CN1795562A - 体接触soi晶体管及其制备方法 - Google Patents
体接触soi晶体管及其制备方法 Download PDFInfo
- Publication number
- CN1795562A CN1795562A CNA2004800145749A CN200480014574A CN1795562A CN 1795562 A CN1795562 A CN 1795562A CN A2004800145749 A CNA2004800145749 A CN A2004800145749A CN 200480014574 A CN200480014574 A CN 200480014574A CN 1795562 A CN1795562 A CN 1795562A
- Authority
- CN
- China
- Prior art keywords
- grid
- hammer head
- edge
- reversing
- ion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 238000004519 manufacturing process Methods 0.000 title abstract description 5
- 239000004065 semiconductor Substances 0.000 claims abstract description 28
- 238000005468 ion implantation Methods 0.000 claims abstract description 13
- 238000002513 implantation Methods 0.000 claims abstract description 6
- 238000002347 injection Methods 0.000 claims description 38
- 239000007924 injection Substances 0.000 claims description 38
- 239000002019 doping agent Substances 0.000 claims description 22
- 239000002245 particle Substances 0.000 claims description 12
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 239000007943 implant Substances 0.000 abstract description 3
- 230000002829 reductive effect Effects 0.000 abstract description 3
- 125000001475 halogen functional group Chemical group 0.000 abstract description 2
- 230000008901 benefit Effects 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 4
- 230000000631 nonopiate Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000012212 insulator Substances 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 241000894007 species Species 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 241000251131 Sphyrna Species 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000011982 device technology Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66492—Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a pocket or a lightly doped drain selectively formed at the side of the gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/26586—Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42372—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
- H01L29/4238—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66575—Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
- H01L29/6659—Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66742—Thin film unipolar transistors
- H01L29/66772—Monocristalline silicon transistors on insulating substrates, e.g. quartz substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78606—Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
- H01L29/78612—Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device for preventing the kink- or the snapback effect, e.g. discharging the minority carriers of the channel region for preventing bipolar effect
- H01L29/78615—Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device for preventing the kink- or the snapback effect, e.g. discharging the minority carriers of the channel region for preventing bipolar effect with a body contact
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- High Energy & Nuclear Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Thin Film Transistor (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
Description
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/447,047 | 2003-05-28 | ||
US10/447,047 US7138318B2 (en) | 2003-05-28 | 2003-05-28 | Method of fabricating body-tied SOI transistor having halo implant region underlying hammerhead portion of gate |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1795562A true CN1795562A (zh) | 2006-06-28 |
CN100477275C CN100477275C (zh) | 2009-04-08 |
Family
ID=33451154
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004800145749A Expired - Fee Related CN100477275C (zh) | 2003-05-28 | 2004-01-09 | 体接触soi晶体管及其制备方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US7138318B2 (zh) |
EP (1) | EP1636852A1 (zh) |
JP (1) | JP2006526288A (zh) |
KR (1) | KR101016032B1 (zh) |
CN (1) | CN100477275C (zh) |
TW (1) | TWI344675B (zh) |
WO (1) | WO2005015644A1 (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070048925A1 (en) * | 2005-08-24 | 2007-03-01 | International Business Machines Corporation | Body-Contacted Silicon on Insulation (SOI) field effect transistors |
US7335563B2 (en) * | 2005-11-09 | 2008-02-26 | International Business Machines Corporation | Rotated field effect transistors and method of manufacture |
US7635920B2 (en) * | 2006-02-23 | 2009-12-22 | Freescale Semiconductor, Inc. | Method and apparatus for indicating directionality in integrated circuit manufacturing |
US7601569B2 (en) * | 2007-06-12 | 2009-10-13 | International Business Machines Corporation | Partially depleted SOI field effect transistor having a metallized source side halo region |
US8426917B2 (en) * | 2010-01-07 | 2013-04-23 | International Business Machines Corporation | Body-tied asymmetric P-type field effect transistor |
US8643107B2 (en) * | 2010-01-07 | 2014-02-04 | International Business Machines Corporation | Body-tied asymmetric N-type field effect transistor |
US9741857B2 (en) * | 2015-08-07 | 2017-08-22 | Ahmad Tarakji | Approach for an area-efficient and scalable CMOS performance based on advanced Silicon-On-Insulator (SOI), Silicon-On-Sapphire (SOS) and Silicon-On-Nothing (SON) technologies |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5031032A (en) * | 1990-03-30 | 1991-07-09 | Xerox Corporation | Color array for use in fabricating full width arrays |
US5185280A (en) | 1991-01-29 | 1993-02-09 | Texas Instruments Incorporated | Method of fabricating a soi transistor with pocket implant and body-to-source (bts) contact |
US5894158A (en) | 1991-09-30 | 1999-04-13 | Stmicroelectronics, Inc. | Having halo regions integrated circuit device structure |
US5270806A (en) * | 1991-10-07 | 1993-12-14 | Xerox Corporation | Image editing system and method having improved multi-dimensional editing controls |
US5272113A (en) * | 1992-11-12 | 1993-12-21 | Xerox Corporation | Method for minimizing stress between semiconductor chips having a coefficient of thermal expansion different from that of a mounting substrate |
US5430536A (en) * | 1993-10-12 | 1995-07-04 | Xerox Corporation | Automatic duplex and simplex document handler for electronic input |
US5492847A (en) * | 1994-08-01 | 1996-02-20 | National Semiconductor Corporation | Counter-implantation method of manufacturing a semiconductor device with self-aligned anti-punchthrough pockets |
US5545913A (en) * | 1994-10-17 | 1996-08-13 | Xerox Corporation | Assembly for mounting semiconductor chips in a full-width-array image scanner |
US5604362A (en) * | 1995-04-24 | 1997-02-18 | Xerox Corporation | Filter architecture for a photosensitive chip |
US5552828A (en) * | 1995-08-17 | 1996-09-03 | Xerox Corporation | Geometries for photosites in a photosensitive silicon chip |
US5748344A (en) * | 1995-09-25 | 1998-05-05 | Xerox Corporation | System and method for determining a location and orientation in a black and white digital scanner |
US5691760A (en) * | 1995-10-12 | 1997-11-25 | Xerox Corporation | Photosensitive silicon chip having photosites spaced at varying pitches |
US5821575A (en) * | 1996-05-20 | 1998-10-13 | Digital Equipment Corporation | Compact self-aligned body contact silicon-on-insulator transistor |
EP0905789A4 (en) | 1996-06-14 | 1999-08-25 | Mitsubishi Electric Corp | SEMICONDUCTOR COMPONENT HAVING SILICON-ON-INSULATION STRUCTURE AND METHOD OF MANUFACTURING SAME |
JPH10150204A (ja) * | 1996-09-19 | 1998-06-02 | Toshiba Corp | 半導体装置およびその製造方法 |
US6271926B1 (en) * | 1996-10-10 | 2001-08-07 | Xerox Corporation | Printing system with print job programming capability |
US5874329A (en) * | 1996-12-05 | 1999-02-23 | Lsi Logic Corporation | Method for artificially-inducing reverse short-channel effects in deep sub-micron CMOS devices |
US5920093A (en) * | 1997-04-07 | 1999-07-06 | Motorola, Inc. | SOI FET having gate sub-regions conforming to t-shape |
EP0899793A3 (en) | 1997-08-28 | 1999-11-17 | Texas Instruments Incorporated | Transistor having localized source and drain extensions and method |
JP3447927B2 (ja) * | 1997-09-19 | 2003-09-16 | 株式会社東芝 | 半導体装置およびその製造方法 |
US5811855A (en) * | 1997-12-29 | 1998-09-22 | United Technologies Corporation | SOI combination body tie |
US6353245B1 (en) * | 1998-04-09 | 2002-03-05 | Texas Instruments Incorporated | Body-tied-to-source partially depleted SOI MOSFET |
US5985726A (en) * | 1998-11-06 | 1999-11-16 | Advanced Micro Devices, Inc. | Damascene process for forming ultra-shallow source/drain extensions and pocket in ULSI MOSFET |
US6005285A (en) * | 1998-12-04 | 1999-12-21 | Advanced Micro Devices, Inc. | Argon doped epitaxial layers for inhibiting punchthrough within a semiconductor device |
US6194278B1 (en) * | 1999-06-21 | 2001-02-27 | Infineon Technologies North America Corp. | Device performance by employing an improved method for forming halo implants |
US6399989B1 (en) * | 1999-08-03 | 2002-06-04 | Bae Systems Information And Electronic Systems Integration Inc. | Radiation hardened silicon-on-insulator (SOI) transistor having a body contact |
US6521959B2 (en) * | 1999-10-25 | 2003-02-18 | Samsung Electronics Co., Ltd. | SOI semiconductor integrated circuit for eliminating floating body effects in SOI MOSFETs and method of fabricating the same |
US6309933B1 (en) * | 2000-06-05 | 2001-10-30 | Chartered Semiconductor Manufacturing Ltd. | Method of fabricating T-shaped recessed polysilicon gate transistors |
US6429482B1 (en) * | 2000-06-08 | 2002-08-06 | International Business Machines Corporation | Halo-free non-rectifying contact on chip with halo source/drain diffusion |
US6448163B1 (en) * | 2000-08-10 | 2002-09-10 | Advanced Micro Devices, Inc. | Method for fabricating T-shaped transistor gate |
JP2002246600A (ja) * | 2001-02-13 | 2002-08-30 | Mitsubishi Electric Corp | 半導体装置及びその製造方法 |
US6498371B1 (en) * | 2001-07-31 | 2002-12-24 | Advanced Micro Devices, Inc. | Body-tied-to-body SOI CMOS inverter circuit |
US6642579B2 (en) * | 2001-08-28 | 2003-11-04 | International Business Machines Corporation | Method of reducing the extrinsic body resistance in a silicon-on-insulator body contacted MOSFET |
-
2003
- 2003-05-28 US US10/447,047 patent/US7138318B2/en not_active Expired - Lifetime
-
2004
- 2004-01-09 JP JP2006508589A patent/JP2006526288A/ja active Pending
- 2004-01-09 KR KR1020057022736A patent/KR101016032B1/ko not_active IP Right Cessation
- 2004-01-09 EP EP04775719A patent/EP1636852A1/en not_active Withdrawn
- 2004-01-09 WO PCT/US2004/000486 patent/WO2005015644A1/en active Application Filing
- 2004-01-09 CN CNB2004800145749A patent/CN100477275C/zh not_active Expired - Fee Related
- 2004-03-04 TW TW093105659A patent/TWI344675B/zh not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR20060056894A (ko) | 2006-05-25 |
US20040241969A1 (en) | 2004-12-02 |
TWI344675B (en) | 2011-07-01 |
KR101016032B1 (ko) | 2011-02-23 |
US7138318B2 (en) | 2006-11-21 |
TW200504841A (en) | 2005-02-01 |
JP2006526288A (ja) | 2006-11-16 |
CN100477275C (zh) | 2009-04-08 |
EP1636852A1 (en) | 2006-03-22 |
WO2005015644A1 (en) | 2005-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4771012A (en) | Method of making symmetrically controlled implanted regions using rotational angle of the substrate | |
US5496751A (en) | Method of forming an ESD and hot carrier resistant integrated circuit structure | |
CN1290203C (zh) | 半导体器件的结构及其制造方法 | |
KR20000069811A (ko) | 임계전압을 승압하는 웰 부스팅 | |
KR970013412A (ko) | 반도체소자의 제조방법 | |
EP0419128A1 (en) | Silicon MOSFET doped with germanium to increase lifetime of operation | |
CN101572251B (zh) | 半导体器件、n型MOS晶体管及其制作方法 | |
US20100022062A1 (en) | Transitor having a germanium implant region located therein and a method of manufacture therefor | |
JPH07263707A (ja) | 薄膜トランジスタ及びその製造方法 | |
JP2001298188A (ja) | 半導体素子及びその形成方法 | |
JP2006060208A (ja) | 高性能なサブ0.1マイクロメートルトランジスタ用のソース/ドレイン構造 | |
US20080121992A1 (en) | Semiconductor device including diffusion barrier region and method of fabricating the same | |
KR20050034548A (ko) | 반도체 장치 및 그 제조 방법 | |
CN1795562A (zh) | 体接触soi晶体管及其制备方法 | |
CN1841708A (zh) | 制造快闪存储装置的方法 | |
US6114210A (en) | Method of forming semiconductor device comprising a drain region with a graded N-LDD junction with increased HCI lifetime | |
US6809016B1 (en) | Diffusion stop implants to suppress as punch-through in SiGe | |
CN102569077A (zh) | 用于制作半导体器件的源/漏区的方法 | |
US6800529B2 (en) | Method for fabricating semiconductor transistor device | |
CN1577886A (zh) | 半导体装置及其制造方法 | |
CN1056471C (zh) | 互补型金属氧化物半导体场效应晶体管的制造方法 | |
CN1147002C (zh) | 半导体器件及其制造方法 | |
KR0146525B1 (ko) | 반도체 소자의 트랜지스터 제조방법 | |
KR20010039227A (ko) | 박막트랜지스터 및 그 제조방법 | |
CN1056470C (zh) | 互补型金属氧化物半导体场效应晶体管的制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
ASS | Succession or assignment of patent right |
Owner name: GLOBALFOUNDRIES SEMICONDUCTORS CO., LTD Free format text: FORMER OWNER: ADVANCED MICRO DEVICES CORPORATION Effective date: 20100722 |
|
C41 | Transfer of patent application or patent right or utility model | ||
COR | Change of bibliographic data |
Free format text: CORRECT: ADDRESS; FROM: CALIFORNIA STATE, THE USA TO: GRAND CAYMAN ISLAND, BRITISH CAYMAN ISLANDS |
|
TR01 | Transfer of patent right |
Effective date of registration: 20100722 Address after: Grand Cayman, Cayman Islands Patentee after: Globalfoundries Semiconductor Inc. Address before: American California Patentee before: Advanced Micro Devices Inc. |
|
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090408 Termination date: 20200109 |