CN102803357B - 压电体片以及压电体片的制造方法及制造装置 - Google Patents

压电体片以及压电体片的制造方法及制造装置 Download PDF

Info

Publication number
CN102803357B
CN102803357B CN201080026433.4A CN201080026433A CN102803357B CN 102803357 B CN102803357 B CN 102803357B CN 201080026433 A CN201080026433 A CN 201080026433A CN 102803357 B CN102803357 B CN 102803357B
Authority
CN
China
Prior art keywords
sheet
conductor
plla
piezoelectrics
high voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201080026433.4A
Other languages
English (en)
Other versions
CN102803357A (zh
Inventor
安藤正道
田实佳郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Kansai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd, Kansai University filed Critical Murata Manufacturing Co Ltd
Publication of CN102803357A publication Critical patent/CN102803357A/zh
Application granted granted Critical
Publication of CN102803357B publication Critical patent/CN102803357B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/04Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
    • H10N30/045Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning by polarising
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/098Forming organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0855Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using microwave
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/04Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making

Abstract

本发明提供一种由聚乳酸片构成,在厚度方向能够显现高压电性的压电体片。使用微波加热聚乳酸片(1)的特定的区域(2)。为了使聚乳酸片(1)的厚度方向显现压电性,向被加热的聚乳酸片(1)的厚度方向施加高电压,使至少一部分的聚乳酸分子的螺旋轴(3)相对地朝向厚度方向,接着,快速冷却聚乳酸片(1),固定聚乳酸分子。在聚乳酸片(1)的其它的区域(4)也实施相同的工序,从而在聚乳酸片(1)的较宽的范围内,向厚度方向赋予压电性。

Description

压电体片以及压电体片的制造方法及制造装置
技术领域
该发明涉及压电体片、压电体片的制造方法及制造装置,特别是,涉及由聚乳酸形成的压电体片及其制造方法以及制造装置。
背景技术
聚乳酸(PLA)具有如图14所示的分子结构。PLA是脱水缩聚物,通过对作为乳酸的环状二聚体的丙交酯进行开环聚合而得到。乳酸包含不对称碳原子,所以具有手性。因此,PLA中存在左旋体(L体)和右旋体(D体),其聚合物分别称为L型聚乳酸(PLLA)、D型聚乳酸(PDLA)。PLLA的主链具有左旋结构,PDLA的主链具有右旋结构。由通过微生物的力量合成的乳酸形成的聚乳酸绝大多数是L体,现在大批量生产利用的PLA是PLLA。
例如在专利文献1以及非专利文献1记载的那样,进行延伸的PLA膜显现压电性。根据非专利文献1所述,PLLA结晶的点群是D2,作为压电张量,具有如图15(a)所示的组成。
PLLA是螺旋高分子,在螺旋轴方向(C轴方向)具有较大值的偶极子。在PLLA的结晶结构中,C轴方向的偶极子以交替地朝向相反的方向的方式被填充,所以宏观地看,C轴方向的偶极子相互抵消为0。因此,如图15(b)所示,在PLLA片中,若向“3”轴方向施以延伸,则该延伸出的一轴取向PLLA片的压电张量最终成为如图15(c)所示的组成。
现有的压电性PLLA的压电现象是,例如专利文献1以及2记载的那样,如图15(c)所示的d14所致的现象为主体,其值是10~20pC/N左右。该PLLA的压电常数在高分子中明显是很大的值。
另一方面,作为现在市售的陶瓷压电体的代表的PZT具有d33=300~700pC/N的值,并被应用于各种致动器、压电蜂鸣器、压电扬声器等。然而,PZT是含有铅的材料,从保护环境的观点考虑,无铅的压电材料是市场所期望的。并且,作为无机类压电材料,陶瓷是主流,但是制造成本高,废弃时不得不依赖于填埋等处理。于是,人们期待一种制造成本低,废弃物处理容易的高分子类压电材料,然而,具有能够匹敌PZT的压电常数的材料还不存在。
PVDF(聚偏氟乙烯)、PLLA被视为有希望成为具有非常大的压电常数的高分子材料。特别是PLLA,如图14所示,作为构成元素只包含C、O以及H,所以即使焚烧也不会产生有害物质。另外,PLLA是经过水解-微生物分解这两个阶段的分解过程,能够完全分解为水和CO2的生物可分解塑料。现在,原料是来自于玉米的淀粉,在原料本身完全不使用石油。除了制造过程中所使用的能量所产生的CO2,PLLA本身还将空气中的CO2作为原材料,所以分解后不会增加空气中的CO2。这就是被称为碳中和的理由,从而作为对环境有益的材料而非常受关注。
可是,如上所述,PLLA的压电常数是d14,最高是20pC/N左右,与PZT的压电常数比较,非常之小。因此,作为PZT的代替材料而使用PLLA时,需要将动作时的施加电压设定得非常高,不得不说对现有技术而言替换成PLLA是非常困难的。
专利文献1:日本特开平5-152638号公报
专利文献2:日本特开2005-213376号公报
非专利文献1:田實佳郎,「ポリ乳酸膜の光·電気機能」,未来材料,2003年7月号,第3巻,第7号,P.16-25。
发明内容
于是,本发明的目的在于提供一种使用聚乳酸,且特别是在厚度方向上具有高压电常数的压电体片。
本发明的另一目的是提供一种如上所述的压电体片的制造方法以及制造装置。
本发明的特征在于,首先是针对由聚乳酸构成的压电体片,为解决上述的技术的课题,其至少一部分的聚乳酸分子的螺旋轴相对地朝向厚度方向,从而在厚度方向上显现压电性。
这里需要说明的是,虽然有时会根据厚度而区分“片”这个词和“膜”这个词。但是,在本说明书中,无关厚度,皆使用“片”这个词。
另外,如背景技术中说明的那样,聚乳酸通常作为L型聚乳酸而进行流通,然而作为用于解决课题的手段的聚乳酸的概念包含L型聚乳酸、D型聚乳酸或其混合物。
本发明还涉及用于制造上述的压电体片的方法。本发明的压电体片的制造方法的特征在于,具备:准备聚乳酸片的工序;使用微波加热聚乳酸片的加热工序;为了使聚乳酸片在厚度方向上显现压电性,向被加热的聚乳酸片的厚度方向施加高电压,使至少一部分的聚乳酸分子的螺旋轴相对地朝向厚度方向的高电压施加工序。
优选,本发明的压电体片的制造方法还具备:在上述高电压施加工序之后,快速冷却聚乳酸片的工序。
另外,优选,本发明的压电体片的制造方法中,高电压施加工序和加热工序的至少一部分同时实施。
本发明还涉及用于制造上述的压电体片的装置。本发明的压电体片的制造装置的特征在于,具备:高电压电源;为了向应处理的聚乳酸片的厚度方向施加从高电压电源供给的高电压,以在厚度方向夹住聚乳酸片的方式配置的成对的高电压施加用导体;产生微波的微波发生器;以及从微波发生器传送微波的同轴线路,其中,高电压施加用导体与同轴线路的内导体连接,并且微波通过由聚乳酸片和夹着该聚乳酸片的高电压施加用导体构成的电容器时,因介电损耗而产热。
本发明的压电体片的制造装置在另一实施方式中的特征在于,具备高电压电源;为了向应处理的聚乳酸的厚度方向施加从高电压电源供给的高电压,以在厚度方向夹住聚乳酸片的方式配置的成对的高电压施加用导体;产生微波的微波发生器;以及从微波发生器传送微波的同轴线路;与同轴线路连接的至少1级的半同轴空腔滤波器,其中,高电压施加用导体中的一个与半同轴空腔滤波器的中心导体连接,高电压施加用导体中的另一个与半同轴空腔滤波器的外导体连接,且微波通过由聚乳酸片和高电压施加用导体构成的电容器时,因介电损耗而产热。
在本发明的压电体片的制造装置中,高电压施加用导体中的一个由多个销状的导体构成,高电压施加用导体中的另一个由平面状的导体构成也可以;或者,高电压施加用导体中的一个以及另一个由多个销状的导体构成,这些多个销状的导体恰好相互成对也可以。
优选,在本发明的压电体片的制造装置中,通过微波发生器,产生具有相互不同频率的多种微波。优选,上述多种微波至少包括具有如下频率的微波,即主要对加热有效的频率、主要适于动摇聚乳酸的主链的频率、以及主要适于破坏聚乳酸的分子彼此的结合部分的频率。
优选,在本发明的压电体片的制造装置中,在高电压施加用导体由多个销状的导体构成的情况下,多个销状的导体配置成多列,各列的各个导体的位置与形成于相邻的列的各个导体之间的间隔部分对应。进一步优选,导体剖面是正方形,相邻的导体之间的间隔与规定各导体的剖面的正方形的一边的长度相等。
优选,在本发明的压电体片的制造装置中,用于快速冷却聚乳酸片的冷却用流体的排出口设置在高电压施加用导体的附近。
块状态(成形后,未处理状态)的聚乳酸片具有长螺旋分子相互缠绕的结构,因此例如,即使向厚度方向施加非常大的电场,在厚度方向上也不会产生压电性。根据本发明,在由聚乳酸构成的压电体片中,解开上述螺旋分子的缠绕,而对于至少一部的螺旋分子来说,螺旋轴相对地朝向厚度方向,所以能够得到在厚度方向上显现压电性的压电体片。例如,只要能够使螺旋分子的10%具有压电体片的厚度方向的取向,那么就能够得到匹敌PZT的压电体。如果使取向超过这个比例,就能够得到超过PZT的压电体。另外,即使是5%的取向度,也能够得到具有惊人的大压电常数的高分子压电体。
常用于压电致动器等中的PZT是陶瓷,然而因为含有铅,作为废弃物的处理很困难。如果通过PLLA就能够得到匹敌PZT的压电常数,则就可以将PZT替换成PLLA。PLLA是不含有重金属的具有单纯的组成的生物高分子,具有生物可分解性,且以淀粉作为原料,所以除了制造时产生的CO2,不会使空气中的CO2增加。并且,制造时的CO2与制造其它有机高分子时相比非常之少。因此,如果能够将PZT替换成PLLA,对减少环境负荷有极大的效果。
另外,聚乳酸是高分子,具有比PZT更高的可挠性,所以应用于致动器时的位移量变得比PZT时大。
附图说明
图1是用图说明通过实施本发明的制造方法,使PLLA分子的螺旋轴3的至少一部分相对地具有在厚度方向上的取向的状态的、PLLA片1的剖视图。
图2是表示本发明的一实施方式的制造装置10的框图。
图3是将图2所示的框图上的PLLA加热部17作为传送线路型来构成的情况下的更详细的图,表示包括PLLA加热部17的PLLA处理部30,(a)是PLLA处理部30的俯视图,(b)是PLLA处理部30的主视图。
图4(a)是沿图3(b)的线A-A的剖视图,(b)是沿图3(a)的线B-B的剖视图。
图5是利用剖视图表示图4所示的一个内导体35a,并且,对在图4中省略了图示的、由框体31、内导体35a以及35b构成的传送线路部的一个端部进行图示的图,且与图4(a)以及(b)对应。
图6是将图2所示的框图上的PLLA加热部17作为谐振器型来构成的情况下的更详细的图,表示包括PLLA加热部17的处理部50,(a)是PLLA处理部50的主视图,(b)是PLLA处理部50的侧面图。
图7(a)是沿图6(b)的线B-B的剖视图,(b)是沿图6(a)的线A-A的剖视图。
图8是表示通过使用图6以及图7所示的PLLA处理部50的简化模型进行有限元法模拟而求出的电场的状态的图。
图9是表示作为4级的通频带的情况下的PLLA处理部50a的、与图7(b)对应的图。
图10是表示与图4所示的销导体36a的配置有关的第1实施方式的图,是从PLLA片1一侧观察内导体35a的前端部38a的端面,来表示了销导体36a的图。
图11是表示与图4所示的销导体36a的配置有关的第2实施方式的图,是从PLLA片1一侧观察内导体35a的前端部38a的端面,来表示销导体36a的图。
图12是表示与图4所示的销导体36a的配置有关的第3实施方式的图,是从PLLA片1一侧观察内导体35a的前端部38a的端面,来表示销导体36a的图。
图13是表示与图4所示的销导体36a的配置有关的第4实施方式的图,是从PLLA片1一侧观察内导体35a的前端部38a的端面,来表示销导体36a的图。
图14是聚乳酸的分子结构图。
图15(a)是表示PLLA结晶的压电张量的图,(b)是用于说明PLLA片的延伸方向的图,(c)是表示一轴取向PLLA片的压电张量的图。
图16是用图说明结合的2个乳酸分子的图。
图17是用图说明乳酸分子脱水聚合成为螺旋分子的图。
图18是用于说明图17所示的乳酸分子的螺旋轴的作用的图。
附图标记说明
1:PLLA片,         2:PLLA分子的螺旋轴,
10:制造装置,      11、12:信号发生器,
13:混频器,        14:放大器,
16、18:偏置器,    17:PLLA加热部,
20:高压直流电源,            30、50、50a:PLLA处理部,
31、51:框体,                35a、35b:内导体,
36a、36b、58a、58b:销导体,  41:排出口,
57a、57b、57c、57d:中心导体,60a、60b:基极。
具体实施方式
PLLA具有如前述的图14所示的分子结构,在主链存在以C=O为代表的产生永久偶极子的分子群。如果观察2个乳酸分子结合的分子,则出现如图16所示的电偶极子。
此外,如上所述,聚乳酸有作为L体的PLLA和作为D体的PDLA,也可以想到它们的有积极意义的混合物,在本项中为了简化说明,以PLLA为例进行说明。
若乳酸分子脱水聚合,则如上所述地成为螺旋分子。图17表示该分子模型。在PLLA的螺旋结构的分子内,形成有在各分子上产生的偶极子的矢量和,在螺旋轴的方向剩下很大的偶极子。图18表示该概念图。
如图18所示,PLLA分子具有10/3螺旋线结构,即分子以10单体缠绕3次螺旋。若PLLA分子中的偶极子为基础,分子链具有10/3螺旋线结构,则该螺旋轴方向的偶极子的大小成为每1周期3.5~3.7debye。
通常,PLLA分子的分子量是数十万左右,大约由1000~3000周期构成。以下,为了简化说明,假设为2000周期。如果它成为伸展链而可进行取向,则该长度约为100nm左右(通常的片厚)。
此时的该分子的偶极子合计为(3.5~3.7)×2000,即,成为7000~7400debye。以下,为了简化说明,将此假设为7200debye。
此处,1debye=3.33564×10-30C·m,所以7200debye=2.4×10-26C·m。
如果两根分子链进行取向而平行地排列,则这些分子中的邻近分子彼此接近至PLLA的螺旋半径左右,根据PLLA的非晶、结晶结构的高次结构的相关距离,估计螺旋轴间距离为0.4~0.8nm。以下,为了简化说明,假定该值为0.4nm。
此时的极化率Ps是,
Ps=2.4×10-26×2/(0.4×10-9×0.4×10-9×100×1
0-9)=3.0C/m2
此处,宏观上的聚合物的压电应力常数e,利用上述极化率Ps,由以下的式(1)来表示。在式(1)中,v为泊松比,e′为微观上的压电应力常数。
e31=e31′-v 21e32′-v31e33′+(1-v21)Ps   …(1)
此处,3轴作为C轴方向。
式(1)的第1项~第3项为来自分子结构本身的压电应力常数,非常小。另外,第4项取决于极化率Ps,在此处所述的PLLA的Ps非常大。因此,式(1)能够近似于以下的式(2)。
Figure BDA0000119928240000081
在聚合物的情况下,通常v21为0.2~0.5左右。在PLLA的情况下,
Figure BDA0000119928240000082
Figure BDA0000119928240000083
所以
e31=0.7Ps    …(3)。
如上所述,Ps=3.0C/m2,所以,
e31=0.7×3.0=2.1C/m2
此处,压电应变常数(d常数),将弹性柔量设为SE,表示为
d31=e31·SE  …(4)。
在PLLA的情况下,未延伸膜的弹性常数大约为3.7G Pa,4倍延伸膜的弹性常数大约为1.8G Pa。其中,对延伸膜而言,C轴向延伸方向进行取向。
本发明的PLLA的情况下,假设为取向非常强,从而能够认为这样的聚合物的弹性常数大约为1G Pa,所以能够估计,
d31=2.1/1×109=2100pC/N。
压电常数d33和d31的关系是,在泊松比为0.3时,大致可以认为d33=2d31。因此,成为
d33=2100×2=4200pC/N。
如上所述,如果能够将沿PLLA的螺旋分子的C轴(螺旋轴)的偶极子完全向厚度方向进行取向,则PLLA的压电常数以数值范围来讲,有可能成为1000~5000pC/N的值,至今还没有实现这个范围的例子存在。
例如,如果螺旋轴以垂直于膜的厚度方向的方式进行取向,瓦解本来的PLLA具有的电势的10%左右,换句话说,瓦解沿C轴的偶极子交替地被填充的状态的10%左右,则可认为会产生100~500pC/N的d33(此时,将膜的厚度方向作为3轴。)值,能够得到几乎匹敌PZT具有的压电常数的值。
上述的PLLA片,能够通过如下所述的方式制造。
参照图1进行说明,向未处理状态的PLLA片1的、例如0.01~1mm2左右的非常狭窄的区域2施加微波。由此,电场的交变作用于偶极子,强制地使PLLA分子振动。在图1中,PLLA分子的螺旋轴3由箭头表示,其箭头的方向表示取向的方向。上述的振动的结果,被加热,从而PLLA分子成为易动的状态,并且,得到通过微波振动来实现分子链之间的缠绕被解开的状态。
在上述的状态中,若在上述规定的区域2,向PLLA片1的厚度方向施加强电场,则至少一部分的PLLA分子的螺旋轴3相对地向厚度方向进行取向,从而在厚度方向上显现压电性。在该区域2中的取向状态如图1所示。
从图1可知,在区域2中为了PLLA片1在厚度方向上显现压电性,无需在偶极子取向相互不会抵消的方向,全部的PLLA分子的螺旋轴3向厚度方向进行取向。只要有一部分的PLLA分子的螺旋轴3取向于厚度方向既可。另外,取向于厚度方向的螺旋轴3不用必须朝向对于PLLA片1的主面方向垂直的方向(90度)。对于主面方向呈例如5~10度这样的角度也可以,只要相对地朝向厚度方向即可。
接下来,如上所述,施加强电场后,PLLA片1的区域2被快速冷却,PLLA分子被固定。
一边挪动PLLA片1的位置,一边重复上述的处理,从而也在上述区域2的邻近的区域4中实施上述处理。通过这样做,在PLLA片1的较宽的面积中,形成螺旋轴3相对地取向于厚度方向的状态,由此,能够得到由PLLA片1构成的具有高压电常数的压电体片。
作为前述那样施加的微波,优选,不光使用单一的频率的微波,还至少使用将具有如下所述的分别具有不同频率的多种微波进行双工或混频(调制)的微波,即主要对加热有效的频率的微波、具有主要适于动摇主链的频率的微波,具有主要适于破坏分子之间的结合部分的频率的微波。微波的各频率以及强度通过实验适当地进行确定即可。
在此处需要注意的是,特别优选区域2为微小区域。增大区域2的面积只能使加热区域变宽。若将加热区域变宽,则该区域所包含的高分子相互作用,容易生长称之为球晶的结晶。所谓球晶是放射对称地球状生长的结晶。球晶本身无极性,所以不能实现上述那样的取向。因此,需要进行不会促进球晶生成的微小区域的取向操作。一般认为区域越小越好,但是,在此从实用化的观点来看,如果将区域设为圆,则其面积大约为0.01~1mm2的范围。该大小随PLLA片1的厚度、分子量、在PLLA片1分散有添加物的情况下,随其种类,其大小而改变。
作为加热上述的微小区域的方法可以考虑基于激光点的加热等。然而,存在无法构成施加用于使PLLA的螺旋轴取向的强电场所需的电极,或该电极妨碍激光点而不能照射规定的位置的问题点。相对于此,在此所述的利用微波进行的微小区域的加热,同时进行微波的照射和直流电场的施加会非常好。
图2是表示本发明的一实施方式的压电体片的制造装置10的框图。在该制造装置10中,为了制造压电体片,对所准备的PLLA片1实施规定的处理。
用于使构成PLLA片1的PLLA的分子振动的微波是通过信号发生器11以及12产生。在图2表示了使用2个的信号发生器11以及12的例子,但是可以根据投入的微波的种类数适当地变更数量。产生的微波的频率是主要用于加热PLLA的频率、主要用于解开分子的缠绕的频率、和主要用于切断分子之间的结合(局部结晶化)的频率等。这些的频率由于基于作为原料的PLLA的分子量、D体的混入比例,结晶化程度、取向度、填充物的配合量等而不同,根据所利用的母材进行初始实验,确定最佳的频率和投入电平即可。
具有各自的频率的微波的投入电平的比例,由信号发生器11以及12的各自的输出电平来决定。分别具有从信号发生器11以及12产生的相互不同频率的多种微波在混频器13被混频后,向放大器14传送。
此外,为了对具有相互不同的频率的多种微波进行混频,如图2所示的制造装置10中使用了混频器13,但是代替混频器13而使用双工器也可以。另外,增设信号发生器,使用三工器,四工器等也可以。
在放大器14增幅的微波,通过循环器15,接着,通过偏置器16,到达PLLA加热部17。循环器15是为了防止因PLLA加热部17的不匹配而造成的反射功率返回放大器14而导致放大器14破损的问题而设置的。因PLLA加热部17的不匹配而造成的反射功率被循环器15进行分支,通过耦合器21,至衰减器22被消耗。电功率表23与耦合器21连接,监视反射功率。
PLLA加热部17以直流电流不从此通过的方式进行设置。作为PLLA加热部17的构成方法可以考虑传送线路型、谐振器利用型。在图2中,PLLA加热部17不过是单纯地以电容器来简略地进行图示,实际上形成有微波的等效电路。在任何情况下,PLLA加热部17在功率的通过路径中,具有在电路上经由PLLA片1形成电容器的部分,由此直流电流无法通过。关于PLLA加热部17,表示在图3以后的详细图中。参照图3以后的图的说明后述。
如上所述,PLLA加热部17在功率的通过路径中,具有在电路上经由PLLA片1形成电容器的部分。微波通过该部分时,因其介电损耗而一部分转换为热量。PLLA的介质损耗角正切(tanδ)为0.01~0.012(例如,参照日本特开2002-358829号公报),即使在将此作为电介质使用的电容器中,一定会产生与tanδ对应的发热。除此之外,还会产生基于电偶极子的摇晃的摩擦所致的发热。
通过PLLA加热部17的微波,通过偏置器18,接着,通过耦合器24,至衰减器25被消耗。电功率表26与耦合器24连接,监视通过功率。
预先测定从循环器15至衰减器25的通过损失,并从输出功率减去由电功率表23观测的反射功率、由电功率表26观测的通过功率和预先测定的通过损失,由此能够间接地掌握由PLLA加热部17消耗的功率。在PLLA加热部17消耗的功率是在PLLA片1转换为热的能量,以该值就能够大概了解PLLA片1被加热成多少温度。想要正确了解,则使用红外线非接触温度计等,直接测定PLLA片1的温度即可。
PLLA的熔点大约在170℃左右,通过实验得出大约140℃~150℃的温度适合进行分子的取向控制。但是,该温度取决于PLLA的分子量、添加物、分子的末端基的处理,所以应根据实际使用的PLLA片1适当选择。
在偏置器16以及18连接有高压直流电源20以及开关19。在PLLA片1加热至适于取向的温度的状态下,接通开关19,向PLLA片1施加高电压。通过微波摇动的偶极子的至少一部分,通过由该高电压产生的电场,相对地取向于厚度方向(电场的方向)。该电压的大小、施加时间也取决于分子量、添加物、分子的末端基的处理,所以应根据实际使用的PLLA片1适当进行选择。
以规定的时间施加微波以及高电压,并且在停止这些处理的同时强制性地快速冷却PLLA片1来固定分子。但是,冷却的时间点未必只能在停止微波以及高电压之后,在冷却开始后停止微波以及高电压也可以,在停止微波后开始冷却并接下来停止高电压的顺序也无妨。
接下来,对PLLA加热部17进行说明。
图3是将图2所示的框图上的PLLA加热部17作为传送线路型形成的情况下的更详细的图,表示包括PLLA加热部17的PLLA处理部30。此处,图3(a)表示PLLA处理部30的俯视图,图3(b)表示PLLA处理部30的主视图。另外,图4(a)是沿图3(b)的线A-A的剖视图,图4(b)是沿图3(a)的线B-B的剖视图。
PLLA处理部30具有框体31,在框体31设有用于插入PLLA片1的孔33以及34。如图4(b)所示,孔33以及34以分别贯通框体31的上下的壁部的方式进行设置。PLLA片1在插入贯通于这些上下的孔33以及34的状态下被处理。
在框体31设置有分别成对的导向轮32a和32b以及导向轮32c和32d,PLLA片1通过这些导向轮32a~32d被保持。通过使导向轮32a~32d旋转,能够使PLLA片1沿图3(b)以及图4(b)中的上下方向移动。图4(b)所示的各个导向轮32a~32d的周围的箭头以及PLLA片1的上方的箭头表示导向轮32a~32d的旋转方向以及PLLA片1的移动方向的一个例子。此外,省略了对导向轮32a~32d的驱动部的图示。
框体31由金属构成,内部形成空腔,且构成同轴线路的外导体。作为用于构成框体31而使用的金属,优选铜、铝、黄铜、铁、不锈钢等,根据需要,对这些实施电镀。在使用铁或者不锈钢的情况下,导电率不好,所以考虑传送损失,优选实施镀铜或者镀银。
在框体31的空腔内,作为同轴线路的内导体(中心导体)的内导体35a以及35b以通过绝缘体37a以及37b被保持的状态进行配置。在图4中,内导体35a以及35b未显示剖面。绝缘体37a以及37b由介电常数低的树脂形成,尤其聚四氟乙烯是最合适的材料。
内导体35a以及35b中各自的前端部38a以及38b相互对置,如图4(a)所示,这些前端部38a以及38b具有与其他的部分相比较宽的形状。在这些具有较宽的形状的前端部38a以及38b,分别设置有作为高电压施加用导体的、恰好相互成对的销导体36a以及36b。
由框体31、内导体35a以及35b构成的同轴线路,除了其轴线方向的中央部的空腔变宽的部分,以特性阻抗50Ω形成,从而容易与高频设备匹配。另外,框体31的空腔在其轴线方向中央部形成锥形并扩大,并且,对于内导体35a以及35b而言,也根据空腔的锥形而形成锥形,并且前端部38a以及38b变宽,所以成为了能够顺利地进行阻抗转换,且难以产生因阻抗不匹配而造成的功率反射的结构。
如上所述,PLLA处理部30形成为传送线路型,所以非常适于针对宽带的频率的应用,而且具有设计、制作比较简单的特点。
各个销导体36a和各个销导体36b,以相互对置且位于同一轴线的方式相互对准。PLLA片1被相互对置的销导体36a以及36b夹持。而且,在相互对置的销导体36a以及36b的各对之间形成微小的电容器。各个销导体36a以及36b的直径为0.1mm~1mm左右,相邻的销导体36a以及36b之间的间隔为各个销导体36a以及36b的半径以上。销导体36a以及36b的根数能够适当地进行选择。各个销导体36a以及36b的直径需要设置成无法在PLLA片1形成球晶的程度,越小越好。
此处,作为夹持PLLA片1的销导体36a以及36b,举出了在PLLA片1的两侧成对构成的例子,但是将一个作为销导体,另一个作为平面状导体也无妨。这样的方式在后述的PLLA处理部50的说明中例示。
如图4所示,如果销导体36a以及36b在双侧成对,则适于在PLLA片1中在更小的范围内进行加热。代替这个方式,在将一个作为销导体,将另一个作为平面状导体的情况下,会带来装置的组装非常简单的优点。
内导体35a和35b以及销导体36a和36b与框体31相同,由金属构成。作为此处所使用的金属优选铜、铝、黄铜、铁、不锈钢、殷钢、Alloy42合金等,根据需要,对这些实施电镀。在使用铁、不锈钢、殷钢或者Alloy42合金的情况下,导电率不好,所以考虑传送损失,优选实施镀铜或镀银。
另外,通过传送微波,加热PLLA片1,但是如果内导体35a和35b以及销导体36a和36b的热传导率高,则PLLA片1的热被释放,所以这些内导体35a和35b以及销导体36a和36b优选使用铁、不锈钢、殷钢、Alloy42合金等的热传导率比较低的材料来构成。特别是,对于销导体36a以及36b而言,还考虑热膨胀,优选由殷钢或者Alloy42合金构成。
此外,对于上述销导体36a以及36b的优选的配置例,参照图10~图13,进行后述。
如上所述,在通过销导体36a以及36b夹持PLLA片1的状态下,输入微波局部地加热PLLA片1,并且施加高电压,使至少一部分的PLLA分子的螺旋轴相对地取向于厚度方向之后,快速冷却,从而固定PLLA分子。
快速冷却时,例如,向框体31的内部空腔吹入冷却用气体。用于吹入冷却用气体的通路在图3以及图4中未图示,然而优选在内导体35a以及35b的内部设有冷却用气体流动的通路,在进行冷却时从设在销导体36a以及36b的附近的排出口直接朝向PLLA片1喷射冷却用气体。关于用于冷却的结构的具体例子,参照图5后述。
内导体35a以及35b能够分别沿图4(a)所示的箭头39以及40的方向移动,处理结束后,使内导体35a以及35b移动来解除对PLLA片1的夹持,使导向轮32a~32d旋转来使PLLA片1移动所需量。PLLA片1移动后再次使内导体35a以及35b移动,利用销导体36a以及36b夹持PLLA片1,实施上述的微波加热、高电压施加以及快速冷却的工序。通过重复这些,能够在较宽的范围内得到螺旋分子轴相对地取向于厚度方向的高压电常数的PLLA片1。
接下来,参照图5,对适于冷却PLLA片1的结构进行说明。图5使用剖视图来表示图4所示的一个内导体35a,并且图示出了在图4省略图示的、由框体31、内导体35a以及35b构成的传送线路部的一个端部。
如图5所示,内导体35a内部为空腔,在设有销导体36a的前端部38a的端面上,且在销导体36a的各位置的附近设有多个排出口41。基于微波所产生的电流,通过集肤效应流过内导体35a的表层,所以内导体35a的内部的空腔不影响微波的传送电流。上述内导体35a与其它的内导体42电连接,对从内导体42侧传送来的功率进行传送而不会反射。关于内导体42所处的同轴线路,特性阻抗也设为50Ω。
在内导体35a的另一端,例如插入由聚四氟乙烯构成的管道43。冷却用气体从箭头44的方向向管道43导入,接着,从排出口41向箭头45的方向排出,从而冷却销导体36a以及PLLA片1(图5省略图示)。作为冷却用气体,HCFC(-134a)或者LPG适合。此外,代替冷却用气体,使用液体也可以。作为液体,例如适合使用液氮,此时,优选液氮从排出口41喷雾。
如上所述的用于冷却的结构,只设在内导体35a侧也可,只设在另一个内导体35B中也可,进一步,设在内导体35a以及35b的双方中也可。
根据上述的用于冷却的结构,能够高效地冷却PLLA片1,并且,能够毫无浪费地使用冷却用气体或者液体。
接下来,对具有与传送线路型不同的形式的PLLA加热部17进行说明。
图6是将图2所示的框图上的PLLA加热部17作为谐振器型来构成的情况下的更详细的图,表示包含PLLA加热部17的PLLA处理部50。此处,图6(a)是表示PLLA处理部50的主视图,图6(b)是表示PLLA处理部50的侧面图。另外,图7(a)是沿图6(b)的线B-B的剖视图,图7(b)是沿图6(a)的线A-A的剖视图。
PLLA处理部50具有框体51,在框体51设有用于插入PLLA片1的孔55a以及55b。此外,如图7(a)所示,在与设有孔55a的壁面对置的壁面上设有与孔55a相同的孔。虽未图示,但是在与设有孔55b的壁面对置的壁面也同样地设有和孔55b相同的孔。如图7(a)所示,PLLA片1以插通孔55a和与其对置的孔,还插通孔55b和与其对置的孔的方式进行配置。在图7中,省略了对应于设置在如前述的图3以及图4所示的PLLA处理部30中的导向轮32a~32d的导向轮的图示。
框体51是由导电率良好的金属构成。作为所使用的金属,适用铜、铝、黄铜、铁、不锈钢,根据需要,对这些实施电镀。在使用铁或者不锈钢的情况下,由于导电率不好,所以考虑到插入损失,优选实施镀铜或者镀银。
框体51起到屏蔽电磁波的作用,内部的空腔成为谐振空腔。PLLA处理部50基本成为半同轴空腔滤波器。框体51成为半同轴空腔滤波器的外导体。图6以及图7所示构成了2级的带通滤波器。
在框体51的外侧设有作为向滤波器提供电力的输入输出部的连接器52a以及52b。这样的带通滤波器基本是对称形状,所以无论将连接器52a以及52b的哪个作为输入或输出都可以。此处为了方便,将连接器52a作为输入侧,将连接器52b作为输出侧进行说明。
连接器52a的中心导体与由金属线构成的输入导线56a的一端连接,输入导线56a的另一端与中心导体57a连接。在中心导体57a的一端设有多个销导体58a。与销导体58a的前端对置地设有作为平面状导体的基极60a。在销导体58a的前端和基极60a之间有微小缝隙,在此夹持PLLA片1,该部分在等效电路上形成了电容器。中心导体57a的另一端相隔规定的距离,与频率调整螺栓53a的前端对置。
从图7(b)可知,关联于连接器52b而设置的输出导线56b、中心导体57b、销导体58b、基极60b、以及频率调整螺栓53b,分别具有与关联于上述的连接器52a而设置的输出导线56a、中心导体57a、销导体58a、基极60a以及频率调整螺栓53a相同的构成以及配置,省略详细的说明。
在中心导体57a和中心导体57b的中间附近插入有结合调整螺栓54。
在图示的构成中,夹持PLLA片1的是销导体58a和基极60a,或者是销导体58b和基极60b。与前述的图3以及图4所示的PLLA处理部30的情况相同,代替基极60a以及60b而配置销导体,构成销导体58a以及58b的分别成对的结构也可以。
在PLLA处理部50中,通过调整频率调整螺栓53a以及53b、结合调整螺栓54、输入导线56a、输出导线56b,在不脱离原本的电气设计的范围内,能够将滤波器调整为所希望的特性。
中心导体57a以及57b、频率调整螺栓53a以及53b、结合调整螺栓54、基极56a以及56b、销导体58a以及58b是由金属构成。和框体51的情况相同,作为此处使用的金属,适用铜、铝、黄铜、铁、不锈钢,根据需要,对这些实施电镀。在使用铁或者不锈钢的情况下,导电率不好,所以考虑到插入损失,优选实施镀铜或者镀银。
中心导体57a以及57b未图示,但是通过低介电常数的绝缘性材料被固定在框体51。作为低介电常数材料,适用聚四氟乙烯。
有关销导体58a以及58b的构成,和前述的PLLA处理部30的情况相同,所以此处省略说明。
如图7(a)所示,在基极60a以及60b形成了具有朝向外侧的开口的凹部(锪孔部)61,该凹部61的底面壁62形成得非常薄,底面壁62的厚度具体而言,优选0.3~0.8mm左右。基极60a以及60b优选由热传导率良好的金属形成,例如适用铝,铜。
通过销导体58a、58b和基极60a、60b夹持的PLLA片1通过输入微波来被加热。如前述,向被加热的PLLA片1施加高电压后,需要快速冷却。通过向凹部61的底面壁62直接吹入冷却气体,底面壁62能够瞬间冷却。此时,如果底面壁62由热传导率良好的金属构成,且其厚度十分薄时,PLLA片1也几乎同时被冷却。有关冷却气体与前述相同。
由于该PLLA处理部50是谐振器型,所以向PLLA片1施加的电场强度与传送线路型相比非常高,以中心频率2.4G Hz设计的滤波器中,电场强度为传送线路型的100倍。
图8表示使用PLLA处理部50的简化模型来进行有限元法模拟的结果。图8中,箭头表示电场矢量,其大小表示电场的强度。可知,在插入PLLA片1的位置有非常大的电场矢量。因此,根据该PLLA处理部50,在通过微波进行加热时,与传送线路型相比能够使放大器的输出下降。
如前述,图6以及图7所示的PLLA处理部50构成了2级的带通滤波器。虽然也能使用只使用了一个半同轴谐振器的1级的滤波器,但是,此时会成为只使包含谐振频率在内的极近的频率通过的带通滤波器,所以频带非常窄,限制能够插入的频率。反之,还能够增加滤波器的级数,根据需要,能够设成2级~10级左右的滤波器。然而,虽然滤波器的级数并无限制,但若考虑到制作上的麻烦则经验上优选到10级。如果是相对带宽在4%左右的滤波器,能够以4级~8级左右的级数来较易地制成。如果此时的通带的中心频率设为2GHz,则成为带域宽度70MHz的带通滤波器,能够成为可同时施加多个频率的装置。
图9是表示将PLLA处理部做成4级的通频带的情况下的例子。图9是与图7(b)对应的图。在图9中,与图7(b)所示的要素相当的要素标注相同的附图标记,省略重复的说明。图9所示的PLLA处理部50a除了中心导体57a以及57b,还具备中心导体57c以及57d,除了频率调整螺栓53a以及53b,还具备频率调整螺栓53c以及53d。另外,具备3个结合调整螺栓54a,54b以及54c。
在图9所示的PLLA处理部50a中,PLLA片1的微波加热部肯定能够设置在输入级,或输出级,或者其双方上。在多级的带通滤波器中,在输入输出级积蓄比较大的能量,所以该部分的电场强度大。另外,高电压是经由偏置器16以及18(参照图2)被施加,所以在从传送线路(连接器)的中心导体直接以导体连接的输入输出级,能够简单地进行高电压的施加。
此外,在此处表示了梳型的4级的半同轴空腔滤波器的例子,然而众所周知,通过选择叉指式,能够制成超宽带的滤波器。
接下来,对于图4所示的销导体36a以及36b的优选配置相关的几个的实施方式,参照图10~图13进行说明。图10~图13是从PLLA片1的一侧观察图4所示的一个内导体35a的前端部38a的端面而表示销导体36a的图。在这些附图中,省略了前述的图5所示的排出口41的图示。另外,对另一个销导体36b也省略图示以及说明,然而具有实际上与图示的销导体36a对称的配置。
首先,参照图10,多个销导体36a相互之间隔开规定的间隔,配置为1列。
根据图10所示的实施方式,用于显现压电性的一系列的处理(加热、高电压施加以及冷却)结束后,使PLLA片按规定的距离向上下方向挪动,或向左右方向挪动,以该状态,再次实施用于显现压电性的一系列的处理,通过反复进行这样的操作,在PLLA片的较宽的范围内,实施用于显现压电性的处理。
接下来,在图11所示的实施方式中,多个销导体36a相互之间隔开规定的间隔配置成2列。而且,各列的各个销导体36a的位置与形成于其他列的各个销导体36a之间的间隔部分对应。
根据图11所示的实施方式,用于显现压电性的一系列的处理结束后,使PLLA片在上方(或者下方)挪动距离d左右,以该状态,再次实施用于显现压电性的一系列的处理,通过反复进行这样的操作,在PLLA片的较宽的范围内,实施用于显现压电性的处理。
接下来,在图12所示的实施方式中,多个销导体36a,相互之间隔开规定的间隔,配置成4列。而且,各列的各个销导体36a的位置与形成于相邻的列的各个销导体36a之间的间隔部分对应。
根据图12所示的实施方式,用于显现压电性的一系列的处理结束后,使PLLA片向上方(或者下方)挪动距离d左右,以该状态,再次实施用于显现压电性的一系列的处理,接着,使PLLA片向上方(或者下方)挪动距离d的3倍左右的距离,以该状态,再次实施用于显现压电性的一系列的处理,然后,使PLLA片向上方(下方)挪动距离d,以该状态,再次实施用于显现压电性的一系列的处理。以后,交替实施以距离d的3倍的距离进行挪动操作的情况和以距离d进行挪动操作的情况,并且,通过重复上述的操作,在PLLA片的较宽的范围内,实施用于显现压电性的处理。
在更宽的面积批量进行用于显现压电性的处理这一点上,图12所示的实施方式最佳,其次优选的是图11所示的实施方式。
内导体35a和35b的尺寸以及销导体36a和36b的横方向以及纵向的配置数,根据设计来适当地进行选择即可。另外,销导体36a以及36b,剖面未必是圆形,也可以是椭圆、长圆、正方形、多角形等。
图13表示了销导体36a的剖面为正方形的例子。图13所示的销导体36a的配置实际上与图12所示的相同,但是相邻销导体36a之间的间隔与规定各销导体36a的剖面的正方形的一边的长度相等。此外,为了在图13中易于看出销导体36a的位置,在销导体36a施加了阴影。
在图13所示的实施方式中,实施针对PLLA片的用于显现压电性的处理时,实施与图12所示的实施方式相同的操作。然而,与图12所示的实施方式不同的是,根据图13所示的实施方式,能够得到未处理部分更少的高压电常数的PLLA片。
此外,参照图10~图13说明的销导体36a以及36b的优选配置,也能够在图7以及图9所示的销导体58a以及58b的配置中采用。

Claims (13)

1.一种压电体片,由聚乳酸构成,其特征在于,
至少一部分的聚乳酸分子的螺旋轴相对地朝向厚度方向,且所述螺旋轴方向的偶极子不相互抵消,以使显现出将厚度方向作为3轴时的压电常数d33所表示的压电性。
2.一种压电体片的制造方法,其特征在于,具备:
准备聚乳酸片的工序;
加热工序,使用微波加热所述聚乳酸片;
高电压施加工序,为了使所述聚乳酸片显现出将厚度方向作为3轴时的压电常数d33所表示的压电性,向被加热的所述聚乳酸片的厚度方向施加高电压,使至少一部分的聚乳酸分子的螺旋轴相对地朝向厚度方向,且所述螺旋轴方向的偶极子不相互抵消。
3.根据权利要求2所述的压电体片的制造方法,其特征在于,
还具备:
在所述高电压施加工序之后,快速冷却所述聚乳酸片的工序。
4.根据权利要求2或3所述的压电体片的制造方法,其特征在于,
所述高电压施加工序和所述加热工序的至少一部分同时实施。
5.一种压电体片的制造装置,其为权利要求1所述的压电体片的制造装置,该压电体片的制造装置的特征在于,具备:
高电压电源;
成对的高电压施加用导体,它们为了向应处理的聚乳酸片的厚度方向施加从所述高电压电源供给的高电压,以在厚度方向夹住所述聚乳酸片的方式进行配置;
微波发生器,产生微波;以及
同轴线路,从所述微波发生器传送微波,
其中,所述高电压施加用导体与所述同轴线路的内导体连接,并且所述微波通过由所述聚乳酸片和夹着该聚乳酸片的所述高电压施加用导体构成的电容器时,因介电损耗而产热。
6.一种压电体片的制造装置,其为权利要求1所述的压电体片的制造装置,该压电体片的制造装置的特征在于,具备:
高电压电源;
成对的高电压施加用导体,它们为了向应处理的聚乳酸片的厚度方向施加从所述高电压电源供给的高电压,以在厚度方向夹住所述聚乳酸片的方式配置;
微波发生器,产生微波;
同轴线路,从所述微波发生器传送微波;以及
至少1级的半同轴空腔滤波器,与所述同轴线路连接,
其中,所述高电压施加用导体中的一个与所述半同轴空腔滤波器的中心导体连接,
所述高电压施加用导体中的另一个与所述半同轴空腔滤波器的外导体连接,
所述微波通过由所述聚乳酸片和所述高电压施加用导体构成的电容器时,因介电损耗而产热。
7.根据权利要求6所述的压电体片的制造装置,其特征在于,
所述高电压施加用导体中的一个,由多个销状的导体构成,所述高电压施加用导体中的另一个由平面状的导体构成。
8.根据权利要求6所述的压电体片的制造装置,其特征在于,
所述高电压施加用导体中的一个以及另一个由多个销状的导体构成,所述多个销状的导体恰好相互成对。
9.根据权利要求5~8中任意一项所述的压电体片的制造装置,其特征在于,
通过所述微波发生器,产生具有相互不同频率的多种微波。
10.根据权利要求9所述的压电体片的制造装置,其特征在于
所述多种微波至少包括具有如下频率的微波,即主要对加热有效的频率、主要适于动摇聚乳酸的主链的频率、以及主要适于破坏聚乳酸分子之间的结合部分的频率。
11.根据权利要求7或8所述的压电体片的制造装置,其特征在于,
所述高电压施加用导体由多个销状的导体构成,并且,配置成多列,各列的各个所述导体的位置与形成于相邻的列的各个所述导体之间的间隔部分对应。
12.根据权利要求11所述的压电体片的制造装置,其特征在于,
所述导体的剖面为正方形,相邻的所述导体之间的间隔与规定各导体的剖面的正方形的一边的长度相等。
13.根据权利要求5~8中任意一项所述的压电体片的制造装置,其特征在于,
还具备设在所述高电压施加用导体的附近的、用于快速冷却所述聚乳酸片的冷却用流体的排出口。
CN201080026433.4A 2009-06-15 2010-06-14 压电体片以及压电体片的制造方法及制造装置 Active CN102803357B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009-142068 2009-06-15
JP2009142068 2009-06-15
PCT/JP2010/060020 WO2010147074A1 (ja) 2009-06-15 2010-06-14 圧電体シート、ならびに圧電体シートの製造方法および製造装置

Publications (2)

Publication Number Publication Date
CN102803357A CN102803357A (zh) 2012-11-28
CN102803357B true CN102803357B (zh) 2014-07-09

Family

ID=43356392

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080026433.4A Active CN102803357B (zh) 2009-06-15 2010-06-14 压电体片以及压电体片的制造方法及制造装置

Country Status (6)

Country Link
US (3) US9711710B2 (zh)
EP (1) EP2444452B1 (zh)
JP (1) JP5318203B2 (zh)
KR (1) KR101431756B1 (zh)
CN (1) CN102803357B (zh)
WO (1) WO2010147074A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5355515B2 (ja) * 2010-05-06 2013-11-27 株式会社村田製作所 タッチパネル、ならびにタッチ式入力装置およびその制御方法
WO2013061984A1 (ja) * 2011-10-28 2013-05-02 株式会社村田製作所 変位検出装置、および変位検出方法
US10126473B2 (en) * 2013-02-01 2018-11-13 Murata Manufacturing Co., Ltd. Display device and laminated optical film
US20160099403A1 (en) * 2013-04-10 2016-04-07 Mitsui Chemicals, Inc. Layered body
US20160204337A1 (en) * 2013-09-02 2016-07-14 Mitsui Chemicals, Inc. Layered body
JP6993555B2 (ja) * 2015-05-22 2022-01-13 ダイキン工業株式会社 有機圧電フィルム
JP6288374B2 (ja) * 2015-06-11 2018-03-07 株式会社村田製作所 押圧センサおよび電子機器
CN109964326B (zh) * 2016-11-18 2023-10-03 三井化学株式会社 压电基材、传感器、执行元件、生物体信息获取设备、及压电纤维结构体
US20190165251A1 (en) * 2017-11-30 2019-05-30 Jabil Inc. Apparatus, system and method for manufacturing piezoelectronics
WO2019189334A1 (ja) * 2018-03-28 2019-10-03 株式会社村田製作所 帯電繊維、帯電フィルタ、物質吸着材、および空気清浄機

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203590A (ja) * 2004-01-16 2005-07-28 Fuji Photo Film Co Ltd 圧電変換複合材料
JP2005213376A (ja) * 2004-01-29 2005-08-11 Mitsui Chemicals Inc ポリ乳酸系樹脂と無機化合物からなる高分子圧電材料

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4269581A (en) 1979-09-14 1981-05-26 Fusion Systems Corporation Apparatus for molding thermosetting material
JP3074404B2 (ja) 1991-07-31 2000-08-07 タキロン株式会社 高分子圧電材
FI930259A (fi) * 1992-11-06 1994-05-07 Takiron Co Polymert piezoelektriskt material
JP3023472B2 (ja) * 1992-11-06 2000-03-21 タキロン株式会社 骨形成促進用フィルム
DE4239781A1 (de) * 1992-11-26 1994-06-01 Basf Ag Formkörper aus geschäumten Polylactiden und Verfahren zu ihrer Herstellung
JP3470471B2 (ja) * 1995-10-19 2003-11-25 トヨタ自動車株式会社 高分子エレクトレット材料及びその製造法
JP3540208B2 (ja) * 1998-08-31 2004-07-07 グンゼ株式会社 圧電材およびその製造法
JP2002293943A (ja) * 2001-03-29 2002-10-09 Mitsui Chemicals Inc ポリ乳酸系樹脂の配向方法及び光学素子
JP4369642B2 (ja) 2001-03-29 2009-11-25 三井化学株式会社 電気ケーブル及び高電圧電源用モールド
JP3770471B2 (ja) 2001-07-17 2006-04-26 日本輸送機株式会社 電気車両のアクセラレータ
US7195822B2 (en) 2002-04-02 2007-03-27 Mitsubishi Plastics, Inc. Heat-shrinkable film of polylactic acid film
US6984352B1 (en) 2002-05-29 2006-01-10 Akopyan Razmik L Dielectric mold for uniform heating and molding of polymers and composites in microwave ovens
JP4346919B2 (ja) 2003-02-05 2009-10-21 忠弘 大見 強誘電体膜,半導体装置及び強誘電体膜の製造装置
JP2007073395A (ja) * 2005-09-08 2007-03-22 Tokyo Electron Ltd マグネトロンの制御方法、マグネトロンの寿命判定方法、マイクロ波発生装置、マグネトロンの寿命判定装置、処理装置及び記憶媒体
US20080315982A1 (en) 2007-06-08 2008-12-25 Intersil Americas Inc. Coupled-inductor core for unbalanced phase currents
US8241653B1 (en) * 2007-08-07 2012-08-14 Abbott Cardiovascular Systems Inc. Piezoelectricity modulated release rate of drug from a coating
JP5410686B2 (ja) 2008-03-21 2014-02-05 富士フイルム株式会社 圧電体膜の製造方法、成膜装置および圧電体膜
JP5495722B2 (ja) * 2008-11-07 2014-05-21 孝一郎 米竹 配向したポリ乳酸樹脂材料の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203590A (ja) * 2004-01-16 2005-07-28 Fuji Photo Film Co Ltd 圧電変換複合材料
JP2005213376A (ja) * 2004-01-29 2005-08-11 Mitsui Chemicals Inc ポリ乳酸系樹脂と無機化合物からなる高分子圧電材料

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JP特开2005203590A 2005.07.28
JP特开2005213376A 2005.08.11
JP特开平5152638A 1993.06.18

Also Published As

Publication number Publication date
US9048426B2 (en) 2015-06-02
EP2444452B1 (en) 2018-01-03
JP5318203B2 (ja) 2013-10-16
US20150280106A1 (en) 2015-10-01
WO2010147074A1 (ja) 2010-12-23
US20130228463A1 (en) 2013-09-05
US9537084B2 (en) 2017-01-03
US9711710B2 (en) 2017-07-18
EP2444452A1 (en) 2012-04-25
EP2444452A4 (en) 2014-12-24
CN102803357A (zh) 2012-11-28
KR20120024697A (ko) 2012-03-14
KR101431756B1 (ko) 2014-08-20
US20120108783A1 (en) 2012-05-03
JPWO2010147074A1 (ja) 2012-12-06

Similar Documents

Publication Publication Date Title
CN102803357B (zh) 压电体片以及压电体片的制造方法及制造装置
EP0950341B1 (de) Brennofen für die hochtemperaturbehandlung von materialien mit niedrigem dielektrischem verlustfaktor
KR101915646B1 (ko) 부하의 마이크로웨이브 처리 설비
US20060102622A1 (en) Uniform microwave heating method and apparatus
US20040011465A1 (en) Plasma Processing apparatus
US2627571A (en) Choke joint high-frequency heater
WO2019141337A1 (de) Mikrowellenplasmavorrichtung
DE102010052723B4 (de) Verfahren und Vorrichtung zum Vorbereiten oder Bearbeiten von Prozessgut, insbesondere biologischen Prozesgut
US6274858B1 (en) Bends in a compact circularly polarized microwave feed
US10383204B2 (en) Superconducting accelerator
TW200845833A (en) Plasma generating device
DD263648B5 (de) Einrichtung zur erzeugungs eines Mikrowellenplasmas mit grosser Ausdehnung und Homogenitaet
EP3850701B1 (en) Radiofrequency power combiner or divider having a transmission line resonator
Petrov et al. Superdirectivity for coupled dimers of meta-atoms at MHz
Bellucci Graphene-based tunable microstrip attenuators and patch antenna
US20100126987A1 (en) Device for transfer of microwave energy into a defined volume
CN104955259B (zh) 一种平面小功率微波微等离子体圆环形阵列源
DE19848022A1 (de) Vorrichtung zur Erzeugung von Plasma
WO2024004429A1 (ja) マイクロ波加熱装置
US20240003623A1 (en) Radio frequency moisture-removal
KR100994146B1 (ko) 외부에서 인가된 전압으로 편향된 광결정 공진기
DE102014113338B4 (de) Verfahren zum Temperieren und Temperiervorrichtung hierzu
RU2055733C1 (ru) Экструдер
Ranjan et al. Two Element Half Split Cylindrical Dielectric Resonator Antenna for wideband monopole-like radiation
Vorobyov et al. Specific features of electrodynamic characteristics for double-row periodic systems based on diffraction bar gratings

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20211104

Address after: Kyoto Japan

Patentee after: Murata Manufacturing Co.,Ltd.

Address before: Kyoto Japan

Patentee before: Murata Manufacturing Co.,Ltd.

Patentee before: A SCHOOL CORPORATION KANSAI University

TR01 Transfer of patent right