
CN103400933A (zh) * 2013-08-20 2013-11-20 温州大学 基于电泳法的碳基纳米薄膜热电化学电极的制备方法
CN103400933B (zh) * 2013-08-20 2016-08-10 温州大学 基于电泳法的碳基纳米薄膜热电化学电极的制备方法
CN104393245A (zh) * 2014-12-10 2015-03-04 厦门大学 一种锂离子电池用多孔结构纳米硅基负极的制备方法
CN108315804A (zh) * 2018-04-17 2018-07-24 东北大学 一种用于制备四氧化三锰涂层的电泳液及电泳沉积工艺
CN110211810A (zh) * 2019-05-08 2019-09-06 广州理文科技有限公司 基于冠醚超分子捆绑银离子的多孔纳米镍网络结构、超电容电极及超级电容的制造方法
CN110211810B (zh) * 2019-05-08 2021-07-06 广州理文科技有限公司 基于冠醚超分子捆绑银离子的多孔纳米镍网络结构、超级电容电极及超级电容的制造方法

Also Published As

Publication number Publication date
TWI332667B (en) 2010-11-01
US7828619B1 (en) 2010-11-09
TW200710875A (en) 2007-03-16
CN1936102B (zh) 2014-12-10
US8188644B2 (en) 2012-05-29
US20110059333A1 (en) 2011-03-10
CN104538198A (zh) 2015-04-22

Similar Documents

Publication Publication Date Title
CN1936102B (zh) 通过电泳沉积制备纳米结构复合电极的方法以及所制备的产品
Pourfarzad et al. Synthesis of Ni–Co-Fe layered double hydroxide and Fe2O3/Graphene nanocomposites as actively materials for high electrochemical performance supercapacitors
Lee et al. Polypyrrole-coated manganese dioxide with multiscale architectures for ultrahigh capacity energy storage
Fisher et al. Functionalized carbon nanotube supercapacitor electrodes: a review on pseudocapacitive materials
Wang et al. Design and synthesis of tremella-like Ni–Co–S flakes on co-coated cotton textile as high-performance electrode for flexible supercapacitor
Dubal et al. Controlled Growth of CoSx Nanostrip Arrays (CoSx‐NSA) on Nickel Foam for Asymmetric Supercapacitors
Hao et al. Artificial N-doped graphene protective layer enables stable Zn anode for aqueous Zn-ion batteries
US11482710B2 (en) Nanofiber electrodes for batteries and methods of making nanofiber electrodes
Zhang et al. Polyvinylpyrrolidone (PVP) assisted in-situ construction of vertical metal-organic frameworks nanoplate arrays with enhanced electrochemical performance for hybrid supercapacitors
CN102187411A (zh) 用于提高能量密度和功率密度的电荷存储装置结构
CN105047419B (zh) 二氧化锰/碳复合电极材料及其制备方法以及超级电容器
Yao et al. A new hexacyanoferrate nanosheet array converted from copper oxide as a high-performance binder-free energy storage electrode
Śliwak et al. High‐Voltage Asymmetric Supercapacitors based on Carbon and Manganese Oxide/Oxidized Carbon Nanofiber Composite Electrodes
Ouyang et al. Controllable assembly of hybrid electrodes by electrophoretic deposition for high-performance battery–supercapacitor hybrid devices
Xi et al. Direct synthesis of MnO2 nanorods on carbon cloth as flexible supercapacitor electrode
Mahieddine et al. Core-shell structured hierarchical Ni nanowires and NiS/Co3S4 microflowers arrays as a high-performance supercapacitor electrode
Riaz et al. Facile synthesis of TiN nano sheets decorated Fe2O3 nanoparticles as novel cathode material for Asymmetric Supercapacitor
Iqbal et al. Effect of distinct organic ligands on hierarchical porous manganese-based MOFs for battery-supercapacitor hybrid
KR100818383B1 (ko) 전기영동전착을 통한 나노구조 복합체 전극의 제조방법 및그 방법에 의해 제조된 제품
CN105449294A (zh) 电池
Nakanishi et al. Effects of nanowire length on charge transport in vertically aligned gold nanowire array electrodes
KR101793938B1 (ko) 전기화학 캐퍼시터 전극용 산화코발트-산화망가니즈-탄소 복합체 및 이의 제조방법 그리고 이를 이용한 전기화학 캐퍼시터용 전극 조성물
Zhang et al. Synthesis of the carbon-optimized integrated cobalt-based electrode for high cycle performance supercapacitors
Zhao et al. Microwave Construction of NiSb/NiTe Composites on Ni-Foam for High-Performance Supercapacitors
Liu et al. Electrochemical behavior study of carbon nanofiber/MnO2 composites as sulfur host for highly effective polysulfide absorbent

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141210

Termination date: 20190803

CF01 Termination of patent right due to non-payment of annual fee