CN1737065A - 纳米金红石二氧化钛沉积法制备云母钛纳米复合材料 - Google Patents

纳米金红石二氧化钛沉积法制备云母钛纳米复合材料 Download PDF

Info

Publication number
CN1737065A
CN1737065A CN 200510094179 CN200510094179A CN1737065A CN 1737065 A CN1737065 A CN 1737065A CN 200510094179 CN200510094179 CN 200510094179 CN 200510094179 A CN200510094179 A CN 200510094179A CN 1737065 A CN1737065 A CN 1737065A
Authority
CN
China
Prior art keywords
tio
rutile
mica titanium
emulsion
nanometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200510094179
Other languages
English (en)
Other versions
CN100392023C (zh
Inventor
殷恒波
晏井春
杨晋安
任敏
胡童杰
徐艺青
王爱丽
蒋银花
姜廷顺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CNB2005100941792A priority Critical patent/CN100392023C/zh
Publication of CN1737065A publication Critical patent/CN1737065A/zh
Application granted granted Critical
Publication of CN100392023C publication Critical patent/CN100392023C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cosmetics (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及一种制备云母钛纳米复合材料的方法,指以金红石型TiO2为包覆剂、湿法绢云母为基材、纳米金红石二氧化钛沉积法制备云母钛纳米复合材料的方法。称取已焙烧好的金红石型TiO2乳浊液,加水稀释,超声波分散,按照金红石型TiO2/绢云母的1∶20-1∶4的质量比称取绢云母放入0.5-2mol/L HCl中进行处理;将处理后的云母加入到分散好的金红石型TiO2乳浊液中,于60-100℃水浴中搅拌,通过滴加NaOH和HCl控制溶液的pH值为2.0-5.0,反应2h-6h;将反应完毕的云母钛静置,冷却、洗涤,抽滤,直至滤液的电导率小于20ms/m,滤饼烘干得云母钛纳米复合材料。用此方法制备的云母钛纳米复合材料,白度好,相对散射力高,珠光效果明显,本方法具有反应条件温和、易于控制、成本低、工艺和流程简便的优点。

Description

纳米金红石二氧化钛沉积法制备云母钛纳米复合材料
技术领域
本发明涉及一种制备纳米复合材料的方法,特指以金红石型TiO2为包覆剂、湿法绢云母为基材、纳米金红石二氧化钛沉积法制备云母钛纳米复合材料的方法。
背景技术
云母钛纳米复合材料以其优异的化学稳定性、遮盖力强、折射率高、多彩及无毒等特点,在涂料、油漆、油墨、化妆品、塑料、橡胶和印刷等工业中得到了广泛的应用。合成云母钛纳米复合材料的方法有许多,例如加碱法,水热合成法,化学沉积法(钛盐水解法),缓冲法等。这些方法通常需要800℃以上的高温焙烧以使TiO2颗粒晶型转变为金红石型,成本高,工艺复杂,经检索,目前还没有纳米金红石二氧化钛沉积法低温制备云母钛纳米复合材料的报道。
发明内容
本发明提出了一种以四氯化钛为原料、金红石型TiO2为包覆剂、再以湿法绢云母为基材、化学沉积法液相包覆制备云母钛纳米复合材料的方法,以克服上述缺点。
制备方法如下:
1.金红石型TiO2的制备
取浓度为98%TiCl4溶液加入到的稀盐酸中,TiCl4与稀盐酸的体积比为1∶3,在稀释好的的TiCl4溶液中加入Na2CO3溶液,不断搅拌,缓慢加入,调节其PH值为7.0-10.0,对乳浊液进行抽滤,直至滤液的电导率小于20ms/m。
称取已经抽滤好的无定型TiO2滤饼用蒸馏水稀释后,在搅拌状态下滴加浓HNO3,调节其pH值为7.0,然后滴加浓HCl调节其pH值小于0.40,常温搅拌,老化2-4h,然后将搅拌好的TiO2乳浊液于120℃-220℃水热反应18h,制得纳米金红石型TiO2
2.云母钛纳米复合材料的制备
称取已焙烧好的金红石型TiO2乳浊液,加水稀释后,放超声波中分散,按照金红石型TiO2/绢云母的1∶20-1∶4的质量比称取绢云母放入0.5-2mol/L HCl中进行处理。
将酸处理后的云母抽滤,洗涤,然后加入到已分散好的金红石型TiO2乳浊液中,于60-100℃水浴中搅拌。通过不断滴加NaOH和HCl控制溶液的pH值为2.0-5.0,反应2h-6h。
将反应完毕的云母钛静置,冷却、用蒸馏水洗涤,抽滤滤饼,直至滤液的电导率小于20ms/m,滤饼烘干后,即得云母钛纳米复合材料。
上述制备方法,宜采用以下工艺参数或步骤为佳:
在金红石型TiO2的制备过程中,在稀释好的的TiCl4溶液中加入1mol/L-3mol/L的Na2CO3溶液。
在云母钛纳米复合材料的制备过程中,称取已焙烧好的金红石型TiO2乳浊液,加水稀释后,放超声波中分散2h-4h,同时称取绢云母放入HCl中处理1h。
将反应完毕的云母钛静置冷却后,先用0.5-2mol/L NaOH冲洗后再用蒸馏水洗涤。
将干燥后的云母钛样品在400℃温度下培烧2h,制得焙烧后的云母钛样品。
附图说明
图1:GA-4云母(1250目)扫描电镜图
图2:220℃ TiO2水热合成温度TiO2/GA-4=5%扫描电镜图
图3:220℃ TiO2水热合成温度400℃培烧后TiO2/GA-4=5%扫描电镜图
图4:200℃ TiO2水热合成温度TiO2/GA-4=20%扫描电镜图
图5:200℃ TiO2水热合成温度400℃焙烧后TiO2/GA-4=20%扫描电镜图
图6:180℃ TiO2水热合成温度碱洗后TiO2/GA-4=5%扫描电镜图
图7:180℃ TiO2水热合成温度碱洗400℃焙烧后TiO2/GA-4=5%扫描电镜图
图8:160℃ TiO2水热合成温度碱洗后TiO2/GA-4=20%扫描电镜图
图9:160℃ TiO2水热合成温度碱洗400℃焙烧后TiO2/GA-4=20%扫描电镜图
图10:120℃ TiO2水热合成温度TiO2/GA-4=10%扫描电镜图
图11:120℃ TiO2水热合成温度400℃焙烧后TiO2/GA-4=10%扫描电镜图
图12:120℃ TiO2水热合成温度TiO2/GA-4=20%扫描电镜图
图13:120℃ TiO2水热合成温度400℃焙烧后TiO2/GA-4=20%扫描电镜图
具体实施方式
下面结合具体实施实例对本发明做进一步说明。
实施例1
取浓度为98%TiCl4溶液加入到的稀盐酸中,TiCl4与稀盐酸的体积比为1∶3,在稀释好的的TiCl4溶液中加入1mol/L的Na2CO3溶液,不断搅拌,缓慢加入,调节其PH值为7.0,对乳浊液进行抽滤,直至滤液的电导率为18ms/m。
称取已经抽滤好的无定型TiO2滤饼用蒸馏水稀释后,在搅拌状态下滴加浓HNO3,调节其pH值为7.0,然后滴加浓HCl调节其pH值为0.30,常温搅拌,老化2h,然后将搅拌好的TiO2乳浊液于220℃水热反应18h,制得纳米金红石型TiO2
如图2,称取220℃水热反应后的金红石型TiO2乳浊液8.9g,其中金红石型TiO2 1g;加水稀释至250mL后,放超声波中分散2h,同时根据金红石型TiO2/绢云母的1∶20的质量比称取20gGA-4云母(1250目)放入200ml、0.5mol/L的HCl中处理1h。
将酸处理后的云母抽滤,洗涤四次,然后加入到已分散好的金红石型TiO2乳浊液中。于60℃水浴中搅拌。通过不断滴加NaOH和HCl控制溶液的pH值为2.0,反应2h。
将反应完毕的云母钛静置,冷却。用蒸馏水洗涤,抽滤滤饼,直至滤液的电导率为18ms/m。滤饼于85℃烘干。
实施例2
取浓度为98%TiCl4溶液加入到的稀盐酸中,TiCl4与稀盐酸的体积比为1∶3,在稀释好的的TiCl4溶液中加入1mol/L的Na2CO3溶液,不断搅拌,缓慢加入,调节其PH值为7.0,对乳浊液进行抽滤,直至滤液的电导率为18ms/m。
称取已经抽滤好的无定型TiO2滤饼用蒸馏水稀释后,在搅拌状态下滴加浓HNO3,调节其pH值为7.0,然后滴加浓HCl调节其pH值为0.30,常温搅拌,老化2h,然后将搅拌好的TiO2乳浊液于220℃水热反应18h,制得纳米金红石型TiO2
如图3,称取220℃水热反应后的金红石型TiO2乳浊液8.9g,其中金红石型TiO2 1g;加水稀释至250mL后,放超声波中分散2h,同时根据金红石型TiO2/绢云母的1∶20的质量比称取20gGA-4云母(1250目)放200ml、0.8mol/L HCl中处理1h。
将酸处理后的云母抽滤,洗涤四次,然后加入到已分散好的金红石型TiO2乳浊液中。于85℃水浴中搅拌。通过不断滴加NaOH和HCl控制溶液的pH值为2.20,反应2h。
将反应完毕的云母钛静置,冷却。用蒸馏水洗涤,抽滤滤饼,直至滤液的电导率为18ms/m。滤饼于85℃烘干后,再用400℃高温焙烧2h,制得焙烧后的云母钛样品。
实施例3
取浓度为98%TiCl4溶液加入到的稀盐酸中,TiCl4与稀盐酸的体积比为1∶3,在稀释好的的TiCl4溶液中加入1mol/L的Na2CO3溶液,不断搅拌,缓慢加入,调节其PH值为7.0,对乳浊液进行抽滤,直至滤液的电导率为18ms/m。
称取已经抽滤好的无定型TiO2滤饼用蒸馏水稀释后,在搅拌状态下滴加浓HNO3,调节其pH值为7.0,然后滴加浓HCl调节其pH值为0.30,常温搅拌,老化2h,然后将搅拌好的TiO2乳浊液于200℃水热反应18h,制得纳米金红石型TiO2
如图4,称取200℃水热反应后的金红石型TiO2乳浊液35.6g,其中金红石型TiO2 4g;加水稀释至250mL后,放超声波中分散2h;同时根据金红石型TiO2/绢云母的1∶5的质量比称取20gGA-4云母(1250目)放200ml、1.5mol/LHCl中处理1h。
将酸处理后的云母抽滤,洗涤四次,然后加入到已分散好的金红石型TiO2乳浊液中。于85℃水浴中搅拌。通过不断滴加NaOH和HCl控制溶液的pH值为3.0,反应3h。
将反应完毕的云母钛静置,冷却。用蒸馏水洗涤,抽滤滤饼,直至滤液的电导率为18ms/m。滤饼于85℃烘干。
实施例4
取浓度为98%TiCl4溶液加入到的稀盐酸中,TiCl4与稀盐酸的体积比为1∶3,在稀释好的的TiCl4溶液中加入2mol/L的Na2CO3溶液,不断搅拌,缓慢加入,调节其PH值为8.0,对乳浊液进行抽滤,直至滤液的电导率为16ms/m。
称取已经抽滤好的无定型TiO2滤饼用蒸馏水稀释后,在搅拌状态下滴加浓HNO3,调节其pH值为7.0,然后滴加浓HCl调节其pH值为0.20,常温搅拌,老化3h,然后将搅拌好的TiO2乳浊液于200℃水热反应18h,制得纳米金红石型TiO2
如图5,称取200℃水热反应后的金红石型TiO2乳浊液35.6g,其中金红石型TiO2 4g;加水稀释至250mL后,放超声波中分散3h,同时根据金红石型TiO2/绢云母的1∶5的质量比称取20gGA-4云母(1250目)放200ml、1.5mol/L HCl中处理1h。
将酸处理后的云母抽滤,洗涤四次,然后加入到已分散好的金红石型TiO2乳浊液中。于85℃水浴中搅拌。通过不断滴加NaOH和HCl控制溶液的pH值为4.0,反应4h。
将反应完毕的云母钛静置,冷却。用蒸馏水洗涤,抽滤滤饼,直至滤液的电导率为16ms/m。滤饼于85℃烘干后,再用400℃高温焙烧2h。
实施例5
取浓度为98%TiCl4溶液加入到的稀盐酸中,TiCl4与稀盐酸的体积比为1∶3,在稀释好的的TiCl4溶液中加入2mol/L的Na2CO3溶液,不断搅拌,缓慢加入,调节其PH值为7.0-10.0,对乳浊液进行抽滤,直至滤液的电导率为16ms/m。
称取已经抽滤好的无定型TiO2滤饼用蒸馏水稀释后,在搅拌状态下滴加浓HNO3,调节其pH值为7.0,然后滴加浓HCl调节其pH值为0.20,常温搅拌,老化3h,然后将搅拌好的TiO2乳浊液于180℃水热反应18h,制得纳米金红石型TiO2
如图6,称取180℃水热反应后的金红石型TiO2乳浊液8.9g,其中金红石型TiO21g;加水稀释至250mL后,放超声波中分散3h,同时根据金红石型TiO2/绢云母的1∶20的质量比称取20gGA-4云母(1250目)放200ml、2mol/L HCl中处理1h。
将酸处理后的云母抽滤,洗涤四次,然后加入到已分散好的金红石型TiO2乳浊液中。于85℃水浴中搅拌。通过不断滴加NaOH和HCl控制溶液的pH值为5.0,反应4h。
将反应完毕的云母钛静置冷却后,先用100ml 0.5mol/L NaOH冲洗后再用蒸馏水洗涤,抽滤滤饼至滤液的电导率为16ms/m,滤饼85℃烘干。
实施例6
取浓度为98%TiCl4溶液加入到的稀盐酸中,TiCl4与稀盐酸的体积比为1∶3,在稀释好的的TiCl4溶液中加入2mol/L的Na2CO3溶液,不断搅拌,缓慢加入,调节其pH值为8.0,对乳浊液进行抽滤,直至滤液的电导率为16ms/m。
称取已经抽滤好的无定型TiO2滤饼用蒸馏水稀释后,在搅拌状态下滴加浓HNO3,调节其pH值为7.0,然后滴加浓HCl调节其pH值为0.20,常温搅拌,老化3h,然后将搅拌好的TiO2乳浊液于180℃水热反应18h,制得纳米金红石型TiO2
如图7,称取180℃水热反应后的金红石型TiO2乳浊液8.9g,其中金红石型TiO2 1g;加水稀释至250mL后,放超声波中分散3h,同时根据金红石型TiO2/绢云母的1∶20的质量比称取20g GA-4云母(1250目)放200ml 2mol/L HCl中处理1h。
将酸处理后的云母抽滤,洗涤四次,然后加入到已分散好的金红石型TiO2乳浊液中。于85℃水浴中搅拌。通过不断滴加NaOH和HCl控制溶液的PH值为2.20,反应6h。
将反应完毕的云母钛静置冷却后,先用100ml 0.5mol/L NaOH冲洗后再用蒸馏水洗涤,抽滤滤饼至滤液的电导率为16ms/m,滤饼85℃烘干后再用400℃高温焙烧2h。
实施例7
取浓度为98%TiCl4溶液加入到的稀盐酸中,TiCl4与稀盐酸的体积比为1∶3,在稀释好的的TiCl4溶液中加入3mol/L的Na2CO3溶液,不断搅拌,缓慢加入,调节其PH值为9.0,对乳浊液进行抽滤,直至滤液的电导率为19ms/m。
称取已经抽滤好的无定型TiO2滤饼用蒸馏水稀释后,在搅拌状态下滴加浓HNO3,调节其pH值为7.0,然后滴加浓HCl调节其pH值为0.25,常温搅拌,老化4h,然后将搅拌好的TiO2乳浊液于160℃水热反应18h,制得纳米金红石型TiO2
如图8,称取160℃水热反应后的金红石型TiO2乳浊液35.6g,其中金红石型TiO2 4g;加水稀释至250mL后,放超声波中分散4h。同时根据金红石型TiO2/绢云母的1∶5的质量比称取20g GA-4云母(1250目)放200ml 0.5mol/L HCl中处理1h。
将酸处理后的云母抽滤,洗涤四次,然后加入到已分散好的金红石型TiO2乳浊液中。于85℃水浴中搅拌。通过不断滴加NaOH和HCl控制溶液的pH值为2.20,反应5h。
将反应完毕的云母钛静置冷却后,先用100ml、0.5mol/L NaOH冲洗后再用蒸馏水洗涤,抽滤滤饼至滤液的电导率为19ms/m,滤饼85℃烘干。
实施例8
取浓度为98%TiCl4溶液加入到的稀盐酸中,TiCl4与稀盐酸的体积比为1∶3,在稀释好的的TiCl4溶液中加入3mol/L的Na2CO3溶液,不断搅拌,缓慢加入,调节其PH值为9.0,对乳浊液进行抽滤,直至滤液的电导率为19ms/m。
称取已经抽滤好的无定型TiO2滤饼用蒸馏水稀释后,在搅拌状态下滴加浓HNO3,调节其pH值为7.0,然后滴加浓HCl调节其pH值为0.25,常温搅拌,老化4h,然后将搅拌好的TiO2乳浊液于160℃水热反应18h,制得纳米金红石型TiO2
如图9,称取160℃水热反应后的金红石型TiO2乳浊液35.6g,其中金红石型TiO2 4g;加水稀释至250mL后,放超声波中分散4h。同时根据金红石型TiO2/绢云母的1∶5的质量比称取20g GA-4云母(1250目)放200ml、0.5mol/L HCl中处理1h。
将酸处理后的云母抽滤,洗涤四次,然后加入到已分散好的金红石型TiO2乳浊液中。于85℃水浴中搅拌。通过不断滴加NaOH和HCl控制溶液的pH值为2.20,反应5h。
将反应完毕的云母钛静置冷却后,先用100ml、0.5mol/L NaOH冲洗后再用蒸馏水洗涤,抽滤滤饼至滤液的电导率为19ms/m,滤饼85℃烘干后再用400℃高温焙烧2h。
实施例9
取浓度为98%TiCl4溶液加入到的稀盐酸中,TiCl4与稀盐酸的体积比为1∶3,在稀释好的的TiCl4溶液中加入3mol/L的Na2CO3溶液,不断搅拌,缓慢加入,调节其PH值为10.0,对乳浊液进行抽滤,直至滤液的电导率为19ms/m。
称取已经抽滤好的无定型TiO2滤饼用蒸馏水稀释后,在搅拌状态下滴加浓HNO3,调节其pH值为7.0,然后滴加浓HCl调节其pH值为0.25,常温搅拌,老化4h,然后将搅拌好的TiO2乳浊液于120℃水热反应18h,制得纳米金红石型TiO2
如图10,称取120℃水热反应后的金红石型TiO2乳浊液17.8g,其中金红石型TiO2 2g;加水稀释至250mL后,放超声波中分散4h,同时根据金红石型TiO2/绢云母的1∶10的质量比称取20g GA-4云母(1250目)放200ml、0.5mol/L HCl中处理1h。
将酸处理后的云母抽滤,洗涤四次,然后加入到已分散好的金红石型TiO2乳浊液中。于85℃水浴中搅拌。通过不断滴加NaOH和HCl控制溶液的PH值为2.20,反应3h。
将反应完毕的云母钛静置,冷却,用蒸馏水洗涤,抽滤滤饼,直至滤液的电导率为19ms/m。滤饼于85℃烘干。
实施例10
取浓度为98%TiCl4溶液加入到的稀盐酸中,TiCl4与稀盐酸的体积比为1∶3,在稀释好的的TiCl4溶液中加入1mol/L的Na2CO3溶液,不断搅拌,缓慢加入,调节其PH值为7.0,对乳浊液进行抽滤,直至滤液的电导率为18ms/m。
称取已经抽滤好的无定型TiO2滤饼用蒸馏水稀释后,在搅拌状态下滴加浓HNO3,调节其pH值为7.0,然后滴加浓HCl调节其pH值为0.20,常温搅拌,老化2h,然后将搅拌好的TiO2乳浊液于120℃水热反应18h,制得纳米金红石型TiO2
如图11,称取120℃水热反应后的金红石型TiO2乳浊液17.8g,其中金红石型TiO2 2g;加水稀释至250mL后,放超声波中分散2h,同时根据金红石型TiO2/绢云母的1∶10的质量比称取20g GA-4云母(1250目)放200ml、0.5mol/L HCl中处理1h。
将酸处理后的云母抽滤,洗涤四次,然后加入到已分散好的金红石型TiO2乳浊液中。于85℃水浴中搅拌。通过不断滴加NaOH和HCl控制溶液的pH值为2.20,反应3h。
将反应完毕的云母钛静置,冷却。用蒸馏水洗涤,抽滤滤饼,直至滤液的电导率为18ms/m,滤饼于85℃烘干后,再用400℃高温焙烧2h。
实施例11
取浓度为98%TiCl4溶液加入到的稀盐酸中,TiCl4与稀盐酸的体积比为1∶3,在稀释好的的TiCl4溶液中加入2mol/L的Na2CO3溶液,不断搅拌,缓慢加入,调节其PH值为8.0,对乳浊液进行抽滤,直至滤液的电导率为16ms/m。
称取已经抽滤好的无定型TiO2滤饼用蒸馏水稀释后,在搅拌状态下滴加浓HNO3,调节其pH值为7.0,然后滴加浓HCl调节其pH值为0.30,常温搅拌,老化3h,然后将搅拌好的TiO2乳浊液于120℃水热反应18h,制得纳米金红石型TiO2
如图12,称取120℃水热反应后的金红石型TiO2乳浊液35.6g,其中金红石型TiO2 4g;加水稀释至250mL后,放超声波中分散3h,同时根据金红石型TiO2/绢云母的1∶5的质量比称取20g GA-4云母(1250目)放200ml、0.5mol/L HCl中处理1h。
将酸处理后的云母抽滤,洗涤四次,然后加入到已分散好的金红石型TiO2乳浊液中。于85℃水浴中搅拌。通过不断滴加NaOH和HCl控制溶液的pH值为2.20,反应3h。
将反应完毕的云母钛静置,冷却。用蒸馏水洗涤,抽滤滤饼,直至滤液的电导率为16ms/m。滤饼于85℃烘干。
实施例12
取浓度为98%TiCl4溶液加入到的稀盐酸中,TiCl4与稀盐酸的体积比为1∶3,在稀释好的的TiCl4溶液中加入3mol/L的Na2CO3溶液,不断搅拌,缓慢加入,调节其PH值为10.0,对乳浊液进行抽滤,直至滤液的电导率为19ms/m。
称取已经抽滤好的无定型TiO2滤饼用蒸馏水稀释后,在搅拌状态下滴加浓HNO3,调节其pH值为7.0,然后滴加浓HCl调节其pH值为0.35,常温搅拌,老化4h,然后将搅拌好的TiO2乳浊液于120℃水热反应18h,制得纳米金红石型TiO2
如图13,称取120℃水热反应后的金红石型TiO2乳浊液35.6g,其中金红石型TiO2 4g;加水稀释至250mL后,放超声波中分散4h;同时根据金红石型TiO2/绢云母的1∶5的质量比称取20g GA-4云母(1250目)放200ml 0.5mol/L HCl中处理1h。
将酸处理后的云母抽滤,洗涤四次,然后加入到已分散好的金红石型TiO2乳浊液中。于85℃水浴中搅拌。通过不断滴加NaOH和HCl控制溶液的pH值为2.20,反应3h。
将反应完毕的云母钛静置,冷却。用蒸馏水洗涤,抽滤滤饼,直至滤液的电导率为19ms/m,滤饼于85℃烘干后,再用400℃高温焙烧2h。
表1、2、3、4分别为部分云母钛纳米复合材料干粉白度、亮度及相对散射力。
表1水热合成TiO2温度为220℃云母钛纳米复合材料干粉白度、亮度
  编号   Wg   L*   a*   b*   ΔL*   Δa*   Δb*   ΔE
  GA-4云母   62.10   93.52   -1.08   4.78
  4-5%   67.66   93.73   -0.83   3.69   0.21   0.25   -1.09   1.14
  4-20%   75.62   95.19   -0.78   2.74   1.66   0.30   -2.04   2.65
  碱洗4-5%   69.79   94.38   -1.03   3.54   0.86   0.04   -1.24   1.51
  碱洗4-20%   76.11   94.79   -0.90   2.41   1.27   0.18   -2.37   2.69
  400℃焙烧4-5%   57.57   90.53   -0.05   4.21   -3.00   1.03   -0.58   3.22
  400℃焙烧4-20%   69.25   92.13   -0.27   2.52   -1.40   0.81   -2.26   2.78
  碱洗400℃焙烧4-5%   59.61   90.49   -0.10   3.75   -3.03   0.97   -1.03   3.35
  碱洗400℃焙烧4-20%   68.24   93.98   -0.51   3.71   0.46   0.56   -1.08   1.30
表2.水热合成TiO2温度为120℃云母钛纳米复合材料干粉白度、亮度
  编号   Wg   L*   a*   b*    ΔL*   Δa*   Δb*   ΔE
  GA-4云母   62.10   93.52   -1.08   4.78
  4-10%   66.93   93.90   -0.80   3.94    0.14   0.28   -0.81   0.86
  4-20%   70.21   93.93   -0.86   3.25    0.17   0.22   -1.50   1.53
  400℃焙烧4-10%   62.77   92.13   -0.24   3.91   -1.63   0.84   -0.84   2.02
  400℃焙烧4-20%   64.94   93.32   -0.36   4.07   -0.44   0.72   -0.68   1.08
Wg-CIE白度指数(10°);L*-亮度;a*-红绿指数越正代表越红,越负代表越绿;b*-黄蓝指数越正代表越黄,越负代表越蓝;ΔE-总色差
表3.水热合成TiO2温度为220℃云母钛纳米复合材料的相对散射力
 编号   100R∞   K/S   相对散射力
 GA-4云母(标样)   7.71   1.883   100%
 4-5%   10.73   1.214   155%
 4-20%   15.81   0.680   277%
 碱洗4-5%   9.80   1.370   137%
 碱洗4-20%   15.32   0.716   263%
 400℃焙烧4-5%   10.88   1.183   159%
 400℃焙烧4-20%   16.92   0.610   309%
 碱洗400℃焙烧4-5%   10.01   1.333   141%
 碱洗400℃焙烧4-20%   15.89   0.673   280%
表4.水热合成TiO2温度为120℃云母钛纳米复合材料的相对散射力
  编号   100R∞   K/S   相对散射力
  GA-4云母(标样)   7.71   1.883   100%
  4-10%   8.99   1.569   120%
  4-20%   9.83   1.405   134%
  400℃焙烧4-10%   11.31   1.184   159%
  400℃焙烧4-20%   13.40   0.951   198%
该表采用的标准为GB/T13451.2-92。其中,100R∞-在最大吸收波长为550nm时材料在介质中反射因素;k-吸收系数,s-散射系数;相对散射力=k/s(标样)/k/s(试样)。

Claims (5)

1、一种纳米金红石二氧化钛沉积法制备云母钛纳米复合材料的方法,其特征在于:制备方法分为以下两个步骤:
(1).金红石型TiO2的制备
取浓度为98%TiCl4溶液加入到的稀盐酸中,TiCl4与稀盐酸的体积比为1∶3,在稀释好的的TiCl4溶液中加入Na2CO3溶液,调节其pH值为7.0-10.0,对乳浊液进行抽滤,直至滤液的电导率小于20ms/m;
称取已经抽滤好的无定型TiO2滤饼用蒸馏水稀释后,在搅拌状态下滴加浓HNO3,调节其pH值为7.0,然后滴加浓HCl调节其pH值小于0.40,常温搅拌,老化2-4h,然后将搅拌好的TiO2乳浊液于120℃-220℃水热反应18h,制得纳米金红石型TiO2
(2).云母钛纳米复合材料的制备
称取已焙烧好的金红石型TiO2乳浊液,加水稀释后,放超声波中分散,按照金红石型TiO2/绢云母的1∶20-1∶4的质量比称取绢云母放入0.5-2mol/L HCl中进行处理;
将酸处理后的云母抽滤,洗涤,然后加入到已分散好的金红石型TiO2乳浊液中,于60-100℃水浴中搅拌,通过不断滴加NaOH和HCl控制溶液的pH值为2.0-5.0,反应2h-6h;
将反应完毕的云母钛静置,冷却、用蒸馏水洗涤,抽滤滤饼,直至滤液的电导率小于20ms/m,滤饼烘干后,即得云母钛纳米复合材料。
2、一种纳米金红石二氧化钛沉积法制备云母钛纳米复合材料的方法,其特征在于:在金红石型TiO2的制备过程中,在稀释好的的TiCl4溶液中加入1mol/L-3mol/L的Na2CO3溶液。
3、一种纳米金红石二氧化钛沉积法制备云母钛纳米复合材料的方法,其特征在于:在云母钛纳米复合材料的制备过程中,称取已焙烧好的金红石型TiO2乳浊液,加水稀释后,放超声波中分散2h-4h,同时称取绢云母放入HCl中处理1h。
4、一种纳米金红石二氧化钛沉积法制备云母钛纳米复合材料的方法,其特征在于:将反应完毕的云母钛静置冷却后,先用0.5-2mol/L NaOH冲洗后再用蒸馏水洗涤。
5、一种纳米金红石二氧化钛沉积法制备云母钛纳米复合材料的方法,其特征在于:将干燥后的云母钛样品在400℃温度下培烧2h。
CNB2005100941792A 2005-09-01 2005-09-01 纳米金红石二氧化钛沉积法制备云母钛纳米复合材料 Expired - Fee Related CN100392023C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005100941792A CN100392023C (zh) 2005-09-01 2005-09-01 纳米金红石二氧化钛沉积法制备云母钛纳米复合材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005100941792A CN100392023C (zh) 2005-09-01 2005-09-01 纳米金红石二氧化钛沉积法制备云母钛纳米复合材料

Publications (2)

Publication Number Publication Date
CN1737065A true CN1737065A (zh) 2006-02-22
CN100392023C CN100392023C (zh) 2008-06-04

Family

ID=36080023

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100941792A Expired - Fee Related CN100392023C (zh) 2005-09-01 2005-09-01 纳米金红石二氧化钛沉积法制备云母钛纳米复合材料

Country Status (1)

Country Link
CN (1) CN100392023C (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102383180A (zh) * 2011-10-24 2012-03-21 中山大学 一种二氧化钛单晶金红石纳米线阵列薄膜的合成方法
CN102796404A (zh) * 2012-05-10 2012-11-28 江苏大学 一种在云母钛上包覆无机纳米膜制备着色复合材料的方法
CN104961156A (zh) * 2009-02-19 2015-10-07 堺化学工业株式会社 金红石型氧化钛粒子的分散体及其制备方法、以及其应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1086364C (zh) * 1999-05-12 2002-06-19 中国科学院上海硅酸盐研究所 室温下制备金红石相二氧化钛纳米晶的方法
CN1153732C (zh) * 2000-10-16 2004-06-16 南京大学 由四氯化钛常温水解合成大比表面积纳米金红石型二氧化钛的方法
CN1131173C (zh) * 2001-11-23 2003-12-17 清华大学 一种低温制备纳米金红石相二氧化钛的方法
CN1194900C (zh) * 2003-01-13 2005-03-30 复旦大学 晶相可控的二氧化钛纳米晶的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104961156A (zh) * 2009-02-19 2015-10-07 堺化学工业株式会社 金红石型氧化钛粒子的分散体及其制备方法、以及其应用
CN102383180A (zh) * 2011-10-24 2012-03-21 中山大学 一种二氧化钛单晶金红石纳米线阵列薄膜的合成方法
CN102383180B (zh) * 2011-10-24 2013-11-27 中山大学 一种二氧化钛单晶金红石纳米线阵列薄膜的合成方法
CN102796404A (zh) * 2012-05-10 2012-11-28 江苏大学 一种在云母钛上包覆无机纳米膜制备着色复合材料的方法

Also Published As

Publication number Publication date
CN100392023C (zh) 2008-06-04

Similar Documents

Publication Publication Date Title
CN1047611C (zh) 涂盖无机颗粒的方法
CN100340489C (zh) 一种以工业偏钛酸为原料制备高活性二氧化钛溶胶的方法
CN1461332A (zh) 合成云母涂覆金属氧化物制备珍珠状颜料的方法
CN1269768A (zh) 细中空粉末、通过粉碎该细中空粉末而得到的薄片状二氧化钛粉末、及其制备方法
CN1764603A (zh) 多孔氧化钛粉体及其制造方法
CN1429255A (zh) 低温生产光泽度改善的二氧化钛的方法
CN103985430A (zh) 掺锑的氧化锡包覆二氧化钛复合导电材料及制备方法
CN1112414C (zh) 具有强烈彩虹色效果的珍珠颜料、其制备方法和用途
CN107488401A (zh) 一种环保设备用耐火耐腐反光环保涂层
CN1703372A (zh) 具有低氯和低金红石含量的超细微粒氧化钛及其生产方法
CN100341790C (zh) 具有高堆积密度的二氧化钛-二氧化硅混合晶粒及其生产方法和用途
CN1737065A (zh) 纳米金红石二氧化钛沉积法制备云母钛纳米复合材料
CN106801256A (zh) 一种固相法制备六钛酸钾片晶的方法
CN1623907A (zh) 制备二氧化钛溶液的方法
CN1259240C (zh) 用直接液相沉淀法制备纳米金属氧化物的方法
CN1639269A (zh) 纳米悬浮液形式的陶瓷着色剂
CN1150978C (zh) 金属复合二氧化钛纳米粒子及其制备方法和用途
CN1506154A (zh) 氮掺杂二氧化钛粉体的制备方法
CN1900066A (zh) 使用多阶段热处理过程制备偶氮化合物的金属化合物的方法
CN1010769B (zh) 二氧化钛颜料的制备方法
CN1886341A (zh) 超细金红石型二氧化钛颗粒的低温合成
CN1693209A (zh) 以添加粉末状还原剂的方式制备金红石二氧化钛的方法
CN103950975B (zh) 一种制备中空金红石型微米二氧化钛的方法
CN106830062A (zh) 一种用混合钛源制备片状钛酸钾镁的方法
CN107892326B (zh) 金红石相TiO2纳米棒组装体的制备方法及产品

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080604

Termination date: 20091009