CN1792933B - 光纤的处理方法 - Google Patents

光纤的处理方法 Download PDF

Info

Publication number
CN1792933B
CN1792933B CN200510125734.3A CN200510125734A CN1792933B CN 1792933 B CN1792933 B CN 1792933B CN 200510125734 A CN200510125734 A CN 200510125734A CN 1792933 B CN1792933 B CN 1792933B
Authority
CN
China
Prior art keywords
optical fiber
deuterium
gas
treatment chamber
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200510125734.3A
Other languages
English (en)
Other versions
CN1792933A (zh
Inventor
滨田贵弘
山城健司
藤巻宗久
原田光一
白子行成
泽野弘幸
平船俊一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004349938A external-priority patent/JP4216247B2/ja
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Publication of CN1792933A publication Critical patent/CN1792933A/zh
Application granted granted Critical
Publication of CN1792933B publication Critical patent/CN1792933B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/60Surface treatment of fibres or filaments made from glass, minerals or slags by diffusing ions or metals into the surface
    • C03C25/607Surface treatment of fibres or filaments made from glass, minerals or slags by diffusing ions or metals into the surface in the gaseous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/22Doped silica-based glasses containing non-metals other than boron or halide containing deuterium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • C03C2203/52Heat-treatment
    • C03C2203/54Heat-treatment in a dopant containing atmosphere

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

光纤的处理方法包括:将光纤容纳在处理室内部;将含氘气体引入处理室中;以及在氘处理步骤中将光纤暴露于含氘气体的气氛。在氘处理步骤中,氘处理期间处理室中的氘浓度D根据以下来计算:处理室内部含氘气体中氘浓度的初始值A、处理室的周围气氛中的氧浓度B、以及处理室内部含氘气体中的氧浓度C,并且基于所计算的氘浓度D处理室中的氘浓度得到控制。根据本发明,也可使用其它气体,如含氢气体或含氮气体。

Description

光纤的处理方法
发明背景
本发明涉及一种光纤的处理方法。
技术领域
在将光纤制成线缆且铺设光缆之后,光纤在大约1400nm波长带的传输损耗增加,并且光纤的传输特性退化。
为了抑制光纤传输特性的这一退化,应用一种光纤处理方法,其中光纤被事先暴露于氢(hydrogen)或氘(deuterium)。
然而,当执行其中光纤被暴露于氢的处理方法(氢处理)时,存在这样的问题,即光纤在约1383nm波长区域的初始传输损耗增加。相比之下,当执行其中光纤被暴露于氘的处理方法(氘处理)时,没有这种问题出现。因此,必须根据对象来选择和应用氢处理或氘处理。
各种方法已被提出以便将氘处理应用到光纤。在一种方法(例如见日本未经审查的专利申请,第一公开No.2003-137580)中,包含氘气的气体(此后称为“含氘气体)连续地流进可密封的处理室中,并且处理室内的气氛被含氘气体所取代。在另一种方法(例如见日本未经审查的专利申请,第一公开No.2004-226979)中,在降低处理室内部的压力后,处理室的内部被含氘气体填充,并且因此处理室内部的气氛被含氘气体所取代。在后一种方法中,含氘气体的回收是可能的。
此外,在IEC60793-2-50中所规定的氢测试方法是用于将氢处理应用到光纤的方法的实例。在该氢测试方法中,光纤在室温被暴露于1%的氢气气氛或100%的氢气气氛,直至在1240nm波长的传输损耗等于或大于0.03dB/km。然而,在该氢测试方法中,没有规定处理方法(处理条件)的具体条件。
在氘处理被应用于光纤的情况下,当使用其中含氘气体连续流进处理室的方法时,处理被应用,同时排除含氘气体直至处理室的内部达到预定的氘浓度。因此,每当氘处理被应用时,有可能在处理室中维持预定的氘浓度。
然而,为了增加生产效率,处理必须在某时被应用到具有长的长度的光纤上,并且伴随于此,用于将处理应用到光纤的处理室体积变大。取决于处理室体积变得多大,用于取代处理室内气氛所必需的含氘气体量增加,并且因此成本也增加。
相比之下,当处理室内的压力已降低之后使用其中处理室被填充含氘气体的方法时,因为在处理室内部建立完全的真空是困难的,所以每次处理后保留在处理室中的空气与含氘气体混合。当处理次数增加时,被回收的含氘气体中的氘浓度变低。
当含氘气体中的氘浓度变低时,也存在如此担忧,即不仅需要长的时间直至氘已充分地渗透到光纤中,而且氘处理也可变得不充足。因此,为了防止缺陷性的氘处理,当将氘处理应用到光纤上时有必要监视氘浓度。
易燃气体探测器、光学气体密度计等是测量氘浓度的设备实例。当使用空气基的含氘气体时,有可能通过这样的测量设备而测量氘浓度。在此要注意:其成分比类似于气氛成分比的任何气体被称为“空气”。
然而,当空气被混合到含氘气体中且气体的成分比不同于气氛的成分比时,通过使用上述测量设备来正确地测量氘浓度变得不可能。在燃烧密度计(combustion densitometer)如可燃气体探测器中,氘被燃烧,并且根据在燃烧期间所产生的热量来计算氘浓度。因此,在其中不是空气,而是惰性气体如氮、氩、氦等用作基本成分(base)的情况下,燃烧变差,并且因此浓度不可能被正确测量。
此外,在光学密度计如光学气体密度计中,根据含氘气体的相对折射率而计算氘浓度。因此,在其中用作基本成分的气体的成分比波动时,不可能正确地测量氘浓度。
此外,有可能通过分析被包括在含氘气体中的氘气分子来测量氘浓度。然而,这并不是优选的,因为测量占用时间,且因此生产成本急剧增加。
发明内容
考虑到上述问题,本发明的目的在于提供一种光纤的处理方法,其可以正确地控制氘浓度,甚至当用作含氘气体的基本成分的气体是一种非空气的气体时,以及当用作基本成分的气体的成分比波动时。
本发明提供一种光纤的处理方法,包括:将光纤容纳在处理室内部;将含氘气体引入处理室中;以及在氘处理步骤中将光纤暴露于含氘气体的气氛,其中,在氘处理步骤中,氘处理期间处理室中的氘浓度D根据以下来计算:处理室内部含氘气体中氘浓度的初始值A、处理室的周围气氛中的氧浓度B、以及处理室内部含氘气体中的氧浓度C,并且处理室中的氘浓度基于所计算的氘浓度D而得到控制。
在光纤的处理方法中,使用下面的EQ.1,氘处理步骤期间处理室中的氘浓度D可得以计算:
D=A×(1-C/B)         EQ.1
其中A表示处理室内部含氘气体中氘浓度的初始值,B表示处理室周围气氛(空气)中的氧浓度,且C表示处理室内部含氘气体中的氧浓度。
本发明进一步提供一种光纤的处理方法,包括:将光纤容纳在处理室内部;将含氢气体引入处理室中;以及在氢处理步骤中将光纤暴露于含氢气体气氛,其中,在氢处理步骤中,氢处理期间处理室中的氢浓度δ根据以下来计算:处理室内部含氢气体中的氢浓度的初始值α、处理室的周围气氛中的氧浓度β、以及处理室内部含氢气体中的氧浓度γ,并且基于所计算的氢浓度δ,处理室中的氢浓度得到控制。
在光纤的处理方法中,使用下面的EQ.2,氢处理步骤期间处理室中的氢浓度δ得以计算:
δ=α×(1-γ/β)       EQ.2
其中α表示处理室内部含氢气体中的氢浓度初始值,β表示处理室的周围气氛(空气)中的氧浓度,且γ表示处理室内部含氢气体中的氧浓度。
在上述光纤处理方法中,处理室优选地为密封室。
在上述光纤处理方法中,在含氘气体被引入之前,优选地可在处理室内部建立减压状态。优选地,但非必需地,在减压状态期间处理室中的压力设置在等于或大于0.01kPa至等于或小于75kPa范围内。
在上述光纤处理方法中,在氘处理步骤期间氘的分压可优选地设置在等于或大于0.1kPa至等于或小于5kPa范围内,且在氢处理步骤期间氢的分压可优选地设置在等于或大于0.1kPa至等于或小于4kPa范围内。
在上述光纤处理方法中,在氘处理步骤或氢处理步骤期间处理室中的压力可优选地,但非必需地,设置在等于或大于10.1kPa至大于或小于203kPa范围内。
在上述光纤处理方法中,在氘处理步骤或氢处理步骤期间,处理室内部的温度可维持在等于或大于5℃至等于或小于40℃范围内的一恒定温度。
根据本发明的光纤处理方法,在其中用于光纤处理的气体的浓度控制是必要的情况下,甚至在其中因浓度测量设备的容量而导致不可能对浓度直接测量的情况下,可能的是测量被混合在处理室内部所测量气体中的氧浓度并且根据该氧浓度容易地计算出所测量气体的浓度。因此,为了确定所测量气体的浓度,没有必要抽取所测量的气体且通过使用复杂的分析器具如气相色谱仪(gas chromatography)来分析所测量的气体。由此,有可能容易地在当时确定所测量气体的浓度。因此,本发明的光纤处理方法就制造而言是有利的处理方法,因为它可能降低成本和时间。
附图说明
图1是示出本发明的光纤处理器具实例的示意性结构图。
图2是示出在第一步骤中非桥氧穴中心(non-bridging oxygen holecenter,NBOHC)的湮灭(annihilate)延迟时间与压力被降低的气氛的压力之间的关系的图。
图3是示出本发明的光纤处理器具实例的示意性结构图。
图4是示出当含氘气体已经被反复使用之后光纤已经受氘处理时,处理次数与含氘气体中氘的分压的保留率(retention rate)之间的关系图。
图5是示出在本发明的测试采样中氘浓度的测量结果的图。
具体实施方式
下面,将详细解释应用本发明实施例的光纤处理方法。
在本发明的光纤处理方法中,首先,在光纤的制造步骤期间,为了湮灭在光纤中所产生的非桥氧穴中心(下文中简称为“NBOHC”),氘处理或氢处理被应用到光纤(在第一至第四实施例中)。
图1是示出根据本发明的光纤处理方法中使用的光纤处理器具实例的示意性结构图。
在图1中,参考符号1指示光纤处理器具,参考符号1a指示反应室,参考符号1b指示气体入口,参考符号1c指示气体入口开闭阀,参考符号1d指示气体供应管道,参考符号1e指示出口,参考符号1f指示排放开闭阀,1g指示排放泵,参考符号1h指示差压计,参考符号2指示光纤,且参考符号3指示线轴(bobbin)。光纤处理器具1的该实例包括至少反应室1a。反应室1a是其中可以容纳光纤2的可密封室,且具有约0.1kPa的真空状态以及可经受住从常压到等于或小于250kPa压力的受压状态的抗压力和密封性能。
气体供应管道1d经由气体入口开闭阀1c被连接到反应室1a的气体入口1b。含氘气体可从气体供应管道1d被供应进入反应室1a中。
在此,含氘气体表示仅氘气或包含氘气的混合气体。
排放泵1g经由排放开闭阀1f被连接到反应室1a的出口1e。在反应室1a中的含氘气体等由该排放泵1g所排放。
差压计1h被设置在反应室1a中,并且由此反应室1a内部的压力可得到测量。基于由差压计1h所测量的值,有可能调节所供应的含氘气体量并且因此在反应室1a内部建立具有预定压力的含氘气体气氛,或者启动或停止排放泵1g且由此在反应室1a内部建立具有预定压力的减压气氛。
此外,反应室1a包括温度调节装置(未示出),如加热器或冷却机构、温度计(未示出)或温度调节部分(未示出)。因此,通过调节内部温度,有可能在反应室1a内部维持5℃至40℃范围内的恒温状态。
注意:代替气体入口开闭阀1c,反应室1a可包括能够调节气体流动量的电磁阀(solenoid valve)(未示出)。然而,可使用可调节被供应到反应室1a中的含氘气体的量的任何设备。
接下来,将参考图1解释根据本发明的光纤处理方法(NBOHC湮灭)的第一实施例。
在该实施例的光纤处理方法中,如下所述,在第一步骤中,光纤2被暴露于减压气氛。
首先,具有预定长度的光纤2绕线轴3而被缠绕。
接下来,已绕线轴3而被缠绕的光纤2被放置在处理器具1的反应室1a中。光纤2没有被特别地限制为只要它是由石英玻璃(silica glass)等制成的,而是另外可使用任何类型的光纤。
接下来,当为真空泵的排放泵1g被激励后,排放开闭阀1f被打开,反应室1a内部建立减压气氛,即通过排放反应室1a内部的空气,容纳光纤2的空间内部的压力得到降低,且由此光纤2被暴露于减压的气氛。
然后,在跟随第一步骤的第二步骤中,如下所述,光纤2被暴露于含氘气体气氛。
当排放开闭阀1f被关闭后,通过使用温度调节装置(未示出)、温度计(未示出)、或温度调节部分(未被示出),反应室1a内部的温度被调节以提供5℃至40℃范围内的恒温状态。接下来,气体入口开闭阀1c被打开且含氘气体被供应到反应室1a内部的减压气氛中。含氘气体被供应直到反应室1a内部达到预定的压力且在容纳光纤2的反应室1a中的空间内部的气氛已被含氘气体所替代。然后通过关闭气体入口开闭阀1c,反应室1a内部被密封。光纤2被暴露于该反应室1a内部的含氘气体气氛。由此,光纤2被暴露于含氘气体气氛,并且通过形成光纤2的石英玻璃中的NBOHC与氘(D2)发生反应以生成氘化羟基(deuteratedhydroxyl groups)(-OD),有可能防止羟基(-OH)的产生。由此,有可能将光纤2的吸收波长区域从1.38μm带移到1.87μm带,其中1.38μm带是羟基的吸收波长区域,而1.87μm带是氘化羟基的吸收波长区域。即,波长吸收区域被移到光学通信波长区域之外。因此,有可能抑制因由石英玻璃中的羟基所引起的吸收损耗所导致的光纤2的传输特性的退化。
此外,根据该实施例的光纤处理方法,反应室1a中含氘气体的分散率可通过以下来增加:在容纳光纤2的反应室1a内部建立减压气氛并在该减压气氛状态中将含氘气体供应到反应室1a中。由此,甚至当光纤2被缠绕在线轴3上时,含氘气体穿过经缠绕的光纤2之间的小间隙并快速地扩散到线轴3的线圈芯附近中。因此,有可能增加线轴3的线圈芯附近的光纤2与氘气之间的接触概率。因此,有可能贯穿光纤2的整个长度而施加足够的(均匀的)氘处理。
因为NBOHC容易键合到氘以形成氘化羟基,所以其中NBOHC与氘键合以形成氘化羟基的反应(即湮灭NBOHC的反应)受到NBOHC和氘气之间的接触概率的极大影响。
在该实施例的光纤处理方法中,如上所述,在线轴3的线圈芯附近的光纤处,有可能增加光纤2与含氘气体之间接触的概率,且由此有可能增加NBOHC和氘之间的反应率。
因此,贯穿已缠绕到线轴3的整个光纤2,有可能增加NBOHC与氘之间的反应率,并且使用低浓度的含氘气体,有可能贯穿整个光纤而湮灭NBOHC,即使暴露时间短。
接下来,基于试验结果,该实施例的光纤处理方法将被详细地解释。
图2是示出上述第一步骤中已被缠绕到线轴3上的光纤2的NBOHC湮灭延迟时间与压力降低的气氛的压力之间的关系图。
在图2中,菱形符号表示在第二步骤中,混合气体气氛中氘气的分压为0.5KPa的情况的结果,并且圆形符号表示在第二步骤中,在混合气体气氛中氘气的分压为1.0kPa的情况的结果。
NBOHC的湮灭延迟时间指示被设置于最内层中的光纤2的NBOHC的湮灭时间与被设置在最外层中的光纤2的NBOHC的湮灭时间之差,即被设置在最内层中的光纤2的NBOHC的湮灭时间相对于被设置在最外层中的光纤2的NBOHC的湮灭时间之间的差。
在已被缠绕到线轴3上的光纤2的部分中,被设置在最内层中的光纤2指示直接被缠绕到线轴3的线圈芯的部分(光纤2)。相比之下,在已被缠绕到线轴3上的光纤2的部分中,被设置在最外层中的光纤2指示被设置在最外层中的部分(光纤2)。
NBOHC的湮灭延迟时间越短,意味着在被设置于最内层中的光纤2中的NBOHC的湮灭时间也越短(NBOHC被湮灭的反应是快速的)。最内层的湮灭时间变成接近于设置于最外层中的光纤2中的NBOHC湮灭时间的值。这意味着贯穿已缠绕到线轴3的整个光纤2湮灭NBOHC所必需的时间是短的。
光纤2的NBOHC湮灭时间通过以下方法指示测量结果。
在已被暴露于氘气一预定时间的光纤2中,在作为NBOHC吸收波长的0.63μm处的吸收量被测量,并且基于该吸收量NBOHC的剩余量被测量。
然后相对于光纤2暴露于含氘气体的时间,NBOHC剩余量中的随时间的改变得以发现,基于NBOHC的剩余量中的随时间的改变,为完全湮灭NBOHC所必需的暴露于含氘气体的时间得以估算,并且该估算用作NBOHC的湮灭时间。
在上述第一步骤中,减压气氛的压力可等于或大于0.01kPa且等于或小于75kPa,并且也可等于或大于0.01kPa且等于或小于50kPa。通过使减压气氛的压力等于或大于0.01kPa且等于或小于75kPa,有可能使含氘气体的分散率变高,并且有可能使含氘气体贯穿已缠绕到线轴3等上的整个光纤2而扩散。因此,在线轴3的线圈芯附近的光纤2中,有可能使NBOHC与氘气之间的接触概率变高,并且由此有可能加速NBOHC与氘气之间的反应(湮灭NBOHC的反应)。根据以上,有可能使设置于最内层中的光纤2中的NBOHC的湮灭时间变短,并且由此,如图2中所示,NBOHC的湮灭延迟时间可大大缩短。
此外,因为有可能使NBOHC与氘气之间的接触概率变高,所以在第二步骤中,有可能贯穿整个光纤2湮灭NBOHC,即使使用低浓度的含氘气体且使暴露时间变短。
特别地,在减压气氛的压力等于或大于0.01kPa且等于或小于50kPa的情况下,NBOHC的湮灭延迟时间变为0或大约为0,其中湮灭延迟时间可忽略。因此,在被设置于最内层中的光纤2以及被设置于最外层中的光纤2两者中,NBOHC以相同的反应率与氘进行反应,并且由此NBOHC可得到湮灭。
此外,在上述第二步骤中,优选地光纤2被暴露于含氘气体中,其中氘气的分压等于或大于0.1kPa且等于或小于5kPa。由此,有可能贯穿已被缠绕到线轴3等上的整个光纤2而扩散具有足以湮灭NBOHC的浓度的氘气。
氘气的分压小于0.1kPa不是优选的,因为氘的浓度低,并且因此难以贯穿整个光纤2而湮灭NBOHC。相比之下,氘气分压大于5kPa不是优选的,因为氘的高浓度是没有必要的,并且由此制造成本变高。
此外,在第二步骤中,优选地含氘气体被供应到容纳光纤2的反应室1a中,以在反应室1a内部建立等于或大于10.1kPa且等于或小于203kPa的压力,且光纤2被暴露于在该压力范围中的含氘气体。
由此,反应室1a内部的含氘气体的分散率变高,含氘气体可快速地扩散到线轴3的线圈芯附近中,并且由此有可能使NBOHC与氘之间的反应率变高。
光纤2被暴露其中的反应室1a中含氘气体的压力小于10.1kPa的情况不是优选的,因为反应室1a内部含氘气体的分散率低并且因此NBOHC被湮灭的反应需要长的时间。
此外,光纤2被暴露其中的反应室1a中含氘气体的压力大于203kPa的情况不是优选的,因为必须使用具有高抗压力的反应室1a,并且考虑到安全等,反应室1a的处理变得困难。
在第二步骤中,优选地,但非必需地,在其期间光纤2被暴露于含氘气体的暴露时间为一天或更少。由此,有可能贯穿已缠绕到线轴3的整个光纤2而湮灭NBOHC。
在第二步骤中,优选地,但非必需地,光纤2在其中反应室1a内部的温度被调节成维持在等于或大于5℃至等于或小于40℃范围内的恒温的状态下被暴露于含氘气体。由此,有可能加速石英玻璃中的NBOHC与氘之间的反应,并且有可能在短的时间周期中湮灭NBOHC。
反应室1a内部的温度高于40℃的情况不是优选的,因为光纤2的表面涂覆树脂层将由于热而改变。
图3是示出用在根据本发明的光纤处理方法中的光纤处理器具另一实例的示意性结构图。
在该实例中的光纤处理器具4基本上包括反应室4a、贮氘罐4b、以及借助于其反应室4a与贮氘罐4b相通的管道4c。
反应室4a是其中可容纳光纤2的可密封室(第一空间),且具有约0.1kPa的真空状态以及可经受从常压到等于或小于250kPa的受压状态的抗压力和密封性能。
贮氘罐4b是其中可存贮含氘气体的罐(第二空间),且像反应室4a一样,具有约0.1kPa的真空状态以及可经受从常压到等于或小于250kPa的受压状态的抗压力和密封性能。
气体供应管道4g经由气体入口开闭阀4f被连接到贮氘罐4b的气体入口4d,并且有可能从该气体供应管道4g将含氘气体供应到反应室4a中。
气体入口和出口开口4h和4i包括在反应室4a和贮氘罐4b中。管道4c经由开闭阀4j和4k而连接到这些气体入口和出口开口4h和4i,并且反应室4a和贮氘罐4b经由一个管道4c相通。
管道4c的内部(第三空间)用作流动路径,并且含氘气体可以流动到反应室4a或贮氘罐4b,或从其中流出。沿着管道4c的路线还包括切换阀4n,并且排放管道4p和气体通风设备4q被连接到该切换阀4n。
具有在至少三个方向上实施的连接部分且可将路径从在一个方向上的连接部分切换到在其它两个方向的任一个上的连接部分的任何阀可以用作切换阀4n。三向阀或三向电磁阀可以是切换阀4n的实例。
此外,组合增压和降压泵如涡形(scroll)真空泵或干真空隔膜泵可以被用作气体通风设备4q。
在下面的说明中,从切换阀4n至反应室4a的气体入口和出口开口4h的部分管道路径被称为反应室侧管道4r,并且从切换阀4n到贮氘罐4b的气体入口和出口开口4i的部分管道路径被称为贮氘罐侧管道4s。
在该实施例中,切换阀4n使从反应室侧管道4r、贮氘罐侧管道4s、以及排放管道4p中的一个路径能够切换到其它两个方向的任意一个路径,并且气体通风设备4q使气体能从一个方向向两个被切换的路径中的另一方向通风。
差压计4t被设置在反应室4a中,且由此反应室4a中的压力可以得到测量。基于该测量值,通过使用气体通风设备4q来调节含氘气体的供应量,有可能给反应室4a的内部提供具有预定压力的含氘气体气氛,或在反应室4a内部建立具有预定压力的减压气氛。
此外,反应室4a包括温度调节装置(未示出),如加热器或冷却机构、温度计(未示出)、或温度调节部分(未示出),由此,有可能通过调节内部温度而在反应室4a内部维持5℃至40℃范围内的恒温状态。
接下来,将参考图3对根据本发明的光纤处理方法的第二实施例加以解释。
在该实施例的光纤处理方法中,在第一步骤中,如下所述,光纤2被暴露于减压气氛。
首先,已缠绕到线轴3的光纤2被放置在反应室4a内部。反应室4a内部的温度被调节到5℃至40℃范围内的一恒定温度。然后,切换阀4n被切换以连接反应室侧管道4r和排放管道4p。
接下来,反应室侧管道4r的开闭阀4j被打开,反应室4a中的空气通过气体通风设备4q被排放到排放管道4p,在反应室4a内部,即在容纳光纤2的第一空间内部建立减压气氛,并且光纤2被暴露于减压气氛。
接下来,在跟随第一步骤的第二步骤中,如下所述,光纤2被暴露于含氘气体。
贮氘罐4b内部事先以预定压力填充有包括预定氘气浓度的含氘气体。
接下来,在关闭反应室侧管道4r的开闭阀4j之后,切换阀4n被切换使得反应室侧管道4r与贮氘罐侧管道4s相连接。然后,反应室侧管道4r的开闭阀4j以及贮氘罐侧管道4s的开闭阀4k被打开,并且反应室4a和贮氘罐4b经由管道4c相通。
以这种方式,管道4c的内部(第三空间)用作使贮氘罐4b中的含氘气体能够流到具有减压气氛的反应室4a的通路。
接下来,当反应室4a的内部达到预定的压力时,通过关闭反应室侧管道4r的开闭阀4j以及贮氘罐侧管道4s的开闭阀4k,反应室4a被密封。在该反应室4a内部,光纤2被暴露于含氘气体。
根据以上,光纤2被暴露于含氘气体,石英玻璃中的NBOHC与氘键合以形成氘化羟基,并且由此有可能湮灭NBOHC。
接下来,切换阀4n被切换使得反应室侧管道4r与贮氘罐侧管道4s相通。开闭阀4j及4k被打开,反应室4a和贮氘罐4b经由管道4c相通,气体通风设备4q被激励,反应室4a内部的含氘气体被传递到贮氘罐4b,并且在反应室4a内部中建立真空。
接下来,在反应室侧管道4r上的开闭阀4j被关闭且空气被引入反应室4a之后,光纤2被从反应室4a中抽出。
根据以上,无需排放已用过一次的含氘气体,含氘气体被存贮在贮氘罐4b,并且因此可被用于另一光纤2的氘处理中。
图4是示出当使用图3的光纤处理器具4通过重复使用含氘气体光纤2已被处理时含氘气体中氘气的分压变化的图,。
在使用图3的光纤处理器具4的情况下,甚至在已进行了30次氘处理之后,氘的分压的保留率等于或大于70%。该浓度允许令人满意的氘处理得以执行。
以这种方式,有可能重复使用含氘气体,使得有可能显著降低与氘气有关的运行成本,由此创建非昂贵的氘处理。
接下来,将参考图1来解释根据本发明的光纤处理方法的第三实施例。
使用氘处理来湮灭NBOHC的该实施例的光纤处理方法,是用来抑制光纤被铺设之后传输损耗的增加。
在该实施例的光纤处理方法中,首先具有预定长度的光纤2被缠绕在线轴3上。
接下来,已被缠绕在线轴3上的光纤2放置在处理器具1的反应室1a内部。
然后,在关闭排放开闭阀1f之后,反应室1a内部的温度被调节以通过温度调节装置(未示出)、温度计(未示出)或温度调节部分(未示出)而维持5℃至40℃范围内的恒温状态。
接下来,气体入口开闭阀1c被打开,含氘气体被供应到反应室1a中,并且在执行控制以使该反应室1a内部含氘气体中的氘浓度为恒定的同时,光纤2被暴露于反应室1a内部的含氘气体气氛。
在该实施例中,在上述氘处理步骤中,首先反应室1a的周围气氛(空气)中的氧浓度B被测量。接下来,反应室1a内部含氘气体中的氧浓度C被测量。根据这些测量结果以及在反应室(处理室)1a内部含氘气体中的氘浓度初始值A,使用下述EQ.1,在氘处理期间反应室1a内部的氘浓度D得以计算。基于所计算的氘浓度D,反应室1a内部的氘浓度被维持在用于在反应室1a内部充分地执行光纤2的氘处理所必要的浓度。特别地,在反应室1a内部的氘浓度没有达到氘处理所要求的浓度的情况下,气体入口开闭阀1c被打开且含氘气体被供应进入到反应室1a中。相比之下,在反应室1a内部的氘浓度超出氘处理所要求的浓度的情况下,气体入口开闭阀1c被关闭且到反应室1a中的含氘气体的供应被停止。
D=A×(1-C/B)          EQ.1
其中D表示氘处理期间处理室内部的氘浓度,A表示处理室内部含氘
气体中的氘浓度初始值,B表示在处理室的周围气氛(空气)中的氧
浓度,且C表示处理室内部的含氘气体中的氧浓度。
氧密度计(未示出)被使用以测量在反应室1a的周围气氛(空气)中的氧浓度B以及在反应室1a内部含氘气体中的氧浓度C。可被使用的氧密度计的实例是Toray的LC-750及Yokogawa的氧密度计OX61。
以这种方式,通过测量反应室1a的周围气氛(空气)中的氧浓度B及反应室1a内部含氘气体中的氧浓度C,有可能计算被混合在反应室1a内部气氛中的空气量,并且基于该所计算的值,有可能计算反应室1a内部的当前氘浓度。因为如同在氘处理中当用于处理光纤中的气体是可燃气体(氘)时,存在如爆炸的危险,就控制而言,使用传统燃烧密度计或光密度计的氘浓度测量不是优选的。此外,在含氘气体被用作充当基本成分的气体的情况下,通过测量混合在反应室1a内部含氘气体中的空气尤其是氧的浓度,反应室1a内部的当前氘浓度得以计算。其原因是氘浓度变低的起因是在氘处理期间被混合到反应室1a内部含氘气体中的空气。因此,如果被混合到反应室1a内部含氘气体中的空气(氧)量(浓度)可被确定,则有可能确定反应室1a内部的当前氘浓度。
因此,根据在该实施例中的光纤处理方法,不存在如爆炸的危险,并且由此有可能正确地控制氘浓度,甚至当反应室1a内部的基本成分气体(含氘气体)的成分比波动时。
此外,在该实施例中的光纤处理方法中,优选地反应室1a是密封容器。如果反应室1a是密封容器,则在反应室1a内部执行光纤2的氘处理之前,可在反应室1a内部建立减压气氛。
此外,在该实施例的光纤处理方法中,优选地在反应室1a内部已建立减压气氛之后,执行光纤2的氘处理。
在该实施例中,将解释一种方法,其中在反应室1a内部已建立减压气氛之后执行光纤2的氘处理。
在将光纤2放置在处理器具1的反应室1a内部且激励了为真空泵的排放泵1g之后,排放开闭阀1f被打开,通过排放反应室1a内部的空气,在反应室1a内部,即在容纳光纤2的空间内部建立减压气氛,且由此光纤2被暴露于减压气氛。
接下来,在通过调节反应室1a内部的温度而提供5℃至40℃范围内的恒温状态之后,气体入口开闭阀1c被打开且含氘气体被供应到反应室1a内部的减压气氛中。随后,含氘气体被供应,直到反应室1a的内部达到预定的压力且容纳光纤2的反应室1a内部空间中的气氛被含氘气体所代替。然后,通过关闭气体入口开闭阀1c,反应室1a的内部被密封,且光纤2被暴露于该反应室1a中的含氘气体气氛。
以这种方式,通过在容纳光纤2的反应室1a内部建立减压气氛并在这种减压状态中在反应室1a内部供应含氘气体,有可能使反应室1a内部的含氘气体的分散率变高。由此,甚至当光纤2已被缠绕到线轴3上时,含氘气体通过经缠绕的光纤2之间的小间隙并且快速扩散到线轴3的线圈芯附近中。因此,可使在线轴3的线圈芯附近的光纤2与含氘气体之间的接触概率变高。因此,有可能贯穿光纤2的整个长度充分地(均匀地)施加氘处理。
此外,甚至当所测量的气体是氢而不是氘或非氧的气体如氮时,光纤处理方法的该第三实施例可得以应用。
接下来,将参考图1来解释根据本发明的光纤处理方法的第四实施例。
通过使用氢处理来湮灭NBOHC的该实施例的光纤处理方法是用于抑制光纤被铺设之后传输损耗的增加。
在该实施例的光纤处理方法中,首先,具有预定长度的光纤2被缠绕在线轴3上。
接下来,已缠绕在线轴3上的光纤2被放置在处理器具1的反应室1a内部。
接下来,在关闭排放开闭阀1f之后,通过使用温度调节装置(未示出)、温度计(未示出)、或温度调节部分(未示出)来调节其中的温度,反应室1a内部的温度被维持在5℃至40℃范围内的恒温状态。
接下来,气体入口开闭阀1c被打开,含氢气体被供应到反应室1a中,且光纤2被暴露于反应室1a中的含氢气体气氛中,同时控制被执行以使该反应室1a中含氢气体气氛中的氢浓度保持恒定。
在该实施例中,在上述氢处理步骤中,首先在反应室1a的周围气氛(空气)中的氧浓度β被测量。接下来,在反应室1a内部的含氢气体中的氧浓度γ被测量。使用下述EQ.2,根据这些测量结果以及在反应室1a(处理室)内部的含氢气体中氢浓度的初始值α,氢处理期间反应室1a中的氢浓度δ被计算。基于所计算的氢浓度δ,反应室1a内部的氢浓度被维持在反应室1a内部充分执行光纤2的氢处理所必要的浓度。特别地,在反应室1a内部的氢浓度没有达到氢处理所要求的浓度的情况下,气体入口开闭阀1c被打开且含氢气体被供应到反应室1a中。相比之下,在反应室1a内部的氢浓度超出氢处理所要求的浓度的情况下,气体入口开闭阀1c被关闭且到反应室1a中的含氢气体的供应被停止。
δ=α×(1-γ/β)         EQ.2
其中δ表示氢处理期间在处理室内部的氢浓度,α表示在处理室内部的含氢气体中的氢浓度初始值,β表示在处理室的周围气氛(空气)中的氧浓度,且γ表示处理室内部的含氢气体中的氧浓度。
氧密度计(未示出)被使用以测量在反应室1a的周围气氛(空气)中的氧浓度β以及在反应室1a的含氢气体中的氧浓度γ。可被使用的氧密度计的实例是Toray的LC-750及Yokogawa的氧密度计OX61。
以这种方式,通过测量在反应室1a的周围气氛(空气)中的氧浓度β及在反应室1a内部的含氢气体中的氧浓度γ,被混合到反应室1a气氛中的空气量被计算,并且根据这些所计算的值,有可能计算反应室1a内部的当前氢浓度。因为如同在氢处理中当用于处理光纤的气体是可燃气体(氢)时,存在如爆炸等的危险,就控制而言,使用传统的燃烧密度计或光密度计的氢浓度测量不是优选的。此外,在含氢气体被用作充当基本成分的气体的情况下,通过测量被混合在反应室1a内部的含氢气体中的空气尤其是氧的浓度,反应室1a内部的当前氢浓度得以计算。其原因是氢浓度变低的起因是在氢处理期间被混合到反应室1a内部的含氢气体中的空气。因此,有可能确定被混合到反应室1a内部的含氢气体中的空气(氧)量(浓度),并且由此有可能确定反应室1a内部的当前氢浓度。
因此,根据在该实施例中的光纤处理方法,不存在如爆炸的危险,并且由此,甚至当用作反应室1a内部的基本成分的气体(含氢气体)的成分比波动时,有可能正确地控制氢浓度。
此外,在该实施例中的光纤处理方法中,优选地反应室1a是密封容器。如果反应室1a是密封容器,则在反应室1a内部执行光纤2的氢处理之前,可在反应室1a内部建立减压气氛。
此外,在该实施例的光纤处理方法中,优选地在反应室1a内部已建立减压气氛之后,执行光纤2的氢处理。
在该实施例中,将解释一种方法,其中在反应室1a内部已建立减压气氛之后执行光纤2的氢处理。
在将光纤2被放置在处理器具1的反应室1a内部且激励了为真空泵的排放泵1g之后,排放开闭阀1f被打开,并且通过排放反应室1a内部的空气,在反应室1a内部,即在容纳光纤2的空间内部建立减压气氛,且光纤2被暴露于减压气氛中。
接下来,在通过调节反应室1a内部的温度而提供5℃至40℃范围内的恒温状态之后,气体入口开闭阀1c被打开且含氢气体被供应到反应室1a内部的减压气氛中。随后,含氢气体被供应,直到反应室1a的内部达到预定的压力且在容纳光纤2的反应室1a内部空间中的气氛被含氢气体所代替。然后,通过关闭气体入口开闭阀1c,反应室1a内部被密封,且光纤2被暴露于含氢气体气氛。
以这种方式,通过在容纳光纤2的反应室1a内部建立减压气氛并在这种减压状态下向反应室1a中供应含氢气体,有可能使反应室1a内部的含氢气体的分散率变高。由此,甚至当光纤2已被缠绕到线轴3上时,含氢气体通过经缠绕光纤之间的小间隙并且快速扩散到线轴3的线圈芯附近中。因此,可使在线轴3的线圈芯附近的光纤2与含氢气体之间的接触概率变高。因此,有可能贯穿光纤2的整个长度充分地(均匀地)应用氢处理。
下面,通过使用实验性实例将更详细地解释本发明。然而,本发明并不局限于下述实验性实例。
实验性实例
与图1中所示的光纤处理器具相同的器具被使用以将氘处理应用到光纤。
光纤的氘处理被重复,反应室中的氘浓度每次由光学密度计(Riken Measuring Instruments,FI-21)测量;通过使用氧密度计(Toray,LC-750H)反应室中的氧浓度被测量;并且反应室内部氘的气相色谱分析被执行。
氘气使用氮气作为基本成分。
测量结果被示于图5中。
在图5中,氘浓度(计算值,由菱形符号表示)指示根据在该实验性实例中所测量的反应室内部氧浓度以及上述EQ.1而计算的值。此外,氘浓度(分析值,由三角形符号表示)指示根据本实验性实例中的气相色谱分析而获得的值。此外,氧浓度(测量值,由正方形符号表示)指示在本实验性实例中所测量的反应室内部氧浓度的值。
从图5中所示的结果,已经确认:如同反应室内部的氘由气相色谱仪所分析的情况一样,通过使用上述EQ.1根据由氧密度计所测量的反应室中氧浓度值而得到反应室中的氘浓度,可以容易地测量氘浓度。
当使用非氘或氢的处理气体时,也可应用本发明的光纤处理方法。
可预期的是对于本发明的示范实施例可进行许多修改,而不背离所附权利要求所限定的本发明实施例的精神和范围。

Claims (20)

1.一种光纤的处理方法,包括:
将光纤容纳在处理室内部;
将含氘气体引入所述处理室中;以及
在氘处理步骤中,将所述光纤暴露于所述含氘气体的气氛,其中,
在所述氘处理步骤中,在所述氘处理期间所述处理室中的氘浓度D根据以下EQ.1来计算:
D=A×(1-C/B)    EQ.1
其中A表示在所述处理室内部含氘气体中氘浓度的初始值,B表示所述处理室的周围气氛中的氧浓度,所述处理室的周围气氛为空气,且C表示所述处理室内部含氘气体中的氧浓度,
其中所述处理室中的氘浓度基于所计算的氘浓度D来控制。
2.根据权利要求1所述的光纤处理方法,其中所述处理室是密封室。
3.根据权利要求1所述的光纤处理方法,其中在所述含氘气体被引入之前在所述处理室内部建立减压状态。
4.根据权利要求3所述的光纤处理方法,其中在所述减压状态期间所述处理室中的压力被设置在等于或大于0.01kPa至等于或小于75kPa范围内。
5.根据权利要求1所述的光纤处理方法,其中在所述氘处理步骤期间氘的分压被设置在等于或大于0.1kPa至等于或小于5kPa范围内。
6.根据权利要求1所述的光纤处理方法,其中在所述氘处理步骤期间所述处理室中的压力被设置在等于或大于10.1kPa至等于或小于203kPa范围内。
7.根据权利要求1所述的光纤处理方法,其中在所述氘处理步骤期间,所述处理室内部的温度被维持在等于或大于5℃至等于或小于40℃范围内的一恒定温度。
8.根据权利要求1所述的光纤处理方法,其中在光纤中所产生的非桥氧穴中心与氘发生反应或在设置于最内层中的光纤以及设置于最外层中的光纤两者中以相同的反应率湮灭,使得不存在湮灭延迟时间。
9.根据权利要求1所述的光纤处理方法,其中光纤的吸收波长区域从1.38μm带移到1.87μm带,其中1.38μm带是羟基的吸收波长区域,而1.87μm带是氘化羟基的吸收波长区域。
10.根据权利要求1所述的光纤处理方法,其中通过在将含氘气体供应到所述反应室中之前在所述反应室内部建立减压气氛来增加所述反应室中的含氘气体的分散率。
11.根据权利要求1所述的光纤处理方法,其中光纤处理器具包括反应室、贮氘罐和所述反应室与所述贮氘罐借以连通的管道。
12.根据权利要求11所述的光纤处理方法,其中存储于所述贮氘罐中的含氘气体被用于至少一种其它光纤的氘处理中。
13.根据权利要求1所述的光纤处理方法,其中所述含氘气体使用氮气作为基本成分。
14.一种光纤的处理方法,包括:
将光纤容纳在处理室内部;
将含氢气体引入所述处理室中;以及
在氢处理步骤中,将所述光纤暴露于所述含氢气体气氛,其中,在所述氢处理步骤中,所述氢处理期间所述处理室中的氢浓度δ根据以下EQ.2来计算:
δ=α×(1-γ/β)    EQ.2
其中α表示所述处理室内部含氢气体中的氢浓度初始值,β表示所述处理室的周围气氛中的氧浓度,所述处理室的周围气氛为空气,并且γ表示所述处理室内部含氢气体的氧浓度,
其中所述处理室中的氢浓度基于所计算的氢浓度δ来控制。
15.根据权利要求14所述的光纤处理方法,其中所述处理室为密封室。
16.根据权利要求14所述的光纤处理方法,其中在所述含氢气体被引入之前,在所述处理室内部建立减压状态。
17.根据权利要求16所述的光纤处理方法,其中在所述减压状态期间所述处理室中的压力被设置在等于或大于0.01kPa至等于或小于75kPa范围内。
18.根据权利要求14所述的光纤处理方法,其中在所述氢处理步骤期间氢的分压被设置在等于或大于0.1kPa至等于或小于4kPa范围内。
19.根据权利要求14所述的光纤处理方法,其中在所述氢处理步骤期间所述处理室中的压力被设置在等于或大于10.1kPa至等于或小于203kPa范围内。
20.根据权利要求14所述的光纤处理方法,其中在所述氢处理步骤期间,所述处理室内部的温度被维持在等于或大于5℃至等于或小于40℃范围内的一恒定温度。
CN200510125734.3A 2004-12-02 2005-12-01 光纤的处理方法 Active CN1792933B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004-349938 2004-12-02
JP2004349938A JP4216247B2 (ja) 2003-12-22 2004-12-02 光ファイバの処理方法
JP2004349938 2004-12-02

Publications (2)

Publication Number Publication Date
CN1792933A CN1792933A (zh) 2006-06-28
CN1792933B true CN1792933B (zh) 2010-08-18

Family

ID=36583976

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200510125734.3A Active CN1792933B (zh) 2004-12-02 2005-12-01 光纤的处理方法

Country Status (3)

Country Link
US (1) US7596292B2 (zh)
CN (1) CN1792933B (zh)
RU (1) RU2313113C2 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080205835A1 (en) * 2005-11-18 2008-08-28 Sterlite Optical Technologies Ltd. Optical Fiber Having Reduced Hydrogen Induced Loss And The Method For Producing The Same
FR2943337B1 (fr) * 2009-03-20 2011-12-23 Draka Comteq France Procede de traitement de fibres optiques au deuterium
GB201711849D0 (en) * 2017-07-24 2017-09-06 Nkt Photonics As Reducing light-induced loss in optical fibre
CN110228943A (zh) * 2019-07-10 2019-09-13 江西精业机械科技有限公司 一种全自动光纤预制棒氘气处理柜

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1340471A (zh) * 2000-08-25 2002-03-20 阿尔卡塔尔公司 减少光纤在1380nm-1410nm内氢敏感性的方法
CN1406213A (zh) * 2000-12-05 2003-03-26 住友电气工业株式会社 光纤的制造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63151642A (ja) 1986-12-16 1988-06-24 Sumitomo Electric Ind Ltd 光フアイバ用ガラス母材の製造方法
JP4062404B2 (ja) 2000-12-05 2008-03-19 住友電気工業株式会社 光ファイバの製造方法
US20030084684A1 (en) * 2001-10-19 2003-05-08 Jds Uniphase Corporation Method of reducing a hydrogen content of an optical fiber or preform
JP2003137580A (ja) 2001-11-06 2003-05-14 Sumitomo Electric Ind Ltd 光ファイバの処理方法、光ファイバの製造方法、光ファイバ
JP2003255143A (ja) 2002-02-27 2003-09-10 Mitsubishi Cable Ind Ltd 紫外線伝送用光ファイバの使用方法
JP4089250B2 (ja) 2002-03-07 2008-05-28 住友電気工業株式会社 光ファイバの処理方法
US20040139766A1 (en) 2003-01-17 2004-07-22 Weeks Gene K. Systems and methods for recycling gas used in treating optical fiber
JP2004228979A (ja) 2003-01-23 2004-08-12 Seiko Epson Corp 圧電振動子用パッケージおよび圧電振動子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1340471A (zh) * 2000-08-25 2002-03-20 阿尔卡塔尔公司 减少光纤在1380nm-1410nm内氢敏感性的方法
CN1406213A (zh) * 2000-12-05 2003-03-26 住友电气工业株式会社 光纤的制造方法

Also Published As

Publication number Publication date
CN1792933A (zh) 2006-06-28
US20060127018A1 (en) 2006-06-15
RU2005136996A (ru) 2007-06-10
US7596292B2 (en) 2009-09-29
RU2313113C2 (ru) 2007-12-20

Similar Documents

Publication Publication Date Title
CN1792933B (zh) 光纤的处理方法
CN106501125B (zh) 气体吸附脱附测试装置及测试方法
CA2569728C (en) Interface from a thermal desorption unit to a chromatographic column
CN105705929A (zh) 用于同位素比质谱仪的进气口系统
CN108072713B (zh) 在线分析流体包裹体水中氢同位素的方法
CN101523257B (zh) 具有减少氢感生损耗的光纤及其制造方法
CN103167901B (zh) 对真空环境中的分子污染物的分析
CN106706831A (zh) 多用途在线气体制备和导入系统冷阱预富集装置
US3427863A (en) Method and apparatus for the direct determination of gases
US7486863B2 (en) Method for treating optical fiber and apparatus for treating optical fiber
CN111024483A (zh) 一种氯硅烷前处理系统及氯硅烷中杂质含量的检测方法
US3938391A (en) Sampling device for liquefied gases
JP2001356094A (ja) 気体流れ中の不純物を分析するための方法
CN112881593A (zh) 气体及矿物包裹体中气态烃同位素在线提取装置及方法
CN110975536A (zh) 一种多通道汽化检测平台及其应用
JP3103985B2 (ja) 濃縮分析法及び装置
US4214473A (en) Gaseous trace impurity analyzer and method
CN209894794U (zh) 混合气体中单一气体的富集纯化设备
JP4216247B2 (ja) 光ファイバの処理方法
FR2765684A1 (fr) Controle de l'etancheite des tubes radiants dans les fours industriels
JPH0623050A (ja) ガス状麻酔混合物の製造方法及び装置
CN221465216U (zh) 动态比表面积测量装置
CN219434614U (zh) 一种测量氧化物表面交换速率的进样装置
CN211462756U (zh) 一种气体标准物质的动态稀释配制系统
CN116399905A (zh) 一种多组煤样氧化升温气体和空隙参数实时测定装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant