CN1681903A - 有机电致发光组合物 - Google Patents

有机电致发光组合物 Download PDF

Info

Publication number
CN1681903A
CN1681903A CNA038224275A CN03822427A CN1681903A CN 1681903 A CN1681903 A CN 1681903A CN A038224275 A CNA038224275 A CN A038224275A CN 03822427 A CN03822427 A CN 03822427A CN 1681903 A CN1681903 A CN 1681903A
Authority
CN
China
Prior art keywords
phenyl
separately
composition
organic
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA038224275A
Other languages
English (en)
Other versions
CN100357388C (zh
Inventor
S·A·拉曼斯基
J·P·贝特佐德
F·B·麦克尔米克
M·纳马尔
R·R·罗伯茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of CN1681903A publication Critical patent/CN1681903A/zh
Application granted granted Critical
Publication of CN100357388C publication Critical patent/CN100357388C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/114Poly-phenylenevinylene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • H10K85/146Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE poly N-vinylcarbazol; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • H10K85/6565Oxadiazole compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

有机电致发光组合物包含(a)电荷运输基质,包含至少一种电子运输材料;(b)至少一种非聚合的发射掺杂物;和(c)至少一种芳族叔胺,选自(1)芳族叔胺,其中至少一个有机基团包含在对位上具有供电子取代基或在间位上具有两个独立选择的供电子取代基的取代的苯基,(2)芳族叔胺,其中,至少两个有机基团各包含在其末端苯环的对位具有供电子取代基的独立选择的取代的联苯或取代的芴基和(3)芳族叔胺,其中至少一个有机基团包含稠合的多芳基和至少一个其它有机基团包含在其末端苯环的对位具有供电子取代基的取代的联苯或取代的芴基。

Description

有机电致发光组合物
领域
本发明涉及有机电致发光组合物,它可用于有机发光二极管以及包含所述组合物的器件、制件和传热供体片。另一方面,本发明涉及制造包含所述组合物的器件的方法。
发明背景
对许多显示应用而言,使用有机材料来发光的有机电致发光器件如有机发光二极管(OLED)是常规显示技术(例如,液晶显示器(LCD)和阴极射线管(CRT))的有吸引力的替换方案。OLED技术提供比LCD和CRT更好的各种优势,例如,亮度提高、重量变轻、外形变薄、操作范围变宽、功效更佳、视角更全面以及本体发光性。
OLED器件可以分成三个类型:小分子器件、发光聚合物(LEP)器件和分子掺杂聚合物/分子膜(MDP/MF)器件。小分子器件通常包括许多功能有机层,其中加入了分子量相对较小的电荷运输材料和发射掺杂物。LEP器件包含发光的共轭聚合物,作为电致发光发色团,它们也通常进行多数或所有的器件电荷运输功能。MDP/MF器件通常包含电荷运输基质(当为MDP时,包含至少一种聚合材料)和非聚合的发射掺杂物。
现今,大多数市售的OLED显示器是小分子显示器。小分子器件通常使用真空蒸镀技术制造。真空室的大小以及遮光板的大小和分辨率限制了小分子显示器的大小。相比,可以在不使用掩膜技术的条件下通过溶液工艺制得LEP和MDP/MF器件,提供高分辨率和大面积。因此,LEP和MDP/MF显示器可能较大,且可能是柔韧的。
通常,由于可以相对容易地将各种发光掺杂物加入MDP/MF中,MDP/MF器件提供比LEP器件更大的颜色可调性。然而,MDP/MF器件并不如其它类型的OLED器件那样在商业上引人注意,这是因为小分子和LEP器件已经证实其接通和运行电压低,且使用寿命明显比MDP/MF器件更长(例如,在给定的恒定电流下达到起始亮度一半所需的时间)。MDP/MF OLED通常呈现出运行电压相对较高,且运行寿命更短,通常约为1小时到小于约100小时。(见,例如,Wu等人的Applied PhysicsLetters,70,1348(1997),提到MDP器件寿命约为20-40小时,接通电压为8-11V;和Chang等,Applied Physics Letters,79,2088(2001),提到MDP器件寿命约为40小时。)
概述
综上所述,我们认为需要一种有机电致发光组合物,它可以用于提供运行寿命延长,且能在低电压下操作的MDP/MF器件。
简而言之,本发明一方面提供有机电致发光组合物,它可用于电致发光器件如OLED。所述组合物包含:
(a)电荷运输基质,包含至少一种电子运输材料;
(b)至少一种非聚合的发射掺杂物;和
(c)至少一种芳族叔胺,包含三个直接连接到氮上的有机基团,所述芳族叔胺选自:
(1)芳族叔胺,其中至少一个有机基团包含在对位(相对于氮上的直接键接)上具有供电子取代基或在间位(相对于氮上的直接键接)上具有两个独立选择的供电子取代基的取代的苯基,各供电子取代基是除通过其一个杂原子直接连接到苯基上的杂环取代基以外的取代基,
(2)芳族叔胺,其中,至少两个有机基团各包含在其末端苯环(即,不直接连接到氮上的苯环)的对位(相对于连接联苯或芴基的两个苯环的碳-碳键)具有供电子取代基的独立选择的取代的联苯或取代的芴基和
(3)芳族叔胺,其中至少一个有机基团包含稠合的多芳基和至少一个其它有机基团,所述其它有机基团包含在其末端苯环(即,不直接连接到氮上的苯环)的对位(相对于连接联苯或芴基的两个苯环的碳-碳键)具有供电子取代基的取代的联苯或取代的芴基,
第(1)、(2)和(3)类的芳族叔胺还任选地仅被供电子取代基取代;
其条件是当所述电荷运输基质基本上由非聚合的电子运输材料组成时,所述芳族叔胺选自除第(3)类非聚合的胺以外的胺;
其条件还有当电荷运输基质包含聚酰亚胺时,所述电荷运输基质包含除聚酰亚胺以外的第二聚合材料。
已经发现上述有机电致发光组合物可以用于制造高效且可稳定运行的MDP/MFOLED,其寿命高达1,000小时或更长。相比之前所述的MDP/MF OLED,这些OLED可以在更低的运行电压下操作。实际上,许多包含本发明所述组合物的OLED满足各种市售显示器和发光应用所需的电流运行电压和效率要求,同时其运行寿命显著提高。因此,本发明所述组合物符合用于为有机电致发光MDP/MF器件提供改进的运行寿命,同时使之在相对较低的电压下操作的电致发光组合物的技术要求。
此外,已经发现本发明的有机电致发光组合物不仅是可以溶液加工的,而且是可以热印刷的,可以使用热成像技术将它们成像于基材或受体层上,制造例如,发射显示器。为了更好地热转印LEP,通常需要其它组分。但是,这些组分有时会干扰LEP的电性质。本发明所述组合物很适于热转印,且无需其它的组分。所述包含本发明组合物的热成像MDP/MF器件证实具有和使用常规旋涂技术制得的那些器件相当的性能。
在其它方面,本发明也提供包含本发明组合物的有机电致发光器件,例如OLED,以及包含所述有机电致发光器件的制件如显示器。
另一方面,本发明提供制造有机电致发光器件的方法,所述方法包括如下步骤:选择性地将本发明的有机电致发光组合物从供体片转印到受体基材上。
另一方面,本发明提供包含本发明有机电致发光组合物的供体片,它们用于制造有机电致发光器件。
定义
在本文中,″供电子取代基″描述了芳环上的取代基,它们具有负的σ哈梅特(Hammett)取代基值,如Leffler等,Rates和Equilibria of Organic Reactions,J、Wiley and Sons,Inc.,第172页,New York(1963)中所述。
″聚合的″描述了包含10个或以上单体衍生的重复单元的分子;和
″小分子″或″非聚合的″说明了不含单体衍生的重复单元的分子(非低聚分子)和包含10个以下单体衍生的重复单元的分子(低聚分子)。
详述
本发明所述有机电致发光组合物均包含有机电致发光分子膜(MF)组合物和有机电致发光分子掺杂聚合物(MDP)组合物。当为MDP组合物时,所述组合物包含至少一种聚合物(作为电荷运输基质的组分,和/或呈聚合的芳族叔胺形式)。当为MF组合物时,所述组合物不含聚合物,而是仅包含小分子组分。
本发明所述组合物包含例如,以下的分子膜实施方式:(1)MF,包含非聚合的发射掺杂物、小分子芳族叔胺以及包含小分子空穴运输材料和小分子电子运输材料的电荷运输基质;(2)MF,包含非聚合的发射掺杂物、小分子芳族叔胺以及包含电惰性小分子和小分子电子运输材料的电荷运输基质;和(3)MF,包含非聚合的发射掺杂物、小分子芳族叔胺以及包含小分子电子运输材料的电荷运输基质。
本发明所述组合物还包含以下分子掺杂聚合物实施方式:(1)MDP,包含非聚合的发射掺杂物、小分子芳族叔胺以及包含聚合的空穴运输材料和小分子电子运输材料的电荷运输基质;(2)MDP,包含非聚合的发射掺杂物、小分子芳族叔胺以及包含聚合的电子运输材料的电荷运输基质;(3)MDP,包含非聚合的发射掺杂物、小分子芳族叔胺以及包含电惰性聚合物和小分子电子运输材料的电荷运输基质;(4)MDP,包含非聚合的发射掺杂物、聚合的芳族叔胺以及包含小分子电子运输材料的电荷运输基质;和(5)MDP,包含非聚合的发射掺杂物、聚合的芳族叔胺以及包含聚合的电子运输材料的电荷运输基质。
有机电致发光器件可以通过将本发明MF或MDP组合物的层、或多层(″有机层″)沉淀在阴极和阳极之间来形成。当对所述器件施加电势时,电子从阴极注入所述有机层,且空穴从阳极注入所述有机层。由于所注入的电荷向带相反电荷的电极迁移,它们会重组成电子-空穴对,这通常称为激发子。其中常形成激发子的器件区域通常称为重组区。当它们衰变回到基态时,这些激发子或激发态的粒子可以光的形式发射能量。
电荷运输基质
本发明所述有机电致发光组合物包含电荷运输基质,它包含至少一种电子运输材料。所述电荷运输基质可以任选包含其它组分,如,空穴运输材料、其它电子运输材料、电惰性聚合物或小分子、空穴注入材料、电子注入材料等,以及它们的混合物。
电子运输材料是有利于电子注入所述有机层并且有利于电子迁移到重组区的材料。若需要的话,电子运输材料也可以作为空穴到达阴极的通路的屏障。
如上所述,本发明所述组合物所用的电子运输材料可以是聚合的或非聚合的(小分子)。
有用的电子运输聚合物包括含噁二唑和含三唑的聚合物。有用的电子运输聚合物的代表性例子包括含噁二唑的聚烯烃(例如,
R=H(PPVO),和R=C(CH3)3(t-Bu)(PBVO),如Jiang等在Chem.Mater.,12,2542(2000)中所述的)、聚合物主链中包含噁二唑单元的共轭聚合物(例如,
Figure A0382242700122
如Meng等,Macromol.,32,8841(1999)所述的)、在共轭主链的侧链处包含噁二唑单元的共轭聚合物(例如,噁二唑基亚芳基和芴的共聚物,例如,
等,如美国专利申请No.____,名为″Electroactive Polymers″,案卷代理号为57906US002,于文中所述同一日提交)。
优选的电子运输聚合物包括噁二唑基亚芳基和芴的共聚物,例如,ODP1、ODP2和ODP3。
有用的电子运输小分子的代表性例子包括噁二唑,如2-(4-联苯基)-5-(4-叔丁基苯基)-1,3,4-噁二唑(PBD)、1,3-二[5-(4-叔丁基苯基)-1,3,4-噁二唑-2-基]苯(PBD二聚物)、1,3,5-三(5-(对-辛氧基苯基)-1,3,4-噁二唑-2-基)苯(OPOB)和2,5-二(1-萘基)-1,3,4-噁二唑(BND)以及噁二唑的星放射状和树枝状衍生物(见,例如,Bettenbhausen等人,Synthetic Metals,91,223(1997));N-取代的三唑衍生物如3-(4-联苯基)-4-苯基-5-(4-叔丁基苯基)1,2,4-三唑(TAZ)以及三唑的星放射状和树枝状衍生物;金属螯合物如三(8-羟基喹啉根合)铝(Alq3)和联苯根合二(8-羟基喹啉根合)铝(BAlq);和C.H.Chen等,Macromol.Symp.125,1(1997)中所述的其它化合物,和J.V.Grazulevicius等人,″Charge-TransportingPolymers and Molecualrglasses″Handbook of Advanced Electronic andPhotonic Materials and Devices,H.S.Nalwa(ed.),10,233(2001)等以及它们的混合物。
优选的电子运输小分子包括PBD、OPOB和TAZ。
空穴运输材料是便于将空穴从阳极注入到有机层中,且有利于它们迁移到重组区中的材料。本发明所述组合物包含所述三类芳族叔胺的至少一种(如上文所述,并且下文将详述),它是空穴运输材料。但是若需要的话,所述电荷运输基质可以包含其它空穴运输材料。
用于所述电荷运输基质的空穴运输材料可以是聚合的或非聚合的(小分子)空穴运输材料,其电离势相对较高(通常高于约5.4eV)。
合适的空穴运输聚合物包括空穴运输材料,例如,聚(9-乙烯基咔唑)(PVK)、聚(9-乙烯基咔唑-二苯基氨基苯乙烯)共聚物(PVK-DPAS)和聚苯乙烯-二苯基氨基苯乙烯共聚物(PS-DPAS)。PVK是优选的空穴运输聚合物。
合适的空穴运输小分子包括例如,二芳基胺和三芳基胺衍生物,例如,N,N’-二(3-甲基苯基)-N,N’-二(苯基)二氨基联苯(TPD)、4,4’-二(咔唑-9-基)联苯(CBP)和4,4’,4″-三(咔唑-9-基)-三苯基胺(TCTA)。其它例子包括酞菁铜(CUPC)和如H.Fujikawa等人,Synthetic Metals、91,161(1997)和J.V.Grazulevicius,P.Strohriegl,″Charge-Transporting Polymers and Molecualrglasses″,Handbook of Advanced Electronic and Photonic Materials and Devices,H.S.Nalwa(ed.),10,233-274(2001)所述的化合物以及它们的混合物。优选的空穴运输小分子包括PD和TCTA。
所述电荷运输基质可包含电惰性聚合物或小分子。″电惰性″材料是其最高占据的分子轨道(HOMO)和最低未占据的分子轨道(LUMO)之间的能级差足够大的材料,以致没有任何电子或空穴可以从一般的有机电致发光器件电极材料如氧化铟锡、铝、钙等有效地注入到所述材料中。
电惰性材料的电离势通常高于约6.0-约6.5eV,电子亲合力低于约2.0-约2.5eV。
当加入到电荷基质中时,电惰性聚合物和小分子主要作为粘结剂材料,对电荷载体的运输几乎没有帮助。合适的电惰性聚合物例子包括聚苯乙烯、聚醚、聚丙烯酸酯类和聚甲基丙烯酸酯类、聚碳酸酯类、聚(乙烯基萘)以及它们的混合物。合适的电惰性小分子例子包括蒽、菲和1,2,3,4-四苯基-1,3-环戊二烯。
若所述电荷运输基质包含聚酰亚胺,则所述电荷运输基质包含除聚酰亚胺以外的第二聚合材料。较好的是,所述电荷运输基质不含聚酰亚胺(即较好的是,所述电荷运输基质仅包含除聚酰亚胺以外的材料)。
所述电荷运输基质也包含空穴注入材料,例如卟啉化合物,如酞菁铜(CuPc)和酞菁锌;电子注入材料,例如,碱金属化合物,包括Li、Rb、Cs、Na或K中至少一种(例如,碱金属氧化物或碱金属盐如Li2O、Cs2O或LiAlO,或金属氟化物如LiF、CsF),以及SiO2,Al2O3,酞菁铜(CuPc);和使光输出和发射均一性更高的添加剂,例如,光散射填料、纳米颗粒(粒度较好约为10n间-100nm)、交联剂、增粘剂或增塑剂和单线态氧和类似反应性化合物的猝灭剂。
发射掺杂物
本发明所述组合物包含至少一种非聚合的发射掺杂物。用于本发明有机电致发光组合物的非聚合的发射掺杂物包括荧光剂和磷光质(较好是磷光质)小分子发射体,它能发射大范围波长(较好的是,约250n间-约800nm;更好的是,约400n间-约700nm)的辐射。较好的是,所述非聚合的发射掺杂物的半衰期为约10-9秒-约10-2秒(更好是约10-9秒-约10-4秒),和发光量子产率约5%-100%(更好是约50%-100%)。
本发明所用小分子发射体较好选自由荧光剂多核碳环亚芳基和杂亚芳基衍生物,Ir(III)、Rh(III)、Os(II)、Ru(II)、Ni(II)和Pt(II)的磷光质环金属化(cyclometallated)螯形复合物以及Zn(II)和Al(III)的荧光螯形复合物形成的小分子发射体。
有用的荧光多核碳环亚芳基发射体包括来自苝、苯并[g,h,i]苝、蒽、芘、十环烯、芴和2,5,8,11-四-叔丁基苝(TBP)的分子。有用的荧光多核杂亚芳基衍生物的例子包括来自香豆素的分子如10-(2-苯并噻唑基)-2,3,6,7-四氢-1,1,7,7-四甲基-1H,5H,11H-[1]苯并吡喃[6,7,8-i,j]喹嗪(quinolizin)-11-酮(也已知为香豆素545T)、3-(2-苯并噻唑基)-7-二乙基氨基香豆素(也已知为香豆素6)和3-硫代苯基-7-甲氧基香豆素的分子;和来自三环pyromethene染料的分子,例如,在美国专利No.4,916,711(Boyer等)和5,189,029(Boyer等)中所述的那些。
有用的Ir(III)、Rh(III)、Os(II)、Ru(II)和Pt(II)的磷光质环金属化螯形复合物包括来自磷光质有机金属L13Ir(III)、L13Rh(III)、L1L2Ir(III)X、L1L2Rh(III)X、L1L2Os(II)Y、L1L2Ru(II)Y、L1L2Pt(II)化合物,其中,L1和L2在各情况下可以相同或不同,是2-(1-萘基)苯并噁唑、2-苯基苯并噁唑、2-苯基苯并噻唑、2-苯基苯并咪唑、7,8-苯并喹啉、苯基吡啶、苯并噻吩基吡啶、3-甲氧基-2-苯基吡啶、噻吩基吡啶、甲苯基吡啶的任选取代的环金属化二齿配体;X选自乙酰丙酮化物(acac)、六氟乙酰丙酮化物、亚水杨基、甲基吡啶化物(picolinate)和8-羟基喹啉化物(quinolinate);Y选自电中性的螯合化合物,如菲咯啉(phenathroline)或联吡啶的任选取代的衍生物。有用的环金属化Ir(III)螯合衍生物包括WO 0070655和WO 0141512 A1中所述的那些,有用的环金属化Os(II)螯合衍生物包括美国专利申请No.09/935,183(于2001年8月22日提交)。也可以使用铂(II)卟啉如八乙基卟啉(也称为Pt(OEP))。
有用的Zn(II)和Al(III)荧光螯形复合物的例子包括复合物,如二(8-喹啉根合)锌(II)、二(2-(2-羟基苯基)苯并噁唑根合)锌(II)、二(2-(2-羟基苯基)苯并噻唑根合)锌(II)、二(2-(2-羟基苯基)-5-苯基-1,3,4-噁二唑)锌(II)和联苯根合二(8-羟基喹啉根合)铝(BAlq)。有用的荧光Zn(II)螯合物包括Tokito等在Synthetic Metals,111-112,393(2000)中和在WO 01/39234 A2中所述的那些。有用的Al(III)螯合物包括美国专利No.6,203,933(Nakaya等)所述的那些。
优选的发射掺杂物包括二-(2-苯基吡啶根合-N,C2)铱(III)乙酰丙酮化物(PPIr)、二-(2-苯并[c]噻吩基吡啶根合-N,C2)铱(III)乙酰丙酮化物(BTPIr)、二((4,6-二氟苯基)吡啶根合-N,C2)铱(III)甲基吡啶根合(FIrpic)、2,5,8,11-四-叔丁基苝(TBP)、3-(2-苯并噻唑基)-7-二乙基氨基香豆素(香豆素6)、八乙基卟啉(PtOEP)和pyromethene 567(PyR567)(从Exciton Inc.,Daughton,OH购得)。
最优选的发射掺杂物包括磷光PPIr、BTPIr和FIrpic。
芳族叔胺
芳族叔胺包含3个直接连接到单个氮上的有机基团。本发明组合物中所用的一类空穴-运输芳族叔胺(下文称为第(1)类芳族叔胺)包括芳族叔胺,其中至少一个有机基团包含在对位上具有供电子取代基或在间位上具有两个独立选择的供电子取代基的取代的苯基,各供电子取代基是除通过其一个杂原子直接连接到苯基上的杂环取代基以外的取代基;所述胺还任选进一步取代,但仅被供电子取代基取代。
优选的第(1)类芳族叔胺可以由如下通式表示:
Figure A0382242700161
式中,各R1单独选自烷基、环烷基、链烯基、环烯基、炔基、环炔基、芳基、杂芳基以及它们的组合(例如,环烷基-取代的烷基);各R2单独选自烷氧基、芳氧基、烷硫基、芳硫基、二烷基氨基、二芳基氨基以及它们的组合(例如,烷氧基-取代的芳氧基);各R3单独选自氢、烷基、环烷基、链烯基、环烯基、炔基、环炔基、芳基以及它们的组合(例如,环烷基-取代的烷基)。
较好的是,各R1是独立选择的芳基;各R2是独立选择的二芳基氨基;各R3单独选自氢和烷基。
更好的是,各R1单独选自苯基和间-甲苯基;各R2单独选自二苯基氨基,N-苯基-N-(3-甲基苯基)氨基和二(对-叔丁基苯基)氨基;各R3单独选自氢、甲基、正丁基和叔丁基。
第(1)类芳族叔胺的代表性例子包括:
本发明组合物中所用的第二种空穴-运输芳族叔胺(下文称为第(2)类芳族叔胺)包括芳族叔胺,其中,至少两个有机基团各包含在其末端苯环的对位具有供电子取代基的独立选择的取代的联苯或取代的芴基;所述胺还任选进一步取代,但仅被供电子取代基取代。
优选的第(2)类芳族叔胺可以由如下通式表示:
式中,各R4单独选自烷基、环烷基、链烯基、环烯基、炔基、环炔基、芳基、杂芳基以及它们的组合;各R5单独选自烷氧基、芳氧基、烷硫基、芳硫基、二烷基氨基、二芳基氨基以及它们的组合;各R6单独选自氢、烷基、环烷基、链烯基、环烯基、炔基、环炔基、芳基以及它们的组合;各R7单独选自氢、烷基、环烷基、链烯基、环烯基、炔基、环炔基、芳基以及它们的组合。
较好的是,各R4是独立选择的芳基;各R5是独立选择的二芳基氨基;各R6单独选自氢和烷基;各R7单独选自氢和烷基。
更好的是,各R4单独选自苯基和间-甲苯基;R5单独选自二苯基氨基,N-苯基-N-(3-甲基苯基)氨基和二(对-叔丁基苯基)氨基;各R6单独选自氢、甲基、正丁基和叔丁基;和各R7单独选自氢、甲基、正丁基和辛基。
第(2)类芳族叔胺的代表性例子包括:
本发明组合物所用的第三类空穴-运输芳族叔胺(下文称为第(3)类芳族叔胺)包括芳族叔胺,其中,至少一个有机基团包含稠合的多芳基和至少一个其它有机基团,所述其它有机基团包含在其末端苯环的对位具有供电子取代基的取代的联苯或取代的芴基;所述胺还任选进一步取代,但仅被供电子取代基取代。
优选的第(3)类芳族叔胺可以由如下通式表示:
Figure A0382242700202
式中,各R8是稠合的多芳基;各R9单独选自烷基、环烷基、链烯基、环烯基、炔基、环炔基、芳基、杂芳基、稠合的多芳基及其组合;各R10单独选自烷氧基、芳氧基、烷硫基、芳硫基、二烷基氨基、二芳基氨基以及它们的组合;各R11单独选自氢、烷基、环烷基、链烯基、环烯基、炔基、环炔基、芳基、杂芳基以及它们的组合;和各R12单独选自氢、烷基、环烷基、链烯基、环烯基、炔基、环炔基、芳基、杂芳基以及它们的组合。
较好的是,各R8单独选自萘基、蒽基、芘基和菲基;各R9单独选自芳基和稠合的多芳基;各R10是独立选择的二芳基氨基;各R11单独选自氢和烷基;和各R12单独选自氢和烷基。
更好的是,各R8单独选自萘基、蒽基和菲基;各R5单独选自苯基、间-甲苯基和萘基;各R10单独选自二苯基氨基、N-苯基-N-(2-萘基)氨基、N-(3-甲基苯基)-N-(2-萘基)氨基、N-苯基-N-(3-甲基苯基)氨基和二(对-叔丁基苯基)氨基;各R11单独选自氢、甲基和正丁基;和各R12单独选自氢、甲基、正丁基和辛基。第(3)类芳族叔胺的代表性例子包括:
对第(1)类和第(2)类芳族叔胺而言,最好是所有三个直接连接到氮上的有机基团是相同的。对第(3)类芳族叔胺而言,最好是两个直接连接到氮上的有机基团是相同的稠合多芳基。
优选的芳族叔胺包括如下:
本发明有机电致发光组合物所用的芳族叔胺是空穴迁移率相对较高(较好大于约10-5cm2/Vs)和电离势相对较低(较好约4.8eV-约5.4eV,如使用间接电化学还原势测量方法(例如,环形伏安法)或直接光电子能谱测量所测得的,对应于相对较高的HOMO(最高占据的分子轨道)能)的空穴运输剂。
本发明所用的芳族叔胺通常通过相应的芳族仲胺和芳基卤化物(通常是芳基碘化物和芳基溴化物)之间的Ulmann偶合反应来制备。通常,Ulmann反应使用铜催化剂来进行,如例如,Macromolecules,28,5618(1995)中所述的那些,但是最近Hartiwig等人已经研发了使用钯催化剂的更高效的途径(见,例如,J.Am.Chem.Soc.,119,11695(1997))和Buchwald等(见,例如,J.Org.Chem.,61,1133(1996))。而且,使用钯催化剂的相应芳基硼酸和芳基卤化物的Suzuki-型偶合反应(见,例如,Suzuki,A.的Metal Catalyzed Cross-Coupling Reactions,Diederich,F.和Stang,V.V.(ed.),Wiley-VCH,第2章,Weinheim,Germany(1998))来合成一些芳族叔胺,尤其是包含至少一种联苯基的那些。少数本发明所用芳族叔胺是市售的。
组合物的制备
本发明所述组合物可以通过制备电荷运输基质、非聚合的掺杂物和芳族叔胺的掺合物来制得。通常,本发明所述组合物的所有组分可以混合在一起,并溶于例如氯化的有机溶剂(例如,氯仿、氯苯或二氯苯)或芳烃溶剂(例如,甲苯)的溶剂中,并使用0.2-0.5微米的过滤器进行过滤。
通常,本发明所述组合物包含约0.1-约20重量%(相对于所述组合物的总重量)非聚合的发射掺杂物和约5-约70重量%的芳族叔胺。所述电荷运输基质构成了所述组合物的剩余部分。通常,所述电荷运输基质包含约20重量%-约100重量%(相对于所述电荷运输基质中的所有材料)电子运输材料;约0重量%-约80重量%的其它空穴运输或电惰性材料;和约0重量%-约20重量%的其它组分(例如,纳米颗粒、交联剂、增粘剂,增塑剂、猝灭剂等)。
有机电致发光器件
本发明所述组合物可以用作有机电致发光(OEL)器件例如,有机发光二极管(OLED)中的有机发射层。OEL器件通常包括一层或多层,它们包含一种或多种置于阴极和阳极之间的合适有机材料。本发明所述的有机电致发光组合物特别适用于OEL器件中的有机发射层,这是因为它们由可溶液加工和可热印刷的组合物提供高效率和长运行寿命。
所述阳极(通常由氧化铟锡(ITO)制得)通常溅射到基材。所述阳极材料是导电的,通常是透光的或半透光的。ITO常选择用于阳极材料,这是因为它尤其适于将空穴注入所述空穴运输材料的HOMO(最高占据的分子轨道),并由于其使用蚀刻技术的可成像性。除了ITO以外,合适的阳极材料包括透明的导电氧化物(TCO)(例如,氧化铟,氧化氟锡(FTO)、氧化锌、氧化钒、氧化锌锡等)和高功函的金属(例如,金、铜、铂、钯、银及其组合)。在实践中,所述阳极任选地用约10-约1000埃的导电聚合物,如包含聚(3,4-亚乙基二氧噻吩)(PEDT)或聚苯胺(PANI)的组合物,有助于使表面平坦,并改变所述阳极的有效功函。
所述有机发射层通常置于所述阳极和阴极之间。本发明所述有机电致发光组合物可以用作OEL器件的有机发射层。本发明所述器件中的有机发射层的厚度通常约为20n间-约200nm(较好的是,约30n间-约100nm)。
所述阴极通常由可以将电子注入到电子运输材料LUMO(最低未占据的分子轨道)中的低功函金属(例如,铝、钡、钙、钐、镁、银,镁/银合金、锂、镱或钙和镁的合金,或它们的组合)制成。
在OEL器件中也可以存在其它层例如,包含例如,4,4’,4″-三(N-(3-甲基苯基)-N-苯基氨基)三苯基胺(MTDATA)、N,N’-二(萘-1-基)-N,N’-二(苯基)二氨基联苯(NPD)或N,N’-二(萘-1-基)-N,N-二(苯基)二氨基联苯(TPD)的其它空穴运输层;包含三(8-羟基喹啉根合)铝(III)(Alq)、联苯根合二(8-羟基喹啉根合)铝(BAlq)、2-(4-联苯基)-5-(4-叔丁基苯基)-1,3,4-噁二唑(PBD)或3-(4-联苯基)-4-苯基-5-(4-叔丁基苯基)-1,2,4-三唑(TAZ)的其它电子运输层;包含例如,卟啉化合物如酞菁铜(CuPc)和酞菁锌的空穴注入层;包含例如,碱金属氧化物或碱金属盐的电子注入层;包含例如,分子噁二唑和三唑衍生物(例如,2-(4-联苯基)-5-(4-叔丁基苯基)-1,3,4-噁二唑(PBD)、2,9-二甲基-4,7-二苯基-1,10-phenanthraline(BCP)、联苯根合二(8-羟基喹啉根合)铝(BAlq)和3-(4-联苯基)-4-苯基-5-(4-叔丁基苯基)-1,2,4-三唑(TAZ))的空穴阻挡层;包含例如,N,N’-二(萘-1-基)-N,N’-二(苯基)二氨基联苯(NPD)和4,4’,4″-三(N-(3-甲基苯基)-N-苯基氨基)三苯基胺(MTDATA)的电子阻挡层;和缓冲层等。此外,这些层中可以存在光致发光材料,例如,将电致发光材料发射的光的颜色转换成其它颜色。可以使用这些和其它这种层和材料来改变或调整所述分层OEL器件的电子性质和行为,例如,获得如所需电流/电压响应、所需器件效率、所需颜色、所需亮度、所需器件寿命中一种或多种特征,或所需这些特征的组合。
OEL器件结构包括包含一个或多个OEL器件(器件层)的层和器件基材。通常,所述器件基材在制造、试验和/或使用过程中支撑所述器件层。OEL器件基材包括刚性载体到很柔韧的载体。合适的OEL器件基材包括例如,玻璃、透明的塑料如聚烯烃、聚醚砜类、聚碳酸酯类、聚酯类、聚丙烯酸酯类、聚酰亚胺、聚合的多层薄膜和有机/无机复合多层薄膜。也可以使用柔韧的玻璃卷。这种材料可层压到聚合载体上,以获得更好的结构完整性。所述器件基材的材料也可以是不透光的例如,不锈钢、晶体硅,多晶硅等。
包含本发明所述组合物的OEL器件可用在各种发光制件和应用中。这种制件包括例如,显示器(用于例如,个人计算机、蜂窝式电话、手表、手持设备、玩具、车辆或航天器等),微型显示器(包括头戴微型显示器)、灯(用于例如,液晶显示器的背景光),指示器光等。
在一些发光制件中,所述器件层包括一个或多个OEL器件,它们透过器件基材将光发射到观察位置处(即,发射光的目的地,不论它是实际的观察者、屏幕、光学部件、电子器件等)。任选地,在器件层和观察位置之间可以提供适用于电子显示器、器件或灯(例如,晶体管阵列、滤色片、偏振片、波片、散射体、光导管、透镜、光控制薄膜、增亮薄膜、绝缘体、栅条、黑底、遮幅等)的其它光学元件或其它层或器件。在其它实施方式中,所述器件层位于所述器件基材和观察位置之间。当所述基材可以透射所述器件和基材的有机发射层发射的光时,可以使用底部发射构型。当所述置于所述基材和所述器件的有机发射层之间的电极不能透射所述器件发射的光时,可以使用所述相反的或“顶部发射”的构型。
所述器件层可以包括一个或多个以任何合适方式排列的OEL器件。例如,在用于液晶显示器模块的后照明应用中,所述器件层可构成横跨整个背光区域的单个OEL器件。或者,在其它灯应用中,所述器件层可以包含许多稠密间隔的可同时激活的器件。
在一些显示器应用中,所述器件层要求包括许多各自寻址的OEL器件,发射出相同或不同的颜色。各器件可以代表像素显示器(例如,高分辨率的显示器)的单独像素或单独子像素,段式显示器(例如,低信息含量的显示器)的分段或子段,或者单独的图标或图标的部分或者作为图标的灯(例如,在指示器应用中)。
制造有机电致发光器件层的方法
为了形成本发明器件的有机发射层,本发明所述组合物可以溶液沉淀(例如,旋涂、浸涂、喷墨打印、浇注或其它已知技术)到阳极上形成薄层中。这种薄层方法如美国专利No.5,408,109(Heeger等人)所述。
在某些应用中,要求将一层或多层OEL器件的图案成形于基材上,例如,制造高分辨率的发射显示器。
形成图案的方法包括选择性转印例如,热转印、光刻成形、喷墨打印、丝网印刷等。
热转印是透过供体薄膜或片将光转化成热的方法。所述热使有机电子材料涂布到要激活的供体片的背面,润湿并粘附到受体基材上。之后通常在室温剥去从供体片,形成留在受体基材上的有机电子材料的图案。
本发明的有机电致发光组合物(MF或MDP)可以使用热转印(包括激光热转印)成功地成形于基材上。本发明提供制造OEL器件的方法,所述方法包括将本发明的有机电致发光组合物选择性地从供体片转印到受体基材上。本发明也提供一种包含转印层的热转印供体片,所述转印层包含本发明所述的有机电致发光组合物。
较好的是,用于制造OEL器件的热转印方法是激光热转印。激光热转印如美国专利No.6,242,152(Staral等)、6,228,555(Hoffend等)、6,228,543(Mizuno等)、6,221,553(Wolk等)、6,221,543(Guehler et al.)、6,214,520(Wolk等)、6,194,119(Wolk等)、6,114,088(Wolk等)、5,998,085(Isberg等)、5,725,989(Chang等)、5,710,097(Staral等)、5,695,907(Chang)和5,693,446(Staral等)所述。
本发明的供体片包括基材、光-热转换(LTHC)层和包含本发明有机电致发光组合物的转印层。所述供体片也可任选包含一种或多种其它层如,底层、中间层、或底漆层。
所述供体片基材可以是例如,聚合物薄膜。一种合适的聚合物薄膜是聚酯薄膜例如,聚对苯二甲酸乙二酯(PET)或聚萘二酸乙二酯(PEN)薄膜。但是,可以使用具有足够光学性质(包括在具体波长下透光率高或者足够的机械和热稳定性)的其它薄膜,这取决于具体的应用。在至少一些情况下,所述供体基材是平的,使其上可以形成均匀的涂层。所述供体基材也通常选自不论加热供体的一层或多层仍旧保持稳定的材料。但是,如下所述,在基材和LTHC层之间加入底层可用于使所述基材隔绝成像过程中在LTHC中产生的热。所述供体基材的一般厚度约为0.025-约0.15mm,较好约0.05-约0.1mm,虽然也可以使用更厚或更薄的供体基材。
可以选择用于形成供体基材和任选相邻底层的材料,提高所述供体基材和底层之间的粘合性,控制所述基材和底层之间的热传递,控制传递到LTHC层上的成像辐射,以减少成像瑕疵等。可以使用任选的底漆层来提高将后续层施涂到基材上时均匀性,也提高了供体基材和相邻层之间的粘结强度。
在供体基材和LTHC层之间可以涂布或以其它方法设置任选的底层,例如,用于控制在成像过程中基材和LTHC层之间的热流,或者为供体元件提供用于存储、运输、供体加工或成像所需的机械稳定性。合适底层和形成底层的方法例子在例如美国专利No.6,284,425(Staral等)中公开。
所述底层可以包含为供体元件提供所需机械或热性质的材料。例如,所述底层可以包含相对供体基材而言其比热×密度低或者热导率低的材料。这种底层可用于提高到转印层的热流,例如,提高供体的成像敏感性。
所述底层也可以在基材和LTHC之间加入利于其机械性质或粘合性的材料。使用提高所述基材和LTHC层之间的粘合性的底层可使转印的图像产生更少的变形。在其它情况下,可能要求使用这样的底层,使成像过程中各层之间形成至少一定程度的分离,例如,在成像过程中在各层之间产生能提供绝热功能的空气缝隙。在成像过程中的分隔也可以形成用于释放在成像过程中加热LTHC层所产生的气体的通道。提供这种通道可使成像缺陷更少。
所述底层在成像波长下基本上是透明的,或者也可以至少部分吸收或反射成像辐射。可以使用因底层所致的成像辐射衰减或反射来控制成像过程中产生的热量。
本发明供体片的LTHC层将辐射能偶合到供体片中。所述LTHC层较好包含能吸收入射辐射(例如,激光)并将至少部分入射辐射转化成热的辐射吸收剂,使转印层能够从供体片转印到受体基材上的辐射吸收剂。
通常,在LTHC层中的辐射吸收剂吸收电磁能谱中的红外光、可见光或紫外光区域,并将吸收的辐射转化成热量。所述辐射吸收剂通常对所选的成像辐射具有很高的吸收能力,使所述LTHC层在成像辐射的波长处具有约0.2-3或更高的光密度。层的光密度是透过层的光强度和入射到层上的光强度之比的对数(以10为底数)的绝对值。
辐射吸收剂材料可以均匀地置于整个LTHC层上或者可以非均匀地分布。例如,如美国专利申请No.09/474002中所述的,可以使用非均匀的LTHC层来控制供体元件中的温度曲线。这使供体片具有提高的转印性质(例如,想要的转移图案和实际形成的转印图案之间更好的逼真度)。
合适的辐射吸收材料可以包含例如,染料(例如,可见染料、紫外(UV)染料、红外(IR)染料、荧光染料和辐射偏振染料)、颜料、金属、金属化合物、金属薄膜和其它合适的吸收材料。合适的辐射吸收剂的例子包括炭黑、金属氧化物和金属硫化物。合适LTHC层的一个例子包括颜料,如炭黑,和粘结剂,如有机聚合物。其它合适的LTHC层包括形成为薄膜的金属或金属/金属氧化物,例如,黑铝(即,具有黑色可见外观的部分氧化的铝)。金属和金属化合物的薄膜可以通过例如,溅射和蒸镀的技术来形成。使用粘结剂和任意合适的干法或湿法涂布技术可以形成颗粒涂层。LTHC层也可以通过组合两种或多种包含类似或不同材料的LTHC层来形成。例如,LTHC层可以通过在包含置于粘结剂中的炭黑的涂层上蒸气沉淀黑铝薄层来形成。
适于用作LTHC层中辐射吸收剂的染料以颗粒形式存在,溶于粘结剂材料中,或者至少部分分散于粘结剂材料中。当使用分散的颗粒辐射吸收剂时,在至少一些情况下,所述粒度约为10微米或以下,可以约为1微米或以下。合适的染料包括那些在能谱红外区吸收的染料。具体的染料可以根据如在具体的粘结剂或涂料溶剂中的溶解度、与具体的粘结剂或涂料溶剂相容性以及吸收的波长范围来进行选择。
色素材料也可用在LTHC层中,作为辐射吸收剂。合适的颜料例子包括炭黑和石墨、以及酞菁、二硫环戊烯镍(nickel dithiolenes)和美国专利Nos.5,166,024(Bugner等)和5,351,617(Williams等)中所述的其它颜料。此外,可使用基于铜或铬配合物的黑色偶氮染料,例如,吡唑啉酮黄、联茴香胺红和镍偶氮黄。也可以使用无机颜料,如金属如铝、铋、锡、铟、锌、钛、铬、钼、钨、钴、铱、镍、钯、铂、铜、银,金、锆、铁、铅和碲的氧化物和硫化物。也可以使用金属的硼化物、碳化物、氮化物、碳氮化物、青铜结构的氧化物以及结构上和青铜类相关的氧化物(例如,WO2.9)
可以使用金属辐射吸收剂,例如,呈颗粒形式,如美国专利No.4,252,671(Smith)所述,或呈薄膜形式,如美国专利No.5,256,506(Ellis等)所述。合适的金属包括例如,铝、铋,锡、铟、碲和锌。
用于LTHC层的合适粘结剂包括形成薄膜的聚合物,例如,酚醛树脂(例如,酚醛清漆树脂和甲酚树脂)、聚乙烯基丁缩醛树脂、聚乙酸乙烯酯类、聚乙烯基乙缩醛类、聚偏二氯乙烯类、聚丙烯酸酯类、纤维素醚类和纤维素酯类、硝基纤维素和聚碳酸酯类。合适的粘结剂包括单体、低聚物或聚合物,它们已经或可以聚合或交联。也可以加入添加剂如光引发剂,促进所述LTHC粘结剂的交联。在一些实施方式中,所述粘结剂主要使用可交联的单体或低聚物与任选聚合物的涂料来形成。
在至少一些情况下,加入热塑性树脂(例如,聚合物)可以改进所述LTHC层的性能(例如,转印性质和可涂布性)。所述粘结剂可以包含约25-约50重量%(当计算重量%时不包括溶剂)的热塑性树脂(较好,约30-约45重量%热塑性树脂),虽然可以使用更少量的热塑性树脂(例如,约1-约15重量%)。所述热塑性树脂通常选择和所述粘结剂的其它材料相容(即,形成单相混合物)。通常,所述粘结剂选择其溶解度参数为9-13(cal/cm3)1/2,较好的是,9.5-12(cal/cm3)1/2的热塑性树脂。合适的热塑性树脂例子包括例如,聚丙烯酸类,苯乙烯-丙烯酸聚合物和树脂以及聚乙烯基丁缩醛。
可以加入常规的涂料助剂例如,表面活性剂和分散剂,以促进所述涂布工艺。所述LTHC层可以使用本领域已知的各种涂布方法施涂到供体基材上。聚合的或有机LTHC层的涂布厚度通常为约0.05微米-约20微米,较好约为0.5微米-约10微米,更好约为1微米-约7微米。无机LTHC层的涂布厚度通常约为0.0005-约10微米,较好约为0.001-约1微米。
在LTHC层和转印层之间可以设置任选的中间层。所述中间层可以提供许多好处。所述中间层可以是防止材料从光-热转换层转移的阻隔层。它也调整转印层中达到的温度,将热不稳定的材料转印。例如,所述中间层可以作为散热层,相对于LTHC层达到的温度来控制所述中间层和转印层之间界面处的温度。这可以改进所转印的层的质量(即,表面粗糙度、边缘粗糙度等)。存在中间层也可以改进所转印的材料的塑性记忆。
通常,所述中间层的耐热性高。较好的是,所述中间层在成像条件下不会变形或发生化学分解,尤其是达到使所述转印的图像不能发挥作用的程度。所述中间层在转印过程中通常和LTHC层保持接触,基本上不会和转印层一起转印。
合适的中间层包括例如,聚合物薄膜、金属层(例如,蒸气沉淀的金属层)、无机层(例如,无机氧化物(例如,氧化硅、氧化钛和其它金属氧化物)的气溶胶沉淀的层和蒸气沉淀的层)和有机/无机复合层。适于作为中间层材料的有机材料包含热固性和热塑性材料。
合适的热固性材料包括通过加热、辐射或化学处理而交联的树脂,例如,交联的或可交联的聚丙烯酸酯类、聚甲基丙烯酸酯类、聚酯类、环氧化物和聚氨酯类。所述热固性材料可以涂布到LTHC层上作为例如,热塑性前体,并之后交联形成交联的中间层。
合适的热塑性材料包括例如,聚丙烯酸酯类、聚甲基丙烯酸酯类、聚苯乙烯类、聚氨酯类、聚砜类、聚酯类和聚酰亚胺类。这些热塑性有机材料可以通过常规涂布技术(例如,溶剂涂布、喷涂或挤出涂布)进行施涂。通常,所述适用于所述中间层的热塑性材料的玻璃化转变温度(Tg)约为25℃或以上,较好约为50℃或以上。所述中间层在成像辐射波长下可以是透光的、吸光的、反射光的或它们的组合。
适用于中间层材料的无机材料包括例如,金属、金属氧化物、金属硫化物和无机碳涂料,包括那些在成像光波长下透光率或反射率高的材料。这些材料可以通过常规技术(例如,真空溅射,真空蒸镀或等离子体喷射沉淀)施涂到LTHC层上。
所述中间层包含添加剂,包括例如,光引发剂、表面活性剂、颜料、增塑剂和涂布助剂。所述中间层的厚度取决于如下因素:例如,所述中间层的材料、所述LTHC层的材料和性质、所述转印层的材料和性质、所述成像辐射的波长以及供体片暴露在成像辐射下的持续时间。对于聚合物中间层,所述中间层的厚度通常约为0.05微米-约10微米。对于无机中间层(例如,金属或金属化合物中间层),所述中间层的厚度通常约为0.005微米-约10微米。
本发明所述供体片也包含转印层。所述转印层包含本发明的有机电致发光组合物,并可以包含任意其它合适的材料,置于一层或多层发光层中。通过任意合适的转印机理,当所述供体元件暴露在直接加热或暴露在能被光-热转换材料吸收并转化成热量的成像辐射下时,能选择性的转印作为单元的所述转印层,或分数次转印所述转印层。
一种形成所述转印层的方式是将所述发光层材料(即,MF和MDP,包含本发明所述的有机电致发光组合物)溶液涂布到供体基材或上述任意层(例如,底层、中间层或LTHC层)上。使用这种方法,所述发光层材料可以通过加入合适的相容溶剂来溶解,并通过旋涂、凹版涂布、Mayer棒涂、刮刀涂布等技术涂布到供体基材或上述任意一层上。所选的溶剂较好不会和所述供体片中已经存在的层相互作用(例如,溶胀或溶解)。然后,所述进行退火,并蒸发所述溶剂,留下转印层。
然后,所述转印层从所得供体片或元件上选择性地热转印到相邻的受体基材上。若需要的话,可以有一个以上的转印层,使用单个供体片就可以转印多层结构。所述受体基材可以是任意适于具体应用的物件,例如,玻璃、透明的薄膜、反射薄膜、金属、半导体和塑料。例如,受体基材可以是适用于显示器应用的任意类型的基材或显示元件。适用于显示器如液晶显示器或发射显示器的受体基材包括刚性或柔韧的基材,它们基本上可以透射可见光。
合适的刚性受体例子包括玻璃和刚性塑料,它们用氧化铟锡(ITO)涂布或形成图案,或者或用低温多晶硅(LTPS)或其它晶体管结构,如有机晶体管形成电路。
合适的柔韧基材包括基本上透明的和透光的聚合物薄膜、反射薄膜、回反射薄膜、偏振薄膜、多层光学薄膜等。柔韧基材也可以用电极材料或晶体管(例如,在柔韧基材上直接形成的或在临时载体基材上形成之后转印到柔韧基材上的晶体管阵列)涂布或形成图案。合适的聚合物基材包括作为载体的聚酯基材(例如,聚对苯二甲酸乙二酯、聚萘二酸乙二酯)、聚碳酸酯树脂、聚烯烃树脂、聚乙烯基树脂(例如,聚氯乙烯、聚偏二氯乙烯、聚乙烯基乙缩醛等)、纤维素酯基材(例如,纤维素三乙酸酯、纤维素乙酸酯)和其它常规聚合的薄膜。为了在塑料基材上形成OEL,常常要求在塑料基材的一面或两面加上阻隔薄膜或涂层,以保护有机发光器件及其电极,使之免于暴露在不利的水、氧等中。
受体基材可以用电极、晶体管、电容、绝缘条、逆电流器、滤色片、黑底、空穴运输层、电子运输层和其它可用于电子显示器或其它设备的元件中任意一种或多种进行预形成图案。
可以通过将所述供体片的转印层置于相邻的受体基材上,并选择性地加热所述供体片,由此将包含本发明有机电致发光组合物的MF和MDP从所述供体片选择性地转印到所述受体基材上。例如,所述供体片可以通过用成像辐射照射所述供体片来选择性加热,所述成像辐射可以被LTHC层吸收并转化成热量。
所述供体片可以透过其基材、透过所述受体基材或透过上述两者暴露在成像辐射下。所述辐射包括一种或多种波长,包括可见光、IR或UV辐射形式,例如,激光、灯或其它这种辐射源。较好的是,所述辐射源是激光。也可以使用其它供选择的加热方法,如使用热打印头或使用热火印(例如,可以使用具有图案的热火印如具有浮雕图案的加热的硅氧烷火印来选择性加热供体)。来自热转印层的材料可以按这种方式选择性转印到受体材料,在受体上以成像的方式形成所述转印材料的图案。
在许多情况下,使用来自例如灯或激光按照图案暴露所述供体,由此热转印是有利的,这是因为这常常可以达到准确性和精确性。可以通过例如选择光束的大小、光束的暴露图案、被导向的光束和供体片接触的持续时间或者供体片的材料来控制所述转印的图案的大小和形状(例如,线、圈、方形或其它形状)。所述转印的图案也可以透过掩膜照射所述供体元件来控制。
实施例
通过以下实施例进一步说明本发明的目的和优势,但是,这些实施例中引用的具体材料和量以及其它条件和细节决不是用于限制本发明。
合成聚(N-乙烯基咔唑-共-对-二苯基氨基苯乙烯)(PVK-DPAS)
如下所述,制备N-乙烯基咔唑和含三芳基胺的单体的共聚物。除了对-二苯基氨基苯乙烯和其它所述的以外,本实施例所用的原料从Aldrich Chemicals ofMilwaukee,WI购得。对-二苯基氨基苯乙烯通过和以下Tew等,Angew.Chem.Int.Ed.,39,517(2000)所述类似的制备方法合成。在5分钟内,在氮气条件下,往4-(二苯基氨基)苯甲醛(20.06g,73毫摩尔,Fluka Chemicals,Milwaukee,WI)、溴化甲基三苯基鏻(26.22g,73毫摩尔)和干的四氢呋喃(450ml)的混合物中加入1M叔丁醇钾的四氢呋喃(80ml,80毫摩尔)溶液。所述混合物在室温下搅拌17小时。加入水(400ml),并在减压条件下除去四氢呋喃。所述混合物用乙醚提取,经过MgSO4干燥所述合并的有机层,并在真空条件下浓缩。所述粗固体使用二氯甲烷和己烷的50/50混合物通过硅胶上的柱色谱进行纯化,制得黄色的固体,它们还由己烷重结晶一次,并通过核磁共振能谱(NMR)来证实其结构。
如下所述制备包含这种单体的共聚物。在12.99g甲基乙基酮中制备3.05gN-乙烯基咔唑和0.42g对-二苯基氨基苯乙烯的溶液。往这种溶液中加入0.0243g的2,2’-偶氮二(2-甲基丁腈)(VAZOTM 67,从Dupont Chemicals,Wilmington,DE购得)。所得混合物用氮气喷射20分钟,密封在瓶子中,并在80℃下搅拌20小时。当冷却到室温下之后,所述溶液倒入过量的甲醇中(100ml)。所得沉淀的聚合物通过过滤收集,并在室温下的真空炉中干燥。这种聚合物包含6.4摩尔%的对-二苯基氨基苯乙烯(根据1H和13C NMR来确定),通过四氢呋喃溶液的凝胶渗透色谱(GPC)测量法以聚苯乙烯为标准测得重均分子量为14.3kg/mol,多分散性为2.8。
合成电子运输聚合物,ODP1
份A
合成2,5-二溴苯甲酰氯
往装有回流冷凝管和磁力搅拌棒的2升烧瓶中加入50g(0.1786摩尔)的2,5-二溴苯甲酸和150ml亚硫酰氯。所述混合物回流8小时。蒸馏除去大多数的亚硫酰氯,之后通过旋转蒸发来除去剩余物。蒸馏制得40g 2,5-二溴苯甲酰氯。
份B
合成4-辛氧基苯甲酰肼
往烧瓶中的份A内含物加入387.14g 98%肼。混合物回流5小时(106℃)。冷却的溶液倒入3L的水中,并过滤沉淀的固体,用大量的水洗涤,并在真空中干燥制得4-辛基苯甲酰肼(343g,91%产率,熔点90℃)。
份C
合成2,5-二溴-N’-[4-(辛氧基)苯甲酰基]苯甲酰肼
将50.88g(0.1925摩尔)4-辛氧基苯甲酰肼和19.48g(0.1925摩尔)刚刚蒸馏的三乙胺加入800毫升的二氯甲烷中。在机械搅拌下,往其中加入57.43g 2,4-二溴苯甲酰氯。过滤所述产物,并由二甲基甲酰胺(DMF)/水进行重结晶,制得79.38g(78%产率)2,5-二溴-N’-[4-(辛氧基)苯甲酰]苯甲酰肼。
份D
合成2-(2,5-二溴苯基)-5-[4-(辛氧基)苯基]1,3,4-噁二唑
往2L烧瓶中加入39.1g(0.0743摩尔)的N-(2,5-二溴苯甲酰)-4-(辛氧基)苯甲酰肼和203ml磷酰氯。所述混合物回流8小时,然后在轻度真空条件下蒸发所述溶剂。所述残留物倒入粗的冰中,并静置直到第二天。过滤制得粘的物质,它溶解在甲醇中,并通过加入少量的水来制得固体材料。过滤和干燥制得112g所需的产物,为白色的结晶固体(59%产率)。
份E
制备电子运输聚合物,ODP1
将5.38g(8.37毫摩尔)2,7-二(4,4,5,5-四甲基-1,3,2-二氧杂硼杂环戊烷(杂硼杂环戊烷)-2-基)-9,9-二辛基-芴,1.80g(4.92毫摩尔)2,7-二溴-9,9-二辛基芴(如Ranger等,Can.J.Chem.,1571(1998)所述制得)和2.50g(4.92毫摩尔)2-(2,5-二溴苯基)-5-[4-(辛氧基)苯基]-1,3,4-噁二唑(如Ranger等,Chem.Commun.,1597(1997)所述制得)与在150毫升甲苯中的0.85g(2.09毫摩尔)ALIQUAT 336(氯化三辛酰基甲基铝,从Aldrich Chemical购得)混合。往其中加入28毫升的2M Na2CO3水溶液,然后在室温下用氮气将所得混合物脱气2小时,然后在50℃下再脱气2小时。然后,将0.04g(0.035毫摩尔)四(三苯基膦)钯(0)(从Strem Chemical,Newburyport,MA购得)加入所述混合物。然后,所得混合物在氮气气氛下在回流条件下加热16小时。加入1毫升溴苯在甲苯中的氮冲洗溶液,之后还加入0.04g四(三苯基膦)钯(0),然后,所得混合物再回流16小时。在所述反应混合物冷却至室温之后,将其倒入2L的甲醇中,并通过过滤收集所述沉淀物。所述沉淀物通过再次溶解在二氯甲烷中来纯化,然后在甲醇中沉淀。制得5.4g的白色粉末产物。对产物进行凝胶渗透色谱分析,得出Mw为7.30×104,Mn为2.36×104,多分散性为2.95。
合成电子-运输聚合物,ODP2
份A
合成甲基4-辛氧基苯甲酸甲酯
往烧瓶中加入251.0g(1.65摩尔)4-羟基苯甲酸甲酯、276.37g(1.99摩尔)碳酸钾和1200g丙酮。混合物回流45分钟,之后在1小时内滴加386.17g(1.99摩尔)1-辛基溴。所述反应混合物回流2天。过滤所述冷却的反应混合物,并蒸发所述滤液,制得油状物。在乙酸乙酯中提取,并用5%NaH(2×100ml)萃取,之后用水(2×100ml)提取。干燥所述有机层(MgSO4),浓缩并转移到1L的三颈烧瓶。所述烧瓶中的物质进行高真空蒸馏,除去过量的1-辛基溴。所述瓶中的残留物基本上是纯的4-辛氧基苯甲酸甲酯(376g,86%)。
份B
合成2,4-二氯苯甲酰氯
往装有回流冷凝管和磁力搅拌棒的2L烧瓶中加入150g(0.785摩尔)2,5-二氯苯甲酸和575ml(7.85摩尔)亚硫酰氯。所述混合物回流8小时。蒸馏除去大多数的亚硫酰氯,之后通过旋转蒸馏除去残留物。蒸馏制得130g(79%产率)的2,4-二氯苯甲酰氯(瓶温为110℃;蒸馏温度为70℃/0.70mmHg)。
份C
合成2,5-二氯-N’-[4-(辛氧基)苯甲酰]苯甲酰肼
在覆盖氮气的条件下,将8.8g(0.087摩尔)2,4-二氯苯甲酰氯加入23.0g(0.087摩尔)4-辛氧基苯甲酰肼和12.13ml(8.8g,0.087摩尔)刚刚蒸馏的三乙胺在348ml的干燥氯仿中的溶液中。搅拌约1小时之后,形成致密的白色沉淀产物。继续搅拌直到第二天。通过过滤来收集所述产物,并由乙醇/水进行重结晶,制得31g(81.5%产率)的2,5-二氯-N’-[4-(辛氧基)苯甲酰]苯甲酰肼,为白色固体。
份D
合成2-(2,5-二氯苯基)-5-[4-(辛氧基)苯基]-1,3,4-噁二唑
往装有机械搅拌器和温度计的250ml烧瓶中加入30g(0.0686摩尔)2,5-二氯-N’-[4-(辛氧基)苯甲酰]苯甲酰肼和181ml磷酰氯。混合物回流并搅拌8小时。在减压条件下蒸馏除去约100ml的磷酰氯。在手动搅拌下,所述冷却的残留物倒入水和碎冰中,静置直到冰溶解。过滤收集所述沉淀的白色固体,干燥并由乙醇重结晶。制得25.7g(89%产率,熔点86℃)的2-(2,5-二氯苯基)-5-[4-(辛氧基)苯基]-1,3,4-噁二唑。所述结构由NMR证实。
份E
聚合2-(2,5-二氯苯基)-5-[4-(辛氧基)苯基-1,3,4-噁二唑
往装有隔膜和氮喷嘴的烧瓶中加入4.10g(9.77毫摩尔)2-(2,5-二氯苯基)-5-[4-(辛氧基)苯基]-1,3,4-噁二唑、2.85g(10.89毫摩尔)三苯基膦和0.31g(1.421毫摩尔)无水溴化镍(II)。往其中加入75ml干燥的DMF和25ml干燥的甲苯。这使用Dean-Stark冷凝器进行共沸,之后蒸馏除去多数的甲苯。在强的氮气冲洗条件下,往所述冷却的反应溶液中再加入0.31g(1.421毫摩尔)无水溴化镍(II)。在80℃下加热30分钟,之后加入1.0g氯苯,作为封端剂。所述反应在80℃下进行8小时。将冷却的反应混合物倒入约500ml的丙酮中,并过滤。在二氯甲烷中提取固体滤饼,加入1N HCl,并搅拌所述两相体系约1小时。过滤除去所得固体,并将滤液转移到分离漏斗中。分离所述下层有机层,并倒入过量的甲醇中。收集所述固体,用甲醇洗涤,并干燥制得2.8g的聚合物。
GPC分析得出重均分子量(Mw)为2.49×104,数均分子量(Mn)为8.40×103,多分散性(PD)为2.97。
合成1,3,5-三(5-(对-辛氧基苯基)-1,3,4-噁二唑-2-基)苯(OPOB)
份A
合成5-(对-辛氧基苯基)-1,2,3,4-四唑。
在氮气气氛下,在90ml干燥的DMF(通过和氢氧化钾一起搅拌来干燥,并在氮气气氛下从氧化钙蒸馏)中混合20.8g的对-(辛氧基)苄腈(Aldrich ChemicalCompany,Milwaukee,WI)、8.8g叠氮化钠(Aldrich Chemical Company,Milwaukee,WI)和7.2g氯化铵。当反应混合物在氮气下在100℃下搅拌过夜之后,所述混合物冷却至室温,和700ml去离子水混合,当所述反应混合物用稀盐酸酸化之后,过滤收集所得白色固体。用300ml去离子水洗涤所述固体,之后用300ml己烷洗涤,然后在真空条件下在干燥器中干燥。收集23.9g白色产物,并由NMR证实其结构。
份B
合成1,3,5-三(5-(对-辛氧基苯基)-1,3,4-噁二唑-2-基)苯(OPOB)
在氮气气氛下,在回流条件下,在20ml的干燥吡啶中搅拌5g的5-(对-辛氧基苯基)-1,2,3,4-四唑和1.5g 1,3,5-三羰基三氯苯(Aldrich Chemical Company,Milwaukee,WI)过夜。在冷却至室温并加入甲醇之后,形成白色沉淀物,过滤并用额外的甲醇洗涤,之后在真空条件下在干燥器中干燥。分离出3.5g的粗产物,再使用二氯甲烷∶乙酸乙酯的50∶50混合物在硅胶上进行柱色谱纯化,并通过NMR证实其结构。
合成4,4’,4″-三((4-二苯基氨基)苯基)三苯基胺(TDAPTA)
份A
合成4-溴-N,N-二苯基苯胺。
基本上如Creason等,J.Org.Chem.,37,4440(1972)所述制得4-溴-N,N-二苯基苯胺。
份B
合成N,N-二苯基-4-(4,4,5,5-四甲基-1,3,2-二氧杂硼杂环戊烷(a杂硼杂环戊烷)-2-基)苯胺
通过注射器将82.57毫升的2.5M正丁基锂溶液(Aldrich Chemical)滴加到24g(0.074摩尔)4-溴-N,N-二苯基苯胺在175ml干燥的四氢呋喃(THF)和处于-78℃下的溶液中。在-78℃下继续搅拌1小时,然后在-50℃下搅拌1小时。所述混合物冷却至-78℃,并通过注射器一次性加入17.22g(0.0925摩尔)2-异丙氧基-4,4,5,5-四甲基-1,3,2-二氧杂硼杂环戊烷(Aldrich Chemical Co.)。所述温度在-78℃下保持3小时。移开所述冷却浴,使所述反应物升至室温,并静置12小时。所述反应混合物倒入饱和的乙酸铝中,并用乙醚提取。所述乙醚层经过硫酸镁干燥,并浓缩制得粘稠的油状物。通过柱色谱纯化(硅胶,用梯度从100%己烷到40%己烷变化的己烷∶甲苯混合物进行洗提)制得N,N-二苯基-4-(4,4,5,5-四甲基-1,3,2-二氧杂硼杂环戊烷-2-基)苯胺,为油状物(19.9g,72.8%产率),在静置过程中缓慢结晶成固体。
份C
合成TDAPTA
将10.90g(29.4毫摩尔,3.15当量)N,N-二苯基-4-(4,4,5,5-四甲基-1,3,2-二氧杂硼杂环戊烷-2-基)苯胺、4.49g(9.30毫摩尔,1当量)三(4-溴代苯基)胺(Aldrich Chemical Co.)、1.41g(3.5毫摩尔,0.375当量)ALIQUAT 336(AldrichChemical Co.)和17毫升的2M Na2CO3水溶液(70.4毫摩尔,7.55当量)加入160毫升的甲苯中。将这种混合物用氮气流冲洗1小时,之后在50℃下再冲洗1小时。在氮气冲洗条件下,加入130mg四(三苯基膦)钯(0)(0.10毫摩尔,0.012当量)。然后,所述反应混合物回流18小时。所述冷却的反应物转移到分离漏斗中,并收集所述有机层。用乙醚提取所述水层,并干燥所述合并的有机层,并蒸发制得油状固体物质。所述油状物溶解在热的甲苯中,并冷却沉淀淡褐色的固体。过滤所述沉淀物(7.3g),并通过薄层色谱法(己烷/甲苯,1∶1)显示由主要组分组成。柱色谱法(硅胶,从100%甲苯开始的甲苯∶己烷梯度)制得5.10g(56%产率)TDAPTA。阳离子质谱法得出m/z 974(C72H54N4要求M+974)。
合成包含50摩尔%电子运输噁二唑(ODP3)聚芴共聚物
在212毫升甲苯中,将12.84g(20毫摩尔)9,9-二辛基-2,7-二(4,4,5,5-四甲基-1,3,2-二氧杂硼杂环戊烷-2-基)-芴和8.856g(18毫摩尔)2-(2,5-二溴苯基)-5-[4-辛氧基]苯基]-1,3,4-噁二唑与2.02g(5毫摩尔)ALIQUAT 336混合。往该悬浮液中加入36毫升2M Na2CO3水溶液,然后使用氮气冲洗所述混合物1小时,然后在65℃冲洗半小时。然后在氮气条件下加入0.232g(0.2毫摩尔)四(三苯基膦)钯(0)。所述反应在氮气条件下回流3天。加入1毫升的溴苯,并再将所述反应物回流18小时。当所述反应物冷却之后,将其倒入500毫升的甲醇和水(9∶1)中。所述聚合物沉淀析出,为橡胶状灰色半固体。过滤所述固体,并在抽滤条件下干燥。所述滤饼再次溶解在氯仿中,并从甲醇中沉淀。过滤所述沉淀物,并用甲醇洗涤,制得白色固体。GPC显示Mw=21K,Mn=7.6K,PD=2.8。
合成二(2-(5-三氟甲基苯基)吡啶根合-N,C2’)铱(III)乙酰丙酮化物(5TFMPPIr)
在60毫升乙二醇二甲醚中混合4.18g(22毫摩尔)3-三氟甲基苯基硼酸(Aldrich Chemical Co.)、0.78g(17.6毫摩尔)2-溴代吡啶和5.04g(60毫摩尔)NaHCO3。在加入0.5g(Ph3P)4Pd之前,所述溶液用氮气冲洗1小时。所述混合物在氮气条件下回流过夜。当反应器冷却之后,所述混合物用乙醚提取,并用水和盐水洗涤所述合并的乙醚层。当通过旋转蒸发除去乙醚之后,所述粗产物进行真空蒸馏,制得2.0g的淡褐色油状产物。通过NMR证实所述产物的结构。
在84ml 2-乙氧基乙醇和28ml水中混合1.85g(8.29毫摩尔)2-(3’-三氟甲基苯基)-吡啶和1.24g IrCl3.xH2O。所述混合物在氮气气氛下回流过夜。当反应物冷却之后,加入100ml的水,并形成沉淀物。过滤所述沉淀物,并用水、二乙醚和己烷连续洗涤,制得1.42g的淡绿色固体。通过NMR证实所述产物的结构。
在40ml的2-乙氧基乙醇中悬浮1.42g的淡绿色固体。加入0.23g的Na2CO3和2g的2,4-戊二酮。在氮气条件下将所述悬浮液回流过夜。所得溶液加入40ml的水中,析出淡绿色的粉末。过滤所述粉末,并用水、二乙醚和己烷连续洗涤,制得1g的淡绿色粉末。在2×10-6乇和180-230℃下,将一半的化合物升华。制得0.37g橙色粉末。通过NMR证实所述产物的结构。
对比例A-D:包含掺杂磷光质铱发射体的PVK∶PBD掺合物的MDP有机电致发光器件
对比例A-D说明了常规分子掺杂聚合物(MDP)有机电致发光器件的起始电致发光性能和运行寿命,上述器件由包含空穴-运输聚合物、聚(9-乙烯基咔唑)(PVK)、电子-运输材料、2-(4-联苯基)-5-(4-TER叔丁基苯基)-1,3,4-噁二唑(PBD)和各种发射掺杂物的MPD层。
在丙酮中清洗氧化铟锡(ITO)-玻璃基材(Applied Films Corporation,Longmont,CO;约25欧姆/平方),用氮气干燥,并用浸泡在甲醇中的TX1010VectraTM Sealed-Border拭布(Texwipe,Upper Saddle River,NJ)擦拭。然后,在Technics Micro Reactive Ion Etcher,Series 80(K&M Company,Dublin,CA)中,在200毫乇的氧气压力和50W输出能的条件下对所述基材进行氧气等离子体处理。通过0.2微米的尼龙微过滤器过滤聚(3,4-亚乙基二氧噻吩)/聚(苯乙烯磺酸),以PEDT 4083(Bayer Corp,Pittsburgh,PA.,PEDT 4083)购得,然后,以2500 RPM的旋转速度将其水性悬浮液旋涂到所制备的基材上。所得涂布的基材在110℃下,在氮气气流下进行退火约15分钟。合成二(2-苯基吡啶根合-N,C2’)铱(III)乙酰丙酮化物(PPIr)和二(2-苯并[5]噻吩基吡啶根合-N,C2’)铱(III)乙酰丙酮化物(BTPIr)复合物,如文献中所述(见,例如,Lamansky等,Inorg.Chem.,40,1704(2001))。
将25mg的PVK(Polymer Source Inc.,Dorval,Quebec,Canada)、10mg的PBD(Dojindo Molecualr Technologies,Gaithersburg,MD.)和2mg的PPIr或BTPIr溶于1.8ml的氯仿中。所得溶液通过0.2微米尼龙微过滤器进行过滤,并以2500 RPM的旋转速度液旋涂到ITO-玻璃/PEDT 4083基材上,形成MDP层。
在对比例B和D中,将电子-运输材料,三(8-羟基喹啉根合)铝(III)(Alq)(从H.W.Sands,Jupiter,FL购得)的层在真空(约10-5乇)及升华速度为0.5-2埃/秒的条件下沉淀到MDP层上。各器件用阴极封端,所述阴极包含约7-10埃的氟化锂(Alfa Aesar Co.,Ward Hill,MA.)和2000埃的铝(Alfa Aesar Co.),对LiF而言,在高真空(10-6-10-5乇)和0.5埃/秒的速度进行沉淀,对Al而言,在高真空(10-6-10-5乇)和15-20埃/秒的速度进行沉淀。在2-20mA/cm2的电流密度下测量器件的电致发光和亮度-电流-电压的特性。在连续恒定电流下进行所有试验器件的运行寿命试验。
性能如表1所述。不论器件A-D中的峰值效率(例如,器件A的峰值效率为25-35Cd/A,器件C的为3-4Cd/A)有多高,运行寿命(在本文中定义为在给定恒定电流下达到起始亮度一半所需的时间)不会超过约10小时。
对比例E和F:MDP包含电离势相对较高的空穴-运输材料的有机电致发光器件
将15mg的PVK、10mg的4,4’-二(咔唑-9-基)联苯(CBP)(购自H.W.Sands)、10mg PBD和2mg的PPIr在1.8ml氯仿中的溶液和15mg的PVK、10mgN,N’-二(萘-1-基)-N,N’-二(苯基)二氨基联苯(TPD)(也购自H.W.Sands)、10mg PBD和2mg的PPIr在1.8ml氯仿中的第二溶液旋涂到基本如对比例B所述制得的单独ITO/PEDT4083基材上。实施例E和F的器件如对比例B中所述的步骤来制得。
器件E和F的器件性能和寿命如表1所述。将电离势相对较高的空穴-运输芳族叔胺如CBP和TPD加入PVK∶PBD基质中不会显著提高器件E和F的运行寿命。包含CBP的器件E和包含TPD的器件F的半寿命(Half life)分别小于20小时和约30小时。
实施例1-4:包含本发明有机电致发光组合物的MDP有机电致发光器件
基本上如对比例E所述,将15mg PVK、4,4’,4″-三(N-(3-甲基苯基)-N-苯基氨基)三苯基胺(MTDATA)(购自H.W.Sands)、10mgPBD和2mg PPIr或2mg BTPIr加入1.8ml氯仿中,由此制备溶液,将所述溶液旋涂到ITO/PEDT 4083基材上,所述基材基本上如对比例A或对比例B所述来制得。器件1和2分别如对比例A或B所述制得。
器件1-4的器件性能和寿命如表1所述。相比对比例A-F的器件,所有器件1-4显示运行电压较低(例如,在4mA/cm2下为7-8V),运行寿命显著提高(在电流密度为1.6-1.7mA/cm2下为0.5-2×103小时)。
对比例G和H以及实施例5和6:包含空穴-运输聚合物PVK-DPAS的MDP有机电致发光器件
基本上使用对比例A的步骤制备溶液,除了将在1.8ml氯仿中的25mgPVK-DPAS、10mg PBD和2mg PPIr或2mg BTPIr旋涂到玻璃-ITO/PEDT 4083基材,制备分别在对比例G和H中评价的器件,或者将在1.8ml氯仿中的15mgPVK-DPAS、10mg MTDATA、10mg PBD和2mg PPIr或2mg BTPIr旋涂到玻璃-ITO/PEDT 4083基材上,制备实施例5和6的器件。根据对比例B所述的步骤制得对比例G和H以及实施例5和6的器件。
对比例g和H以及实施例5和6的器件性能和寿命如表1所述。对比例G和H的PVK-DPAS-基器件显示运行寿命仅为1小时,而本发明所述组合物证实寿命为60(实施例5)到200小时(实施例6)。本实施例和实施例1-6显示在MDP器件中使用本发明的有机电致发光组合物提高了大量空穴运输聚合物基质的寿命和运行电压。
实施例7-8和对比例I:包含电惰性聚苯乙烯(PS)的MDP有机电致发光器件
如下所述制备溶液:10mg聚(苯乙烯)(PS)(MW=90,000,购自AldrichChemical,Milwaukee,WI)、15mg MTDATA、10mg PBD和2mg BTPIr溶解在1.8ml氯仿中,然后按照对比例A所述的步骤旋涂到玻璃ITO/PEDT 4083基材上,形成实施例7。类似地,15mgPS、10mg MTDATA、10mg PBD和2mg BTPIr溶解在1.8ml氯仿中,并旋涂形成实施例8。将10mg PS、15mg 4,4’,4”-三(咔唑-9-基)联苯(TCTA)(购自H.W.Sands)、10mg PBD和2mg BTPIr(2mg)溶于1.8ml氯仿中,并旋涂形成对比例I。
使用对比例B所述的步骤制造实施例7和8以及对比例I的器件。
器件性能和寿命如表1所示。PS-基MDP器件I(包含电离势相对较高的芳族叔胺(TCTA))显示出运行寿命短(在1.6mA/cm2的恒定电流密度下为7小时)。相比,包含本发明有机电致发光组合物的PS-基MDP器件显示出180-280小时的运行寿命(表1)。实施例7证实所述包含电惰性聚合物和本发明有机电致发光组合物的MDP器件显示出运行寿命提高,而实施例8证实具有电离势相对较高的芳族叔胺的MDP组合物显示运行寿命较短。
实施例9-12:包含电子运输聚合物ODP1的MDP有机电致发光器件
基本上如对比例A所述,将4种不同比例的ODP1、MTDATA和BTPIr加入氯仿中,制备实施例9-12的溶液。将所述溶液旋涂到基本上如对比例B所述制得的ITO/PEDT 4083基材。实施例9-12的器件基本上如对比例B所述制造。
实施例9-12的器件性能和寿命如表1所述。器件9-12在电流密度约1.7mA/cm2下测得的运行寿命为500-700小时。这些实施例证实包含电子运输聚合物和本发明有机电致发光组合物的MDP器件的寿命提高。
对比例J和实施例13:包含电子运输聚合物ODP2的MDP有机电致发光器件
基本上如对比例A所述制备溶液:将ODP2、CBP和BTPIr加入对比例J,将ODP2、CBP、MTDATA和BTPIr加入实施例13中。将所述溶液旋涂到基本上如对比例B所述制得的ITO/PEDT 4083基材。实施例J和13的器件基本上如对比例B所述制造。
对比例J和实施例13的器件性能和寿命如表1所述。器件13在电流密度约1.7mA/cm2下测得的运行半寿命为100小时。而在相同电流下,对比器件J在1小时内就损失了一半的起始亮度,显示本发明有机电致发光组合物ODP2提高了包含ODP2的MDP器件的运行寿命。
实施例14-15:包含PVK∶MTDATA∶PBD本体和PTOEP掺杂物的MDP有机电致发光器件
将15mgPVK、10mgMTDATA、10mg PBD和2mg 2,3,7,8,12,13,17,18-八乙基-12H,23H-卟吩铂(II)(PTOEP)(从Mid-Century Chemicals,Chicago,IL购得)溶于1.8ml的氯仿中。将所述溶液旋涂到基本上如对比例A和对比例B所述制得的ITO/PEDT 4083基材上。器件15和16基本上分别如对比例A和对比例B所述制得。
实施例14和15的器件性能和寿命如表1所述。两种MDP制剂在1.7mA/cm2的电流密度下的运行半寿命为600-700小时,证实包含本发明有机电致发光组合物的MDP器件提高了电致发光的寿命,不论是否使用了发射掺杂物。
对比例K和L以及实施例16和17:包含荧光掺杂物的MDP电致发光器件
将50mg PVK,20mg PBD和0.15mg[3-(2-苯并噻唑基)-7-(二乙基氨基)香豆素(C6,Aldrich Chemical Co.)溶于3.6ml氯仿中,形成用于制备对比例K的溶液。将30mg PVK,20mg MTDATA,20mg PBD和0.15mg C6溶于3.6ml氯仿中,形成用于制备实施例16的溶液。将50mg PVK,20mg PBD和0.15mgPyromethene 567(PyR567,Exciton Inc.,Dayton,OH)溶解在3.6ml氯仿中,形成用于制备对比例L的溶液。将25mg PVK,20mg MTDATA,20mg PBD和0.15mg C6溶于3.6ml氯仿中,形成用于制备实施例17的溶液。将所述溶液旋涂到基本上如对比例B所述制得的ITO/PEDT 4083基材。对比例K和实施例16的器件基本上如对比例B所述制得。
对比例K和L以及实施例16和17的器件性能和寿命如表1所述。包含MTDATA的器件(实施例16和17)显示了显著提高的运行寿命,在1.7mA/cm2的电流密度下为500-750小时,而对比例K和L的组合物证实仅为1-4小时寿命。这表明本发明的有机电致发光组合物能提高电致发光的寿命,不论是否使用了发射掺杂物。
实施例18-19:包含电子运输材料OPOB和BND的MDP电致发光器件
将15mg PVK,10mg MTDATA,10mg OPOB和2mg BTPIr溶解在1.8ml氯仿中,所得溶液用于制备实施例18。将15mg PVK,10mg MTDATA,2,5-二-(1-萘基)-1,3,4-噁二唑(BND)(从Lancaster Synthesis,Windham,N.H.购得),2mg和BTPIr溶解在1.8ml氯仿中,形成用于制备实施例19的溶液。所述溶液旋涂到基本上如对比例B所述制得的ITO/PEDT 4083基材。所述器件基本上如对比例B所述制得。
实施例18和19的器件性能和寿命如表1所述。实施例18在1.7mA/cm2电流密度下的运行寿命证实为约500小时,表明本发明所述有机电致发光组合物提高了包含各种电子运输组分的MDP器件的运行稳定性。
实施例20和21:包含空穴运输材料NDP和TDAPTA的MDP有机电致发光器件
将15mg PVK,10mg TDAPTA,10mg PBD和2mg BTPIr溶解在1.8ml氯仿中,所得溶液用于制备实施例20。将15mg PVK,10mg N,N’-二(3-甲基苯基)-N,N’-二(苯基)二氨基联苯(NPD),10mg PBD和2mg BTPIr溶解在1.8ml氯仿中,所得溶液用于制备实施例21。所述溶液旋涂到基本上如对比例B所述制得的ITO/PEDT 4083基材上。实施例20和21的器件基本上如对比例B所述。
实施例20和21的器件性能和寿命如表1所述。器件在约1.7mA/cm2的电流密度下的运行寿命下降为400-600小时,表明这些芳族叔胺也可以用于将空穴-运输试剂加入MDP器件制剂,以提高器件的运行稳定性。
实施例22-24:MDP层厚度不同的MDP有机电致发光器件
本实施例说明了旋涂的MDP器件的起始电致发光性能和运行寿命,其中,发射层的厚度各不相同。
制备以下原料溶液,并以合适混合比例掺合,制备实施例22-26的旋涂的发射层:
MTDATA:(4,4’,4″-三(N-(3-甲基苯基)-N-苯基氨基)三苯基胺)(OSA 3939,H.W.Sands Corp.,Jupiter,FL),在氯仿中为1.0%(w/w),通过Whatman PuradiscTM0.45微米的聚丙烯(PP)注射过滤器进行过滤和分散。
PVK:聚(9-乙烯基咔唑)(Aldrich Chemical Co.,Milwaukee,WI),在氯仿中为1.0%(w/w),通过Whatman PuradiscTM 0.45微米的聚丙烯(PP)注射过滤器进行过滤和分散。
PBD:2-(4-联苯基)-5-(4-叔丁基苯基)-1,3,4-噁二唑(Dojindo),在氯仿中为1.0%(w/w),通过Whatman PuradiscTM 0.45微米的聚丙烯(PP)注射过滤器进行过滤和分散。
PPIr:二-(2-苯基吡啶根合-N,C2’)铱(III)乙酰丙酮化物(基本按照J.Am.Chem.Soc.,123,4304(2001)中所述的方法制备),在氯仿中为0.25%(w/w),通过Whatman PuradiscTM 0.45微米的聚丙烯(PP)注射过滤器进行过滤和分散。
BTPIr:二-(2-苯并[C]噻吩基吡啶根合-N,C2)铱(III)乙酰丙酮化物(基本按照J.Am.Chem.Soc.,123,4304(2001)中所述的方法制备),在氯仿中为0.25%(w/w),通过Whatman PuradiscTM 0.45微米的聚丙烯(PP)注射过滤器进行过滤和分散。
如下所述制备受体基材:在热的3%Deconextm 12NS清洁剂溶液(Borer ChemieAG,Zuchwil,Switzerland)中超生清洗所述使用光刻技术形成图案的ITO(氧化铟锡)玻璃(Delta Technologies,Stillwater,MN,小于20欧姆/平方,1.1mm厚)。然后,将所述基材置于功率为500瓦(165W/cm2)且氧气流为100sccm的Plasma Science PS 500(Plasma Science,Billerca,MA)高辐射频率的等离子处理器中2分钟。在等离子体处理之后立即将PEDT CH-8000的溶液旋涂到所述受体上。通过Whatman PuradiscTM 0.45微米聚丙烯(PP)注射过滤器过滤PEDTCH-8000(聚(3,4-亚乙基二氧噻吩/聚(苯乙烯磺酸))溶液(CH-8000,来自BayerAG,Leverkusen,Germany,以1∶1的比例用去离子水稀释),并分散到所述ITO受体基材上。然后,以2000rpm的速度旋涂所述受体基材(Headway Researchspincoater)30秒,制得厚度为40nm的PEDT CH-8000薄膜。所有的基材在氮气气氛下加热至200℃,并保持5分钟。所述组合物以不同速度旋涂到PEDT CH-8000上,使样品的厚度为65,75和95nm,分别形成实施例22-24的器件。通过按照200埃Alq、7埃LiF、40埃Al和4000埃Ag的顺序真空沉淀来完成所述器件。结果列于表2。
实施例25和26:发射体浓度各不相同的MDP组合物
本实施例说明了所述MDP层中发射体掺杂物浓度各不相同的旋涂的MDP器件的起始电致发光性能和运行寿命。除了如表1中实施例25和26中所示配制旋涂到PEDT CH-8000上的所述组合物乙烷,使用基本上和实施例22-24相同的方法制造OLED器件。结果列于表2中。
对比例M以及实施例27和28:包含磷光质铱发射体的MF有机电致发光器件
本实施例比较了包含TPD、PBD、PPIr的MF器件和基于MTDATA、TPD、PBD和PPIr的器件。基本上按照对比例A所述制备ITO基材。以2500RPM的速度将PEDT4083旋涂到滑片上,并如相同的实施例所述进行退火。制备以下的溶液:a)0.0397gTPD,0.0638g PBD,0.0021G PPIr,5.18g CHCl3(约2重量%固体);b)0.0336g TPD,0.1078g PBD,0.0040g PPIr,0.0540g MTDATA,9.77g CHCl3;c)0.0370g MTDATA,0.010g TPD,0.053g PBD,0.004g PPIr,5.0g CHCl3。以4500RPM的速度将溶液a)和b)旋涂到ITO/PEDT 4083滑片上。以3500RPM的速度将溶液c)旋涂到ITO/PEDT4083滑片上。如对比例A和B所述沉淀由7埃的LiF和2000埃的铝构成的阴极。在表3中显示了三套器件的分子膜组合物(重量份)、性能和可靠性数据。
实施例M中的器件的寿命限于约5小时。将MTDATA加入MF使器件效率和亮度降低(实施例27和28)。但是,这些器件的寿命显著提高。
实施例29:制备无转印层的供体片
通过混合如下物质来制备光-热转换(LTHC)溶液:3.55份炭黑颜料(Raven 760Ultra Columbian Chemical Co.,Atlanta,GA),0.63份聚乙烯基丁缩醛树脂(ButvarTM B-98,Solutia Inc.,St.Louis,MO),1.90份丙烯酸树脂(JoncrylTM67,S.C.Johnson & Sons,Inc.,Racine,WI),0.32份分散剂(DisperbykTM 161,Byk-Chemie USA,Wallingford,CT),0.09份含氟化学表面活性剂(如美国专利3,787,351的实施例5所述),12.09份环氧酚醛清漆丙烯酸酯(EbecrylTM 629,UCBRadcure Inc.,N.Augusta,SC),8.06份丙烯酸树脂(ElvaciteTM 2669,ICI AcrylicsInc.,Memphis,TN),0.82份2-苄基-2-(二甲基氨基)-L-(4-(吗啉基)苯基)丁酮(IrgacureTM 369,Ciba-Geigy Corporation,TarrytowN,NY),0.12份1-羟基环己基苯基酮(Irgacuretm 184,Ciba-Geigy),45.31份2-丁酮和27.19份1,2-丙二醇单甲醚乙酸酯。将这种溶液涂布到0.1mm厚的聚对苯二甲酸乙二酯(PET)薄膜基材(M7,来自Teijin,Osaka,Japan)上。使用Yasui Seiki Lab涂布器(CAG-150型),使用每英寸150螺旋孔的微型凹版辊来进行涂布。所述LTHC涂层在80℃下流水线干燥,并在紫外(W)辐射下固化。使用100%能量(UVA 320到390nm)输出的Fusion 600瓦D灯泡来提供所述辐射。暴露为6.1m/min。
接着,通过混合14.85份三羟甲基丙烷三丙烯酸酯(SR 351HP,购自Sartomer,Exton,PA),0.93份BUTVAR B-98、2.78份JoncrylTM 67、1.25份IrgacureTM 369、0.19份IrgacureTM 184,48份2-丁酮和32份1-甲氧基-2-丙醇来制备中间层溶液。通过轮转影印涂布法,使用Yasui Seiki Lab涂布器(CAG-150型)来将这种溶液涂布到固化的LTHC层上,微型凹版辊每英寸有180个螺旋孔。这种涂层在60℃下流水线干燥,并在紫外(W)辐射下固化。通过使涂层经过60%能量输出的Fusion 600瓦D灯泡来进行固化。
制备受体的溶液
如实施例22-24中所述制备PEDT CH-8000。
制备受体基材
如实施例22-24所述制备受体基材。
制备转印层的溶液
制备以下原料溶液:
MTDATA:(4,4’,4″-三(N-(3-甲基苯基)-N-苯基氨基)三苯基胺)(OSA 3939,H.W.Sands Corp.,Jupiter,FL),在1,2二氯乙烷中为2.5%(w/w),在甲苯中为2.5%(w/w),通过Whatman PuradiscTM 0.45微米聚丙烯(PP)注射过滤器过滤和分散。
PVK:聚(9-乙烯基咔唑)(Aldrich Chemical Co.,Milwaukee,WI),在1,2二氯乙烷中为2.5%(w/w),在甲苯中为2.5%(w/w),通过Whatman PuradiscTM 0.45微米聚丙烯(PP)注射过滤器过滤和分散。
ODP3的溶液:制得在甲苯中0.5%(w/w)的溶液,通过Whatman PuradiscTM 0.45微米聚丙烯(PP)注射过滤器过滤和分散。
PBD:2-(4-联苯基)-5-(4-叔丁基苯基)-1,3,4-噁二唑(Dojindo),在1,2二氯乙烷中为2.5%(w/w),在甲苯中为2.5%(w/w),通过Whatman PuradiscTM 0.45微米聚丙烯(PP)注射过滤器过滤和分散。
PPIr:二-(2-苯基吡啶根合-N,C2’)铱(III)乙酰丙酮化物(按照J.Am.Chem.Soc.,123,4304(2001)中所述的方法制得),在1,2二氯乙烷中为2.5%(w/w),通过Whatman PuradiscTM 0.45微米聚丙烯(PP)注射过滤器过滤和分散。
BTPIr:二(2-苯并[c]噻吩基吡啶根合-N,C2’)铱(III)乙酰丙酮化物(按照J.Am.Chem.Soc.,123,4304(2001)中所述的方法制得),在1,2二氯乙烷中为2.5%(w/w),通过Whatman PuradiscTM 0.45微米聚丙烯(PP)注射过滤器过滤和分散。
5TFM PPIr:二(2-(5’-三氟甲基苯基)吡啶根合-N,C2’)铱(III)乙酰丙酮化物(基本按照以上方法制得),在甲苯中为0.25%(w/w),通过Whatman PuradiscTM 0.45微米聚丙烯(PP)注射过滤器过滤和分散。
对比例N和O以及实施例30-34:制备供体片上的转印层,并将转印层转印
使用表4中所述的组合物在实施例29的供体片上形成转印层。为了制得所述掺合物,以合适比例混合用于所述转印层的溶液,并在室温下搅拌所得溶液20分钟。通过以约2000-2500rpm旋涂(Headway Research旋涂器)30秒来沉淀所述转印层,制得厚度约为100nm的薄膜。
使上述涂布的供体片和所述基本如实施例22-24所述(除了所述基材是未形成图案的ITO-涂布玻璃以外)制得的受体基材接触。接着,所述供体片使用两个单模式Nd:YAG激光器进行成像。使用线性检流计系统进行扫描,同时使用作为近-远心构型部件的f-θ扫描透镜将所述混合的激光汇集在图像平面上。所述激光的能量密度为0.4-0.8J/cm2。所述激光点的大小(在1/e2强度下测量)为30微米×350微米。所述线性激光点的速度调节在10-30醚/秒,如在图像平面上所测得的。所述激光点在垂直于主要位移的方向上颤动,振幅约为100微米。所述转印层作为线转印到所述受体基材上,所述线的宽度约100微米。
以一系列线的形式转印所述转印层。所得图像如表4所示,其中“良好成像”是指所述材料以10%所需线宽和材料的整个厚度转印时,边缘粗糙度小于5微米且空隙和表面缺陷最少的情况。
对比例P和实施例35:制造激光诱导热成像(LITI)制得的有机发光器件
基本如实施例22-24所述将具有表5所列组合物的MDP层通过LITI成像到受体上。LITI成像在固定激光能量0.55J/cm2下进行。所述转印层以一系列的线转印,所述线通过ITO条覆盖受体上的登记(registry)。将电子运输层、Alq和之后的LiF/Al/Ag阴极沉淀到所述形成图案的MDP层上,如实施例22-24所述,形成对比例P和实施例35的LITI器件。所述器件的结果图表5所述。在两种情况下,从所述器件中发射出绿光。
                                                                       表1
  编号                                器件结构       电压4mA/cm3(V)    峰值效率(Cd/A)     运行半寿命J(mA/cm2)和L(Cd/m2)
  A     ITO/PEDT 4083/PVK(0.66)∶PBD(0.27)∶PPIr/LiF/Al     12.5±1.5   30±5     <10(1.6,500±100)
  B     ITO/PEDT 4083/PVK(0.66)∶PBD(0.27)∶PPIr/Alq/LiF/Al     13±2   30±5     <10(1.7,500±100)
  C     ITO/PEDT 4083/PVK(0.66)∶PBD(0.27)∶BTPIr/LiF/Al     14±2   3±0.5     <10(1.7,65±10)
  D     ITO/PEDT 4083/PVK(0.66)∶PBD(0.27)∶BTPIr/Alq/LiF/Al     14±2   4±0.5     <10(1.6,75±10)
  E     ITO/PEDT 4083/PVK(0.41)∶CBP(0.26)PBD(0.26)∶PPIr/Alq/LiF/Al     12.5±1   20±4     <10(1.5,400±80)
  F     ITO/PEDT 4083/PVK(0.41)∶TPD(0.26)∶PBD(0.26)∶PPIr/Alq/LiF/Al     11±1   4±1     30(1.6,60±10)
  1     ITO/PEDT4083/PVK(0.41)∶MTDATA(0.26)∶PBD(0.26)∶PPIr/LiF/Al     8±1   2.8±0.5     0.5×103(1.6,45±10)
  2     ITO/PEDT4083/PVK(0.41)∶MTDATA(0.26)∶PBD(0.26)∶PPIr/Alq/LiF/Al     7.5±1   11±1     1×103(1.7,120±10)
  3     ITO/PEDT4083/PVK(0.41)∶MTDATA(0.26)∶PBD(0.26)∶BTPIr/LiF/Al     8.5±1   1±0.2     0.5×103(1.7,10±4)
  4     ITO/PEDT4083/PVK(0.41)∶MTDATA(0.26)∶PBD(0.26)∶BTPIr/Alq/LiF/Al     8±1   2.5±0.5     1-2×103(1.7,30±8)
  G     ITO/PEDT 4083/PVK-DPAS(0.67)∶PBD(0.26)∶PPIr/Alq/LiF/Al     15±1   26±5     0.8(1.6,150±15)
  5   ITO/PEDT4083/PVK-DPAS(0.41)∶MTDATA(0.26)∶PBD(0.26)∶PPIr/Alq/LiF/Al   10±1   3.5±0.5     60(1.6,60±5)
  H   ITO/PEDT 4083/PVK-DPAS(0.67)∶PBD(0.26)∶BTPIr/Alq/LiF/Al   15±1   4±0.5     1.2(1.6,75±15)
  6   ITO/PEDT4083/PVK-DPAS(0.41)∶MTDATA(0.26)∶PBD(0.26)∶BTPIr/Alq/LiF/Al   11±1.5   1±0.2     200(1.7,15±3)
  7   ITO/PEDT4083/PS(0.26)∶MTDATA(0.41)∶PBD(0.26)∶BTPIr/Alq/LiF/Al   77±0.5   1.6±0.3     280(1.6,10±2)
  8   ITO/PEDT 4083/PS(0.41)∶MTDATA(0.26)∶PBD(0.26)∶BTPIr/Alq/LiF/Al   9.2±1   3.2±0.5     180(1.6,35±10)
  I   ITO/PEDT 4083/PS(0.26);TCTA(0.41)∶PBD(0.26)∶BTPIr/Alq/LiF/Al   9.3±0.5   3.7±0.5     7(1.6,70±15)
  9   ITO/PEDT 4083/ODP1(0.69)∶MTDATA(0.26)∶BTPIr/Alq/LiF/Al   10.6±0.5   2.7±0.4     -
  10   ITO/PEDT 4083/ODP1(0.55)∶MTDATA(0.40)∶BTPIr/Alq/LiF/Al   8.8±0.3   2.0±0.3     0.5×103(1.7,27±3)
  11   ITO/PEDT 4083/ODP1(0.40)∶MTDATA(0.55)∶BTPIr/Alq/LiF/Al   7.1±0.4   1.75±0.3     0.7×103(1.7,15±3)
  12   ITO/PEDT 4083/ODP1(0.26)∶MTDATA(0.69)∶BTPIr/Alq/LiF/Al   7.1±0.3   1.5±0.3     0.65×103(1.7,10±3)
  J     ITO/PEDT 4083/ODP2(0.60)∶CBP(0.36)∶PPIr/Alq/LiF/Al     15.6±0.9    19.5±4.5   1(1.7,320±40)
  13     ITO/PEDT4083/ODP2(0.60)∶CBP(0.18)∶MTDATA(0.18)∶PPlr/Alq/LiF/AI     9.8±0.3    4.6±1.1   90(1.7,50±10)
  14     ITO/PEDT 4083/PVK(0.41)∶MTDATA(0.26)∶PBD(0.27)∶PtOEP/LiF/Al     9.6±0.3    0.2+0.05   0.6×103(1.7,5±1)
  15     ITO/PEDT 4083/PVK(0.41)∶MTDATA(0.26)∶PBD(0.27)∶PtOEP/Alq/LiF/Al     9.6±0.4    0.75±0.1   0.7×103(1.7,18±3)
  K     ITO/PEDT 4083/PVK(0.713)∶PBD(0.285)∶C6/Alq/LiF/AI     9.8±0.4    4.0±0.45   1(1.7,70±6)
  16     ITO/PEDT4083/PVK(0.428)∶MTDATA(0.285)∶PBD(0.285)∶C6/Alq/LiF/AI     8.2±0.2    1.3±0.19   0.75×103(1.7,20±3)
  L     ITO/PEDT 4083/PVK(0.713)∶PBD(0.285)∶Pyr567/Alq/LiF/AI     11.5+0.5    6.8±0.8   4(1.7,110±10)
  17     ITO/PEDT4083/PVK(0.428)∶MTDATA(0.285)∶PBD(0.285)∶Pyr567/Alq/LiF/AI     9.5+0.3    1.8+0.15   05×103(1.7,25±4)
  18     ITO/PEDT4083/PVK(0.41)∶MTDATA(0.26)∶OPOB(0.26)∶BTPIr/Alq/LiF/Al     9.5+0.4    0.9+0.2   0.5×103(1.7,15±2)
  19     ITO/PEDT4083/PVK(0.41)∶MTDATA(0.26)∶BND(0.26)∶BTPIr/Alq/LiF/AI     8.7+0.4    1.45+0.3   -
  20     ITO/PEDT4083/PVK(0.41)∶TDAPTA(0.26)∶PBD(0.26)∶BTPIr/Alq/LiF/Al   8.0+0.4   0.7+0.1     0.6×103(1.7,10±2)
  21     ITO/PEDT4083/PVK(0.41)∶NPD(0.26)∶PBD(0.26)∶BTPTr/Alq/LiF/AI   8.1+0.3   1.5+0.2     0.4×103(1.7,22±2)
                                                                                                 表2
  编号                      器件结构 MDP层厚度(nm)     电压4mA/cm3(V)    峰值效率(Cd/A)     运行半寿命(小时)J(mA/cm2)和L(Cd/m2)
    22     ITO/PEDT CH-22 8000/PVK(0.42)∶MTDATA(0.28)∶PBD(0.27)∶PPIr(0.03)/LiF/Al/Ag     60     6.8     9.5+/-0.3     100(5,250)
    23     ITO/PEDT CH-23 8000/PVK(0.42)∶MTDATA(0.28)∶PBD(0.27)∶PPIr(0.03)/LiF/Al/Ag     75     7.7     8.4+/-0.2     70(6.6,250)
    24     ITO/PEDT CH-24 8000/PVK(0.42)∶MTDATA(0.28)∶PBD(0.27)∶PPIr(0.03)/LiF/Al/Ag     95     10.3     6.3+/-0.5     50(4.6,250)
    25     ITO/PEDT CH-8000/PVK(0.42)∶MTDATA(0.28)∶PBD(0.27)∶BtPIr(0.03)/LiF/Al/Ag     62     7.2     1.2+/-0.1     400(5.1,50)
    26     ITO/PEDT CH-8000/PVK(0.41)∶MTDATA(0.27)∶PBD(0.26)∶BtPIr(0.06)/LiF/Al/Ag     65     7     1.15+/-0.1     650(4.3,50)
                                                                                                  表3
  编号                    器件结构     电压4mA/cm3(V)   峰值外延QE(%)  峰值效率(Cd/A)   运行半寿命(小时)J(mA/cm2)和L(Cd/m2)
    M     ITO/PEDT4083/TPD(38)∶PBD(0.6)∶PPIr/LiF/Al     8.0     6.3     23     5.1(3.8,737)
    27     ITO/PEDT 4083/TPD(0.17)∶MTDATA(0.27)∶PBD(0.54)∶PPIr/LiF/Al     9.4     3.3     12     36(3.8,481)
    28     ITO/PEDT 4083/TPD(0.1)∶MTDATA(0.36)∶PBD(0.51)∶PPIr/LiF/Al     9.97     1.32     4.8     117(3.8,162)
                                                                                                    表4
  编号           转印系统   转印系统的溶剂   转印系统组成(重量%)     受体系统   剂量效果
    N  PVK∶PBD∶PPIr     1,2-二氯乙烷     69∶28∶3   PEDT CH-8000   良好成像
    30  PVK∶MTDATA∶PBD∶PPIr     1,2-二氯乙烷     60∶10∶27∶3   PEDT CH-8000   良好成像
    31  PVK∶MTDATA∶PBD∶PPIr     1,2-二氯乙烷     50∶20∶27∶3   PEDT CH-8000   良好成像
    32  PVK∶MTDATA∶PBD∶PPIr     1,2-二氯乙烷     42∶28∶27∶3   PEDT CH-8000   良好成像
    O  PVK∶PBD∶BtPIr     1,2-二氯乙烷     69∶28∶3   PEDT CH-8000   良好成像
    33  ODP3∶MTDATA     甲苯     50∶50   PEDT CH-8000   良好成像
    34  MTDATA∶TPD∶PBD∶5TFM PPIr     甲苯     36∶9∶51∶4   PEDT CH-8000   良好成像
                                                                                     表5
  编号             LITI转印系统     组成(重量%)   电压(V),500Cd/m2    效率(Cd/A),500Cd/m2
    P     ITO/PEDT CH-8000/PVK∶PBD∶PPIr/Alq/LiF/Al/Ag     69∶28∶3     12.5     18
    35     ITO/PEDT CH-8000/PVK∶MTDATA∶PBD∶PPIr/Alq/LiF/Al/Ag     42∶28∶27∶3     14     5.5
在不背离本发明的范围和精神的条件下,本发明的各种修改和替换对本领域那些技术人员来说是显而易见的。应理解,本发明决不是仅仅限制于所述的实施方式和实施例,并且所述实施例和实施方式仅以本发明范围内的实施例存在,本发明的范围由以下所述权利要求书限制。

Claims (28)

1.一种有机电致发光组合物,它包含:
(a)电荷运输基质,包含至少一种电子运输材料;
(b)至少一种非聚合的发射掺杂物;和
(c)至少一种芳族叔胺,包含三个直接连接到氮上的有机基团,所述芳族叔胺选自:
(1)芳族叔胺,其中至少一个所述有机基团包含在对位上具有供电子取代基或在间位上具有两个独立选择的供电子取代基的取代的苯基,各所述供电子取代基是除通过其一个杂原子直接连接到苯基上的杂环取代基以外的取代基,
(2)芳族叔胺,其中,至少两个所述有机基团各包含在其末端苯环的对位具有供电子取代基的独立选择的取代的联苯或取代的芴基;和
(3)芳族叔胺,其中至少一个所述有机基团包含稠合的多芳基和至少一个所述其它有机基团包含在其末端苯环的对位具有供电子取代基的取代的联苯或取代的芴基,
所述第(1)、(2)和(3)类的芳族叔胺还任选地进一步取代,但仅被供电子取代基取代;
其条件是当所述电荷运输基质基本上由非聚合的电子运输材料组成时,所述芳族叔胺选自除第(3)类非聚合的胺以外的胺;
其条件还有当所述电荷运输基质包含聚酰亚胺时,所述电荷运输基质包含除聚酰亚胺以外的第二聚合材料。
2.如权利要求1所述的组合物,其特征在于,所述非聚合的发射掺杂物是磷光质。
3.如权利要求1所述的组合物,其特征在于,所述电子运输材料选自2-(4-联苯基)-5-(4-叔丁基苯基)-1,3,4-噁二唑、1,3,5-三(5-(对-辛氧基苯基)-1,3,4-噁二唑-2-基)苯、3-(4-联苯基)-4-苯基-5-(4-叔丁基苯基)1,2,4-三唑和含噁二唑和含三唑的聚合物。
4.如权利要求1所述的组合物,其特征在于,所述电荷运输基质还包含一种或多种空穴运输材料或电惰性材料。
5.如权利要求1所述的组合物,其特征在于,所述芳族叔胺由以下通式之一表示:
Figure A038224270003C1
式中,各R1单独选自烷基、环烷基、链烯基、环烯基、炔基、环炔基、芳基、杂芳基以及它们的组合;各R2单独选自烷氧基、芳氧基、烷硫基、芳硫基、二烷基氨基、二芳基氨基以及它们的组合;和各R3单独选自氢、烷基、环烷基、链烯基、环烯基、炔基、环炔基、芳基以及它们的组合。
6.如权利要求5所述的组合物,其特征在于,各R1是独立选择的芳基;各R2是独立选择的二芳基氨基;各R3单独选自氢和烷基。
7.如权利要求6所述的组合物,其特征在于,各R1单独选自苯基和间-甲苯基;各R2单独选自二苯基氨基、N-苯基-N-(3-甲基苯基)氨基和二(对-叔丁基苯基)氨基;各R3单独选自氢、甲基、正丁基和叔丁基。
8.如权利要求5所述的组合物,其特征在于,所述直接连接到氮上的三个有机基团是相同的。
9.如权利要求1所述的组合物,其特征在于,所述芳族叔胺由以下通式之一表示:
式中,各R4单独选自烷基、环烷基、链烯基、环烯基、炔基、环炔基、芳基、杂芳基以及它们的组合;所述各R5单独选自烷氧基、芳氧基、烷硫基、芳硫基、二烷基氨基、二芳基氨基以及它们的组合;各R6单独选自氢、烷基、环烷基、链烯基、环烯基、炔基、环炔基、芳基以及它们的组合;各R7单独选自氢、烷基、环烷基、链烯基、环烯基、炔基、环炔基、芳基以及它们的组合。
10.如权利要求9所述的组合物,其特征在于,各R4是独立选择的芳基;所述各R5是独立选择的二芳基氨基;各R6单独选自氢和烷基;各R7单独选自氢和烷基。
11.如权利要求10所述的组合物,其特征在于,各R4单独选自苯基和间-甲苯基;各R5单独选自二苯基氨基、N-苯基-N-(3-甲基苯基)氨基和二(对-叔丁基苯基)氨基;各R6单独选自氢、甲基、正丁基和叔丁基;各R7单独选自氢、甲基、正丁基和辛基。
12.如权利要求9所述的组合物,其特征在于,所述直接连接到氮上的三个有机基团是相同的。
13.如权利要求1所述的组合物,其特征在于,所述芳族叔胺由以下通式之一表示:
Figure A038224270004C2
式中,各R8是稠合的多芳基;各R5单独选自烷基、环烷基、链烯基、环烯基、炔基、环炔基、芳基、杂芳基、稠合的多芳基及其组合;各R10单独选自烷氧基、芳氧基、烷硫基、芳硫基、二烷基氨基、二芳基氨基以及它们的组合;各R11单独选自氢、烷基、环烷基、链烯基、环烯基、炔基、环炔基、芳基、杂芳基以及它们的组合;各R12单独选自氢、烷基、环烷基、链烯基、环烯基、炔基、环炔基、芳基、杂芳基以及它们的组合。
14.如权利要求13所述的组合物,其特征在于,各R8选自萘基、蒽基、芘基和菲基;各R5单独选自芳基和稠合的多芳基;各R10是独立选择的二芳基氨基;各R11单独选自氢和烷基;各R12单独选自氢和烷基。
15.如权利要求14所述的组合物,其特征在于,各R8单独选自萘基、蒽基和菲基;各R5单独选自苯基,间-甲苯基和萘基;各R10单独选自二苯基氨基,N-苯基-N-(2-萘基)氨基,N-(3-甲基苯基)-N-(2-萘基)氨基,N-苯基-N-(3-甲基苯基)氨基和二(对-叔丁基苯基)氨基;各R11单独选自氢、甲基和正丁基;各R12单独选自氢、甲基、正丁基和辛基。
16.如权利要求13所述的组合物,其特征在于,R8和R5是相同的稠合多芳基。
17.如权利要求1所述的组合物,其特征在于,所述芳族叔胺选自:
18.如权利要求1所述的组合物,其特征在于,所述电荷运输基质不含聚酰亚胺。
19.一种有机电致发光组合物,它包含:(a)电荷运输基质,包含选自2-(4-联苯基)-5-(4-叔丁基苯基)-1,3,4-噁二唑、1,3,5-三(5-(对-辛氧基苯基)-1,3,4-噁二唑-2-基)苯、3-(4-联苯基)-4-苯基-5-(4-叔丁基苯基)1,2,4-三唑和含噁二唑和含三唑的聚合物的电子运输材料;
(b)至少一种非聚合的发射掺杂物;和
(c)至少一种芳族叔胺,它选自:
Figure A038224270006C2
20.如权利要求19所述的组合物,其特征在于,所述电荷运输基质还包含一种或多种空穴运输材料或电惰性材料。
21.如权利要求19所述的组合物,其特征在于,所述非聚合的发射掺杂物是磷光质。
22.一种有机电致发光组合物,它包含:
(a)电荷运输基质,包含至少一种电子运输材料;
(b)至少一种非聚合的发射掺杂物;和
(c)至少一种芳族叔胺,其空穴迁移率大于约10-5cm2/Vs,电离势约4.8eV-约5.4eV。
23.一种有机电致发光器件,它包含权利要求1、权利要求19或权利要求22所述的组合物。
24.如权利要求23所述的有机电致发光器件,其特征在于,所述器件是有机发光二极管。
25.一种包括权利要求23所述有机电致发光器件或权利要求24所述有机发光二极管的制件。
26.如权利要求25所述的制件,其特征在于,所述制件是显示器。
27.一种制造有机电致发光器件的方法,所述方法包括如下步骤:将权利要求1、权利要求19或权利要求22所述的组合物从供体片选择性转印到受体基材上。
28.一种供体片,它包括:
(a)基材,
(b)光-热转换层和
(c)转印层,它包含权利要求1、权利要求19或权利要求22所述的组合物。
CNB038224275A 2002-09-25 2003-09-15 有机电致发光组合物 Expired - Fee Related CN100357388C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/254,237 2002-09-25
US10/254,237 US20040062947A1 (en) 2002-09-25 2002-09-25 Organic electroluminescent compositions

Publications (2)

Publication Number Publication Date
CN1681903A true CN1681903A (zh) 2005-10-12
CN100357388C CN100357388C (zh) 2007-12-26

Family

ID=32029033

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038224275A Expired - Fee Related CN100357388C (zh) 2002-09-25 2003-09-15 有机电致发光组合物

Country Status (7)

Country Link
US (1) US20040062947A1 (zh)
EP (1) EP1554360A2 (zh)
JP (1) JP2006510230A (zh)
KR (1) KR20050053687A (zh)
CN (1) CN100357388C (zh)
AU (1) AU2003304084A1 (zh)
WO (1) WO2004099338A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108695413A (zh) * 2017-04-11 2018-10-23 Tcl集团股份有限公司 一种电致发光器件及其制备方法

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2409338B (en) * 2002-09-13 2007-01-31 Dainippon Printing Co Ltd EL element
JP3900125B2 (ja) * 2002-11-26 2007-04-04 セイコーエプソン株式会社 有機エレクトロルミネッセンス装置の製造方法
US20040191564A1 (en) * 2002-12-17 2004-09-30 Samsung Sdi Co., Ltd. Donor film for low molecular weight full color organic electroluminescent device using laser induced thermal imaging method and method for fabricating low molecular weight full color organic electroluminescent device using the film
JP4401665B2 (ja) * 2003-03-20 2010-01-20 株式会社半導体エネルギー研究所 電界発光素子
WO2004107822A1 (ja) * 2003-05-29 2004-12-09 Nippon Steel Chemical Co., Ltd. 有機電界発光素子
US20040265622A1 (en) * 2003-06-24 2004-12-30 Eastman Kodak Company Light emitting display
DE10333232A1 (de) * 2003-07-21 2007-10-11 Merck Patent Gmbh Organisches Elektrolumineszenzelement
US7374828B2 (en) * 2003-12-05 2008-05-20 Eastman Kodak Company Organic electroluminescent devices with additive
US7625501B2 (en) 2004-05-18 2009-12-01 Ifire Ip Corporation Color-converting photoluminescent film
KR100751316B1 (ko) * 2004-06-25 2007-08-22 삼성에스디아이 주식회사 유기 전계 발광 소자
US7315042B2 (en) * 2004-11-18 2008-01-01 3M Innovative Properties Company Semiconductors containing trans-1,2-bis(acenyl)ethylene compounds
US20060105199A1 (en) * 2004-11-18 2006-05-18 3M Innovative Properties Company Electroluminescent devices containing trans-1,2-bis(acenyl)ethylene compounds
KR100708655B1 (ko) * 2004-11-27 2007-04-18 삼성에스디아이 주식회사 유기 전계 발광 소자
US7566506B2 (en) * 2005-01-19 2009-07-28 Jen-Chieh Wang Magnetic body
KR100787428B1 (ko) * 2005-03-05 2007-12-26 삼성에스디아이 주식회사 유기 전계 발광 소자
JP2007095759A (ja) * 2005-09-27 2007-04-12 Hitachi Displays Ltd 有機el表示装置
KR20100096105A (ko) * 2007-10-23 2010-09-01 이 아이 듀폰 디 네모아 앤드 캄파니 발광 응용을 위한 3중 발광 층
US20090142556A1 (en) * 2007-11-29 2009-06-04 E. I. Du Pont De Nemours And Company Process for forming an organic electronic device including an organic device layer
US8040048B2 (en) * 2007-12-12 2011-10-18 Lang Charles D Process for forming an organic electronic device including an organic device layer
DE102008050841B4 (de) * 2008-10-08 2019-08-01 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
JP5515283B2 (ja) * 2008-12-10 2014-06-11 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
CN102421858A (zh) * 2009-06-22 2012-04-18 默克专利有限公司 导电制剂
DE102009030848A1 (de) * 2009-06-26 2011-02-03 Merck Patent Gmbh Polymere enthaltend Struktureinheiten, die Alkylalkoxygruppen aufweisen, Blends enthaltend diese Polymere sowie optoelektronische Vorrichtungen enthaltend diese Polymere und Blends
KR101596918B1 (ko) * 2009-12-11 2016-02-23 고려대학교 산학협력단 저가형 염료감응 태양전지용 정공수송물질 함유한 폴리에틸렌옥사이드계 고체 전해질의 제조
CN106549112B (zh) 2011-02-16 2020-01-07 株式会社半导体能源研究所 发光元件
DE202012013737U1 (de) * 2011-03-23 2020-09-30 Semiconductor Energy Laboratory Co., Ltd. Lichtemittierendes Element
US8853070B2 (en) * 2012-04-13 2014-10-07 Oti Lumionics Inc. Functionalization of a substrate
US9698386B2 (en) * 2012-04-13 2017-07-04 Oti Lumionics Inc. Functionalization of a substrate
WO2015009768A1 (en) 2013-07-15 2015-01-22 Polyera Corporation Photopatternable materials and related electronic devices and methods
GB2533268A (en) * 2014-12-02 2016-06-22 Cambridge Display Tech Ltd Organic light-emitting device
CN106848083B (zh) * 2017-03-22 2018-10-30 上海天马有机发光显示技术有限公司 一种oled显示面板、制备方法及包含其的电子设备

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3787351A (en) * 1972-02-28 1974-01-22 Minnesota Mining & Mfg Use of soluble fluoroaliphatic oligomers in resin composite articles
US4252671A (en) * 1979-12-04 1981-02-24 Xerox Corporation Preparation of colloidal iron dispersions by the polymer-catalyzed decomposition of iron carbonyl and iron organocarbonyl compounds
US4720432A (en) * 1987-02-11 1988-01-19 Eastman Kodak Company Electroluminescent device with organic luminescent medium
US4916711A (en) * 1988-09-29 1990-04-10 Boyer Joseph H Lasing compositions and methods for using the same
US5256506A (en) * 1990-10-04 1993-10-26 Graphics Technology International Inc. Ablation-transfer imaging/recording
JP3069139B2 (ja) * 1990-03-16 2000-07-24 旭化成工業株式会社 分散型電界発光素子
US5189029A (en) * 1990-04-23 1993-02-23 Bo-Dekk Ventures, Ltd. Indacene compounds and methods for using the same
US5166024A (en) * 1990-12-21 1992-11-24 Eastman Kodak Company Photoelectrographic imaging with near-infrared sensitizing pigments
US5408109A (en) * 1991-02-27 1995-04-18 The Regents Of The University Of California Visible light emitting diodes fabricated from soluble semiconducting polymers
US5351617A (en) * 1992-07-20 1994-10-04 Presstek, Inc. Method for laser-discharge imaging a printing plate
DE19500912A1 (de) * 1995-01-13 1996-07-18 Basf Ag Elektrolumineszierende Anordnung
JP3712760B2 (ja) * 1995-05-17 2005-11-02 Tdk株式会社 有機el素子
US5695907A (en) * 1996-03-14 1997-12-09 Minnesota Mining And Manufacturing Company Laser addressable thermal transfer imaging element and method
US5725989A (en) * 1996-04-15 1998-03-10 Chang; Jeffrey C. Laser addressable thermal transfer imaging element with an interlayer
US5693446A (en) * 1996-04-17 1997-12-02 Minnesota Mining And Manufacturing Company Polarizing mass transfer donor element and method of transferring a polarizing mass transfer layer
US5710097A (en) * 1996-06-27 1998-01-20 Minnesota Mining And Manufacturing Company Process and materials for imagewise placement of uniform spacers in flat panel displays
US5998085A (en) * 1996-07-23 1999-12-07 3M Innovative Properties Process for preparing high resolution emissive arrays and corresponding articles
US5766779A (en) * 1996-08-20 1998-06-16 Eastman Kodak Company Electron transporting materials for organic electroluminescent devices
DE19638770A1 (de) * 1996-09-21 1998-03-26 Philips Patentverwaltung Organisches elektrolumineszentes Bauelement mit Exciplex
JP3654909B2 (ja) * 1996-12-28 2005-06-02 Tdk株式会社 有機el素子
EP0879868B1 (en) * 1997-05-19 2002-04-03 Canon Kabushiki Kaisha Organic compound and electroluminescent device using the same
EP0953624B1 (en) * 1998-04-28 2004-02-04 Canon Kabushiki Kaisha Triarylamine compound and luminescent device
DE69939052D1 (de) * 1998-09-01 2008-08-21 Daicel Chem Material für organische elektrolumineszente vorrichtung und herstellungsverfahren
US6830828B2 (en) * 1998-09-14 2004-12-14 The Trustees Of Princeton University Organometallic complexes as phosphorescent emitters in organic LEDs
DE60035078T2 (de) * 1999-01-15 2008-01-31 3M Innovative Properties Co., St. Paul Herstellungsverfahren eines Donorelements für Übertragung durch Wärme
US6114088A (en) * 1999-01-15 2000-09-05 3M Innovative Properties Company Thermal transfer element for forming multilayer devices
US6221543B1 (en) * 1999-05-14 2001-04-24 3M Innovatives Properties Process for making active substrates for color displays
US6228543B1 (en) * 1999-09-09 2001-05-08 3M Innovative Properties Company Thermal transfer with a plasticizer-containing transfer layer
US6284425B1 (en) * 1999-12-28 2001-09-04 3M Innovative Properties Thermal transfer donor element having a heat management underlayer
US6228555B1 (en) * 1999-12-28 2001-05-08 3M Innovative Properties Company Thermal mass transfer donor element
US6242152B1 (en) * 2000-05-03 2001-06-05 3M Innovative Properties Thermal transfer of crosslinked materials from a donor to a receptor
US6645645B1 (en) * 2000-05-30 2003-11-11 The Trustees Of Princeton University Phosphorescent organic light emitting devices
JP2002083691A (ja) * 2000-09-06 2002-03-22 Sharp Corp アクティブマトリックス駆動型有機led表示装置及びその製造方法
US6358664B1 (en) * 2000-09-15 2002-03-19 3M Innovative Properties Company Electronically active primer layers for thermal patterning of materials for electronic devices
EP1191821B1 (en) * 2000-09-25 2009-05-27 Konica Corporation Organic electroluminescent element and organic electroluminescent material used therefor
US6803720B2 (en) * 2000-12-15 2004-10-12 Universal Display Corporation Highly stable and efficient OLEDs with a phosphorescent-doped mixed layer architecture
SG138466A1 (en) * 2000-12-28 2008-01-28 Semiconductor Energy Lab Luminescent device
US6614175B2 (en) * 2001-01-26 2003-09-02 Xerox Corporation Organic light emitting devices
JP2002235077A (ja) * 2001-02-08 2002-08-23 Nippon Steel Chem Co Ltd 有機el材料及びそれを用いた有機el素子
JP2002240437A (ja) * 2001-02-19 2002-08-28 Sharp Corp 薄膜形成用ドナーシートの製造方法、薄膜形成用ドナーシート及び有機エレクトロルミネッセンス素子
US7294849B2 (en) * 2001-03-14 2007-11-13 The Trustees Of Princeton University Materials and devices for blue phosphorescence based organic light emitting diodes
US6903505B2 (en) * 2001-12-17 2005-06-07 General Electric Company Light-emitting device with organic electroluminescent material and photoluminescent materials
US7241512B2 (en) * 2002-04-19 2007-07-10 3M Innovative Properties Company Electroluminescent materials and methods of manufacture and use

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108695413A (zh) * 2017-04-11 2018-10-23 Tcl集团股份有限公司 一种电致发光器件及其制备方法
CN108695413B (zh) * 2017-04-11 2019-11-12 Tcl集团股份有限公司 一种电致发光器件及其制备方法

Also Published As

Publication number Publication date
JP2006510230A (ja) 2006-03-23
KR20050053687A (ko) 2005-06-08
AU2003304084A1 (en) 2004-11-26
EP1554360A2 (en) 2005-07-20
WO2004099338A2 (en) 2004-11-18
CN100357388C (zh) 2007-12-26
US20040062947A1 (en) 2004-04-01
AU2003304084A8 (en) 2004-11-26
WO2004099338A3 (en) 2005-01-06

Similar Documents

Publication Publication Date Title
CN1681903A (zh) 有机电致发光组合物
CN100340629C (zh) 电致发光材料及其制备方法和用途
TWI761977B (zh) 用於有機電致發光裝置之材料
CN100340630C (zh) 有机发光材料和器件
CN1777629A (zh) 电活化聚合物
US8039126B2 (en) Materials for organic electroluminescent devices
CN100439469C (zh) 有机金属配位化合物、有机el元件及有机el显示器
CN1764708A (zh) 用于有机电子器件的电子传输剂
TW201634441A (zh) 用於有機電發光裝置之材料
CN1791655A (zh) 有机发磷光物质和有机光电子器件
CN1550540A (zh) 联苯衍生物以及使用它的有机电致发光器件
CN1922284A (zh) 改进的电致发光稳定性
WO2017157983A1 (de) Verbindungen mit spirobifluoren-strukturen
CN1449640A (zh) 含有氟化苯基吡啶、苯基嘧啶和苯基喹啉的电致发光铱化合物及用该化合物制备的器件
KR101631507B1 (ko) 유기전계발광소자용 정공수송물질 및 이를 이용한 유기전계발광소자
TW201833300A (zh) 咔唑衍生物
TW201120001A (en) Charge transport film, method for producing the same, and light-emitting element and photoelectric conversion element using the same
TW202134225A (zh) 電子裝置用的化合物
TW201827425A (zh) 具有咔唑結構之化合物
TW201938562A (zh) 雜環化合物
CN1764652A (zh) 含乙炔基的电子传输剂及其在有机发光器件中的应用
CN1394835A (zh) 苝衍生物的合成方法、苝衍生物以及有机el元件
CN1777628A (zh) 聚喹啉共聚物以及使用该共聚物的有机电致发光元件
TW202039454A (zh) 用於電子裝置的材料
CN1541504A (zh) 在配置有电活性材料的可聚合的无定形基体上形成图形的方法和材料

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee