CN1754258A - 铅直结构中具特制纳米管的集成电子组件 - Google Patents

铅直结构中具特制纳米管的集成电子组件 Download PDF

Info

Publication number
CN1754258A
CN1754258A CNA2004800050467A CN200480005046A CN1754258A CN 1754258 A CN1754258 A CN 1754258A CN A2004800050467 A CNA2004800050467 A CN A2004800050467A CN 200480005046 A CN200480005046 A CN 200480005046A CN 1754258 A CN1754258 A CN 1754258A
Authority
CN
China
Prior art keywords
multilayer system
conducting shell
nanotube
metallic multilayer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004800050467A
Other languages
English (en)
Other versions
CN100459098C (zh
Inventor
R·塞德
F·克鲁普
A·格拉哈姆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of CN1754258A publication Critical patent/CN1754258A/zh
Application granted granted Critical
Publication of CN100459098C publication Critical patent/CN100459098C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76871Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
    • H01L21/76876Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers for deposition from the gas phase, e.g. CVD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76879Filling of holes, grooves or trenches, e.g. vias, with conductive material by selective deposition of conductive material in the vias, e.g. selective C.V.D. on semiconductor material, plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53276Conductive materials containing carbon, e.g. fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/10Applying interconnections to be used for carrying current between separate components within a device
    • H01L2221/1068Formation and after-treatment of conductors
    • H01L2221/1073Barrier, adhesion or liner layers
    • H01L2221/1078Multiple stacked thin films not being formed in openings in dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/10Applying interconnections to be used for carrying current between separate components within a device
    • H01L2221/1068Formation and after-treatment of conductors
    • H01L2221/1094Conducting structures comprising nanotubes or nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12576Boride, carbide or nitride component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24917Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including metal layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Catalysts (AREA)

Abstract

本发明是关于一种集成电子组件,其包含一基板(10)、至少配置在所述基板区域的至少一金属多层系统、以及配置在所述金属多层系统上并具有至少一接触孔的一非传导层(50);其中,在所述接触孔底部的金属多层系统上成长至少一纳米管。所述金属多层系统是由具有高熔点的一金属层(20)、一金属分隔层与一催化剂层所构成。本发明亦特别关于一种在铅直结构中制造纳米管的方法,以及特别关于一种利用金属多层系统在铅直结构中制造纳米管的方法。

Description

铅直结构中具特制纳米管的集成电子组件
技术领域
本发明是关于一种集成电子组件,其包含一基板、至少配置在所述基板区域的至少一金属多层系统、以及配置在所述金属多层系统上并具有至少一接触孔的一非传导层;其中,在所述接触孔底部的金属多层系统上成长一纳米管,所述金属多层系统是由一高熔点金属层、一金属分隔层与一催化剂层所构成。此外,本发明亦关于一种在铅直结构中对准制造纳米管的制程方法,以及关于一种在对准制造铅直结构中的纳米管时使用一金属多层系统。
背景技术
在以集成形式配置的电子组件中,两层传导层间通常由一非传导层电绝缘,而通过蚀穿所述非传导层的一接触孔彼此电性传导,该接触孔中填满金属,而产生电传导连接所述两传导层的金属性贯穿-镀层。
此程序的缺点之一特别是在于侧向尺度的减少,意即当贯穿所述非传导层的接触孔的直径减少时,以及当铅直程度增加时,将所述接触孔完全以金属填满则会产生问题且会受缺陷影响;特别是,所沉积的金属通常会阻碍所述接触孔的上部区域,而使整个所述接触孔无法被金属填满,因此通常难以在所述两传导层间制造一电性传导层;此外,无法完全填满的接触孔会产生可靠度的问题。
习知程序的另一项缺点在于当接触孔的深宽比(aspect ratio)较低时,所述金属性贯穿-镀层的传导性会大幅降低,意即所述金属性贯穿-镀层会构成一种限制金属化系统及其集成电路尺寸化的要素,其中多个传导层必须通过所述非传导层,而在电子组件的铅直方向上彼此电传导连接。
基于以纳米管(特别是碳纳米管)作为纳米技术中金属性导体与半导体的相配性考量,此类型的纳米管须能够集成于电子组件中。
举例而言,在文献(Jung Sang Suh and Jin Seung Lee,HighlyOrdered Two-Dimensional Carbon Nanotubes Areas,AppliedPhysics Letters,Vol.75,No.14,pp.2047-1049,October 1999)中揭示了一种在穿孔的Al2O3基质中自排列成长碳纳米管的方法。
迄今为止,纳米管仅通过单一催化剂层的方式而配置在金属接触的表面(DE 10006964C2),在此例中,一般是以物理沉积方式(例如:溅镀)将催化剂与金属层涂敷至已利用阻剂而图案化的一平坦基板,接着,所述膜层即以一举离制程(lift-off process)而图案化;然而目前仍未发展关于铅直结构中可为后续之纳米管而使催化剂系统精确位于该等结构底部的检测和测试制程(tries-and-testedprocess),特别是欲合成或是欲在铅直结构中以催化剂加速成长的单壁碳纳米管(SWCNTs)或多壁碳纳米管(MWCNTs)。另一种制程则是利用电解沉积来形成对应的催化剂系统,以加速铅直结构中该等纳米管的成长;然而在此例中通常难以监控催化剂金属的沉积量,同时,几乎不可能利用电解沉积的方式来形成单壁碳纳米管合成所需的极少量催化剂;此外,当利用物理性沉积方式将催化剂系统沉积在预定的铅直结构中时,一般亦难以同时避免催化剂沉积在侧壁中的情形,因而使纳米管同样从侧壁中成长,在此情形下,纳米管便无法接触至铅直结构的基部。另一种制程则包含了在非传导层前涂敷催化剂层,并接着蚀刻所述铅直结构;然而,制程上的扰动与过度蚀刻表示目前仍没有可以让蚀刻终止精确到接近1纳米的等级的解决方案;然这样的精确度对于移去单一催化剂层以使纳米管在不蚀穿此催化层的情况下成长而言却是必须的。
发明内容
因此,本发明的一项目的即在于提供一种在铅直结构中对准制造纳米管的制程方法,此构想可由权利要求书中所定义的实施方式而达成。
特别是,本发明提供了一种集成电子组件,其包含一基板、至少一金属多层系统与一非传导层,所述金属多层系统是配置在至少所述基板的区域上,而所述非传导层是配置在所述金属多层系统上且具有至少一接触孔,其中至少一纳米管是成长在所述接触孔底部的所述金属多层系统上,所数金属多层系统是由一高熔点金属层、一金属分隔层与一催化剂层组成。
因此,本发明的核心构想即在于利用一种由多个特定金属层所构成的金属多层系统而在特别是电传导表面(金属)上的铅直结构中成长纳米管,特别是单壁碳纳米管(SWCNTs)或多壁碳纳米管(MWCNTs)。
此处所说明的发明构想是通过在一对应基板上先沉积所定义的至少一金属多层系统,而解决了在一铅直结构基部以既定方式配置适用于纳米管成长的催化剂的问题;接着在此一金属多层系统上覆盖一非传导层。接着以一般的微影与蚀刻制程来定义在所述非传导层中的所述铅直结构,以使局部移除在所述铅直结构基部处的所述金属多层系统;根据本发明所使用的多层系统中的催化剂金属可促进纳米管的成长。此外,通过多次沉积一系列的催化剂层与分隔层亦可使蚀刻制程终止具有纳米等级的精确度;在蚀刻制程中,即能够终止在所述催化剂层中其一,或足以移除在铅直结构边缘处的催化剂层。
根据本发明,用以成长纳米管的所述金属多层系统包含了作为一底部接触层的一高熔点金属层,将催化剂与其下方的底部接触层分隔的一金属层以及一实际的催化剂层。通过连续多次沉积所述的高熔点金属层/金属分隔层/催化剂层序列即可提升所述纳米管的产量,特别是单壁碳纳米管或多壁碳纳米管;此方式亦可促进蚀刻制程的进行,正如先前所说明者,所述蚀刻制程不须终止在一特定的催化剂层,而仅需在利用微影与蚀刻制程而加以图案化的所述非传导层沉积在所述金属多层系统上以产生所述铅直结构后,终止在所述多层系统中所述催化剂层中之其一即可。
经证实,钽、钼与钨或硅皆适合作为所述高熔点金属层;所述金属分隔层则包含铝、金或银,且较佳为铝。配置在所述高熔点金属层与所述催化剂层间的所述金属分隔层对于纳米管的成长具有相当大的助益,特别是对于单壁碳纳米管或多壁碳纳米管而言。假设所述金属分隔层中的金属在制程中熔化,以及举例而言,同样熔化的催化剂材料(例如:铁),便会被包埋在液相(例如:铝)中,因而保持其“孤立特性(insular nature)”,而纳米管的成长以及所成长的纳米管类型(例如:单壁碳纳米管或多壁碳纳米管)即与其相关。此外,在不存在分隔层时,便可能会有催化剂材料扩散到邻近层的风险。举例而言,所述催化剂层包含了下述金属中其一或其组合:铁、钴、镍、钇、钛、铂与钯,而非传导层的标准材料则包含了SiO2、SixNy、Al2O3、ZrO2与HfO2
在本发明的一实施方式中,所述金属多层系统最好是另外包含一最终金属分隔层,所述最终金属分隔层是配置在所述催化剂层上且最好含铝、金或银。
在根据本发明所提供的组件中,所述金属多层系统是配置在作为基板的一第一传导层上;此外,其亦包含一第二传导层,所述第一传导层经由所述接触孔中的所述至少一纳米管而与所述第二传导层电传导连接。在此例中,所述第一与第二传导层包含铜及/或铝及/或Ta、TaN、Ti、TiN的组合。
本发明亦关于一种在铅直结构中对准制造纳米管的方法,特别是在电传导表面上对准制造单壁碳纳米管(SWCNTs)与多壁碳纳米管(MWCNTs),所述方法包含下列步骤:
(i)提供一基板,
(ii)连续沉基一高熔点金属层、一金属分隔层与一催化剂层(40),以在所述基板的至少一部分区域上形成一金属多层系统,
(iii)视需要重复步骤(ii)一次或多次,
(iv)在步骤(ii)或步骤(iii)中所形成的所述金属多层系统上沉积一非传导层,
(v)在所述非传导层中形成至少一接触孔,以使所述金属多层系统可以延伸到所述接触孔基部的至少一部份区域,以及
(vi)在所述接触孔中的所述金属多层系统上成长至少一纳米管。
在根据本发明的制程中,所述基板是一第一传导层,且在步骤(iv)后沉积一第二传导层,以使所述第一传导层通过所述至少一纳米管而与所述第二传导层电传导连接。
在步骤(vi)中所形成的所述纳米管,特别是单壁碳纳米管(SWCNTs)及/或多壁碳纳米管(MWCNTs)是通过CVD制程的方式而成长在所述接触孔中。在步骤(v)中所形成的所述至少一接触孔是通过微影干式蚀刻的方式而形成。在步骤(ii)中所形成的所述金属多层系统是通过CVD制程、溅镀或蒸镀制程的方式而形成。在本发明制程的一实施方式中,最好是在步骤(ii)及/或步骤(iii)中所形成的所述金属多层系统上的所述催化剂层上另外沉积一最终金属分隔层。
本发明也关于一种使用一金属多层系统来对准制造电传导表面上铅直结构中的纳米管,特别是制造单壁碳纳米管与多壁碳纳米管的方法,所述金属多层系统是由一高熔点金属层、一金属分隔层与一催化剂层所组成,特别是所述纳米管是作为连接不同金属化层级的信道,或是所述单壁半导电性碳纳米管是作为一种开关晶体管组件。
本发明所提供的制程方法可在由一非传导层所电耦合的两传导层间产生一种可靠的电传导连接,即使所述非传导层的接触孔具有很小的直径与很高的深宽比(aspect ratio);因此本发明适于成长作为信道(意即用于连接不同金属化层级中的互连)的单壁与多壁碳纳米管。举例而言,所述传导层可为任何金属性传导材料,例如:铜、铝、银等,其中所述传导层一般皆包含一接合、扩散与抗反射层,例如钛、氮化钛、钽、氮化钽及/或该等材料的组合。所述非电性传导层则为传统的介电质,例如:二氧化硅或氮化硅或含有有机材料的其它绝缘层,例如聚硫亚氨(polyimide)或任何所需的组合。通过至少一纳米管的所述电传导连接仅受到此类型纳米管的直径限制,其中碳纳米管的直径约为0.4至0.7纳米。
此外,本发明使铅直碳纳米管晶体管的闸极可以集成在所述非传导层中。
本发明的制程方法的特征在于其通过对误差的低敏感性以及通过一种可靠地形成的电传导连接,即可具有精简性与坚实性。因此,可以以简单且较不昂贵的方式来制造对应的电性组件,即使是在非常微细的情形(即当接触孔的直径很小时)中亦然。
附图说明
图1图标说明了基板、金属多层系统与非传导层的配置。
图2A图标说明了本发明的一实施方式,其中在催化剂层上方更具有一最终金属分隔层。
图2B图标说明了本发明的另一实施方式,其中金属多层系统是重复性地被配置在其顶部。
图3A图标说明了一种已由微影与蚀刻制程预图案化的组件,其中所述金属多层系统已被部分移除。
图3B图标说明了在图3A所示的预图案化组件后成长纳米管的情形。
图4A与4B显示了在本发明所使用的金属多层系统上成长的多壁碳纳米管(MWCNTs)的扫描式显微镜影像。
图5显示了在本发明所使用的金属多层系统上成长的单壁碳纳米管(SWCNTs)的扫描式显微镜影像。
具体实施方式
图1显示了一基板10以及配置在其上的一金属多层系统,所述金属多层系统是由一高熔点金属层20、一金属分隔层30与一催化剂层40所组成,在所述金属多层系统上配置了一非传导层50,更精确而言,所述非传导层50是配置在所述催化剂层40上。
举例而言,所述基板10是含有任何传导性材料(例如:铜、铝、银等)的传导层。举例而言,钽、钼、钨及/或硅可用来作为所述高熔点金属层20。配置在所述高熔点金属层20与所述催化剂层40间的所述金属分隔层30对纳米管的成长有很大的助益,特别是对于单壁碳纳米管与多壁碳纳米管而言。此外,在不存在所述金属分隔层30时,便可能会有催化剂材料从所述催化剂层40向外扩散到邻近层的风险;所述金属分隔层30的材料包含了铝、金或银,且最好是含铝。所述催化剂层40包含一或多种下述材料:铁、钴、镍、钇、钛、铂与钯;至于非传导层50的材料实例则包含了SiO2、SixNy、Al2O3、ZrO2与HfO2
图1所示的金属多层系统可通过CVD制程、溅镀或蒸镀制程等方式而形成。
图2A图标说明了如图1所示的各别层序列更含有一额外的最终金属分隔层60,其配置在所述催化剂层40上;此一最终金属分隔层60最好是同样含铝。
图2B说明了与图2A本质上相同的结构,而其具有的金属多层系统70包含了高熔点金属层20、金属分隔层30催化剂层40与额外的最终金属分隔层60,所述金属多层系统70重复多次配置在其顶部(70a)上。
图3A图标说明了基板10、金属多层系统70与一预图案化非传导层50a的配置;本发明的铅直结构(接触孔80)可由微影与蚀刻制程的方式而定义于所述非传导层50中。
图3B显示了在预图案化非传导层50a的铅直结构中的金属多层系统70上所成长的纳米管90;所述纳米管90,特别是单壁碳纳米管(SWCNTs)及/或多壁碳纳米管(MWCNTs)可通过CVD制程而形成在所述接触孔80中。本发明的结构可使纳米管90选择在所述接触孔80中的所述金属多层系统70上成长,避免其自侧壁中的多余成长。
图4A、图4B与图5分别显示了MWCNTs(图4A与图4B)以及SWCNTs(图5)的扫描式显微镜影像;根据本发明,在铅直结构中形成的纳米管不仅可对准制造MWCNTs(图4A与图4B)与SWCNTs(图5),亦可避免纳米管从侧壁中成长出来,如图4A、图4B与图5所示。
组件符号说明
10           基板
20           高熔点金属层
30           金属分隔层
40           催化剂层
50           非传导层
50a          预图案化非传导层
60           另一最终金属分隔层
71           金属多层系统
70a          重复多次的金属多层系统
80           接触孔
90           纳米管

Claims (17)

1.一种集成电子组件,其包含一基板(10)、至少一金属多层系统与一非传导层(50),所述金属多层系统是配置在至少所述基板(10)的区域上,而所述非传导层(50)是配置在所述金属多层系统上且具有至少一接触孔(80),其中至少一纳米管(90)是成长在所述接触孔(80)底部的所述金属多层系统上,所数金属多层系统是由一高熔点金属层(20)、一金属分隔层(30)与一催化剂层(40)组成。
2.如权利要求1所述的组件,其中所述高熔点金属层(20)是选自由钽、钼与钨所组成的族群中至少其一。
3.如权利要求1或2所述的组件,其中所述金属分隔层(30)是由铝、金或银组成。
4.如权利要求1至3任一所述的组件,其中所述催化剂层(40)是选自由铁、钴、镍、钇、钛、铂、钯与其组合所组成的族群中至少其一。
5.如权利要求1至4任一所述的组件,其中所述金属多层系统更包含一最终金属分隔层(60),所述最终金属分隔层(60)是配置在所述催化剂层(40)上且最好含铝。
6.如权利要求1至5任一所述的组件,其中所述非传导层(50)是选自SiO2、SixNy、Al2O3、ZrO2或HfO2或其组合。
7.如权利要求1至6任一所述的组件,其中所述纳米管(90)是一单壁碳纳米管或一多壁碳纳米管。
8.如权利要求1至7任一所述的组件,其中所述金属多层系统是配置在作为所述基板(10)的一第一传导层上。
9.如权利要求8所述的组件,其亦包含一第二传导层,所述第一传导层经由所述接触孔(80)中的所述至少一纳米管(80)而与所述第二传导层电传导连接。
10.如权利要求9所述的组件,其中所述第一与第二传导层包含铜及/或铝及/或Ta、TaN、Ti、TiN的组合。
11.一种在铅直结构中对准制造纳米管的方法,特别是在电传导表面上对准制造单壁碳纳米管与多壁碳纳米管,所述方法包含下列步骤:
(i)提供一基板(10),
(ii)连续沉积一高熔点金属层(20)、一金属分隔层(30)与一催化剂层(40),以至少在所述基板(10)的区域上形成一金属多层系统,
(iii)视需要重复步骤(ii)一次或多次,
(iv)在步骤(ii)或步骤(iii)中所形成的所述金属多层系统上沉积一非传导层(50),
(v)在所述非传导层(50)中形成至少一接触孔(80),以使所述金属多层系统可以延伸到所述接触孔(80)基部的至少一部份区域,以及
(vi)在所述接触孔(80)中的所述金属多层系统上成长至少一纳米管(90)。
12.如权利要求11所述的方法,其中所述基板(10)是一第一传导层,且在步骤(vi)后沉积一第二传导层,以使所述第一传导层通过所述至少一纳米管(90)而与所述第二传导层电传导连接。
13.如权利要求11至12所述的方法,其在步骤(vi)中,是通过化学气相沉积制程的方式,使单壁碳纳米管及/或多壁碳纳米管在所述接触孔(80)中成长。
14.如权利要求11至13任一所述的方法,其中在步骤(v)中,是通过微影干式蚀刻的方式形成所述至少一接触孔(80)。
15.如权利要求11至14任一所述的方法,其在步骤(ii)中,是通过化学气相沉积制程、溅镀或蒸镀制程的方式形成所述金属多层系统。
16.如权利要求11至15任一所述的方法,其中在步骤(ii)及/或步骤(iii)中所形成的所述金属多层系统上的所述催化剂层上另外沉积一最终金属分隔层(60)。
17.一种金属多层系统的使用,所述金属多层系统是由一高熔点金属层(20)、一金属分隔层(30)与一催化剂层(40)所组成用于对准制造电传导表面上铅直结构中的纳米管,特别是单壁碳纳米管与多壁碳纳米管,特别是所述纳米管是作为连接不同金属化层级的信道,或是所述单壁半导电性碳纳米管是作为一种开关晶体管组件。
CNB2004800050467A 2003-02-24 2004-02-09 铅直结构中具特制纳米管的集成电子组件及其制造方法 Expired - Fee Related CN100459098C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10307815A DE10307815B3 (de) 2003-02-24 2003-02-24 Integriertes elektronisches Bauelement mit gezielt erzeugten Nanoröhren in vertikalen Strukturen und dessen Herstellungsverfahren
DE10307815.0 2003-02-24

Publications (2)

Publication Number Publication Date
CN1754258A true CN1754258A (zh) 2006-03-29
CN100459098C CN100459098C (zh) 2009-02-04

Family

ID=32891782

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800050467A Expired - Fee Related CN100459098C (zh) 2003-02-24 2004-02-09 铅直结构中具特制纳米管的集成电子组件及其制造方法

Country Status (6)

Country Link
US (1) US7326465B2 (zh)
EP (1) EP1597760B1 (zh)
JP (1) JP2006518929A (zh)
CN (1) CN100459098C (zh)
DE (1) DE10307815B3 (zh)
WO (1) WO2004075288A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7126207B2 (en) * 2005-03-24 2006-10-24 Intel Corporation Capacitor with carbon nanotubes
TWI420628B (zh) * 2005-03-28 2013-12-21 奈米碳管結合墊結構及其方法
US20070105356A1 (en) * 2005-11-10 2007-05-10 Wei Wu Method of controlling nanowire growth and device with controlled-growth nanowire
US8220530B2 (en) * 2006-10-17 2012-07-17 Purdue Research Foundation Electrothermal interface material enhancer
US8919428B2 (en) * 2007-10-17 2014-12-30 Purdue Research Foundation Methods for attaching carbon nanotubes to a carbon substrate
US8541058B2 (en) * 2009-03-06 2013-09-24 Timothy S. Fisher Palladium thiolate bonding of carbon nanotubes
JP5610298B2 (ja) * 2011-03-07 2014-10-22 本田技研工業株式会社 カーボンナノチューブ成長用基板、その製造方法及び配向カーボンナノチューブの製造方法
EP2905611B1 (en) 2014-02-06 2018-01-17 ams AG Method of producing a semiconductor device with protruding contacts
US10141528B1 (en) 2017-05-23 2018-11-27 International Business Machines Corporation Enhancing drive current and increasing device yield in n-type carbon nanotube field effect transistors

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5661083A (en) * 1996-01-30 1997-08-26 Integrated Device Technology, Inc. Method for via formation with reduced contact resistance
DE10006964C2 (de) * 2000-02-16 2002-01-31 Infineon Technologies Ag Elektronisches Bauelement mit einer leitenden Verbindung zwischen zwei leitenden Schichten und Verfahren zum Herstellen eines elektronischen Bauelements
KR100360476B1 (ko) * 2000-06-27 2002-11-08 삼성전자 주식회사 탄소나노튜브를 이용한 나노 크기 수직 트랜지스터 및 그제조방법
DE10103340A1 (de) * 2001-01-25 2002-08-22 Infineon Technologies Ag Verfahren zum Wachsen von Kohlenstoff-Nanoröhren oberhalb einer elektrisch zu kontaktierenden Unterlage sowie Bauelement

Also Published As

Publication number Publication date
EP1597760A1 (de) 2005-11-23
JP2006518929A (ja) 2006-08-17
CN100459098C (zh) 2009-02-04
WO2004075288A1 (de) 2004-09-02
EP1597760B1 (de) 2010-12-15
DE10307815B3 (de) 2004-11-11
US20060234080A1 (en) 2006-10-19
US7326465B2 (en) 2008-02-05

Similar Documents

Publication Publication Date Title
JP4549002B2 (ja) カーボンナノチューブからなる電気的に導電性の接続を有する電子部品とその製造方法
US8399772B2 (en) Control of carbon nanostructure growth in an interconnect structure
JP3057054B2 (ja) 銅線の多層相互接続を形成する方法
CN1738025A (zh) 具有增大电容耦合的迹线的制造方法及相应的迹线
CN101034708A (zh) 纳米线存储器件及其制造方法
CN1783476A (zh) 集成电路的内连线结构
CN1881558A (zh) 双镶嵌结构、内连结构及其制造方法
KR100858453B1 (ko) 전기적 접속 구조, 그 제조 방법 및 반도체 집적 회로 장치
CN101030552A (zh) 集成电路的制造方法、金属-绝缘层-金属电容形成方法
EP1465201A3 (en) Producing conductive layers
CN1754258A (zh) 铅直结构中具特制纳米管的集成电子组件
CN1300850C (zh) 半导体器件及其制造方法
CN1707788A (zh) 半导体器件及其制造方法
CN1949502A (zh) 半导体装置及集成电路装置
CN1897265A (zh) 包括一个或多个嵌入式通孔的互联器件及其生产方法
CN1716588A (zh) 半导体器件及其制造方法
CN1601702A (zh) 互连结构上溅射蚀刻之原位金属阻障沉积
US8461037B2 (en) Method for fabricating interconnections with carbon nanotubes
CN101043791A (zh) 用于高温条件的绝缘结构及其制造方法
CN1635636A (zh) 用于将铜与金属-绝缘体-金属电容器结合的方法和结构
CN1463470A (zh) 制造电子器件的方法
CN1098533C (zh) 半导体集成电路中的接触结构及其制造方法
CN1434508A (zh) 半导体装置
CN1897267A (zh) 半导体装置及其制造方法
CN1992177A (zh) 半导体器件的薄膜和金属线的制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: Munich, Germany

Patentee after: Infineon Technologies AG

Address before: Munich, Germany

Patentee before: INFINEON TECHNOLOGIES AG

TR01 Transfer of patent right

Effective date of registration: 20120928

Address after: Munich, Germany

Patentee after: QIMONDA AG

Address before: Munich, Germany

Patentee before: Infineon Technologies AG

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20151223

Address after: German Berg, Laura Ibiza

Patentee after: Infineon Technologies AG

Address before: Munich, Germany

Patentee before: QIMONDA AG

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090204

Termination date: 20160209

CF01 Termination of patent right due to non-payment of annual fee