CN1778682A - 微结构可控纳米氧化铜的制备方法 - Google Patents

微结构可控纳米氧化铜的制备方法 Download PDF

Info

Publication number
CN1778682A
CN1778682A CN 200510094631 CN200510094631A CN1778682A CN 1778682 A CN1778682 A CN 1778682A CN 200510094631 CN200510094631 CN 200510094631 CN 200510094631 A CN200510094631 A CN 200510094631A CN 1778682 A CN1778682 A CN 1778682A
Authority
CN
China
Prior art keywords
microstructure
nitrate solution
copper oxide
copper nitrate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200510094631
Other languages
English (en)
Other versions
CN100443414C (zh
Inventor
汪信
朱俊武
刘孝恒
陆路德
杨绪杰
卑凤利
韩巧凤
江晓红
王艳萍
罗元香
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CNB2005100946315A priority Critical patent/CN100443414C/zh
Publication of CN1778682A publication Critical patent/CN1778682A/zh
Application granted granted Critical
Publication of CN100443414C publication Critical patent/CN100443414C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明公开了一种微结构可控纳米氧化铜的制备方法。它包括以下步骤:第一步,将硝酸铜溶于水中,搅拌配成硝酸铜溶液;第二步,将硝酸铜溶液在0~100℃的温度下强烈搅拌;第三步,将氢氧化钠固体一次性快速加入第二步中温度下的硝酸铜溶液中进行化学反应,硝酸铜与氢氧化钠的摩尔比为1∶2~2.5;第四步,将第三步中反应生成的蓝色沉淀悬浮液升温,经搅拌后反应生成黑色沉淀悬浮液,将其离心、洗涤、干燥得到纳米氧化铜。本发明具有如下优点:不同微观形貌的纳米CuO均在低于100℃下生成;所得的纳米CuO粒径小,分散均匀、无团聚;不同微结构纳米CuO的形成中无需加入稳定剂或表面活性剂;通过改变沉淀剂的加入温度可获得分散性好的棒状、丝状、纺锤状的纳米CuO。

Description

微结构可控纳米氧化铜的制备方法
一技术领域
本发明涉及一种纳米材料的制备方法,特别是一种微结构可控纳米氧化铜的制备方法。
二背景技术
CuO作为一种用途广泛的多功能无机材料,具有独特的电、磁、催化特性,被广泛应用于玻璃、催化剂、气体传感器、磁存储介质以及电极活性材料等重要领域。随着纳米科学技术的发展,纳米CuO的制备、特性及其应用也越来越受到人们的关注。对于纳米材料的性能不仅取决于材料的化学组成,而且取决于材料的尺寸、微观形貌、表面状态及结构等因素,只有实现对纳米材料微结构的有效控制,才有可能进一步将其应用于微电子器件等高科技领域中。现有的纳米材料制备方法大致分为气相法、固相法和液相法三大类,而常见的纳米CuO的制备方法主要有固相法、铜盐热分解法、球磨法、超声法和醇热法等。Kumar RV等人在氩气保护下,在10%水的N,N-二甲基甲酰胺体系中利用超声化学法合成了粒径为6nm的CuO(Kumar R V,Diamant Y,Gedanken A.Sonochemial synthesis and characterization of nanometer-size Transition metaloxides from metal acetates.Chem.Mater.200012(8):2301-2305)。Hong Z S等人以Cu(OAc)2为原料,用乙醇热法在90-180℃下获得了粒径3-9nm的球形纳米CuO(HongZ S,Cao Y,Deng J F.A convenient alcohothermal approach for low temperature synthesis ofCuO nanoparticles.Mater.Lett.2002 52:34-38)。
对于上述方法,固相法操作尽管简单,但所得的产物粒径分布不均匀,而且对于微结构的调控不方便。其他方法,如在有机溶剂体系中产物分散性好、比表面积较高,但产率低、成本较高,而且反应条件很苛刻;在水相体系中制备成本较低,但产物分散性差,而且为了获得不同形貌的产物需要加入稳定剂,反应量很小,不利于工业化生产。
三发明内容
本发明的目的在于提供一种工艺简单、适合于工业化生产,并且产物具有高比表面积、均匀分散、粒径小等品质的微结构可控纳米氧化铜的制备方法。
实现本发明目的的技术方案为:一种微结构可控纳米氧化铜的制备方法,包括以下步骤:
第一步,将硝酸铜溶于水中,搅拌配成硝酸铜溶液;
第二步,将硝酸铜溶液在0~100℃的温度下强烈搅拌,并使硝酸铜充分溶解;
第三步,将氢氧化钠固体一次性快速加入第二步中温度下的硝酸铜溶液中进行化学反应,硝酸铜与氢氧化钠的摩尔比为1∶2~2.5;
第四步,将第三步中反应生成的蓝色沉淀悬浮液升温到95~100℃,充分搅拌后反应生成黑色沉淀悬浮液;
第五步,将生成的黑色沉淀悬浮液离心、洗涤、干燥得到的黑色粉末即纳米氧化铜。
本发明的微结构可控纳米氧化铜的制备方法中,配成的硝酸铜溶液摩尔浓度为0.02~0.1mol·L-1
本发明的微结构可控纳米氧化铜的制备方法中,硝酸铜溶液在95~100℃的温度下强烈搅拌。
本发明的微结构可控纳米氧化铜的制备方法中,硝酸铜溶液在80~85℃的温度下强烈搅拌。
本发明的微结构可控纳米氧化铜的制备方法中,硝酸铜溶液在60~65℃的温度下强烈搅拌。
本发明的微结构可控纳米氧化铜的制备方法中,硝酸铜溶液在20~25℃的温度下强烈搅拌。
本发明的微结构可控纳米氧化铜的制备方法中,硝酸铜溶液在2~5℃的温度下强烈搅拌。
本发明的微结构可控纳米氧化铜的制备方法中,对蓝色沉淀悬浮液升温到95~100℃下充分搅拌0.5~1小时。
本发明与现有技术相比,其显著优点为:(1)操作简单,设备便利,反应体系为水,成本低,适宜于工业化生产;(2)反应温度相对较低,不同微观形貌的纳米CuO均在低于100℃下生成;(3)所得的纳米CuO粒径小,分散均匀,基本无团聚;(4)不同微结构纳米CuO的形成中无需加入任何稳定剂或表面活性剂;(5)简单的通过改变沉淀剂的加入温度,获得了分散性好的棒状、丝状、纺锤状的纳米CuO。
四附图说明
图1是本发明的微结构可控纳米氧化铜的制备方法的流程示意图。
图2是本发明的微结构可控纳米氧化铜的制备方法在100℃反应时所得的棒状纳米CuO透射电镜图。
图3是本发明的微结构可控纳米氧化铜的制备方法在60℃反应时所得的丝状纳米CuO透射电镜图。
图4是本发明的微结构可控纳米氧化铜的制备方法在25℃反应时所得的纺锤状纳米CuO透射电镜图。
图5是本发明的微结构可控纳米氧化铜的制备方法在2℃反应时所得的纺锤状纳米CuO透射电镜图。
五具体实施方式
下面结合附图对本发明作进一步描述。
结合图1,本发明的微结构可控纳米氧化铜的制备方法,包括以下步骤:
第一步,将硝酸铜溶于水中,搅拌配成摩尔浓度为0.02~0.1mol·L-1的硝酸铜溶液;
第二步,将硝酸铜溶液在0~100℃的温度下强烈搅拌,并使硝酸铜充分溶解;
第三步,将氢氧化钠固体一次性加入第二步中温度下的硝酸铜溶液中进行化学反应,硝酸铜与氢氧化钠的摩尔比为1∶2~2.5;
第四步,将第三步中反应生成的蓝色沉淀悬浮液升温到95~100℃,充分搅拌0.5~1小时后反应生成黑色沉淀悬浮液;
第五步,将生成的黑色沉淀悬浮液离心、洗涤、干燥得到的黑色粉末即纳米氧化铜。
本发明的微结构可控纳米氧化铜的制备方法中的反应方程式为:
            
实施例1:结合图1、图2,本发明的微结构可控纳米氧化铜的制备方法,包括以下步骤:
第一步:在一配有机械搅拌和回流装置的三颈烧瓶中,分别加入1.45g硝酸铜和300mL的水,搅拌10~20分钟,充分溶解;
第二步,将配好的硝酸铜溶液在强烈搅拌下调温至100℃;
第三步,将0.5g的NaOH固体一次性快速加入上述100℃的硝酸铜溶液中,反应非常剧烈,并立即有大量的黑色沉淀生成;
第四步,将上述黑色沉淀悬浮液在100℃下充分搅拌反应0.5~1小时;
第五步,将陈化后的黑色沉淀悬浮液离心、洗涤、干燥得到的黑色粉末即为直径约为5nm的棒状CuO纳米晶。
实施例2:结合图1,本发明的微结构可控纳米氧化铜的制备方法,包括以下步骤:
第一步:在一配有机械搅拌和回流装置的三颈烧瓶中,分别加入2.9g硝酸铜和300mL的水,搅拌10~20分钟,充分溶解;
第二步,将配好的硝酸铜溶液在强烈搅拌下调温至80℃;
第三步,将1g的NaOH固体一次性快速加入上述80℃的硝酸铜溶液中,反应较剧烈,并很快有大量的黑色沉淀生成;
第四步,将上述黑色沉淀悬浮液升温到99℃,然后充分搅拌反应0.5~1小时;
第五步,将陈化后的黑色沉淀悬浮液离心、洗涤、干燥得到的黑色粉末即为直径约10nm的棒状CuO纳米晶。
实施例3:结合图1、图3,本发明的微结构可控纳米氧化铜的制备方法,包括以下步骤:
第一步:在一配有机械搅拌和回流装置的三颈烧瓶中,分别加入4.35g硝酸铜和300mL的水,搅拌10~20分钟,充分溶解;
第二步,将配好的硝酸铜溶液在强烈搅拌下调温至60℃;
第三步,将1.44g的NaOH固体一次性快速加入上述60℃的硝酸铜溶液中,反应较剧烈,并很快有大量的蓝色沉淀生成;
第四步,将上述蓝色沉淀悬浮液升温到98℃,蓝色沉淀逐渐转化为黑色,然后充分搅拌反应0.5~1小时;
第五步,将陈化后的黑色沉淀悬浮液离心、洗涤、干燥得到的黑色粉末即为直径在8~40nm的丝状CuO纳米晶。
实施例4:结合图1、图4,本发明的微结构可控纳米氧化铜的制备方法,包括以下步骤:
第一步:在一配有机械搅拌和回流装置的三颈烧瓶中,分别加入5.8g硝酸铜和300mL的水,搅拌10~20分钟,充分溶解;
第二步,将配好的硝酸铜溶液在强烈搅拌下调温至25℃;
第三步,将1.9g的NaOH固体一次性快速加入上述25℃的硝酸铜溶液中,反应较剧烈,并很快有大量的蓝色沉淀生成;
第四步,将上述蓝色沉淀悬浮液升温到97℃,蓝色沉淀逐渐转化为黑色,然后充分搅拌反应0.5~1小时;
第五步,将陈化后的黑色沉淀悬浮液离心、洗涤、干燥得到的黑色粉末即为直径约140nm的纺锤状CuO纳米晶。
实施例5:结合图1、图5,本发明的微结构可控纳米氧化铜的制备方法,包括以下步骤:
第一步:在一配有机械搅拌和回流装置的三颈烧瓶中,分别加入7.2g硝酸铜和300mL的水,搅拌10~20分钟,充分溶解;
第二步,将配好的硝酸铜溶液在强烈搅拌下冷却至2℃;
第三步,将2.4g的NaOH固体一次性快速加入上述2℃的硝酸铜溶液中,逐渐有大量的蓝色沉淀生成;
第四步,将上述蓝色沉淀悬浮液升温到96℃,蓝色沉淀逐渐转化为黑色,然后充分搅拌反应0.5~1小时;
第五步,将陈化后的黑色沉淀悬浮液离心、洗涤、干燥得到的黑色粉末即为直径在100~150nm的纺锤状CuO纳米晶。
从以上实施例可知,本发明的微结构可控纳米氧化铜的制备方法通过调节沉淀剂NaOH的加入温度,改变了纳米CuO晶粒的生长习性,从而获得了不同微观结构的纳米CuO产物。当在100℃下加入NaOH时,所得纳米CuO为分散性良好的棒状粒子,其直径约为5nm,长度为25~40nm,分散性很好,紫外可见光谱呈现明显的蓝移现象。而在60℃下加入NaOH时,产物变为了CuO纳米丝,直径约8~40nm,长度为200~600nm。而在25℃下加入NaOH后所得产物为纺锤状CuO纳米晶,直径约140nm,长度为400~600nm;在2℃下加入NaOH后所得产物为纺锤状CuO纳米晶,直径为100~150nm,长度为0.6~1.4μm。这远大于X射线衍射的计算结果,说明该纺锤形粒子可能是由较小的微晶组成的聚集体。但在2℃下加入NaOH后所得纺锤状CuO纳米晶的长度明显变长。由此可见,低温引起了CuO纳米晶体的聚集生长并使其微观形貌有了很大的改变。这是因为作为一种具有各向异性特性的材料,CuO晶体有着择优取向生长的趋势。当在较低温度下加入NaOH,在缓慢升温的条件下,溶液中首先生成的Cu(OH)2沉淀随着温度的逐渐升高,逐渐分解为溶解度更低的CuO,即在体系中成核和生长没有明显的隔离,在成核过程中,溶液中还有大量的溶质用于生长,而缓慢生成的CuO晶粒沿着某个晶面逐渐聚集长大,在该过程中成核和生长速率都很慢,聚集生成了粒径较大的纺锤形粒子。相反,如果在较高温度下加入NaOH,高温促使高的反应速率,产生爆发生核的效果,导致在很短的时间内有大量的晶核生成,溶液中晶粒的成核速率大大超过生长速率,晶粒来不及聚集生长,溶液中的溶质已经消耗完全,从而生成了粒径较小、分布较均匀的棒状粒子。

Claims (8)

1、一种微结构可控纳米氧化铜的制备方法,其特征在于包括以下步骤:
第一步,将硝酸铜溶于水中,搅拌配成硝酸铜溶液;
第二步,将硝酸铜溶液在0~100℃的温度下强烈搅拌,并使硝酸铜充分溶解;
第三步,将氢氧化钠固体一次性快速加入第二步中温度下的硝酸铜溶液中进行化学反应,硝酸铜与氢氧化钠的摩尔比为1∶2~2.5;
第四步,将第三步中反应生成的蓝色沉淀悬浮液升温到95~100℃,充分搅拌后反应生成黑色沉淀悬浮液;
第五步,将生成的黑色沉淀悬浮液离心、洗涤、干燥得到的黑色粉末即纳米氧化铜。
2、根据权利要求1所述的微结构可控纳米氧化铜的制备方法,其特征在于:配成的硝酸铜溶液摩尔浓度为0.02~0.1mol·L-1
3、根据权利要求1所述的微结构可控纳米氧化铜的制备方法,其特征在于:硝酸铜溶液在95~100℃的温度下强烈搅拌。
4、根据权利要求1所述的微结构可控纳米氧化铜的制备方法,其特征在于:硝酸铜溶液在80~85℃的温度下强烈搅拌。
5、根据权利要求1所述的微结构可控纳米氧化铜的制备方法,其特征在于硝酸铜溶液在60~65℃的温度下强烈搅拌。
6、根据权利要求1所述的微结构可控纳米氧化铜的制备方法,其特征在于:硝酸铜溶液在20~25℃的温度下强烈搅拌。
7、根据权利要求1所述的微结构可控纳米氧化铜的制备方法,其特征在于:硝酸铜溶液在2~5℃的温度下强烈搅拌。
8、根据权利要求1所述的微结构可控纳米氧化铜的制备方法,其特征在于:对蓝色沉淀悬浮液升温到95~100℃下充分搅拌0.5~1小时。
CNB2005100946315A 2005-09-30 2005-09-30 微结构可控纳米氧化铜的制备方法 Expired - Fee Related CN100443414C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005100946315A CN100443414C (zh) 2005-09-30 2005-09-30 微结构可控纳米氧化铜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005100946315A CN100443414C (zh) 2005-09-30 2005-09-30 微结构可控纳米氧化铜的制备方法

Publications (2)

Publication Number Publication Date
CN1778682A true CN1778682A (zh) 2006-05-31
CN100443414C CN100443414C (zh) 2008-12-17

Family

ID=36769158

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100946315A Expired - Fee Related CN100443414C (zh) 2005-09-30 2005-09-30 微结构可控纳米氧化铜的制备方法

Country Status (1)

Country Link
CN (1) CN100443414C (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101279758B (zh) * 2008-05-16 2010-06-02 西北师范大学 纳米氧化铜粉体的制备方法
CN101805009A (zh) * 2010-03-18 2010-08-18 同济大学 一种简易可控制备叶状微/纳米氧化铜二维组装体的方法
CN101234750B (zh) * 2008-02-28 2010-09-29 五矿(北京)稀土研究院有限公司 一种超细微粒和纳米颗粒的制备方法
CN101407332B (zh) * 2007-10-12 2011-04-27 新疆大学 一种氧化铜纳米棒的水热合成方法
CN102351237A (zh) * 2011-07-05 2012-02-15 宁波大学 一种纳米氧化铜的制备方法
CN102351238A (zh) * 2011-07-18 2012-02-15 西安交通大学 一种含有纳米孪晶结构的中空硫化铜晶体的制备方法
CN102806356A (zh) * 2012-07-30 2012-12-05 西安科技大学 一种具有核壳结构的碳包铜纳米粒子的制备方法
CN102951671A (zh) * 2012-10-22 2013-03-06 洛阳师范学院 一种氧化铜纳米粒子的制备方法
CN103170342A (zh) * 2013-03-22 2013-06-26 新疆大学 一种合成1,4-丁炔二醇的纳米CuO-Bi2O3催化剂
CN106673049A (zh) * 2017-01-18 2017-05-17 西安工业大学 一种多孔分等级球活性氧化铜粉的制备方法
CN108128795A (zh) * 2018-01-17 2018-06-08 上海电力学院 一种室温合成CuO纳米晶的方法
CN109675516A (zh) * 2019-01-09 2019-04-26 东南大学 基于水热反应制备多孔中空结构的钙铜复合微球的方法
CN110144479A (zh) * 2019-05-15 2019-08-20 内蒙古工业大学 原位合成具有分级结构的铝基复合材料的方法
CN112473667A (zh) * 2020-11-24 2021-03-12 西安理工大学 不同形貌和表面Cu+含量的CuO催化剂的制备方法
CN113247942A (zh) * 2021-05-13 2021-08-13 贵州理工学院 一种纳米氧化铜的制备方法及应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1355138A (zh) * 2000-12-01 2002-06-26 朱强 一种生产纳米材料的方法
CN100395059C (zh) * 2001-12-18 2008-06-18 旭化成株式会社 金属氧化物分散体、由其得到的金属薄膜和生产该金属薄膜的方法
CN1384055A (zh) * 2002-06-20 2002-12-11 南京大学 还原法制备氧化亚铜纳米线的方法
CN1233559C (zh) * 2003-04-22 2005-12-28 中南大学 氧化铜-氧化铟复合纳米晶材料的制备方法

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101407332B (zh) * 2007-10-12 2011-04-27 新疆大学 一种氧化铜纳米棒的水热合成方法
CN101234750B (zh) * 2008-02-28 2010-09-29 五矿(北京)稀土研究院有限公司 一种超细微粒和纳米颗粒的制备方法
CN101279758B (zh) * 2008-05-16 2010-06-02 西北师范大学 纳米氧化铜粉体的制备方法
CN101805009A (zh) * 2010-03-18 2010-08-18 同济大学 一种简易可控制备叶状微/纳米氧化铜二维组装体的方法
CN101805009B (zh) * 2010-03-18 2012-02-29 同济大学 一种简易可控制备叶状微/纳米氧化铜二维组装体的方法
CN102351237A (zh) * 2011-07-05 2012-02-15 宁波大学 一种纳米氧化铜的制备方法
CN102351238A (zh) * 2011-07-18 2012-02-15 西安交通大学 一种含有纳米孪晶结构的中空硫化铜晶体的制备方法
CN102351238B (zh) * 2011-07-18 2013-06-05 西安交通大学 一种含有纳米孪晶结构的中空硫化铜晶体的制备方法
CN102806356B (zh) * 2012-07-30 2014-12-17 西安科技大学 一种具有核壳结构的碳包铜纳米粒子的制备方法
CN102806356A (zh) * 2012-07-30 2012-12-05 西安科技大学 一种具有核壳结构的碳包铜纳米粒子的制备方法
CN102951671A (zh) * 2012-10-22 2013-03-06 洛阳师范学院 一种氧化铜纳米粒子的制备方法
CN102951671B (zh) * 2012-10-22 2014-10-08 洛阳师范学院 一种氧化铜纳米粒子的制备方法
CN103170342A (zh) * 2013-03-22 2013-06-26 新疆大学 一种合成1,4-丁炔二醇的纳米CuO-Bi2O3催化剂
CN106673049A (zh) * 2017-01-18 2017-05-17 西安工业大学 一种多孔分等级球活性氧化铜粉的制备方法
CN108128795A (zh) * 2018-01-17 2018-06-08 上海电力学院 一种室温合成CuO纳米晶的方法
CN109675516A (zh) * 2019-01-09 2019-04-26 东南大学 基于水热反应制备多孔中空结构的钙铜复合微球的方法
CN110144479A (zh) * 2019-05-15 2019-08-20 内蒙古工业大学 原位合成具有分级结构的铝基复合材料的方法
CN112473667A (zh) * 2020-11-24 2021-03-12 西安理工大学 不同形貌和表面Cu+含量的CuO催化剂的制备方法
CN113247942A (zh) * 2021-05-13 2021-08-13 贵州理工学院 一种纳米氧化铜的制备方法及应用
CN113247942B (zh) * 2021-05-13 2022-04-26 贵州理工学院 一种纳米氧化铜的制备方法及应用

Also Published As

Publication number Publication date
CN100443414C (zh) 2008-12-17

Similar Documents

Publication Publication Date Title
CN1778682A (zh) 微结构可控纳米氧化铜的制备方法
Arul Dhas et al. Preparation of luminescent silicon nanoparticles: a novel sonochemical approach
US7785392B2 (en) Method for manufacturing metal nanoparticles
US8529963B2 (en) Method for preparing dispersions of precious metal nanoparticles and for isolating such nanoparticles from said dispersions
Hao et al. Highly dispersed SrTiO 3 nanocubes from a rapid sol-precipitation method
Peng et al. Morphology control of nanoscale PbS particles in a polyol process
Jia et al. Microwave-assisted synthesis of anatase TiO2 nanorods with mesopores
CN101037232A (zh) 一种制备粒径可控氧化铁中空球的方法
CN110563018B (zh) 一种高分散纳米氢氧化镧的制备方法
Ziva et al. Recent progress on the production of aluminum oxide (Al2O3) nanoparticles: A review
CN113479849B (zh) 一种纳米金属氧化物的制备方法
CN1756717A (zh) 包覆有二氧化硅的金属纳米颗粒及其制造方法
Quan et al. Polyol-mediated synthesis of PbS crystals: shape evolution and growth mechanism
CN101906662B (zh) 不同粒径银纳米颗粒修饰二氧化钛纳米管的制备方法
Athar et al. Wet synthesis of monodisperse cobalt oxide nanoparticles
KR20160053352A (ko) 다기능성 고분자와 환원제를 이용한 금속나노입자의 제조방법
US10464136B2 (en) Preparation method of copper nano-structures
CN108526480B (zh) 一种低成本快速制备铜纳米线的方法
Gao et al. One-pot hydrothermal synthesis of thin tellurene nanosheet and its formation mechanism
CN110181074B (zh) 一种复合软模板法绿色制备高长径比银纳米线的方法
CN111675238A (zh) 一种固相法制备多形貌纳米氧化锌的方法
Logutenko et al. A novel method to prepare copper microspheres via chemical reduction route
CN111747441A (zh) 一种利用醇胺物固相合成纳米氧化锌的方法
Li et al. Synthesis of CdSe micro/nanocrystals with controllable multiform morphologies and crystal phases
CN101172617A (zh) 合成纳米a型分子筛的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20081217

Termination date: 20130930