CN1795562A - 体接触soi晶体管及其制备方法 - Google Patents

体接触soi晶体管及其制备方法 Download PDF

Info

Publication number
CN1795562A
CN1795562A CNA2004800145749A CN200480014574A CN1795562A CN 1795562 A CN1795562 A CN 1795562A CN A2004800145749 A CNA2004800145749 A CN A2004800145749A CN 200480014574 A CN200480014574 A CN 200480014574A CN 1795562 A CN1795562 A CN 1795562A
Authority
CN
China
Prior art keywords
grid
hammer head
edge
reversing
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004800145749A
Other languages
English (en)
Other versions
CN100477275C (zh
Inventor
D·D·吴
W-J·齐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GlobalFoundries Inc
Original Assignee
Advanced Micro Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Micro Devices Inc filed Critical Advanced Micro Devices Inc
Publication of CN1795562A publication Critical patent/CN1795562A/zh
Application granted granted Critical
Publication of CN100477275C publication Critical patent/CN100477275C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66492Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a pocket or a lightly doped drain selectively formed at the side of the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/66772Monocristalline silicon transistors on insulating substrates, e.g. quartz substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78612Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device for preventing the kink- or the snapback effect, e.g. discharging the minority carriers of the channel region for preventing bipolar effect
    • H01L29/78615Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device for preventing the kink- or the snapback effect, e.g. discharging the minority carriers of the channel region for preventing bipolar effect with a body contact

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明提出了一种用于制备具有减小的体电阻的体接触SOI晶体管的方法。在晶片制备过程期间,半导体晶片被放置到离子注入装置中,并且定位于相对于离子注入装置的粒子束路径(31-34)的第一位置,以得到在粒子束路径与晶体管栅极(29)边缘之间基本上非正交的扭转方位。在定位于第一位置之后,将一种离子注入到第一注入区。然后旋转该晶片至第二基本上非正交的扭转方位,在那里进行另一次离子注入。这一过程以相同方式继续下去,使得进行其它基本上非正交扭转与离子注入,直到生成了所希望数目的注入区。环型注入或袋型注入是适用本技术的注入类型的一个例子。

Description

体接触SOI晶体管及其制备方法
技术领域
本发明一般涉及半导体制备,尤其涉及半导体制备期间的离子注入过程。
背景技术
绝缘体上硅(SOI)结构与常规的体基底(bulk substrate)相比有其优点,诸如消除了闩锁(latch-up),减小了短沟道效应,改善了抗辐射能力(radiation hardness),以及动态耦合等等。因为有这些优点,所以半导体器件制备商通常在SOI结构上形成金属-氧化物-半导体场效应晶体管(MOSFETs)。
在典型的MOSFET中,通过在半导体材料层中注入N型或P型杂质而在有源半导体区中形成源极与漏极。在源极与漏极之间是沟道区(或体区),其上是栅电极。可惜,形成在SOI结构上的MOSFETs常常遭受到浮动体效应(Floating Body Effect,FBE),其导致发展出体接触构建技术(tied-body construction techniques),特别是在制备部分耗尽(partially-depleted)SOI器件中,诸如图1所示的t型或“槌头(hammerhead)”栅电极。
图1示意了现有技术的典型t型栅晶体管100的顶视图。这种t型栅晶体管也称为“槌头”晶体管,因为在栅极9与区域4中接触5之间的多晶硅部分10的块体形状(shape of the block)像槌头。晶体管100形成在具有第一区2和第二区4的有源区中,第一区2具有第一宽度而第二区4具有第二宽度。接触3位于区域2中,而接触5则形成在区域4中。t型栅晶体管100的另一视图显示在图2中。
图2示意了t型晶体管100在图1的线A处的剖视图,而图3则示意了晶体管100的一部分的更详细平面图。线A是正好在栅极9侧壁之内的剖面。此剖面导致在所显示的栅极9边缘之下的源极/漏极(S/D)延伸区8与环型注入(halo implants)6。由图2可以看出,晶体管100利用了部分耗尽SOI制备技术。图2中未示意于图1的组件包括隔离结构18、绝缘体层11、基底12、介电层17、在栅极9之下的源/漏极延伸区8、以及在栅极9之下的环型注入6。
虽然诸如t型晶体管100的体接触晶体管通过将晶体管主体连接到接触而避免FBE问题,但是CMOS按比例缩小由于某些导电结构的横截面尺寸伴随而来的减小及其它因素而导致电阻增大。在t型晶体管100中,体电阻有几个组成:a)接触5电阻,b)沿着晶体管100宽度在栅极结构9下方的电阻,以及c)在槌头10下方从晶体管S/D注入沿着体接触注入边界的夹断电阻(pinch off resistance)。
在以上所提及的三个电阻组成中,接触电阻一般是总电阻的最小部分。沿着栅极结构9宽度的电阻被环型注入6也称为袋型注入(pocketimplants)略微降低,所述环型注入6通常接收比完全注入(well implant)剂量水平大约大一个数量级的掺杂剂剂量水平。完全注入剂量在目前制备技术中有向下趋势,其导致多晶硅槌头10下方的电阻增大,而使得这一电阻组成已在体电阻中占支配地位。
此外,耗尽现象会使电阻问题恶化,诸如当源极/漏极延伸耗尽区在槌头10下方产生“夹断”,如图3所示。图3是图1的t型晶体管100靠近槌头10的一部分的放大图。由图3可见,靠近S/D延伸区的槌头10的耗尽区13已在槌头10下方的沟道中产生夹断区14,这导致电阻增大。这一现象在图4中从另一角度予以示意。
图4示意了t型晶体管100的一部分沿图1中线B所示位置的剖视图。由重叠的耗尽区13所产生的夹断区14清楚可见。栅极宽度7由出现在槌头10剖面中的虚线所示。应注意,两耗尽区并不需如所示的那样重叠,以因夹断而导致电阻增大。
因此,能克服这些问题与限制的方法将是有用的。
附图说明
通过参考附图,可更好地了解本发明且其众多特征与优点对于本领域技术人员而言将会显而易见。应了解,为简单及清楚的目的,图中所示的元件不一定是按比例绘制的。例如,为了清楚,某些元件的尺寸相对于其它元件被夸大了。在参考附图考虑了以下说明与权利要求后,本发明的其它优点、特征和特性,以及结构的相关元件的方法、操作和功能,以及部分的组合和制备的经济,都将变得显而易见,所有附图形成本说明书的一部分,其中相同的参考数字代表不同图中对应的部分,以及其中:
图1是现有技术的t型栅晶体管的顶视图;
图2为现有技术,是t型晶体管沿图1中线A所示范围的剖视图;
图3是图1的现有技术t型晶体管的一部分的放大顶视图;
图4示意了现有技术t型晶体管沿图1中线B所示位置的剖视图;
图5是t型晶体管的一部分的顶视图,显示了根据本发明的一个实施例在制备过程中所产生的源极/漏极延伸区注入;
图6示意了根据本发明的至少一个实施例在晶体管器件中产生环型区的顶视图;
图7示意了根据本发明至少一个实施例所制备的t型晶体管器件的一部分的剖视图;以及
图8示意了根据本发明至少一个实施例所制备的t型晶体管器件的一部分的剖视图。
具体实施方式
本发明提供一种离子注入方法用于生产晶体管,诸如具有减小的体电阻的t型晶体管。该方法包括将包含栅极边缘的半导体晶片放置到离子注入装置内的步骤。然后,为了获得在粒子束路径(beam path)与栅极边缘之间基本上非正交的扭转方位(substantially non-orthogonal twistorientation),将该半导体晶片定位于相对离子注入装置的粒子束路径的第一位置。在定位于第一位置之后,至少一种离子,例如n型或p型掺杂剂,被注入到该晶片的第一注入区。然后旋转该晶片至第二基本上非正交的扭转方位,在那里进行另一次离子注入。以相同方式继续这一过程,使得进行另外的基本上非正交扭转与离子注入,直到生成所期望数目的注入区。
本方法通过防止耗尽区引起的电阻增大而克服了先前注入方法的限制,该耗尽区与体接触SOI晶体管中接触和栅沟道之间的区域中的S/D延伸区重叠相关。本方法因此降低了晶体管中总的体电阻,这提高了器件的整体性能特征。此外,本发明适于将先进的亚微米集成电路半导体器件整合到现有的生产线,而不需额外的资本支出。
参考示意于图5到图8的特定实施例可最好地了解本发明。不过,应注意,所描述的实施例并不是用来限定本发明可应用的器件类型或流程类型。利用离子注入掺杂剂的各种器件与制备过程在本领域中已为人所知,许多将得益于在此所公开的具有成本效益的过程,在该过程中,接触(诸如图5中的接触)与栅沟道之间的路径中的电阻被抑制或减小,而该电阻是由于与S/D扩散区有关的耗尽区的重叠所产生的。
图5显示半导体晶片上t型晶体管的一部分200的顶视图,其具有栅极部分29与槌头部分20,以及源极/漏极部分22与24。在图5中还示意了与图1中区域4类似的有源区24之上的掩模层21。一般根据本领域中熟知的技术来完成S/D延伸区28的注入,剂量范围在1012cm-2到1016cm-2之间。典型的S/D延伸区剂量范围是在1014cm-2到1015cm-2的量级。如图5所示,源极/漏极延伸区28延伸至槌头20的边缘。在图5所示的S/D延伸区28注入之后,进行环型注入,如图6所示,图7与图8进一步示意了其结果。
图6示意了在部分200中生成环型区26的顶视图。在一个实施例中,将半导体晶片相对于由箭头标号31所示的离子束路径定位于第一位置。该定向的目的是要得到在离子束路径31与栅极结构29边缘之间基本上非正交的扭转方位。在此所用的词语“扭转”或“扭转方位”可认为类似于飞行器的水平偏航轴线(horizontal yaw axis),其可用位于重心的线在水平情况下悬挂模型飞行器来演示。飞行器前端的向左运动或向右运动是沿着水平偏航轴线而进行的。
在扭转定向于第一位置之后,将n型或p型掺杂剂注入到晶片的晶体管部分200的第一注入区。这一注入导致生成了环型或袋型注入区26的初始部分,该初始部分位于S/D延伸区之外晶体管器件部分200的槌头20之下的有源区内。然后旋转部分200至图6中标号为32、33和34的箭头所示的粒子束路径,在每一个非正交的扭转方位进行各自的环型注入。以此方式,可得到槌头20下环型区26的区域之间的重叠。例如,第二注入区可重叠第一注入区;第三注入区可重叠第四注入区,等等。在完成袋型注入、延伸区注入、以及深源极注入(deep sourceimplantation)之后或者当不再有需要时,可去除光刻胶块体(photoresistblock)21。
在一个实施例中,在环型区26注入期间所使用的离子种类为n型掺杂剂,诸如位于周期表的族15(VA)中的元素,例如磷(P)。在另一个实施例中,所注入的离子种类为p型掺杂剂,例如在周期表的族13(IIIA)中的元素,诸如硼(B)。这些袋型注入是在中等的粒子束电流与粒子束能量下进行的。例如,对于硼(B),粒子束能量范围在7keV至15keV之间,而用于砷(As)的粒子束能量范围则在40keV至90keV之间。环型或袋型注入的剂量范围可在1013cm-2到1015cm-2之间,1013cm-2则为典型的施用剂量。
基本上非正交的扭转方位可以是相对于栅极29边缘的45度,如图6所示。在一个实施例中,基本上非正交扭转方位的范围可在30度至60度之间。在另一个实施例中,基本上非正交扭转方位的范围可在15度至75度之间。基本上非正交扭转方位的选定是依据所希望得到的结果,这涉及到要考虑特征的几何,而该几何需要诸如环型注入区26的注入。
图7显示根据本发明一个实施例的t型晶体管器件的部分200的剖视图。图7的剖视图类似于沿图1中线A所示区域剖开所得到的视图。显示于图7中的实施例是使用部分耗尽SOI制备技术的SOI晶体管的实施例。图7中未示意于图6的组件包括隔离结构38、绝缘体层31、基底32、以及有源区22与24。示意的粒子束路径只是用来参考,尽管掩蔽层21已被去除。
如图7所示,环型区26在栅极结构29的槌头20的一部分之下延伸。这有抑制S/D耗尽区53的耗尽以及压制夹断的效果,如图8所示。
图8示意了根据本发明一个实施例制备的t型晶体管器件的一部分的剖视图。图8的剖视图类似于沿图1中线B所示区域剖开所得到的视图。S/D耗尽区53被拉回,使得在槌头20下沟道40内的耗尽夹断情况不会出现。这导致总的体电阻减小,因为当实施在此所说明的制备技术时,由生成夹断区(14,图4)的现有技术制备方法所显示的电阻增大并未出现。
在此所描述的方法与设备在实施上是弹性的。虽然本发明是用某些特定实施例加以说明的,但是对本领域的技术人员而言显而易见的是,本发明并不受限于这几个实施例。例如,本发明可用来产生未明确示意的其它特征。此外,本发明可应用于其它器件技术,以实现器件制备期间在注入过程中的电阻减小特征。另外,目前可得到可能适于用来应用在此所说明方法的不同类型的离子注入装置。还应注意,尽管在此已详细显示并说明了本发明的一个实施例及其某些变体,但是本领域的技术人员可轻易地构建结合本发明内容的许多其它不同实施例。例如,本发明的特定新颖实施例可由下列项目(items)所识别:
项目1.一种方法,包括将包含栅极边缘的半导体晶片放置到离子注入装置中;使该半导体晶片定位于相对于该离子注入装置的粒子束路径的第一位置,以得到该粒子束路径与该栅极边缘之间基本上非正交的扭转方位;以及当该半导体晶片在该第一位置时,将至少一种离子注入到该半导体晶片的第一注入区。
项目2.如项目1的方法,进一步包括将该半导体晶片旋转至第二基本上非正交的扭转方位;以及当该半导体晶片在该第二位置时,将至少一种离子注入到该半导体晶片的第二注入区。
项目3.如项目2的方法,其中该第一注入区与第二注入区位于晶体管器件的槌头部分之下,以及其中该第二注入区和该第一注入区重叠。
项目4.如项目1、10及17的方法,其中该基本上非正交的扭转方位为45度。
项目5.如项目1、10及17的方法,其中该基本上非正交的扭转方位在30度至60度之间。
项目6.如项目1、10及17的方法,其中该基本上非正交的扭转方位在15度至75度之间。
项目7.如项目1的方法,其中该种离子为n型掺杂剂。
项目8.如项目1的方法,其中该种离子为p型掺杂剂。
项目9.一种方法,包括形成具有栅极部分与槌头部分的晶体管器件,该栅极部分包括第一栅极边缘与第二栅极边缘,其中该第一栅极边缘与第二栅极边缘之间的距离为该栅极的宽度;以及在形成该晶体管器件之后注入掺杂剂,在该槌头部分下方形成连续掺杂区,该连续掺杂区从槌头部分下最接近第一栅极边缘的第一点延伸至槌头部分下最接近第二边缘的第二位置。
项目10.如项目9的方法,其中该注入步骤进一步包括旋转该晶体管器件至第一基本上非正交的扭转方位;将至少一种离子注入到该晶体管器件的第一注入区;旋转该晶体管器件至第二基本上非正交的扭转方位;以及将至少一种离子注入到该晶体管器件的第二注入区。
项目11.如项目10的方法,其中该基本上非正交的扭转方位为45度。
项目12.如项目10的方法,其中该基本上非正交的扭转方位在30度至60度之间。
项目13.如项目10的方法,其中该基本上非正交的扭转方位在15度至75度之间。
项目14.如项目9的方法,其中该掺杂剂为n型掺杂剂。
项目15.如项目9的方法,其中该掺杂剂为p型掺杂剂。
项目16.一种半导体器件,包含具有栅极部分与槌头部分的晶体管器件,该栅极部分包含第一栅极边缘与第二栅极边缘,其中该第一栅极边缘与第二栅极边缘之间的距离为该栅极的宽度;连续掺杂区,该连续掺杂区从槌头部分下最接近第一栅极边缘的第一点延伸至槌头部分下最接近第二边缘的第二位置;在该槌头部分下方形成连续掺杂区的掺杂剂,该连续掺杂区从槌头部分下最接近第一栅极边缘的第一点延伸至槌头部分下最接近第二栅极边缘的第二位置。
项目17.如项目16的器件,其中在槌头部分下方的掺杂剂包含至少一种离子,该至少一种离子是当该晶体管定位于至少一个基本上非正交扭转方位时注入的。
项目18.如项目17的器件,其中该基本上非正交的扭转方位为45度。
项目19.如项目17的器件,其中该基本上非正交的扭转方位在30度至60度之间。
项目20.如项目17的器件,其中该基本上非正交的扭转方位在15度至75度之间。
项目21.如项目16的器件,其中该掺杂剂为n型掺杂剂。
项目22.如项目16的器件,其中该掺杂剂为p型掺杂剂。
以上已通过特定实施例描述了本发明的益处、其它优点、以及问题的解决方案。然而,不应将所述的益处、其它优点、问题的解决方案、以及可导致任一益处、优点、或解决方案出现或者变得更明显的任何要素解释为任一权利要求或所有权利要求的关键的、必要的、或本质的特征或要素。因此,本发明并不意在限定为在此所提出的特定形式,相反地,本发明意在涵盖可合理包括于本发明的精神与范围之内的替代、修改与等效。

Claims (10)

1.一种方法,包括:
将包含栅极边缘的半导体晶片放置到离子注入装置中;
将所述半导体晶片定位于相对于所述离子注入装置的粒子束路径的第一位置,以得到所述粒子束路径与所述栅极边缘之间基本上非正交的扭转方位;以及
当所述半导体晶片在所述第一位置时,将至少一种离子注入到所述半导体晶片的第一注入区。
2.如权利要求1所述的方法,进一步包括:
将所述半导体晶片旋转至第二基本上非正交的扭转方位;以及
当所述半导体晶片在所述第二位置时,将至少一种离子注入到所述半导体晶片的第二注入区。
3.如权利要求2所述的方法,其中所述第一注入区与第二注入区位于晶体管器件的槌头部分之下,以及其中所述第二注入区重叠所述第一注入区。
4.如权利要求1、8或10所述的方法,其中所述基本上非正交的扭转方位为45度。
5.如权利要求1、8或10所述的方法,其中所述基本上非正交的扭转方位在30度与60度之间。
6.如权利要求1、8或10所述的方法,其中所述基本上非正交的扭转方位在15度与75度之间。
7.一种方法,包括:
形成具有栅极部分与槌头部分的晶体管器件,所述栅极部分包括第一栅极边缘与第二栅极边缘,其中所述第一栅极边缘与第二栅极边缘之间的距离为所述栅极的宽度;以及
在形成所述晶体管器件之后在所述槌头部分下方注入掺杂剂,以形成连续掺杂区,所述连续掺杂区从槌头部分下最接近第一栅极边缘的第一点延伸至槌头部分下最接近第二边缘的第二位置。
8.如权利要求7所述的方法,其中所述注入步骤进一步包括:
将所述晶体管器件旋转至第一基本上非正交的扭转方位;
将至少一种离子注入到所述晶体管器件的第一注入区中;
将所述晶体管器件旋转至第二基本上非正交的扭转方位;以及
将至少一种离子注入到所述晶体管器件的第二注入区中。
9.一种半导体器件,包括:
具有栅极部分与槌头部分的晶体管器件,所述栅极部分包含第一栅极边缘与第二栅极边缘,其中所述第一栅极边缘与第二栅极边缘之间的距离为所述栅极的宽度;
连续掺杂区,从槌头部分下最接近第一栅极边缘的第一点延伸至槌头部分下最接近第二边缘的第二位置;
在所述槌头部分下方形成连续掺杂区的掺杂剂,从槌头部分下最接近第一栅极边缘的第一点延伸至槌头部分下最接近第二栅极边缘的第二位置。
10.如权利要求9所述的器件,其中在所述槌头部分下方的掺杂剂包含至少一种离子,所述至少一种离子是当所述晶体管定位于至少一个基本上非正交扭转方位时注入的。
CNB2004800145749A 2003-05-28 2004-01-09 体接触soi晶体管及其制备方法 Expired - Fee Related CN100477275C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/447,047 2003-05-28
US10/447,047 US7138318B2 (en) 2003-05-28 2003-05-28 Method of fabricating body-tied SOI transistor having halo implant region underlying hammerhead portion of gate

Publications (2)

Publication Number Publication Date
CN1795562A true CN1795562A (zh) 2006-06-28
CN100477275C CN100477275C (zh) 2009-04-08

Family

ID=33451154

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800145749A Expired - Fee Related CN100477275C (zh) 2003-05-28 2004-01-09 体接触soi晶体管及其制备方法

Country Status (7)

Country Link
US (1) US7138318B2 (zh)
EP (1) EP1636852A1 (zh)
JP (1) JP2006526288A (zh)
KR (1) KR101016032B1 (zh)
CN (1) CN100477275C (zh)
TW (1) TWI344675B (zh)
WO (1) WO2005015644A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070048925A1 (en) * 2005-08-24 2007-03-01 International Business Machines Corporation Body-Contacted Silicon on Insulation (SOI) field effect transistors
US7335563B2 (en) * 2005-11-09 2008-02-26 International Business Machines Corporation Rotated field effect transistors and method of manufacture
US7635920B2 (en) * 2006-02-23 2009-12-22 Freescale Semiconductor, Inc. Method and apparatus for indicating directionality in integrated circuit manufacturing
US7601569B2 (en) * 2007-06-12 2009-10-13 International Business Machines Corporation Partially depleted SOI field effect transistor having a metallized source side halo region
US8426917B2 (en) * 2010-01-07 2013-04-23 International Business Machines Corporation Body-tied asymmetric P-type field effect transistor
US8643107B2 (en) * 2010-01-07 2014-02-04 International Business Machines Corporation Body-tied asymmetric N-type field effect transistor
US9741857B2 (en) * 2015-08-07 2017-08-22 Ahmad Tarakji Approach for an area-efficient and scalable CMOS performance based on advanced Silicon-On-Insulator (SOI), Silicon-On-Sapphire (SOS) and Silicon-On-Nothing (SON) technologies

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5031032A (en) * 1990-03-30 1991-07-09 Xerox Corporation Color array for use in fabricating full width arrays
US5185280A (en) 1991-01-29 1993-02-09 Texas Instruments Incorporated Method of fabricating a soi transistor with pocket implant and body-to-source (bts) contact
US5894158A (en) 1991-09-30 1999-04-13 Stmicroelectronics, Inc. Having halo regions integrated circuit device structure
US5270806A (en) * 1991-10-07 1993-12-14 Xerox Corporation Image editing system and method having improved multi-dimensional editing controls
US5272113A (en) * 1992-11-12 1993-12-21 Xerox Corporation Method for minimizing stress between semiconductor chips having a coefficient of thermal expansion different from that of a mounting substrate
US5430536A (en) * 1993-10-12 1995-07-04 Xerox Corporation Automatic duplex and simplex document handler for electronic input
US5492847A (en) * 1994-08-01 1996-02-20 National Semiconductor Corporation Counter-implantation method of manufacturing a semiconductor device with self-aligned anti-punchthrough pockets
US5545913A (en) * 1994-10-17 1996-08-13 Xerox Corporation Assembly for mounting semiconductor chips in a full-width-array image scanner
US5604362A (en) * 1995-04-24 1997-02-18 Xerox Corporation Filter architecture for a photosensitive chip
US5552828A (en) * 1995-08-17 1996-09-03 Xerox Corporation Geometries for photosites in a photosensitive silicon chip
US5748344A (en) * 1995-09-25 1998-05-05 Xerox Corporation System and method for determining a location and orientation in a black and white digital scanner
US5691760A (en) * 1995-10-12 1997-11-25 Xerox Corporation Photosensitive silicon chip having photosites spaced at varying pitches
US5821575A (en) * 1996-05-20 1998-10-13 Digital Equipment Corporation Compact self-aligned body contact silicon-on-insulator transistor
EP0905789A4 (en) 1996-06-14 1999-08-25 Mitsubishi Electric Corp SEMICONDUCTOR COMPONENT HAVING SILICON-ON-INSULATION STRUCTURE AND METHOD OF MANUFACTURING SAME
JPH10150204A (ja) * 1996-09-19 1998-06-02 Toshiba Corp 半導体装置およびその製造方法
US6271926B1 (en) * 1996-10-10 2001-08-07 Xerox Corporation Printing system with print job programming capability
US5874329A (en) * 1996-12-05 1999-02-23 Lsi Logic Corporation Method for artificially-inducing reverse short-channel effects in deep sub-micron CMOS devices
US5920093A (en) * 1997-04-07 1999-07-06 Motorola, Inc. SOI FET having gate sub-regions conforming to t-shape
EP0899793A3 (en) 1997-08-28 1999-11-17 Texas Instruments Incorporated Transistor having localized source and drain extensions and method
JP3447927B2 (ja) * 1997-09-19 2003-09-16 株式会社東芝 半導体装置およびその製造方法
US5811855A (en) * 1997-12-29 1998-09-22 United Technologies Corporation SOI combination body tie
US6353245B1 (en) * 1998-04-09 2002-03-05 Texas Instruments Incorporated Body-tied-to-source partially depleted SOI MOSFET
US5985726A (en) * 1998-11-06 1999-11-16 Advanced Micro Devices, Inc. Damascene process for forming ultra-shallow source/drain extensions and pocket in ULSI MOSFET
US6005285A (en) * 1998-12-04 1999-12-21 Advanced Micro Devices, Inc. Argon doped epitaxial layers for inhibiting punchthrough within a semiconductor device
US6194278B1 (en) * 1999-06-21 2001-02-27 Infineon Technologies North America Corp. Device performance by employing an improved method for forming halo implants
US6399989B1 (en) * 1999-08-03 2002-06-04 Bae Systems Information And Electronic Systems Integration Inc. Radiation hardened silicon-on-insulator (SOI) transistor having a body contact
US6521959B2 (en) * 1999-10-25 2003-02-18 Samsung Electronics Co., Ltd. SOI semiconductor integrated circuit for eliminating floating body effects in SOI MOSFETs and method of fabricating the same
US6309933B1 (en) * 2000-06-05 2001-10-30 Chartered Semiconductor Manufacturing Ltd. Method of fabricating T-shaped recessed polysilicon gate transistors
US6429482B1 (en) * 2000-06-08 2002-08-06 International Business Machines Corporation Halo-free non-rectifying contact on chip with halo source/drain diffusion
US6448163B1 (en) * 2000-08-10 2002-09-10 Advanced Micro Devices, Inc. Method for fabricating T-shaped transistor gate
JP2002246600A (ja) * 2001-02-13 2002-08-30 Mitsubishi Electric Corp 半導体装置及びその製造方法
US6498371B1 (en) * 2001-07-31 2002-12-24 Advanced Micro Devices, Inc. Body-tied-to-body SOI CMOS inverter circuit
US6642579B2 (en) * 2001-08-28 2003-11-04 International Business Machines Corporation Method of reducing the extrinsic body resistance in a silicon-on-insulator body contacted MOSFET

Also Published As

Publication number Publication date
KR20060056894A (ko) 2006-05-25
US20040241969A1 (en) 2004-12-02
TWI344675B (en) 2011-07-01
KR101016032B1 (ko) 2011-02-23
US7138318B2 (en) 2006-11-21
TW200504841A (en) 2005-02-01
JP2006526288A (ja) 2006-11-16
CN100477275C (zh) 2009-04-08
EP1636852A1 (en) 2006-03-22
WO2005015644A1 (en) 2005-02-17

Similar Documents

Publication Publication Date Title
US4771012A (en) Method of making symmetrically controlled implanted regions using rotational angle of the substrate
US5496751A (en) Method of forming an ESD and hot carrier resistant integrated circuit structure
CN1290203C (zh) 半导体器件的结构及其制造方法
KR20000069811A (ko) 임계전압을 승압하는 웰 부스팅
KR970013412A (ko) 반도체소자의 제조방법
EP0419128A1 (en) Silicon MOSFET doped with germanium to increase lifetime of operation
CN101572251B (zh) 半导体器件、n型MOS晶体管及其制作方法
US20100022062A1 (en) Transitor having a germanium implant region located therein and a method of manufacture therefor
JPH07263707A (ja) 薄膜トランジスタ及びその製造方法
JP2001298188A (ja) 半導体素子及びその形成方法
JP2006060208A (ja) 高性能なサブ0.1マイクロメートルトランジスタ用のソース/ドレイン構造
US20080121992A1 (en) Semiconductor device including diffusion barrier region and method of fabricating the same
KR20050034548A (ko) 반도체 장치 및 그 제조 방법
CN1795562A (zh) 体接触soi晶体管及其制备方法
CN1841708A (zh) 制造快闪存储装置的方法
US6114210A (en) Method of forming semiconductor device comprising a drain region with a graded N-LDD junction with increased HCI lifetime
US6809016B1 (en) Diffusion stop implants to suppress as punch-through in SiGe
CN102569077A (zh) 用于制作半导体器件的源/漏区的方法
US6800529B2 (en) Method for fabricating semiconductor transistor device
CN1577886A (zh) 半导体装置及其制造方法
CN1056471C (zh) 互补型金属氧化物半导体场效应晶体管的制造方法
CN1147002C (zh) 半导体器件及其制造方法
KR0146525B1 (ko) 반도체 소자의 트랜지스터 제조방법
KR20010039227A (ko) 박막트랜지스터 및 그 제조방법
CN1056470C (zh) 互补型金属氧化物半导体场效应晶体管的制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: GLOBALFOUNDRIES SEMICONDUCTORS CO., LTD

Free format text: FORMER OWNER: ADVANCED MICRO DEVICES CORPORATION

Effective date: 20100722

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: CALIFORNIA STATE, THE USA TO: GRAND CAYMAN ISLAND, BRITISH CAYMAN ISLANDS

TR01 Transfer of patent right

Effective date of registration: 20100722

Address after: Grand Cayman, Cayman Islands

Patentee after: Globalfoundries Semiconductor Inc.

Address before: American California

Patentee before: Advanced Micro Devices Inc.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090408

Termination date: 20200109