CN1799510A - 具有提高的导热率的超声换能器 - Google Patents

具有提高的导热率的超声换能器 Download PDF

Info

Publication number
CN1799510A
CN1799510A CN200510103671.1A CN200510103671A CN1799510A CN 1799510 A CN1799510 A CN 1799510A CN 200510103671 A CN200510103671 A CN 200510103671A CN 1799510 A CN1799510 A CN 1799510A
Authority
CN
China
Prior art keywords
lining materials
composite construction
back lining
transducer
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200510103671.1A
Other languages
English (en)
Other versions
CN100536784C (zh
Inventor
D·G·维尔德斯
C·E·鲍姆加特纳
P·J·J·默勒克
B·H·海德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN1799510A publication Critical patent/CN1799510A/zh
Application granted granted Critical
Publication of CN100536784C publication Critical patent/CN100536784C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • A61B8/546Control of the diagnostic device involving monitoring or regulation of device temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0662Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface
    • B06B1/0681Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface and a damping structure
    • B06B1/0685Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface and a damping structure on the back only of piezoelectric elements
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/002Devices for damping, suppressing, obstructing or conducting sound in acoustic devices
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/004Mounting transducers, e.g. provided with mechanical moving or orienting device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49005Acoustic transducer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/4908Acoustic transducer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49169Assembling electrical component directly to terminal or elongated conductor
    • Y10T29/49171Assembling electrical component directly to terminal or elongated conductor with encapsulating
    • Y10T29/49172Assembling electrical component directly to terminal or elongated conductor with encapsulating by molding of insulating material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49194Assembling elongated conductors, e.g., splicing, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Acoustics & Sound (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

提出一种用于换能器中的具有提高的传导率的背衬材料复合结构(74)。复合结构(74)包括与多个导热元件(78)交替地布置的多层背衬材料(76),其中多个导热元件(78)配置成将热量从换能器中心转移到背衬材料复合结构(74)上的多个点。

Description

具有提高的导热率的超声换能器
技术领域
本发明一般涉及换能器,更具体地涉及具有增强导热率的换能器。
背景技术
换能器,例如声换能器,已应用于医学成像中,其中使声探头贴着患者,探头发射并接收超声波,其可便于依次对患者的内部组织成像。以最大可允许的声强度操作声探头也许有利于有较高质量的成像,通过声波更好地穿透到患者的组织中可以获得更高质量的成像。但是,在较高的声强度下操作声探头会导致换能器组件过热,这是很不利的。
此外,在和患者以及技术员的接触点处声探头的最大外部温度有一定的极限。而且,在声探头的某些操作模式,换能器元件内或换能器组件内产生的热量会使探头表面某些区域的温度超过允许的极限。但是,正如业界技术人员将意识到的,通常用来制造换能器元件的材料主要是根据它们的声音特性来选择的,一般已知具有相对低的导热率。而且,换能器元件常通过切槽而互相隔离,其对换能器元件提供了额外的热绝缘。这样,换能器元件内产生的热被圈闭在声叠层中,导致探头的表面温度升高,超过环境温度。有利的是能将可能圈闭在换能器元件阵列中的热发散出去,以防止换能器组件与患者接触的表面过热。
换能器组件通常采用固有导热率较低的材料制造。换能器组件的低导热率会导致探头过热。不利的是,以前所作的为增强声探头导热率的许多努力对探头表面温度的效果有限,所以在充分降低表面温度足以防止患者不适方面不尽有效。其它一些先有技术在充分降低探头表面温度方面较为成功,但这种改进常以牺牲换能器组件的声性能为代价。
理想的是从换能器组件的产热区将热排出,以将超声探头的表面温度降低到可接受的水平。而且,理想的是降低探头的表面温度,以便于探头以较高的发射功率操作,从而改进诊断成像。
发明内容
简言之,按照本发明的示范实施例,提出了用于换能器的背衬材料复合结构。复合结构包括多层背衬材料,交替安排在多个导热元件之间,其中多个导热元件配置成将热量从换能器中心传送到背衬材料复合结构上的多个点上。
按照本发明的又一实施例,提出了包括背衬材料复合结构的换能器组件。换能器组件包括多个换能器元件,换能器元件被设置在具有第一正面和第一背面的第一层中。而且,复合结构包括吸收体,吸收体设置在具有第二正面和第二背面的第二层中,其中吸收体设置在邻近第一背面处且声耦合到第一背面,并且吸收体包括传导元件通过其分散的背衬材料复合结构。
按照本发明的另一实施例,提出了用于换能器组件中的形成背衬材料复合结构的方法。该方法包括将一块背衬材料切成小片以形成多个背衬材料层。而且,该方法包括将多层背衬材料交替设置在多个导热元件之间,形成背衬材料复合结构。
按照本发明的又一方面,提出了用于换能组件中的形成背衬材料复合结构的另一方法。该方法包括将多个导热元件在模子中安排成间隔关系。此外,该方法包括在多个导热元件周围浇铸吸收体材料,形成背衬材料复合结构。
按照本发明的又一方面,提出了制造换能器组件的方法。该方法包括将多个声换能器元件设置在具有第一正面和第一背面的第一层中。而且,该方法包括提供含有吸收体的背衬,吸收体设置在具有第二正面和第二背面的第二层中,其中吸收体设置在邻近第一背面处并声耦合到第一背面,并且吸收体包括传导元件通过其分散的背衬材料复合结构。
按照本发明的又一方面,提出了包括背衬材料复合结构的超声系统。该系统包括配置成获取超声数据的获取子系统,其中获取子系统包括至少一个换能器组件,其中换能器组件包括传导元件通过其分散的背衬材料复合结构。此外,该系统包括处理子系统,处理子系统配置成处理通过获取子系统获得的超声数据。
附图说明
当参考附图阅读以下详细说明时,将更好地理解本发明的这些以及其它特征、方面和优点,所有附图中相同的符号代表相同的零件,其中:
图1是超声系统的图解示意图;
图2是换能器组件的立体图;
图3是图2的换能器组件沿剖面线3-3的剖面侧视图;
图4是说明按照本发明的方面用于换能器组件的具有增强导热率的背衬材料叠层复合结构示范实施例的立体图;
图5是描述按照本发明的方面用于形成背衬材料复合结构的步骤流程图;以及
图6是描述按照本发明的另外的方面用于形成复合结构的另一种方法的步骤流程图。
具体实施方式
在许多领域,例如医学成像,为它们的声性能所选择的换能器材料一般具有较低的导热率。另外,各个换能器元件常通过切槽而互相隔离,这些切槽提供了额外的热绝缘。所以,换能器组件内产生的热被圈闭在换能器组件内,因此导致换能器组件的表面温度升高,增加到高于可允许的极限。希望增强换能器组件的导热率,同时又维持换能器组件的声性能。在此讨论的技术可解决某些或全部的这些问题。
图1是超声系统10的实施例的方框图。超声系统包括获取子系统12和处理子系统14。获取子系统12包括换能器阵列18(有多个换能器阵列元件)、发射/接收切换电路20、发射器22、接收器24和射束形成器26。处理子系统14包括控制处理器28、解调器30、成像模式处理器32、扫描转换器34和显示处理器36。显示处理器36还耦合到显示监控器38用以显示图像。用户界面40与控制处理器28和显示监控器38相互配合。控制处理器28还可耦合到远程连接子系统42,子系统42包括网络服务器44和远程连接接口46。处理子系统14还可耦合到配置成接收超声图像数据的数据库48。数据库48与图像工作站50相互配合。
上述构件可以是专用的硬件元件,例如具有数字信号处理器的电路板,或者是在通用计算机或处理器上运行的软件,例如市售的成品个人计算机(PC)。按照本发明的各种实施例,可以组合或分离各种构件。因此,业界技术人员应意识到,是作为例子提供本超声系统10,本发明决不限于该具体系统配置。
在获取子系统12中,换能器阵列18与患者或受验者16相接触。换能器阵列耦合到发射/接收(T/R)切换电路20。T/R切换电路20耦合到发射器22的输出端和接收器24的输入端。接收器24的输出是射束形成器26的输入。射束形成器26再耦合到发射器22的输入端和解调器30的输入端。射束形成器26还耦合到控制处理器28,如图1所示。
在处理子系统14中,解调器30的输出端耦合到成像模式处理器32的输入端。控制处理器28与成像模式处理器32、扫描转换器34和显示处理器36连接。成像模式处理器32的输出端耦合到扫描转换器34的输入端。扫描转换器34的输出端耦合到显示处理器36的输入端。显示处理器36的输出端耦合到监控器38。
超声系统10发射超声能量进入受验者16,并接收和处理从受验者16反向散射的超声信号,创建并显示图像。为了产生超声能量的发射射束,控制处理器28向射束形成器26发送指令数据,产生发射参数,创建从换能器阵列18表面上的某一点以所希望的操纵角度起源的所希望形状的射束。从射束形成器26向发射器22发送发射参数。发射器22使用发射参数通过T/R切换电路20正确编码要发送到换能器阵列18的发射信号。各发射信号设定在彼此确定的电平和相位上,并提供给换能器阵列18的各个换能器元件。发射信号激励换能器元件发射具有相同相位和电平关系的超声波。结果,当换能器阵列18利用例如超声胶耦合到受验者16上时,在沿扫描线的扫描平面内在受验者16上就形成了超声能量的发射射束。这个过程称为电子扫描。
换能器阵列18是双向换能器。当向受验者16发射超声波时,超声波被反向散射离开受验者16内的组织和血液样本。依据反向散射波从组织返回的距离以及它们返回的相对换能器阵列18表面的角度,换能器阵列18在不同的时间接收反向散射波。换能器元件将来自反向散射波的超声能量转换为电信号。
然后通过T/R切换电路20电信号被发送到接收器24。接收器24放大和数字化接收的信号并提供其它的功能,例如增益补偿。对应于每个换能器元件在不同时间接收的反向散射波的数字化的接收信号保存了反向散射波的振幅和相位信息。
将数字化的信号发送到射束形成器26。控制处理器28发送指令数据到射束形成器26。射束形成器26利用指令数据形成从换能器阵列18表面上的点以操纵角度发出的接收射束,所述点和操纵角度一般对应于沿扫描线发射的前一超声射束的角度和点。按照来自控制处理器28的指令数据的指示,通过执行时间延迟和聚焦,射束形成器26对适当的接收的信号进行操作,创建接收射束信号,该信号对应于受验者16内的沿扫描平面上的扫描线的样本容积。使用来自各个换能器元件的接收信号的相位、振幅和定时信息来创建接收射束信号。
将接收射束信号发送到处理子系统14。解调器30解调接收的射束信号,创建成对的I和Q解调数据值,对应于扫描平面内的样本容积。通过将接收的射束信号的相位和振幅与参考频率进行比较来实现解调。I和Q解调数据值保存了接收的信号的相位和振幅信息。
将解调数据转发到成像模式处理器32。成像模式处理器32使用参数估计技术从扫描序列格式中的解调数据产生成像参数值。成像参数可包括对应于各种可能成像模式的参数,例如B模式、彩色速度模式、频谱多普勒模式和组织速度成像模式等。向扫描转换器34传递成像参数值。通过执行从扫描序列格式向显示格式的转换,扫描转换器34处理参数数据。该转换包括对参数数据执行内插操作,以创建显示格式的显示像素数据。
将转换的扫描像素数据发送到显示处理器36,执行转换的扫描像素数据的任何最终的空间或时间滤波,对转换的扫描像素数据施加灰度或彩色,并将数字像素数据转换成模拟数据,供在监控器38上显示。用户接口40耦合到控制处理器28,使用户能够基于监控器38上显示的数据与超声系统10连接。
图2说明换能器组件52的立体侧视图。一般,换能器组件52(例如图2所示的声换能器组件)包括一个或多个换能器元件(未示出)、一个或多个匹配层(未示出)和透镜54。可以按照彼此隔开的关系来设置换能器元件,例如但不限于布置在层上的换能器元件阵列,其中每个换能器元件包括换能器正面和换能器背面。业界技术人员将意识到,可以采用但不限于以下材料制造换能器元件:锆钛酸铅(PZT)、聚偏二氟乙烯(polyvinylidene difluoride)(PVDF)和复合PZT。换能器组件52还可包括一层或多层匹配层,设置在邻近换能器元件阵列的正面,其中每个匹配层可包括匹配层正面和匹配层背面。匹配层便于对存在于高阻抗换能器元件和低阻抗患者或受验者16之间的阻抗差进行匹配(见图1)。透镜54可设置在邻近匹配层的正面,在患者和匹配层之间提供接口。
此外,换能器组件52可包括背衬层56,它具有正面和背面,可以用声损耗高的合适的声阻尼材料制成。背衬层56可以声耦合到换能器元件阵列的背面,其中背衬层56便于对可能从换能器元件阵列背面出现的声能进行衰减。
而且,换能器组件52还可包括支撑板58,它配置成为包括透镜54、匹配层和背衬层56的换能器组件提供支撑。支撑板58可包括T形支撑板,如图2所示。支撑板58也可结合到背衬层56的背面。如业界技术人员将意识到的,支撑板58可以用金属制造,例如但不限于铝。而且,将中心板59结合到支撑板58。如将在下文中描述的,中心板59便于热耗散。在中心板59上可设置电路60,例如柔性印刷电路板,其可包括例如在聚酰亚胺基底上的信号和地的铜导体。此外,如图2所示,分裂式接地平面62便于换能器组件52的发射区和接收区的分隔。
而且,换能器组件52还可包括电屏蔽64,其便于换能器元件与外界环境的隔离。电屏蔽可以包括金属箔,金属箔可采用例如但不限于铜、铝、黄铜和金等金属制造。
图3示出图2的换能器组件52沿剖面线3-3的剖面侧视图66。如图3所示,图2的换能器组件52的剖面侧视图66包括背衬层56。而且,换能器组件还包括支撑板58。换能器元件68的阵列设置在邻近背衬层56的正面。此外,具有第一正面和第一背面的第一匹配层70可定位在邻近换能器元件68阵列的正面的位置。同样地,如图3所示,具有第二正面和第二背面的第二匹配层72可设置成邻近第一匹配层70的正面。另外,透镜54可设置成邻近第二匹配层72的正面。如业界技术人员将意识到的,透镜54可包括配置成覆盖换能器元件68的阵列和匹配层70、72的部分,如图3所示。
如在上文中提到的,换能器组件52(见图2)包括背衬层56。图4示出背衬层56的示范复合结构74,其便于对圈闭在换能器组件52中心区的热量进行耗散。中心区可包括换能器元件68的阵列、第一匹配层70、第二匹配层72和透镜54(见图3)。通过实现具有复合结构74的背衬层56,换能器组件52的声性能有利地得到增强。按照本发明的实施例,圈闭在换能器组件52中心区的热量可以通过耦合到换能器元件阵列68背面的复合结构进行耗散。例如,换能器组件52中心区的热量可以耗散到复合结构74的多个侧面和/或后侧。业界技术人员将意识到,背衬层56是用具有所希望的声特性的材料制成的。例如,背衬层56可用例如但不限于以下材料制成:环氧树脂、钨颗粒和小硅球的复合物。然而,这样的材料一般展示出低的导热率。例如,背衬材料的导热率在大约0.2瓦/米/开氏绝对温标(W/m/K)到大约0.4W/m/K的范围变化。所以,改变背衬层56的特性以增强导热率会不利地导致换能器组件52的性能下降。
按照本发明的一方面,通过引入具有高导热率的材料以形成背衬材料的复合结构74,同时维持背衬层56的声特性,可以有利地增强背衬层56的导热率。按照本发明的示范实施例,图4-6说明用于形成图2中背衬层56的复合结构74的示范结构和方法。在目前考虑的配置中,背衬材料的复合结构74包括交替的背衬材料层和导热元件。图4是背衬材料叠层复合结构74的实施例的示意图。复合结构74包括这样一种安排,即背衬材料层76和具有高导热率的材料层78(以下称为导热元件78)交替层叠。
按照本发明的示范实施例,参考图5提供说明用于形成图4的背衬材料复合结构74的方法流程图。如图5所示,如在块82中描述的,可用一块背衬材料来形成具有增强导热率的背衬材料复合结构74。在步骤84开始用于形成复合结构74的方法,其中将背衬材料块切成小片以便形成多个背衬材料层76(见图4)。背衬材料层76的厚度可在大约0.2mm到大约2.0mm范围内改变。
在步骤86,按照一定的布局堆叠背衬材料层76,其中使背衬材料层76与高导热率的材料层78(导热元件78)交替层叠。导热元件78可包括金属箔,其中该金属箔可包括例如铜箔、铝箔以及它们的组合或合金。然而,另一方面,导热元件可包括高导热的非金属,例如但不限于热解石墨或氮化硼。导热元件78(例如金属箔)的厚度可在大约0.01mm到大约0.04mm范围内改变。一旦堆叠,导热元件78之间的间距可在大约0.2mm到大约2.0mm范围内改变。或者,导热元件78可包括导线、导杆、柔性电路线迹、柔性电路地线层以及它们的组合的形式的高导热率材料。在目前考虑的本发明的配置中,为了获得声音均匀衰减的介质,也许有利的是将导热元件78的厚度限制为显著低于在换能器组件52的工作频率下的声音波长。此外,在复合结构74中可包含的导热元件78的数量可选择为可使复合结构74的导热率有利地增强,同时对复合结构74的声性能的影响可忽略。
另外,按照本发明的示范实施例,导热元件78相互之间的间距可以根据在换能器组件52中的位置而有所不同。业界技术人员将意识到,换能器组件52的中心区是产热区。因此,可将较高密度的导热元件78设置在换能器组件52的中心区,而将较低密度的导热元件78设置在换能器组件52的外周区,从而导致制造成本的降低。
此外,如图2所示,可将接地层62剖分,以便在换能器组件52的发射区和接收区之间提供增强的隔离。按照本发明的示范实施例,可以把热元件78的单独的组用于换能器组件52的发射区和接收区,从而导致噪声和串音电平的降低。
如前所述,希望的是通过引入高导热率材料又维持背衬材料的声性能来增强背衬材料的导热率。在目前考虑的配置中,导热元件78的总体积可小于背衬材料体积的大约5%。而且,将导热元件78的总体积限制在小于背衬材料体积的大约3%是很有利的。
另外,定向地把导热元件78与背衬材料层76对准是有利的,便于来自换能器组件52的热量的有效耗散。例如,可将导热元件78设置成与背衬材料层76的方向平行,可有利地增强复合结构74的导热率。而且,按照本发明的示范实施例,导热元件78可以设置在复合结构74中,以便它们穿过复合结构从换能器组件52的产热区延伸到安置在复合结构74外周的散热器(未示出)或其它导热元件78。业界技术人员将意识到,换能器组件52的产热区可包括换能器元件68、匹配层70和72以及透镜54(见图3)。另外,可以将导热元件分布在整个复合结构74上,便于将热源点和散热器之间的热阻减到最小。
回到图5,在步骤88,将背衬材料76和导热元件78的各层叠的交替层结合在一起,以便形成背衬材料的复合结构74。而且,在步骤90,机加工复合结构,形成背衬材料的预定形状,得到背衬材料的复合结构74,如块92所示。例如,可以把复合结构加工成矩形块,其一面大致等于换能器阵列68的大小(见图3)。
按照本发明的另一实施例,可将导热元件78直接沉积到背衬材料层76上。随后将各背衬材料层76结合在一起,形成背衬材料的复合结构74。
图6是描述按照本发明的更多的方面形成背衬材料复合结构74的另一方法的流程图。如图6中归纳的方法所建议,如块94所示,可以采用导热元件78来形成具有增强导热率的背衬材料复合结构74。给定导热元件78,在步骤96开始用于形成复合结构的方法,按照彼此隔开的关系设置导热元件78,所述隔开关系包括预定图案。例如,预定图案可包括以均匀间距设置的导热元件的平行片。或者,预定图案可包括以均匀间距设置的导热元件78的二维(2D)阵列,例如杆或条。而且,可将已按间隔关系安排的导热元件78设置在模子中。在步骤98,可将背衬材料浇铸到导热元件78的周围,形成背衬材料的复合结构74。另外,在步骤100,可机加工复合结构,形成背衬材料的预定形状,得到背衬材料的复合结构74,如方框102所示。如前述,可以把复合结构机加工成矩形块,其一面大致等于换能器阵列68的大小(见图3)。
采用上述方法形成的背衬材料复合结构74可用于图1所示的超声系统。
如上所述,背衬材料复合结构74中所包含的多个导热元件78便于将热量从换能器组件的中心区转移到背衬材料复合结构74上的多个点上。例如,背衬材料复合结构74上的散热点可以包括复合结构74的一个或多个侧面。另外,散热点可包括复合结构74的后侧。
此外,按照本发明的示范实施例,提出了一种导热结构,例如中心板59(见图2),它配置成提供热通路,用于将热量从换能器组件52的背衬材料的复合结构74上的多点转移出去。例如,可用导热结构59提供热通路,将换能器组件52的产热区的热量经由复合结构74转移到探针的后部区域。然后热量耗散到周围空气中,从而就便于降低患者接触区的温度。或者,可以采用有源冷却机件将换能器组件52的产热区的热量经由背衬材料的复合结构74转移出去。例如,有源冷却机件可包括便于去除利用热冷却剂的热换能器冷却装置。
上述背衬材料的复合结构74能够有利地对来自换能器组件52产热区的热量进行有效的耗散。通过引入导热元件78,它们便于将来自产热区的热量转移到换能器组件的其它区域,可有利地增强直接和产热区接触的背衬材料的导热率。
这样,换能器组件热量的有效耗散能够降低超声表面温度,从而允许在较高的发射功率下操作探头,显著地改进了诊断成像。而且,用于形成背衬材料复合结构74的方法把背衬材料声特性的改变减到最小,从而提高了换能器组件52的性能。
虽然本文中仅对本发明的某些特征作了图示和说明,但业界技术人员可以想到许多修改和变化。所以应理解,所附权利要求书覆盖了属于本发明真正精神范围内的所有这些修改和变化。

Claims (10)

1.一种用于换能器的背衬材料复合结构(74),所述复合结构(74)包括:
多层背衬材料(76),它们交替地安排在多个导热元件(78)之间,其中所述多个导热元件(78)配置成将来自所述换能器中心的热量转移到所述背衬材料复合结构(74)的多个点上。
2.一种换能器组件(52),它包括:
多个换能器元件(68),它们设置在具有第一正面和第一背面的第一层中;以及
吸收体,它们设置在具有第二正面和第二背面的第二层中,其中所述吸收体设置在邻近所述第一背面的位置并声耦合到所述第一背面,并且其中所述吸收体包括传导元件通过其分散的背衬材料复合结构(74)。
3.如权利要求2所述的组件,其中还包括耦合到所述背衬材料复合结构(74)的导热结构(59),其中所述导热结构(59)配置成提供从所述背衬材料复合结构(74)到散热结构的热通路。
4.一种形成用于换能器组件(52)的背衬材料复合结构(74)的方法,所述方法包括:
将背衬材料块切成小片以形成多个背衬材料层(76);以及
将所述多层背衬材料(76)交替地设置在多个导热元件(78)之间,形成所述背衬材料复合结构(74)。
5.一种形成背衬材料复合结构(74)的方法,所述方法包括:
将多个导热元件(78)按照彼此隔开的关系排列在模子中;以及
在所述多个导热元件(78)周围浇铸吸收体材料,形成所述背衬材料复合结构(74)。
6.一种制造换能器组件(52)的方法,所述方法包括:
将多个声换能器元件(68)设置在具有第一正面和第一背面的第一层中;以及
提供包括吸收体的背衬,所述吸收体设置在具有第二正面和第二背面的第二层中,其中所述吸收体设置在邻近所述第一背面处并声耦合到所述第一背面,并且其中所述吸收体包括传导元件(78)通过其分散的背衬材料的复合结构(74)。
7.如权利要求6所述的方法,其中还包括耦合到所述背衬材料复合结构(74)的导热结构(59),其中所述导热结构(59)配置成提供从所述背衬材料复合结构(74)到散热结构的热通路。
8.一种超声系统(10),所述系统包括:
配置成获取超声数据的获取子系统(12),其中所述获取子系统(12)包括至少一个换能器组件(18),其中所述换能器组件(18)包括传导元件(78)通过其分散的背衬材料的复合结构(74);以及
处理子系统(14),它配置成处理通过所述获取子系统(12)获得的超声数据。
9.如权利要求8所述的系统(10),其中所述获取子系统(12)包括配置成便于获取所述超声数据的至少一个换能器组件(18)。
10.如权利要求9所述的系统(10),其中所述至少一个换能器组件(18)包括:设置在具有第一正面和第一背面的第一层中的多个换能器元件(68);设置在具有第二正面和第二背面的第二层中的吸收体,其中,所述吸收体设置在邻近所述第一背面处,并且所述吸收体包括传导元件(78)通过其分散的背衬材料复合结构(74)。
CN200510103671.1A 2004-08-27 2005-08-29 超声换能器 Active CN100536784C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/929019 2004-08-27
US10/929,019 US7105986B2 (en) 2004-08-27 2004-08-27 Ultrasound transducer with enhanced thermal conductivity

Publications (2)

Publication Number Publication Date
CN1799510A true CN1799510A (zh) 2006-07-12
CN100536784C CN100536784C (zh) 2009-09-09

Family

ID=35942095

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200510103671.1A Active CN100536784C (zh) 2004-08-27 2005-08-29 超声换能器

Country Status (4)

Country Link
US (2) US7105986B2 (zh)
JP (1) JP4934300B2 (zh)
CN (1) CN100536784C (zh)
FR (1) FR2879394B1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102283677A (zh) * 2011-07-12 2011-12-21 中国科学院深圳先进技术研究院 超声阵列声头及其制备方法
CN102592586A (zh) * 2011-01-14 2012-07-18 通用电气公司 超声换能器元件和用于提供超声换能器元件的方法
CN102989654A (zh) * 2011-09-16 2013-03-27 通用电气公司 超声换能器的热传递和声匹配层
CN104826243A (zh) * 2015-05-15 2015-08-12 深圳先进技术研究院 一种超声刺激神经组织的装置
CN109887898A (zh) * 2019-04-01 2019-06-14 北京大学深圳研究生院 一种基于超声换能器的电子器件散热装置
WO2020062274A1 (zh) * 2018-09-30 2020-04-02 深圳迈瑞生物医疗电子股份有限公司 一种超声探头
CN112020330A (zh) * 2018-03-30 2020-12-01 皇家飞利浦有限公司 用于超声成像探头的导热材料层和内部结构

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004109656A1 (en) * 2003-06-09 2004-12-16 Koninklijke Philips Electronics, N.V. Method for designing ultrasonic transducers with acoustically active integrated electronics
US7358645B2 (en) * 2004-08-19 2008-04-15 Siemens Medical Solutions Usa, Inc. Backing, transducer array and method for thermal survival
US8535228B2 (en) 2004-10-06 2013-09-17 Guided Therapy Systems, Llc Method and system for noninvasive face lifts and deep tissue tightening
US8444562B2 (en) 2004-10-06 2013-05-21 Guided Therapy Systems, Llc System and method for treating muscle, tendon, ligament and cartilage tissue
US10864385B2 (en) 2004-09-24 2020-12-15 Guided Therapy Systems, Llc Rejuvenating skin by heating tissue for cosmetic treatment of the face and body
PT2409728T (pt) 2004-10-06 2017-11-16 Guided Therapy Systems Llc Sistema para o tratamento de tecidos por ultrassons
US8133180B2 (en) 2004-10-06 2012-03-13 Guided Therapy Systems, L.L.C. Method and system for treating cellulite
US11235179B2 (en) 2004-10-06 2022-02-01 Guided Therapy Systems, Llc Energy based skin gland treatment
US9827449B2 (en) 2004-10-06 2017-11-28 Guided Therapy Systems, L.L.C. Systems for treating skin laxity
CA2583600A1 (en) 2004-10-06 2006-04-20 Guided Therapy Systems, L.L.C. Method and system for noninvasive cosmetic enhancement
US20060111744A1 (en) 2004-10-13 2006-05-25 Guided Therapy Systems, L.L.C. Method and system for treatment of sweat glands
US9694212B2 (en) 2004-10-06 2017-07-04 Guided Therapy Systems, Llc Method and system for ultrasound treatment of skin
US11883688B2 (en) 2004-10-06 2024-01-30 Guided Therapy Systems, Llc Energy based fat reduction
US8690779B2 (en) 2004-10-06 2014-04-08 Guided Therapy Systems, Llc Noninvasive aesthetic treatment for tightening tissue
US11207548B2 (en) 2004-10-07 2021-12-28 Guided Therapy Systems, L.L.C. Ultrasound probe for treating skin laxity
US11724133B2 (en) 2004-10-07 2023-08-15 Guided Therapy Systems, Llc Ultrasound probe for treatment of skin
CN101166472A (zh) * 2005-04-25 2008-04-23 皇家飞利浦电子股份有限公司 具有改进的热管理的超声波换能器组件
JP2007007262A (ja) * 2005-07-01 2007-01-18 Toshiba Corp コンベックス型超音波プローブおよび超音波診断装置
US7956514B2 (en) * 2007-03-30 2011-06-07 Gore Enterprise Holdings, Inc. Ultrasonic attenuation materials
CN101677806B (zh) * 2007-06-01 2013-03-27 皇家飞利浦电子股份有限公司 轻重量无线超声探头
ES2927873T3 (es) 2008-06-06 2022-11-11 Ulthera Inc Sistema y procedimiento para tratamiento cosmético y formación de imágenes
CN101606848A (zh) * 2008-06-20 2009-12-23 Ge医疗系统环球技术有限公司 数据输入方法和超声成像装置
CA2748362A1 (en) 2008-12-24 2010-07-01 Michael H. Slayton Methods and systems for fat reduction and/or cellulite treatment
US20110073293A1 (en) * 2009-09-25 2011-03-31 Gauthier Benoit G Thermal Wick Cooling For Vibroacoustic Transducers
WO2011132531A1 (ja) * 2010-04-23 2011-10-27 株式会社 日立メディコ 超音波探触子とその製造方法及び超音波診断装置
JP5620345B2 (ja) * 2010-06-23 2014-11-05 株式会社東芝 超音波トランスデューサとその製造方法
US8409102B2 (en) 2010-08-31 2013-04-02 General Electric Company Multi-focus ultrasound system and method
US20120157853A1 (en) * 2010-12-15 2012-06-21 General Electric Company Acoustic Transducer Incorporating an Electromagnetic Interference Shielding as Part of Matching Layers
US9237880B2 (en) * 2011-03-17 2016-01-19 Koninklijke Philips N.V. Composite acoustic backing with high thermal conductivity for ultrasound transducer array
DE102011077558A1 (de) * 2011-06-15 2012-12-20 Robert Bosch Gmbh Vorrichtung zum Senden und/oder Empfangen von Schallsignalen
KR20130020331A (ko) * 2011-08-19 2013-02-27 삼성전기주식회사 초음파 센서
JP5904732B2 (ja) * 2011-09-01 2016-04-20 株式会社東芝 超音波プローブ及び超音波診断装置
JP2013077883A (ja) * 2011-09-29 2013-04-25 Ge Medical Systems Global Technology Co Llc 超音波プローブ及び超音波画像表示装置
KR101386101B1 (ko) * 2012-03-07 2014-04-16 삼성메디슨 주식회사 초음파 흡음 소자, 이를 포함하는 트랜스듀서 및 초음파 프로브
US9872669B2 (en) 2012-03-20 2018-01-23 Koninklijke Philips N.V. Ultrasonic matrix array probe with thermally dissipating cable and backing block heat exchange
US9510802B2 (en) 2012-09-21 2016-12-06 Guided Therapy Systems, Llc Reflective ultrasound technology for dermatological treatments
WO2014069500A1 (ja) * 2012-10-31 2014-05-08 日立アロカメディカル株式会社 超音波探触子
JP5550706B2 (ja) 2012-10-31 2014-07-16 日立アロカメディカル株式会社 超音波探触子
CN104027893B (zh) 2013-03-08 2021-08-31 奥赛拉公司 用于多焦点超声治疗的装置和方法
KR20150025383A (ko) * 2013-08-29 2015-03-10 삼성메디슨 주식회사 초음파 진단장치용 프로브
KR102170262B1 (ko) * 2013-12-20 2020-10-26 삼성메디슨 주식회사 초음파 프로브 및 초음파 프로브의 제조방법
WO2015145402A1 (en) * 2014-03-27 2015-10-01 Koninklijke Philips N.V. Thermally conductive backing materials for ultrasound probes and systems
BR112016023889B1 (pt) 2014-04-18 2023-02-07 Ulthera, Inc Sistema de transdução de ultrassom para ultrassom de focagem linear
US9766328B2 (en) * 2014-07-15 2017-09-19 Garmin Switzerland Gmbh Sonar transducer array assembly and methods of manufacture thereof
EP2992829B1 (en) 2014-09-02 2018-06-20 Esaote S.p.A. Ultrasound probe with optimized thermal management
WO2016125040A2 (en) * 2015-02-06 2016-08-11 Koninklijke Philips N.V. Systems, methods, and apparatuses for thermal management of ultrasound transducers
JP6590601B2 (ja) 2015-09-04 2019-10-16 キヤノン株式会社 トランスデューサユニット、トランスデューサユニットを備えた音響波用プローブ、音響波用プローブを備えた光音響装置
DK3405294T3 (da) 2016-01-18 2023-03-13 Ulthera Inc Kompakt ultralydsanordning med ringformet ultralydsmatrice med periferisk elektrisk tilslutning til fleksibel printplade
EP3981466B9 (en) 2016-08-16 2023-10-04 Ulthera, Inc. Systems and methods for cosmetic ultrasound treatment of skin
US11079506B2 (en) 2016-12-16 2021-08-03 Pgs Geophysical As Multicomponent streamer
JP6907667B2 (ja) * 2017-04-10 2021-07-21 コニカミノルタ株式会社 超音波探触子
JP6939219B2 (ja) * 2017-08-03 2021-09-22 セイコーエプソン株式会社 超音波装置
US10809233B2 (en) 2017-12-13 2020-10-20 General Electric Company Backing component in ultrasound probe
WO2019164836A1 (en) 2018-02-20 2019-08-29 Ulthera, Inc. Systems and methods for combined cosmetic treatment of cellulite with ultrasound
US11717265B2 (en) * 2018-11-30 2023-08-08 General Electric Company Methods and systems for an acoustic attenuating material
US20200178941A1 (en) * 2018-12-07 2020-06-11 General Electric Company Ultrasound probe and method of making the same
JP7302199B2 (ja) * 2019-02-26 2023-07-04 コニカミノルタ株式会社 超音波プローブ、超音波診断装置およびバッキング材の製造方法
TWM583052U (zh) * 2019-05-30 2019-09-01 詠業科技股份有限公司 超音波傳感器
GB2588092B (en) * 2019-10-01 2023-12-06 Dolphitech As Scanning apparatus
CN114555247B (zh) * 2019-10-10 2023-09-01 新宁研究院 用于冷却超声换能器和超声换能器阵列的系统和方法
JP7395946B2 (ja) * 2019-10-17 2023-12-12 コニカミノルタ株式会社 超音波プローブ、超音波診断装置およびバッキング材の製造方法
EP3811872B1 (en) 2019-10-23 2023-07-26 Esaote S.p.A. Ultrasound probe with improved thermal management
CN112757554B (zh) * 2019-11-04 2022-08-09 无锡祥生医疗科技股份有限公司 超声换能器及其制作工艺
US11731165B2 (en) * 2019-12-20 2023-08-22 GE Precision Healthcare LLC Stressed-skin backing panel for image artifacts prevention
US20230233191A1 (en) * 2022-01-25 2023-07-27 GE Precision Healthcare LLC Thermally conductive shock absorbers for medical imaging probes

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3540610A1 (de) * 1985-11-15 1987-05-21 Fraunhofer Ges Forschung Ultraschallpruefkopf
US5267221A (en) 1992-02-13 1993-11-30 Hewlett-Packard Company Backing for acoustic transducer array
US5359760A (en) * 1993-04-16 1994-11-01 The Curators Of The University Of Missouri On Behalf Of The University Of Missouri-Rolla Method of manufacture of multiple-element piezoelectric transducer
US5329498A (en) 1993-05-17 1994-07-12 Hewlett-Packard Company Signal conditioning and interconnection for an acoustic transducer
EP0637470A3 (en) * 1993-08-05 1995-11-22 Hewlett Packard Co Back layer for a set of acoustic transducers.
US5560362A (en) 1994-06-13 1996-10-01 Acuson Corporation Active thermal control of ultrasound transducers
US5545942A (en) * 1994-11-21 1996-08-13 General Electric Company Method and apparatus for dissipating heat from a transducer element array of an ultrasound probe
US5629906A (en) * 1995-02-15 1997-05-13 Hewlett-Packard Company Ultrasonic transducer
US5648942A (en) * 1995-10-13 1997-07-15 Advanced Technology Laboratories, Inc. Acoustic backing with integral conductors for an ultrasonic transducer
US5721463A (en) * 1995-12-29 1998-02-24 General Electric Company Method and apparatus for transferring heat from transducer array of ultrasonic probe
US5844349A (en) * 1997-02-11 1998-12-01 Tetrad Corporation Composite autoclavable ultrasonic transducers and methods of making
JP3420951B2 (ja) * 1998-11-24 2003-06-30 松下電器産業株式会社 超音波探触子
US6467138B1 (en) * 2000-05-24 2002-10-22 Vermon Integrated connector backings for matrix array transducers, matrix array transducers employing such backings and methods of making the same
US6831394B2 (en) * 2002-12-11 2004-12-14 General Electric Company Backing material for micromachined ultrasonic transducer devices

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102592586A (zh) * 2011-01-14 2012-07-18 通用电气公司 超声换能器元件和用于提供超声换能器元件的方法
CN102283677A (zh) * 2011-07-12 2011-12-21 中国科学院深圳先进技术研究院 超声阵列声头及其制备方法
CN102989654A (zh) * 2011-09-16 2013-03-27 通用电气公司 超声换能器的热传递和声匹配层
CN102989654B (zh) * 2011-09-16 2017-07-18 通用电气公司 超声换能器的热传递和声匹配层
CN104826243A (zh) * 2015-05-15 2015-08-12 深圳先进技术研究院 一种超声刺激神经组织的装置
CN104826243B (zh) * 2015-05-15 2018-02-27 深圳先进技术研究院 一种超声刺激神经组织的装置
CN112020330A (zh) * 2018-03-30 2020-12-01 皇家飞利浦有限公司 用于超声成像探头的导热材料层和内部结构
CN112020330B (zh) * 2018-03-30 2024-04-16 皇家飞利浦有限公司 超声成像探头
WO2020062274A1 (zh) * 2018-09-30 2020-04-02 深圳迈瑞生物医疗电子股份有限公司 一种超声探头
CN109887898A (zh) * 2019-04-01 2019-06-14 北京大学深圳研究生院 一种基于超声换能器的电子器件散热装置

Also Published As

Publication number Publication date
FR2879394A1 (fr) 2006-06-16
US20060043839A1 (en) 2006-03-02
US7694406B2 (en) 2010-04-13
CN100536784C (zh) 2009-09-09
JP4934300B2 (ja) 2012-05-16
US20060261707A1 (en) 2006-11-23
JP2006061696A (ja) 2006-03-09
US7105986B2 (en) 2006-09-12
FR2879394B1 (fr) 2013-02-08

Similar Documents

Publication Publication Date Title
CN100536784C (zh) 超声换能器
CN1897876B (zh) 超声探头
JP5174010B2 (ja) 統合ビーム化が行われる方法および変換器アレイ
US5820564A (en) Method and apparatus for surface ultrasound imaging
US5329496A (en) Two-dimensional array ultrasonic transducers
US8207652B2 (en) Ultrasound transducer with improved acoustic performance
CN1859871A (zh) 超声波探头
CN1741770A (zh) 超声波探头与超声波诊断设备
US6759791B2 (en) Multidimensional array and fabrication thereof
JP5357388B2 (ja) トランスジューサアセンブリ用の相互接続構造
JP2011223468A (ja) 超音波トランスデューサおよび超音波プローブ
CN102989654B (zh) 超声换能器的热传递和声匹配层
JP2007152127A (ja) 合成開口のための超音波イメージングトランスデューサアレイ
CN1794479A (zh) 通道数减少的可重构线性传感器阵列
CN1626041A (zh) 超声波探头和超声波诊断装置
CN1802693A (zh) 用于设计具有声激励集成电子器件的超声换能器的方法
WO2021097561A1 (en) Ultrasonic transducers, backing structures and related methods
JP3288815B2 (ja) 2次元アレイ超音波プローブ
US7876027B2 (en) Multilayer piezoelectric and polymer ultrawideband ultrasonic transducer
CN1575774A (zh) 具有多个压电元件的压电传感器
JPWO2001056474A1 (ja) 超音波探触子およびこれを用いた超音波診断装置
WO2015145296A1 (en) Ultrasound probes and systems having pin-pmn-pt, a dematching layer, and improved thermally conductive backing materials
WO2007039972A1 (ja) 超音波診断装置
WO2015145402A1 (en) Thermally conductive backing materials for ultrasound probes and systems
KR20160096935A (ko) 음향특성 및 열특성을 향상시키는 초음파 트랜스듀서

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant