CN1748264A - 铁电膜、半导体装置、铁电膜的制造方法及其制造装置 - Google Patents

铁电膜、半导体装置、铁电膜的制造方法及其制造装置 Download PDF

Info

Publication number
CN1748264A
CN1748264A CNA2004800036506A CN200480003650A CN1748264A CN 1748264 A CN1748264 A CN 1748264A CN A2004800036506 A CNA2004800036506 A CN A2004800036506A CN 200480003650 A CN200480003650 A CN 200480003650A CN 1748264 A CN1748264 A CN 1748264A
Authority
CN
China
Prior art keywords
ferroelectric film
ferroelectric
film
oxygen
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004800036506A
Other languages
English (en)
Other versions
CN100483566C (zh
Inventor
大见忠弘
高桥一郎
山田敦彦
樱井弘之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Publication of CN1748264A publication Critical patent/CN1748264A/zh
Application granted granted Critical
Publication of CN100483566C publication Critical patent/CN100483566C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • C01G35/006Compounds containing, besides tantalum, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/088Oxides of the type ABO3 with A representing alkali, alkaline earth metal or Pb and B representing a refractory or rare earth metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02183Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing tantalum, e.g. Ta2O5
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02194Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing more than one metal element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02323Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02356Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment to change the morphology of the insulating layer, e.g. transformation of an amorphous layer into a crystalline layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31691Inorganic layers composed of oxides or glassy oxides or oxide based glass with perovskite structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02266Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Memories (AREA)
  • Physical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Non-Volatile Memory (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明目的在于降低Sr2 (Ta1-xNbx)O7 (0≤x≤1)的铁电膜的介电常数并且增大矫顽电场。本发明是一种铁电膜的制造方法,具有膜形成工序和加热工序,在膜形成工序中,在处理室的至少目标物周边的内侧表面由与目标物同样的构成材质形成的处理室中,使等离子体中的离子冲击目标物,并使通过该冲击而产生的目标原子沉积在衬底上,从而形成铁电膜;在加热工序中,加热所述铁电膜并进行氧化。

Description

铁电膜、半导体装置、铁电膜的制造方法及其制造装置
技术领域
本发明涉及铁电膜、半导体装置、铁电膜的制造方法及铁电膜的制造装置。
背景技术
作为非易失性的半导体存储器,有利用铁电体的自发极化状态的铁电存储器。这种铁电存储器使施加电场所引起的两个稳定的电极化状态与“0”、“1”对应,从而来进行存储。众所周知,与其他的非易失性存储器相比,该铁电存储器功率消耗小并能够进行高速动作。
铁电存储器有如下那样的:例如在电容器部分具有铁电膜,在例如场效应晶体管(FET)型的铁电存储器中,在硅半导体衬底的沟道形成区域上顺次层叠栅极绝缘膜、下部导电膜、铁电膜、上部导电膜的铁电存储器(MFMIS-FET);以及在硅半导体衬底上顺次层叠栅极绝缘膜、铁电膜、上部导电膜的铁电存储器(MFIS-FET)。
在上述铁电膜的膜材料中,以往一直采用Pb2(Zr1-xTix)(0≤x≤1)(以下称“PZT”)、SrBi2Ta2O9(以下称“SBT”)等的铁电材料,但是近年来,能够将介电常数抑制得比较低且难以老化的、以Sr、Ta、Nb为主成分的Sr2(Ta1-xNbx)O7(0≤x≤1)(以下称“STN”)受到了关注。
但是,作为STN的铁电膜的成膜方法,目前采用溶胶-凝胶法,即:涂覆铁电材料的前驱体溶液,然后进行干燥使有机物蒸发,之后以高温加热、氧化并结晶(例如,日本专利公开公报特开平10-326872号)。由于STN由离子化能量高的Ta、Nb组成,所以在Ta、Nb原子的氧化过程中需要极高的能量。采用上述溶胶-凝胶法是因为前躯体内自始含有氧成分,从而用较少的氧化能量就能完成。
但是,关于采用上述溶胶-凝胶法成膜的STN的铁电膜,在目前已经公布的铁电膜中,以介电常数为40、表示铁电性的矫顽电场为50kV/cm的为最佳,而具有更好特性的铁电膜尚未实现。
铁电存储器是通过在铁电膜上施加、去除电场而引起稳定的极化状态的,为了以更少的功率使铁电膜极化,就需要进一步减小铁电膜的介电常数。另外,为了更稳定地进行铁电存储器的存储等的动作,就需要增大铁电膜的矫顽电场。这样,为了谋求半导体存储器的省电以及动作的稳定,介电常数更低、矫顽电场高的铁电膜的开发就成为了重要的课题。
发明内容
本发明正是鉴于上述问题而完成的,其目的在于提供一种介电常数更低、矫顽电场大的STN的铁电膜,具有该铁电膜的半导体装置,铁电膜的制造方法以及铁电膜的制造装置。
为了达成所述目的,本发明的铁电膜使用以Sr、Ta、Nb为主成分的铁电材料作为膜材料;该铁电膜的介电常数不足40且矫顽电场超过50kV/cm。
根据发明者的验证可知,用与目标物(target)相同的材质形成用于进行溅射处理的处理室的目标物周边的内侧表面;在该处理室内通过溅射处理在衬底的表面形成铁电膜,然后,加热并氧化该铁电膜,从而可以制造介电常数不足40且矫顽电场超过50kV/cm的STN的铁电膜。通过该铁电膜,例如可以制造功率消耗少且动作稳定的铁电存储器。
所述铁电膜也可以具有通过氧基导入了氧成分的膜层。此时,由于在铁电膜的一部分膜层中导入了氧成分,所以铁电膜内的氧成分不会不足,从而铁电膜的氧化可以充分地进行。因此,即使使用STN那样的具有离子化能量高的原子的膜材料作为铁电膜,氧化也能够充分进行,从而可以实现矫顽电场等特性的改善。
所述铁电膜的膜层也可以含有惰性气体成分。另外,该惰性气体成分优选氪(Kr)。
具有本发明的铁电膜的半导体装置使用以Sr、Ta、Nb为主成分的铁电材料作为铁电膜的膜材料;所述铁电膜的介电常数不足40且矫顽电场超过50kV/cm。
所述半导体装置的铁电膜也可以具有通过氧基导入了氧成分的膜层。所述铁电膜的膜层也可以含有惰性气体成分。所述惰性气体成分也可以是氪(Kr)。也可以将金属氧化物用于这些半导体装置的铁电膜的衬底的材料。
另外,所述半导体装置也可以在所述铁电膜的两面具有夹着所述铁电膜的上部导电膜和下部导电膜;并通过所述铁电膜、所述上部导电膜以及所述下部导电膜形成电容器。进一步,所述半导体装置也可以具有栅极与所述电容器相连接的场效应晶体管。
本发明的铁电膜的制造方法具有:膜形成工序,在处理室的至少目标物周边的内侧表面是由与目标物相同的构成材质形成的处理室内,使等离子体中的离子冲击目标物,并使通过该冲击而产生的目标原子沉积在衬底上,从而形成铁电膜;和加热工序,加热所述铁电膜并进行氧化。
根据发明者的验证可知,用与目标物相同的构成材质形成处理室的目标物周边的内侧表面;在该处理室内通过溅射处理进行铁电膜的成膜,然后,加热并氧化该铁电膜,从而可以制造与以往相比介电常数低且矫顽电场大的铁电膜。在基于本发明那样的溅射法的成膜方法中,等离子体中的离子通过并冲击在目标物周边。根据本发明,由于用与目标物同样的材质形成目标物的周边,所以即使离子冲击该目标物的周边,也会与冲击目标物时一样有目标原子飞出。其结果是,在衬底上形成了没有杂质的、高纯度的铁电膜,从而可以推断出形成了介电常数低、矫顽电场高的优质铁电膜。
所述铁电膜的制造方法中的所述膜形成工序也可以具有:在衬底上形成比较薄的下层铁电膜的第一膜形成工序;然后,通过由等离子体产生的氧基将氧成分导入所述下层铁电膜的氧导入工序;以及然后,在所述下层铁电膜上形成比较厚的上层铁电膜的第二膜形成工序。此时,在铁电膜的下层形成导入了氧成分的薄的下层铁电膜。该下层铁电膜起扩散防止层的作用,用于防止上层铁电膜内的氧成分向衬底一侧扩散。因此,由于铁电膜中的氧成分不会向衬底一侧流出,所以可以充分氧化铁电层,从而能够形成矫顽电场高的优质膜。
所述铁电膜的制造方法中的所述加热工序也可以具有:使铁电膜结晶的结晶工序;和在铁电膜上形成上部膜之后,用于恢复所述铁电膜的氧成分含量的氧成分恢复工序。
在所述氧成分恢复工序中,也可以通过由等离子体产生的氧基来氧化铁电膜。此时,由于通过氧基能够以更强的氧化能力氧化铁电膜,所以可以通过比较低温的加热来进行铁电膜的氧成分含量的恢复。
所述铁电膜的制造方法也可以具有下述的工序,即:加热所述铁电膜,使所述铁电膜的温度为居里温度以上,然后当该铁电膜降温并且铁电膜的温度经过居里温度时,给所述铁电膜施加预定方向的电场。这样,在通过居里温度时给铁电膜施加电场,可以使铁电膜内的极化轴为单向。其结果是,可以制造矫顽电场大的优质铁电膜。另外,上述“通过居里温度时”不仅包括在变为居里温度的时刻施加电场的情况,也包括从变为居里温度之前就施加电场的情况。
另外,所述铁电膜的制造方法也可以使用以Sr、Ta、Nb为主成分的铁电材料作为所述铁电膜的膜材料;所述处理室的至少目标物周边的内侧表面是由以Sr、Ta、Nb为主成分的材质形成的。
另外,根据其他观点,在本发明的铁电膜的制造方法中,加热铁电膜,使铁电膜的温度达到居里温度以上,然后,在该铁电膜降温并且铁电膜的温度通过居里温度时,给铁电膜施加预定方向的电场。
根据本发明,通过施加电场可以使铁电膜内的极化轴为单向。其结果是,可以形成矫顽电场更大的优质铁电膜。
本发明的铁电膜的制造装置是,在容纳被处理体的处理室中,使等离子体中的离子冲击目标物,并使通过该冲击而飞出的目标原子沉积在被处理体上,从而在被处理体上形成铁电膜;所述处理室的内侧表面的至少目标物周边部分是由与所述目标物相同的构成材质形成的。
根据本发明,即使在离子飞过并偏离目标物而冲击在目标物的周边部分时,与目标物一样的原子也会从该冲击部分飞出。其结果是,不会有杂质混入到沉积在被处理体上的铁电膜中,从而可以形成高纯度的铁电膜。根据发明者的检验,确认了通过使用该铁电膜的制造装置可以形成介电常数低且矫顽电场高的高质量铁电膜。
在所述铁电膜的制造装置中,也可以在所述目标物的周边部分安装与所述目标物同样的构成材质的保护部件。另外,在所述铁电膜的制造装置中,也可以使用以Sr、Ta、Nb为主成分的铁电材料作为所述铁电膜的膜材料;与所述目标物同样的构成材质是以Sr、Ta、Nb为主成分的材料。
另外,根据其他观点,本发明的铁电膜的制造装置具有:加热单元,用于将铁电膜加热到居里温度以上;和施加电场单元,用于在变为居里温度以上的铁电膜降温,并且铁电膜的温度通过所述居里温度时,给该铁电膜施加预定方向的电场。所述铁电膜的膜材料也可以使用以Sr、Ta、Nb为主成分的铁电材料。
附图说明
图1是用于实施本发明的实施方式的溅射装置的纵截面图;
图2是从侧面观察退火装置时的纵截面图;
图3是从正面观察退火装置时的纵截面图;
图4是形成有栅极绝缘膜和下部导电膜的晶片的纵截面图;
图5是在图4的下部导电膜上形成了铁电膜的晶片的纵截面图;
图6是在图5的铁电膜上形成了上部导电膜的晶片的纵截面图;
图7是表示用图1的溅射装置和图2的退火装置所制造的铁电膜的电滞特性的曲线图;
图8是表示图7的铁电膜的C-E特性的曲线图;
图9是等离子体处理装置的纵截面图;
图10是形成有薄的下层铁电膜的晶片的纵截面图;
图11是在下层铁电膜上通过氧基导入了氧的晶片的纵截面图;
图12是在图11的下层铁电膜上形成了上层铁电膜的晶片的纵截面图;
图13是对具有经过了等离子体处理的下层铁电膜的铁电膜与未经过等离子体处理的铁电膜的电滞特性进行比较的曲线图;
图14是表示图13的铁电膜的C-E特性的曲线图;
图15是具有电场施加单元的退火装置的纵截面图;
图16是表示在晶片上施加了电场的状态的晶片的纵截面图。
具体实施方式
下面,针对本发明的实施方式进行说明。图1示意性地示出了作为铁电膜的制造装置的溅射装置1的纵截面的情况,该铁电膜的制造装置用于实施本发明的铁电膜的制造方法。图2示意性地示出了退火装置2的纵截面的情况。
溅射装置1具有例如上部开口并且为有底圆筒状的处理容器10以及可以封闭处理容器10的上部的盖11。通过盖11封闭处理容器10的上部,从而形成处理室S。在处理容器10的底部设有载物台12,该载物台12用于装载形成铁电膜的被处理体,即衬底,例如半导体晶片(以下称为“晶片”)W。在该载物台12上设有未图示的吸引装置,从而载物台12能够吸附并保持所装载的晶片W。
在与载物台12相对的处理室S的顶面,即盖11的下表面的中央部分设有例如凹部11a,在该凹部11a中埋设电极13。来自设于处理容器10的外部的高频电源14的电压自由施加在电极13上。在电极13的下表面,即与载物台12相对的面上设有目标物15。目标物15的材质由晶片W上所形成的铁电膜的种类来决定,在形成STN(Sr2(Ta1-xNbx)O7(0≤x≤1))的铁电膜的本实施方式中,将以Sr、Ta、Nb为主成分的Sr2.5(Ta0.7Nb0.3)2O7用在目标物15的材质中。
例如,在处理容器10的一端的侧面设有处理气体导入口20,在处理气体导入口20连接着与处理气体供给源21连通的处理气体供给管22。在处理气体供给管22上设有阀23以及质量流量控制器24,从而可以将预定压力的处理气体供给到处理室S内。在本实施方式中,作为处理气体的氧气(O2)和惰性气体氩(Ar)气各自的供给源25、26连接在处理气体供给源21上。当然,也可以用氪(Kr)、氙(Xe)等其他惰性气体代替氩(Ar)气。
在处理容器10的与所述处理气体导入口20相对的另一端的侧面上设有用于排出处理室S内的气体的排气口30。与真空泵等的排气装置31连通的排气管32连接在排气口30上。通过从该排气口30排出气体,例如可以将处理室S内减压到预定的压力。
通过电极13的高频电压,被供给到处理室S内的处理气体等离子体化,从而产生氩离子。通过将电极13的电位维持为负电位,正电荷的氩离子飞向目标物15一侧并产生冲击。通过该冲击,作为目标原子的STN沉积粒子从目标物15飞出。在该氩离子可能冲击的部分,例如在盖11下表面的目标物15的周边部分安装有以与目标物15同样的构成材质形成的保护部件35。即,保护部件35由以Sr、Ta、Nb为主成分的Sr2.5(Ta0.7Nb0.3)2O7的材质形成。由此,即使氩离子穿过并冲击目标物15的周边部分,也不会有STN沉积粒子以外的其他杂质从该冲击部分飞出。
另外,当处理气体被等离子体化时,在处理室S内产生氧基。从目标物15飞出的STN沉积粒子被该氧基氧化,并沉积在晶片W表面。在处理室S内暴露在氧基中的部分,例如在处理室S的内侧表面中比晶片W的高度高的部分,覆盖着石英膜K。通过该石英膜K抑制了氧基的消失,因此能够更可靠地氧化处理室S内的STN沉积粒子。
另一方面,如图2所示,退火装置2例如具有轴为水平方向的大致圆柱状的筐体40。筐体40的轴向的侧面部40a、40b由法兰封闭,从而在筐体40内形成封闭的处理室H。在筐体40内的中央部分设有装载晶片W的载物板41。覆盖筐体40的径向的侧面的圆柱部40c被形成为厚壁,且其中内置有加热器42。如图3所示,围绕着圆柱部40c的整个周边均匀地内置加热器42,从而可以从整个周边方向无偏移地加热载物板41上的晶片W。如图2所示,加热器42连接在设于筐体40外部的电源43上,并通过从该电源43供电而发热。电源43例如由温度控制器44控制,温度控制器44可以通过改变电源43的供电输出来控制加热器42的温度。例如在载物板41上设有作为温度传感器的热电偶T。通过热电偶T测量的温度测量结果可以输出到温度控制器44,温度控制器44可以根据该温度测量结果调节加热器42的温度。
在筐体40一端的侧面部40a上开口出处理气体导入口45,并且与处理气体供给源46连通的处理气体供给管47连接在处理气体导入口45上。在处理气体供给管47上设有阀48、质量流量控制器49,从而可以向处理室H内供给预定压力的处理气体。在本实施方式中,作为处理气体的氧气和氩气各自的供给源50、51连接在处理气体供给源46上。当然,也可以用氮气(N2)代替氩气。
在筐体40的与处理气体导入口45相对的另一端的侧面部40b上设有排气口53,该排气口53与设置在筐体40外部的排气装置52连通,并用于排出处理室H内的气体。
溅射装置1和退火装置2具有如上所述的结构,下面,以制造作为半导体装置的铁电存储器的情况为例来说明与本发明的实施方式相关的铁电膜的制造方法。
本实施方式中的铁电存储器例如是采用了场效应晶体管的半导体存储器,例如,如图4所示,在由硅(Si)构成的晶片W的沟道区域R上形成作为氧化硅(SiO2)的栅极的栅极绝缘膜I。在栅极绝缘膜I上形成金属氧化膜,例如由IrO2膜构成的下部导电膜M1。该下部导电膜M1被形成为后述的铁电膜的衬底膜。另外,该下部导电膜M1也可以通过与后述铁电膜相同的溅射处理来形成。
形成了下部导电膜M1的晶片W被传送到溅射装置1内,并如图1所示被保持在载物台12上。晶片W被保持在载物台12上之后,处理室S内的气体被从排气口30排出,从而处理室S内被减压到例如4Pa左右。从处理气体供给口20供给氩气和氧气,从而使处理室S内充满氩气和氧气。接着,在电极13上施加负电位的高频电压,并通过该高频电压将处理室S内的气体等离子体化,从而氩气变为氩离子。该氩离子被吸引到负电位的电极13一侧,并高速冲击目标物15。氩离子冲击目标物15之后,STN沉积粒子从目标物15飞出。该飞出的STN沉积粒子通过由于氧气变为等离子体所产生的氧基而被氧化,并沉积在晶片W的表面上。这样,对晶片W进行了溅射处理,从而如图5所示,在下部导电膜M1上形成以STN为膜材料的铁电膜F。
该STN沉积粒子的堆积持续预定的时间,从而在下部导电膜M1上形成例如260nm的铁电膜F,然后停止施加高频电压,从而结束溅射装置1中的溅射处理。溅射处理结束之后,如图2所示,晶片W被传送到退火装置2内,并被装载在由加热器42预加热到例如900℃的载物板41上。从处理气体供给口45向处理室H内导入氧气和氩气,同时,从排气口53排出处理室H内的气体。这样,在处理室H内,在形成了轴向流动的气流且处理室H内被不断净化的同时,处理室H内被置换为氧气和氩气的混合气体的氛围。装载在维持900℃的载物板41上的晶片W被加热,从而铁电膜F被氧化并结晶。铁电膜F结晶之后,从退火装置2中取出晶片W,从而退火处理结束。
退火处理结束之后,在铁电膜F上形成如图6所示的上部导电膜M2。该上部导电膜M2的成膜例如可以通过上述那样的溅射处理来进行。上部导电膜M2形成之后,晶片W被再次传送到退火装置2内,并在氧气氛围内被加热。由此,铁电膜F的表面被再次氧化,从而在上部导电膜M2形成时欠缺的铁电膜F表面的氧成分含量可以被恢复、填补。之后进行光刻工序等,从而完成场效应晶体管型的铁电存储器。
接下来,利用图7、图8的曲线来说明通过以上方法制造的铁电存储器的铁电膜F的特性。上述铁电膜F的溅射处理中的处理条件为:
施加电压的频率:13.56MHz;
处理室压力:4Pa(30mTorr);
氧气分压:6%。
在该铁电膜F的衬底,即下部导电膜M1中采用IrO2,并利用在目标物15的周边部分安装有保护部件35的溅射装置1来形成铁电膜F。图7表示铁电膜F的电滞特性,铁电膜F的矫顽电场Ec为52kV/cm。图8表示铁电膜F的C(Capacitance;电容量)-E(Electric field;电场)特性,在铁电膜F的电容器面积S为1.2×10-3cm2、膜厚df为260nm的条件下,铁电膜F的电容量C为1.44×10-4F。将这些数值代入计算介电常数εf的公式1:
εf=(C·df)/(εo·S),(εo:8.854×10-14F/cm)算出铁电膜F的介电常数εf为35。
因此,根据以上记载的铁电膜的制造方法可以形成以往没有的、介电常数在40以下且矫顽电场超过50kV/cm的铁电膜F。发明人认为,通过所述方法实现的介电常数降低以及矫顽电场升高是由于在目标物15的周边部分安装了保护部件35。通过该保护部件35可以防止STN以外的沉积粒子从氩离子的冲击部位飞出并沉积在晶片W上,因此可以防止杂质混入铁电膜F内。其结果是形成了高纯度的膜,从而实现了介电常数和矫顽电场的改善。另外,由于在铁电膜F的衬底中使用金属氧化膜,所以可以防止氧成分从铁电膜F通过衬底流出从而造成铁电膜F的氧成分欠缺。其结果是,铁电膜F内的Ta、Nb原子的氧化得以充分地进行。在应用这样制造的铁电膜F的铁电存储器中,容易向例如由铁电膜F及其两侧的导电膜M1、M2构成的电容器部分施加电场。其结果是,可以通过更小的电压实现铁电膜F的极化状态,从而可以实现功率消耗小的半导体存储器。另外,由于矫顽电场大,所以可以实现极化状态稳定的半导体存储器。
在以上的实施方式中记载的铁电膜的制造方法是通过一次溅射处理来形成铁电膜F的,但是也可以如下形成:首先形成薄的下层铁电膜,再通过氧基将氧导入到该薄的下层铁电膜中,之后形成厚的上层铁电膜。相关的情况作为第二实施方式来进行说明。
这里,对用于通过氧基将氧导入铁电膜的等离子体处理装置进行说明。图9示意性地示出了等离子体处理装置60的纵截面的情况,该等离子体处理装置60例如由铝合金形成。等离子体处理装置60具有在顶部有开口部的、大致圆柱状的处理容器61。该处理容器61接地。在该处理容器61的底部设有例如用于装载晶片W的基座62。在该基座62中,通过从设置在处理容器61外部的交流电源63供电,基座62内的加热器64发热,从而可以将基座62上的晶片W加热到例如400℃左右。
在处理容器61的底部设有排气口71,该排气口71与涡轮分子泵等的排气装置70连通,用于排出处理容器61内的气体。排气口71例如设置在处理容器61的侧面部。在处理容器61的顶部,在与排气口71隔着基座62相对的一侧设有供给口72。与处理气体供给源73连通的供给管74连接在供给口72上。在本实施方式中,氧气和惰性气体氪(Kr)气各自的供给源75、76连接在处理气体供给源73上。从供给口72供给到处理容器61内的气体通过基座62的晶片W的上方,并从排气口71排出。当然,也可以用其他惰性气体代替氪气。
在处理容器61的上部开口部分,经由用于确保气密性的O形环等的密封材料80而设有例如由石英玻璃构成的电介质窗81。通过该电介质窗81封闭处理容器61,并在处理容器61内形成处理空间U。
在电介质窗81的上方设有天线部件82。在天线部件82的上部连接有同轴波导管83。同轴波导管83连接在设置于处理容器61外部的微波供给装置84上。由该微波供给装置84产生的例如2.45GHz的微波通过同轴波导管83传送到所述天线部件82,并经由电介质窗81而放射到处理空间U内。在处理容器61的侧部设有用于搬入搬出晶片W的搬运口90以及开关该搬运口90的闸门91。
下面,针对第二实施方式中的铁电膜的制造方法进行说明。例如形成了下部导电膜M1的晶片W被搬运到溅射装置1中。在该溅射装置1中,通过与所述第一实施方式同样的过程,例如像图10所示那样在下部导电膜M1上形成1nm以上的、例如20nm左右的薄膜层,即下层铁电膜F1。形成下层铁电膜F1之后,晶片W被搬运出溅射装置1并被送入等离子体处理装置60。
在等离子体处理装置60中,晶片W被从搬运口90搬入,并如图9所示被装载在例如维持在400℃的基座62上。接着,从供给口72向处理空间U内供给氧气和氪气的混合气体,从而处理空间U内被置换为混合气体的氛围。处理空间U内的气体从排气口71排出,从而处理空间S2内被减压到预定的压力,例如133Pa左右。进一步,通过微波供给装置84产生微波,并且该微波被传送到天线部件82。然后处理空间U内的混合气体通过微波而被等离子体化,并如图11所示,通过由此在处理空间U内产生的氧基将氧导入到下层铁电膜F1内。另外,此时少量的氪成分也会被导入到下层铁电膜F1内。
在预定时间内通过氧基将氧导入下层铁电膜F1之后,停止从天线部件82放射微波,并将晶片W从等离子体装置60中搬出。被搬出的晶片W被再次搬运至溅射装置1内,并如图12所示,在下层铁电膜F1上形成比240nm厚的上层铁电膜F2。这样,在下层导电膜M1上形成了两层结构的铁电膜F(F1+F2)。然后,晶片W被搬运至退火装置2中,使铁电膜F结晶,然后与上述实施方式一样形成上部导电膜M2,然后在晶片W上实施用于氧恢复的退火处理。
图13对如上述制造方法那样通过等离子体处理将氧导入下层铁电膜F1时(有等离子体处理)与未进行氧导入时(无等离子体处理)的铁电膜F的电滞特性进行了比较。图14示出了有等离子体处理以及无等离子体处理时的C-E特性。另外,在采集该数据的实验中,作为衬底的下部导电膜M1用的是作为非氧化物的铂。如图13所示,进行了等离子体处理的铁电膜F的矫顽电场Ec1为35kV/cm,未进行等离子体处理的铁电膜的矫顽电场Ec2为17kV/cm。另外,如图14所示,在有等离子体处理时,在电容器面积S为1.35×10-3cm2、膜厚为240nm的条件下,电容量C为1.95×10-10F;在无等离子体处理时,在电容器面积S为1.2×10-3cm2、膜厚为240nm的条件下,电容量C为1.95×10-10F。因此,根据上述公式1,有等离子体处理时的铁电膜F的介电常数εf为39,而无等离子体处理时的介电常数εf为44。
从相关结果可知,形成下层铁电膜F1,并通过氧基将氧导入该下层铁电膜F1,从而使整个铁电膜F的介电常数降低而矫顽电场增大。其原因被认为是,通过氧基导入氧,从而下层铁电膜F1成为氧成分的隔离壁,由此能够抑制上层铁电膜F2内的氧成分流出到下部导电膜M1中从而整个铁电膜F的氧成分欠缺。
根据上述第二实施方式的铁电膜的制造方法,由于形成了下层铁电膜F1,所以即使在使用容易吸收氧成分的非氧化物作为铁电膜F的衬底的材料时,也能够防止氧成分的流出,从而能够形成低介电常数、高矫顽电场的铁电膜。此外,通过在铁电膜F的下层形成薄膜,可以在上层部分形成具有与下层的面取向对应的所期望的面取向的铁电膜。因此,即使假设衬底是非晶体,也能够形成矫顽电场大的优质的铁电膜。
在向以上的实施方式中记载的铁电膜F补充氧成分的退火处理中,将晶片W加热到铁电膜F的居里温度,之后在铁电膜F的温度降低并通过居里温度时,在铁电膜F上施加电场也可以。相关情况的铁电膜的制造方法作为第三实施方式进行说明。
如图15所示,在作为第三实施方式中所使用的制造装置的退火装置100中,除了上述退火装置2的结构之外,还设有例如直流电源101、可以一端与直流电源101的阳极端子相连而另一端与晶片W相连的阳极导线102、以及可以一端与直流电源101的阴极端子相连而另一端与晶片W相连的阴极导线103。并且,本实施方式中的电场施加装置由直流电源101、阳极导线102以及阴极导线103构成,加热装置由加热器42、交流电源43以及温度控制器44构成。另外,退火装置100的其他部件与退火装置2相同,所以省略其说明。
然后,在第三实施方式中的铁电膜的制造过程中,形成了上部导电膜M2的晶片W被搬运至退火装置100内,并如图15所示被装载在载物板41上,然后如图16所示,阳极导线102连接在上部导电膜M2上,阴极导线103连接在下部导电膜M1上。此时,直流电源101为关闭状态,从而在铁电膜F上没有施加电场。接着,晶片W通过加热器42而被加热到铁电膜F的居里温度以上的温度,例如900℃左右,此时铁电膜F的氧成分含量得以恢复。氧成分含量恢复后,例如加热器42的电源被切断,晶片W慢慢冷却。在该冷却期间,例如通过热电偶T持续测定晶片W的温度。然后,在晶片W的温度经过铁电膜F的居里温度,例如600℃时,接通直流电源101,从而在上部导电膜M2和下部导电膜M1之间施加电压。由此,电场被施加于铁电膜F,从而可以谋求铁电膜F的极化轴的单向化。其结果是,铁电膜F的剩余极化强度增大,矫顽电场也扩大。
在以上的第三实施方式中,向铁电膜F施加电场的工序在用于氧恢复的加热处理时进行,但是也可以在例如使铁电膜F结晶的结晶化加热处理时或使铁电膜F成膜的溅射处理时进行。
另外,第三实施方式中所记载的那样的给铁电膜施加电场的处理也可以应用于铁电膜F的成膜方法不是如上所述的溅射方法,而是例如采用了溶胶-凝胶法、CVD法等的时候,无论采用哪一种方法都可以实现铁电膜特性的改善。
另外,在以上的实施方式中所记载的恢复铁电膜F的氧的退火处理也可以通过氧基使之氧化来进行。在该情况下,例如也可以用上述的等离子体处理装置60来进行氧恢复的退火处理。例如,形成了上部导电膜M2的晶片W被搬运到等离子体处理装置60内,并且晶片W被装载在基座62上,该基座62被维持在较低温的400℃左右。然后,在晶片W被加热到400℃的同时,处理空间U内的处理气体通过天线部件82而被等离子体化,从而产生氧基。铁电膜F通过产生的该氧基而被氧化,从而氧恢复得以完成。此时,由于是利用氧化能力高的氧基来进行氧化,所以铁电膜F的氧成分的恢复可以在低温下进行。
在以上的实施方式中所记载的铁电膜的制造方法并不限于制造铁电存储器的情况,也可以应用于制造采用铁电膜的其他的半导体装置。另外,作为铁电膜的膜材料,虽然只用了STN,但是本发明也可应用于STN与PZT或SBT等的混合材料的情况。
根据本发明,由于铁电膜的介电常数降低,而矫顽电场提高,所以可以利用例如铁电膜来制造省电且极化状态稳定的存储器。
工业实用性
本发明对于构成存储器等半导体装置的Sr2(Ta1-xNbx)O7(0≤x≤1)的铁电膜,在降低介电常数并增大矫顽电场时有用。

Claims (23)

1.一种铁电膜,其中,
使用以Sr、Ta、Nb为主成分的铁电材料作为膜材料;
所述铁电膜的介电常数不足40且矫顽电场超过50kV/cm。
2.如权利要求1所述的铁电膜,其中,
具有通过氧基导入了氧成分的膜层。
3.如权利要求2所述的铁电膜,其中,
所述膜层含有惰性气体成分。
4.如权利要求3所述的铁电膜,其中,
所述惰性气体成分为Kr。
5.一种具有铁电膜的半导体装置,其中,
使用以Sr、Ta、Nb为主成分的铁电材料作为铁电膜的膜材料;
所述铁电膜的介电常数不足40且矫顽电场超过50kV/cm。
6.如权利要求5所述的半导体装置,其中,
所述铁电膜具有通过氧基导入了氧成分的膜层。
7.如权利要求6所述的半导体装置,其中,
所述膜层含有惰性气体成分。
8.如权利要求7所述的半导体装置,其中,
所述惰性气体成分为Kr。
9.如权利要求5所述的半导体装置,其中,
将金属氧化物用于所述铁电膜的衬底的材料。
10.如权利要求5所述的半导体装置,其中,
在所述铁电膜的两面具有夹着所述铁电膜的上部导电膜和下部导电膜;
通过所述铁电膜、所述上部导电膜和下部导电膜形成电容器。
11.如权利要求10所述的半导体装置,其中,
具有栅极与所述电容器相连接的场效应晶体管。
12.一种铁电膜的制造方法,具有:
膜形成工序,在处理室的至少目标物周边的内侧表面是由与目标物相同的构成材质形成的处理室内,使等离子体中的离子冲击目标物,并使通过该冲击而产生的目标原子沉积在衬底上,从而形成铁电膜;和
加热工序,加热所述铁电膜并进行氧化。
13.如权利要求12所述的铁电膜的制造方法,其中
所述膜形成工序具有:
在衬底上形成比较薄的下层铁电膜的第一膜形成工序;
然后,通过由等离子体产生的氧基将氧成分导入所述下层铁电膜的氧导入工序;以及
然后,在所述下层铁电膜上形成比较厚的上层铁电膜的第二膜形成工序。
14.如权利要求12所述的铁电膜的制造方法,其中
所述加热工序具有:
使铁电膜结晶的结晶工序;和
在铁电膜上形成上部膜之后,恢复所述铁电膜的氧成分含量的氧成分恢复工序。
15.如权利要求14所述的铁电膜的制造方法,其中,
在所述氧成分恢复工序中,通过由等离子体产生的氧基来氧化铁电膜。
16.如权利要求12所述的铁电膜的制造方法,其中,
具有下述的工序,即:加热所述铁电膜,使所述铁电膜的温度为居里温度以上,然后当该铁电膜降温并且铁电膜的温度经过居里温度时,给所述铁电膜施加预定方向的电场。
17.如权利要求12所述的铁电膜的制造方法,其中,
使用以Sr、Ta、Nb为主成分的铁电材料作为所述铁电膜的膜材料;
所述处理室的至少目标物周边的内侧表面是由以Sr、Ta、Nb为主成分的材质形成的。
18.一种铁电膜的制造方法,其中,
加热铁电膜,使铁电膜的温度为居里温度以上,
然后,在该铁电膜降温并且铁电膜的温度经过居里温度时,给铁电膜施加预定方向的电场。
19.一种铁电膜的制造装置,其中,
在容纳被处理体的处理室中,使等离子体中的离子冲击目标物,并使通过该冲击而飞出的目标原子沉积在被处理体上,从而在被处理体上形成铁电膜;
所述处理室的内侧表面的至少目标物周边部分是由与所述目标物相同的构成材质形成的。
20.如权利要求19所述的铁电膜的制造装置,其中,
在所述目标物的周边部分安装有与所述目标物同样的构成材质的保护部件。
21.如权利要求19的铁电膜的制造装置,其中,
使用以Sr、Ta、Nb为主成分的铁电材料作为所述铁电膜的膜材料;
与所述目标物同样的构成材质是以Sr、Ta、Nb为主成分的材料。
22.一种铁电膜的制造装置,具有:
加热单元,用于将铁电膜加热到居里温度以上;和
施加电场单元,用于在变为居里温度以上的铁电膜降温,并且铁电膜的温度通过所述居里温度时,给该铁电膜施加预定方向的电场。
23.如权利要求22所述的铁电膜的制造装置,其中,
使用以Sr、Ta、Nb为主成分的铁电材料作为所述铁电膜的膜材料。
CNB2004800036506A 2003-02-05 2004-02-03 铁电膜、半导体装置、铁电膜的制造方法及其制造装置 Expired - Fee Related CN100483566C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003028256A JP4346919B2 (ja) 2003-02-05 2003-02-05 強誘電体膜,半導体装置及び強誘電体膜の製造装置
JP0282562003 2003-02-05
JP028256/2003 2003-02-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN2007101986361A Division CN101215684B (zh) 2003-02-05 2004-02-03 铁电膜、半导体装置、铁电膜的制造方法及其制造装置

Publications (2)

Publication Number Publication Date
CN1748264A true CN1748264A (zh) 2006-03-15
CN100483566C CN100483566C (zh) 2009-04-29

Family

ID=32844199

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2007101986361A Expired - Fee Related CN101215684B (zh) 2003-02-05 2004-02-03 铁电膜、半导体装置、铁电膜的制造方法及其制造装置
CNB2004800036506A Expired - Fee Related CN100483566C (zh) 2003-02-05 2004-02-03 铁电膜、半导体装置、铁电膜的制造方法及其制造装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2007101986361A Expired - Fee Related CN101215684B (zh) 2003-02-05 2004-02-03 铁电膜、半导体装置、铁电膜的制造方法及其制造装置

Country Status (6)

Country Link
US (1) US20070034918A1 (zh)
EP (1) EP1594142A4 (zh)
JP (1) JP4346919B2 (zh)
KR (2) KR100811040B1 (zh)
CN (2) CN101215684B (zh)
WO (1) WO2004070736A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101162688B (zh) * 2006-10-13 2010-09-22 东京毅力科创株式会社 等离子体处理装置及其运转处理方法和电子装置制造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7220600B2 (en) * 2004-12-17 2007-05-22 Texas Instruments Incorporated Ferroelectric capacitor stack etch cleaning methods
JP2006261159A (ja) * 2005-03-15 2006-09-28 Tohoku Univ 強誘電体膜、金属酸化物、半導体装置、及びそれらの製造方法
JP4591705B2 (ja) * 2006-01-20 2010-12-01 セイコーエプソン株式会社 ターゲット材料
KR100809367B1 (ko) 2007-02-14 2008-03-05 한국과학기술연구원 강유전 박막의 강유전성 향상을 위한 전계 인가 열처리용튜브-로 및 이를 이용하여 강유전 박막의 강유전성을향상시키는 방법
JP2009266967A (ja) * 2008-04-23 2009-11-12 Tohoku Univ 強誘電体膜、強誘電体膜を有する半導体装置、及びそれらの製造方法
CN102803357B (zh) 2009-06-15 2014-07-09 株式会社村田制作所 压电体片以及压电体片的制造方法及制造装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3261179B2 (ja) * 1992-11-19 2002-02-25 株式会社トキメック 薄膜製造装置
JP3480624B2 (ja) * 1995-06-09 2003-12-22 シャープ株式会社 強誘電体薄膜被覆基板、その製造方法、及びキャパシタ構造素子
JP3190011B2 (ja) * 1997-05-23 2001-07-16 ローム株式会社 強誘電体記憶素子およびその製造方法
US6410343B1 (en) * 1999-04-28 2002-06-25 Sharp Laboratories Of America, Inc. C-axis oriented lead germanate film and deposition method
JP2001354497A (ja) * 2000-06-07 2001-12-25 Matsushita Electric Ind Co Ltd 強誘電体膜の製造方法
JP2002057155A (ja) * 2000-08-08 2002-02-22 Fujitsu Ltd 5酸化タンタル膜の製造方法
US6717195B2 (en) * 2001-06-29 2004-04-06 Rohm Co., Ltd. Ferroelectric memory
TWI233506B (en) * 2004-05-20 2005-06-01 Univ Nat Sun Yat Sen Method and apparatus for fabricating a crystal fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101162688B (zh) * 2006-10-13 2010-09-22 东京毅力科创株式会社 等离子体处理装置及其运转处理方法和电子装置制造方法

Also Published As

Publication number Publication date
KR100811040B1 (ko) 2008-03-07
EP1594142A4 (en) 2009-08-05
WO2004070736A1 (ja) 2004-08-19
CN100483566C (zh) 2009-04-29
KR20070049686A (ko) 2007-05-11
KR100732930B1 (ko) 2007-06-29
JP2004265915A (ja) 2004-09-24
CN101215684A (zh) 2008-07-09
JP4346919B2 (ja) 2009-10-21
KR20050100657A (ko) 2005-10-19
EP1594142A1 (en) 2005-11-09
CN101215684B (zh) 2010-09-01
US20070034918A1 (en) 2007-02-15

Similar Documents

Publication Publication Date Title
TWI500084B (zh) Manufacturing method of semiconductor device
CN1319116C (zh) 膜形成装置、膜形成方法以及形成el器件的方法
US7977255B1 (en) Method and system for depositing a thin-film transistor
EP1547448B1 (en) Fabricating method of organic compound-containing layer
TW515027B (en) Apparatus for forming thin films and methods for forming capacitors on semiconductor substrates using same
KR101870491B1 (ko) 플라즈마 처리 장치, 기판 처리 시스템, 박막 트랜지스터의 제조 방법 및 기억 매체
JP2004146369A (ja) 製造装置および発光装置の作製方法
JP6760439B2 (ja) 薄膜トランジスターの製造方法及び記憶媒体
CN1420548A (zh) 半导体集成电路器件的制造方法
TW200301939A (en) Method of treating substrate and method of manufacturing semiconductor device
CN107818905A (zh) 半导体器件的制造方法、衬底处理装置及记录介质
CN103403847A (zh) 氮化硅膜的成膜方法、有机电子器件的制造方法和氮化硅膜的成膜装置
CN1748264A (zh) 铁电膜、半导体装置、铁电膜的制造方法及其制造装置
JP4515060B2 (ja) 製造装置および有機化合物を含む層の作製方法
JP2009246211A (ja) Mos型半導体メモリ装置の製造方法、コンピュータ読み取り可能な記憶媒体およびプラズマcvd装置
CN1311896A (zh) 制造叠层超晶格材料和制造包括该材料的电子器件的低温处理方法
US20060073660A1 (en) Method of manufacturing flash memory device
JP2015015272A (ja) 半導体装置の製造方法及び基板処理装置
CN1326425A (zh) 无机化合物固体的形成方法及使用了此方法的半导体装置的制造方法
TW200901814A (en) Electronic device, its manufacturing method, structural body of sealing film, manufacturing device for manufacturing electronic device, and plasma processing device
JP2009266967A5 (zh)
CN104051673B (zh) 有机器件的制造方法、有机器件的制造装置以及有机器件
JP2010016127A (ja) 強誘電体膜、強誘電体膜を有する半導体装置、及びそれらの製造方法
CN107293477A (zh) 半导体器件的制造方法、衬底处理装置
KR20110072106A (ko) 플라즈마 디스플레이 패널의 제조 장치 및 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090429

Termination date: 20140203