CN1662419A - 管道式气流动力设备 - Google Patents

管道式气流动力设备 Download PDF

Info

Publication number
CN1662419A
CN1662419A CN038150220A CN03815022A CN1662419A CN 1662419 A CN1662419 A CN 1662419A CN 038150220 A CN038150220 A CN 038150220A CN 03815022 A CN03815022 A CN 03815022A CN 1662419 A CN1662419 A CN 1662419A
Authority
CN
China
Prior art keywords
air
power plant
flow
fan
flow control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN038150220A
Other languages
English (en)
Inventor
A·C·布赖恩特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VTOL TECHNOLOGIES Ltd
Original Assignee
VTOL TECHNOLOGIES Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0214961A external-priority patent/GB0214961D0/en
Application filed by VTOL TECHNOLOGIES Ltd filed Critical VTOL TECHNOLOGIES Ltd
Publication of CN1662419A publication Critical patent/CN1662419A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/025Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the by-pass flow being at least partly used to create an independent thrust component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/001Shrouded propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C15/00Attitude, flight direction, or altitude control by jet reaction
    • B64C15/02Attitude, flight direction, or altitude control by jet reaction the jets being propulsion jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • B64C29/0016Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
    • B64C29/0025Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being fixed relative to the fuselage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/002Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto with means to modify the direction of thrust vector
    • F02K1/004Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto with means to modify the direction of thrust vector by using one or more swivable nozzles rotating about their own axis
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H27/00Toy aircraft; Other flying toys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/13Propulsion using external fans or propellers
    • B64U50/14Propulsion using external fans or propellers ducted or shrouded
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Toys (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种管道式气流动力设备,包括位于管道(4)中的由电动机驱动的风扇(7),该风扇(7)具有进气口侧,并且在操作时在管道中提供高压气流,而且风扇靠近气流分流装置(18)设置,配置所述气流分流装置(18)以便将气流转变为两个或更多副气流,以传送到设备的各个气流喷射管(9)中。该设备可以在如航空器的交通工具中使用,以提供垂直起飞和盘旋能力,以及用作水平飞行动力源。

Description

管道式气流动力设备
本发明涉及一种管道式气流动力设备,尤其是涉及用于航空器或飞船的动力设备,该航空器或飞船利用具有可调节推力的活动喷射管来控制航空器的位置和姿态。本动力设备的可选用途包括具有盘旋功能的平台,适于携带如相机或消防化学品等器材。另一个可能是为进行航空信息观测提供一个自由移动的平台。
在航空器上利用活动喷射管提供初始升空并随后向前加速的原理已在专利说明书GB861480、GB899862和GB905651(Hawker)中公开。这些说明书描述了定向喷嘴的配置,该配置使发动机的推力发生偏转,以使推力部分向下偏转来提供升空。这一阶段之后,喷嘴被旋转来提供向前的加速,在速度足够高时,完全从航空器的机翼获得必要的提升力。喷嘴然后被完全置于尾部位置,以使它们只产生向前的运动。
喷嘴用来产生垂直推力与后来产生向后的推力之间的转换需要精心控制,这样,航空器将始终维持大体水平的姿态。当速度低于机翼上的气流速度时,航空器姿态有时可以通过第二喷嘴来调整,第二喷嘴位于翼尖、前端和尾部,这是在飞行员的控制下进行的。如果在起飞时有侧风,航空器姿态将需要特别仔细地来管理。这是在实际大小的航空器中在转换中维持稳定性所使用的机构。但是,如果航空器是以航空器模型的形式来体现,不存在这种机构,所有的控制调整必须通过调节每个喷嘴发出的推力来进行。
在上述说明书中公开的喷嘴配置提供了四个喷嘴,其中两个位于航空器重心的前面,另外两个位于该点的后面。喷嘴位于航空器的左舷和右舷侧上,这样将可以形成一个相对稳定的平台。
根据本发明,提供了一种管道式气流动力设备,该动力设备包括位于管道中由发动机驱动的风扇,该风扇具有进气口侧,在操作中提供管道中的高压气流,该风扇靠近气流分流装置设置,配置气流分流装置来把气流转变为两个或多个副气流,以传送到设备的各个气流喷射管中。气流分流装置优选是一个气流分流板,其被配置来提供四个副气流。
从气流分流板到喷射管的副气流传送可通过具有圆形、椭圆形或其它截面的各个空气传送导管而实现。
风扇转子可以位于风扇定子叶片单元的附近,该风扇定子叶片单元被用来减小在离开风扇的气流中出现的旋转(漩涡)度。气流分流板可以与一个或多个气流控制叶片在一起,气流控制叶片可以移动,以使到每个喷射管的单独气流能够被调节。
气流控制叶片优选紧靠气流分流板的前部。每个叶片可以被平衡而围绕一个轴旋转,该轴与气流分流板的一个对角线一致,这样的对角线位于可对通过板的一个气流开口的气流提供最小阻碍的位置。
本发明也包括安装有该动力设备的移动平台交通工具,还包括具有该动力设备的航空器。
现在将以示例的方式,参考附图描述本发明的一个特定实施例,
其中:
图1是管道式气流动力设备的一个端透视图,
图2是设备部分切掉后从设备的相反侧面看到的一个类似视图,
图3表示移去前发动机壳部件的动力设备发动机,
图4描述具有管道式风扇定子叶片的一个气流分流板,
图5表示具有气流控制叶片的气流分流板,
图6表示气流分流板,
图7表示气流分流板的不同实施例的四个视图,
图8是从气流分流板的一端看到的透视图,示出了适当位置的气流控制叶片,
图9是从相反一端看到的板的视图,示出了气流控制叶片,
图10是一个部分截面图,表示气流控制叶片如何倾斜可以使气流从一个通道转向气流分流板的另一个通道,
图11表示以不同侧面的四个视图示意的气流控制叶片和伺服电动机组合,
图12表示利用本发明的管道式气流动力设备的一个航空器结构,和
图13是具有喷嘴用以产生单元的偏航运动的动力设备的一个平面图。
本发明的管道式动力设备结构首先选择使用的发动机。在本示例中,这是具有电热插塞点火和最高达28,000RPM转速的两冲程水冷内燃机。图1和2中的视图表示安装有轴流式风扇转子的发动机,该轴流式风扇转子直接支撑在发动机的输出轴上。在这些图中,发动机具有一个工作缸1,与输出轴2所在的位置成直角排列。发动机也提供有一个排气消声器3和包括具有汽化器的燃料箱的常用工作组件。图1中的视图表示由外壳4围绕的风扇转子,该外壳4用于限制风扇产生的加压气流。在图2的视图中,外壳4示出有微小的修改,其中在气流入口端提供有铃形的开口6。
在发动机输出轴2的一端安装的是风扇转子7,其叶片的排列使得在工作缸1的方向驱动气流。进气流由一个气流分流板8分隔为四个气流,这些气流被传送到可调节的喷射管,其中的两个喷嘴9可以在图1视图中的左侧看到。
喷嘴9位于空气传送导管11的端部,该导管从气流分流板8把四个气流运送到四个喷嘴9。喷嘴的调整是通过围绕其传送导管11的端部旋转每个喷嘴9来实现,这样,喷嘴被改变方向,以使其各自的气流向前、向下或向后偏转。每个喷嘴的旋转是通过操作喷嘴旁的第一伺服电动机12来进行。有四个第一伺服电动机12,每个喷嘴9提供有一个。气流导向叶片可以或可以不包含在管道和/或喷嘴中,以提高气流效率,降低气流损失。
图3示出了移去前外壳4部件并省略发动机左侧喷嘴的结构的更多细节。在风扇转子7的下游,包括风扇定子叶片13的固定叶片气流调直器被安装在此,以降低在离开风扇的气流中出现的旋转(漩涡)量。气流分流板8穿过气流安装,其具有四个通道,使得气流被分隔为四个单独的气流,传送到喷嘴9(图1)。气流分流板的成形使得进入的气流将以相当平滑和流线型的方式,基本上相等地被分隔为四个较小的气流。这部分地通过在每个气流分流通道的上游侧提供的漏斗形的入口开口14来达到。
图4表示具有管道式风扇定子叶片13的气流分流板8,叶片13安装在板8前端的轮毂上。也在每个气流分流通道的前端,气流分流板支持气流控制叶片16,该叶片安装在通道前面的一个表面上。有四个气流控制叶片,它们位于较小气流通过的每对通道之间。因此,如果气流控制叶片设置为与通过其每对通道的气流成一直线,则通过两个通道的气流相等。但是,如果气流控制叶片相对气流的方向以较小的角度设置,则通过一个通道的气流将被降低,而通过其它通道的气流将增加。在每对通道之间有四个具有气流控制叶片的气流分流通道,这样,该结构允许对通过单个通道的气流量做出较大程度的调节。
图5表示支撑四个气流控制叶片16的气流分流板8。每个气流控制叶片是以其内末端与它的表面17接触,每个叶片的外末端可通过第二伺服电动机18(图1)围绕一个轴活动,该轴在发动机输出轴的径向。这样,第二伺服电动机18被支撑在外壳4部件上,该外壳部件在操作时围绕风扇组件。
气流分流板8也支撑提供有花键的圆柱形轮毂19,这样,风扇定子叶片13能够以刚性方式被支撑。当然,发动机输出轴2(图2)穿过气流分流板8,这样,风扇转子7能够被固定在该轴的末端。
气流分流板8的下游一侧支撑21(图3),通过该固定装置,引导四个气流的空气传送导管被连接到板上。如图1所示,在发动机的左侧有两个空气传送导管11,在右侧有另外两个导管(图1视图中未标出)。每个空气传送导管终止于其自己的喷嘴9,图1视图中可见的两个喷嘴被示出朝向下方,这样它们将产生一个喷气推力作用,将会使动力设备在这一侧升起。在动力设备相反侧的喷嘴将产生类似效果。但是,每个喷嘴围绕支撑喷嘴的空气传送导管的末端是可旋转的。每个喷嘴的定位是通过为每个喷嘴提供各自的第一伺服电动机12而被调节。这样,如果需要,可以使所有喷嘴产生向上的推力,或者如果喷嘴由其伺服电动机被适当定位,还可能产生向前和向上的混合推力。
图6表示气流控制叶片16从表面17除去之后的气流分流板8。
图7表示气流分流板8的一个不同实施例的四个视图。可以看到,在板上部的两个气流通道彼此由特定的距离隔开,而板下部的两个通道靠近在一起。这使得相关的空气传送导管在发动机主体的周围被绕过。
图8是从气流分流板的一端看到的一个透视图,其示出了气流控制叶片在适当的位置。
图9从气流分流板的相反一端看到的一个视图,其示出了气流控制叶片在适当的位置。应注意的是,倾斜轴20位于水平线上的两组气流控制叶片16,与到下部的两个通道相比,更靠近上部两个气流通道。这同样使得空气传送导管从发动机主体周围穿过。
图10是位于气流分流板8内的两个通道之间的气流控制叶片的局部截面图。具有位于图左侧和右侧的气流通道。明显的是,最上面的气流控制叶片16逆时针方向的倾斜会使得原来流过右侧通道的部分气流被转向到左侧通道中。当气流控制叶片返回到与进入气流一致的位置时,会再次使得相等的气流量穿过两个通道。
图11表示本身具有第二伺服电动机18的气流控制叶片16的四个视图。伺服电动机18具有通过锥齿轮驱动连接到其气流控制叶片16的输出轴,这样,电机的致动将引起控制叶片以一个小角度旋转。可以看到,每个气流控制叶片16具有一个盒状结构,该结构具有一个矩形套和一个中间隔离物(partition)。每个气流控制叶片16这样形成两个平行的气流通道,通过旋转该盒体,气流将能够围绕旋转运动轴被转向任何一侧。
图12表示包含本发明的管道式气流动力设备的一个航空器结构。在该例子中,航空器是如在上述专利说明书之一中公开的Hawker航空器。该航空器的设计是起落时间短暂,它设置有朝向前方的气流入口23,其中之一位于机身的每一侧。航空器还具有两个向前喷射管24和同样数量的向后喷射管26。喷嘴如前述可以旋转,在图中所示的配置中,喷嘴被向前并部分地向下,为操纵和制动的目的而提供相反的推力。
动力设备的控制系统被设计为可以安装在航空器模型中,并能够由可在市场上获得的标准无线电发射机用无线电控制进行操作。航空器提供对于发动机控制、舵、升降舵、副翼、襟翼、颠簸和翻滚滑翔控制的全部操作功能。航空器因此能够盘旋,进行从盘旋到前进飞行的转换,并再次进行盘旋。其中包含基于控制系统的传感器。第一和第二伺服电动机12、18是由计算机控制系统来驱动,这样喷嘴与气流控制叶片彼此将被独立地调节。实际上,气流控制叶片是设置为被成对控制,以使一组气流控制叶片将与在发动机轴相反一侧的相应的一组叶片同时移动。
已经发现,在本管道式气流动力设备的结构中,为了把重量保持在最小程度,许多部件可以由碳纤维合成物或塑料注铸成型工艺来制造。管道、气流控制叶片、发动机架、喷嘴、转子与定子风扇单元和气流分流板是由这些工艺中的一种或其它工艺来制造。每个气流控制叶片16包括中空的盒状结构,其中三个空气动力设计的叶片由顶部和底部构件连接。优选使外部叶片略微向外张开,以提高叶片在旋转过程中的空气动力效率。
对于管道式气流动力设备的操作,已经发现适合将其安装在类似图12所示的Hawker航空器的航空器机身上。如果在航空器中安装适当的无线电控制单元来控制发动机、升降舵、襟翼和伺服电动机的操作,就能够实现可进行现实操纵的飞行模型。这可包括垂直起落、前进飞行的转换、恢复到盘旋的转换、降落和向后飞行。
这种类型的航空器中有用的运动还包括偏航运动,偏航运动是航空器在水平面内绕通常垂直的轴的一个角运动。在Hawker航空器中,利用使高速气流通过位于航空器机身前端与后部空间的反馈控制阀(reaction control valve)产生一个力偶,从而提供偏航力矩。比较而言,在本发明的航空器中,偏航力矩是通过在一个方向上转动机身左侧的两个喷嘴,而在相反方向转动右侧的两个喷嘴来提供的。偏航力矩从而通过使用逆方向旋转的喷嘴设置而产生。
图13给出了动力设备的一个平面图,其中两个左侧喷嘴9(在图的上部)以向前的方向旋转,而两个右侧喷嘴9(在图的下部)以向后的方向旋转。因而推力使得航空器以逆时针方向绕垂直轴旋转。
另外,在盘旋姿态中,当航空器无论是在倾斜还是翻滚平面中从其中心点移开,都可以单独地调节喷嘴,以使其相对于地面始终处于垂直向下的位置。这样可有助于保证垂直向下提供最大的推力,以维持航空器稳定的盘旋。
以上对于本发明实施例的描述仅仅是为了举例说明,在不背离所附权利要求限定的本发明范围的情况下,可以做出各种修改。例如,动力源可以不是两冲程内燃机,而是具有发动机控制器和燃料电池或充电电池的不带电刷的电动机。小型燃气涡轮型的发动机也是可行的。另外,所述的气流控制叶片部件是支撑三个空气动力气流偏转叶片的一个中空盒体结构。在不同的实施例中,气流控制叶片部件的气流偏转器构件数量可以更多或更少。
也可以提供动力设备的一种替代结构,其中可以沿着一个具有活动气流控制叶片的中央管道输送气流,该叶片在管道中彼此成对角相对设置,然后气流控制叶片将把部分气流转到左侧或右侧空气传送导管之一或二者中。这样,该结构可用于仅具有三个喷射管的航空器上。
为了显著地提高两冲程发动机的操作性能,并允许不确定的持续盘旋飞行,已经在发动机头部和排气歧管/调节管(tuned pipe)中引入了冷却系统。水、乙二醇或类似冷却液体通过连接到泵上的冷却管道循环流过这些部件,泵可以由发动机驱动轴直接驱动,或由电动机远程操作。“热”的冷却剂然后在由管道式风扇罩和空气传送导管形成的热交换器周围再次循环,这些导管是由铝、碳纤维合成物或类似材料制造,具有良好的热传导性能。强制通过管道内侧的高速气流的作用提供冷却,从冷却液体中吸取需要的热量。热交换器的另一个优点是,当气体穿过后部空气传送导管时,作为热传递的结果气体发生膨胀,因此喷射管出口的推力将会小幅度地增强。在飞行过程中,该热交换器的外表面将暴露在气流入口后面紧接着的进入气流的受强制空气中,这种作用进一步增强了可获得的冷却效果。

Claims (9)

1、一种管道式气流动力设备,包括位于管道中的由电动机驱动的风扇,所述风扇具有进气口侧,并且在操作时在管道中提供高压气流,而且风扇靠近气流分流装置设置,配置所述气流分流装置以便将气流转变为两个或更多副气流,以传送到设备的各个气流喷射管中。
2、如权利要求1所述的动力设备,其中所述气流分流装置是一个气流分流板,其被设置以提供四个副气流。
3、如权利要求1或2所述的动力设备,其中所述气流分流装置通过空气传送导管被连接到喷射管。
4、如权利要求1至3中任何一项所述的动力设备,其中所述风扇具有一个转子,该转子靠近一个风扇定子叶片单元设置,该风扇定子叶片单元被设置用来减小离开风扇的气流中出现的漩涡。
5、如权利要求1至4中任何一项所述的动力设备,其中所述气流分流板设置有气流控制叶片,该气流控制叶片能够被移动以调节流向单个气流喷射管的气流。
6、如权利要求5所述的动力设备,其中所述气流控制叶片安装成围绕一个轴旋转,该轴与所述气流分流板的一个对角线一致,使得叶片的运动对于通过板的开口的气流产生最小的阻碍。
7、一种移动平台交通工具,包括权利要求1至6中任何一项所述的动力设备。
8、一种航空器,包括权利要求1至6中任何一项所述的动力设备。
9、一种参考任一附图基本如上所述的动力设备。
CN038150220A 2002-06-28 2003-06-27 管道式气流动力设备 Pending CN1662419A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB0214961A GB0214961D0 (en) 2002-06-28 2002-06-28 Ducted air power plant
GB0214961.5 2002-06-28
GB0301177.2 2003-01-20
GB0301177A GB0301177D0 (en) 2002-06-28 2003-01-20 Ducted air power plant

Publications (1)

Publication Number Publication Date
CN1662419A true CN1662419A (zh) 2005-08-31

Family

ID=27665376

Family Applications (1)

Application Number Title Priority Date Filing Date
CN038150220A Pending CN1662419A (zh) 2002-06-28 2003-06-27 管道式气流动力设备

Country Status (9)

Country Link
US (1) US7581381B2 (zh)
EP (1) EP1534590A1 (zh)
JP (1) JP2005531719A (zh)
CN (1) CN1662419A (zh)
AU (1) AU2003246915B2 (zh)
CA (1) CA2490886A1 (zh)
GB (1) GB2391846B (zh)
IL (1) IL165968A0 (zh)
WO (1) WO2004002821A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104859840A (zh) * 2015-06-01 2015-08-26 何春旺 涵道动力装置和飞行器
WO2016078622A1 (zh) * 2014-11-22 2016-05-26 吴建伟 一种复合式垂直起降飞行器
CN108670102A (zh) * 2018-07-18 2018-10-19 浙江菲果科技有限公司 基于ptc发热的温度可调节干手器

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11571938B2 (en) * 2002-10-01 2023-02-07 Andrew H B Zhou Jet-propelled VTOL hybrid car
US20230085329A1 (en) * 2002-10-01 2023-03-16 Tiger T G Zhou Jet-propelled vtol hybrid car
AU2003304328A1 (en) 2003-07-09 2005-01-28 Felix Sanchez Sanchez Windmill rotor comprising multiple separate wind channels
EP1806286A1 (en) * 2004-10-29 2007-07-11 Felix Sanchez Sanchez Air-jet propeller
US8087315B2 (en) 2006-10-10 2012-01-03 Honeywell International Inc. Methods and systems for attaching and detaching a payload device to and from, respectively, a gimbal system without requiring use of a mechanical tool
US7681832B2 (en) 2007-05-02 2010-03-23 Honeywell International Inc. Ducted fan air vehicle with deployable wings
US8251307B2 (en) 2007-06-11 2012-08-28 Honeywell International Inc. Airborne manipulator system
US8025546B2 (en) * 2008-07-09 2011-09-27 Epf Hobby Co., Ltd. Ducted fan assembly for radio-controlled model
US8109711B2 (en) 2008-07-18 2012-02-07 Honeywell International Inc. Tethered autonomous air vehicle with wind turbines
US8123460B2 (en) 2008-07-23 2012-02-28 Honeywell International Inc. UAV pod cooling using integrated duct wall heat transfer
US8387911B2 (en) 2008-07-25 2013-03-05 Honeywell International Inc. Ducted fan core for use with an unmanned aerial vehicle
US8070103B2 (en) 2008-07-31 2011-12-06 Honeywell International Inc. Fuel line air trap for an unmanned aerial vehicle
US8240597B2 (en) 2008-08-06 2012-08-14 Honeywell International Inc. UAV ducted fan lip shaping
US8123169B2 (en) 2008-11-12 2012-02-28 Honeywell International Inc. Vertical non-bladdered fuel tank for a ducted fan vehicle
US8225822B2 (en) 2008-11-14 2012-07-24 Honeywell International Inc. Electric fueling system for a vehicle that requires a metered amount of fuel
US8328130B2 (en) 2008-12-08 2012-12-11 Honeywell International Inc. Vertical take off and landing unmanned aerial vehicle airframe structure
US8375837B2 (en) 2009-01-19 2013-02-19 Honeywell International Inc. Catch and snare system for an unmanned aerial vehicle
US8348190B2 (en) 2009-01-26 2013-01-08 Honeywell International Inc. Ducted fan UAV control alternatives
US8205820B2 (en) 2009-02-03 2012-06-26 Honeywell International Inc. Transforming unmanned aerial-to-ground vehicle
CN101956675B (zh) * 2010-10-28 2012-06-20 马可超 喷气式风力发电机
US20120110978A1 (en) * 2010-11-08 2012-05-10 Marius Angelo Paul Absolute universal engine, one from ground to orbit
FR2985714B1 (fr) * 2012-01-12 2014-03-14 Andre Chaneac Amelioration des qualites d'un aeronef a coussin d'air
US8910464B2 (en) * 2011-04-26 2014-12-16 Lockheed Martin Corporation Lift fan spherical thrust vectoring nozzle
US8960592B1 (en) 2011-07-19 2015-02-24 D. Anthony Windisch VTOL propulsion for aircraft
KR101237865B1 (ko) 2011-10-07 2013-02-27 이희용 융합 유체 가속기
RU2521459C1 (ru) * 2013-04-30 2014-06-27 Андрей Иванович Мерзляков Летательный аппарат с вертикальным взлетом или посадкой
US11001378B2 (en) 2016-08-08 2021-05-11 Jetoptera, Inc. Configuration for vertical take-off and landing system for aerial vehicles
US10464668B2 (en) 2015-09-02 2019-11-05 Jetoptera, Inc. Configuration for vertical take-off and landing system for aerial vehicles
AU2016338383A1 (en) 2015-09-02 2018-03-22 Jetoptera, Inc. Fluidic propulsive system
US20200324890A1 (en) * 2018-11-09 2020-10-15 Jetoptera, Inc. Adaptive vertical take-off and landing propulsion system
CA3068569A1 (en) 2017-06-27 2019-01-03 Jetoptera, Inc. Configuration for vertical take-off and landing system for aerial vehicles
US10423831B2 (en) 2017-09-15 2019-09-24 Honeywell International Inc. Unmanned aerial vehicle based expansion joint failure detection system
PL423418A1 (pl) * 2017-11-12 2019-05-20 Bryzik Grzegorz Jednostka napędowa pojazdu latającego
DE102018001247A1 (de) * 2018-02-16 2019-08-22 Dieter Lang Schubumkehr am Flugzeugrumpf mit Flügelprofil
US10829204B2 (en) 2018-11-30 2020-11-10 Textron Innovations Inc. Electric reaction control system
GB201900025D0 (en) 2019-01-02 2019-02-13 Dyson Technology Ltd A fan assembly
US11661183B2 (en) 2020-03-16 2023-05-30 D. Anthony Windisch Small light vertical take-off and landing capable delta wing aircraft
CN113306702B (zh) * 2021-06-11 2022-10-11 长沙理工大学 一种喷气式无人机及其控制方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB851379A (en) * 1957-11-20 1960-10-19 Power Jets Res & Dev Ltd Aircraft
GB861480A (en) 1958-06-02 1961-02-22 Hawker Aircraft Ltd Improvements in aircraft
GB899862A (en) 1959-10-30 1962-06-27 Hawker Aircraft Ltd Improvements in aircraft control mechanism
GB905651A (en) 1959-11-12 1962-09-12 Hawker Aircraft Ltd Improvements in control nozzle systems for use on aircraft
FR1280103A (fr) * 1960-11-18 1961-12-29 Snecma Moteur à réaction composite pour aérodynes à grand écart de vitesse
US3155342A (en) * 1961-05-25 1964-11-03 Bolkow Entwicklungen Kg Vtol aircraft construction
GB976854A (en) * 1961-12-07 1964-12-02 Havilland Engine Co Ltd Aircraft propulsion apparatus
US3341154A (en) * 1963-08-01 1967-09-12 Smith & Sons Ltd S Control systems for aircraft engine installations
GB1252077A (zh) * 1969-03-08 1971-11-03
US3769797A (en) * 1971-10-28 1973-11-06 Us Air Force By-pass engine having a single, thrust diverter valve mechanism for a v/stol aircraft
GB1473088A (zh) * 1973-06-28 1977-05-11
US4222233A (en) * 1977-08-02 1980-09-16 General Electric Company Auxiliary lift propulsion system with oversized front fan
US4713935A (en) * 1986-04-08 1987-12-22 Rolls-Royce Inc. Vectorable nozzles for aircraft
US5297388A (en) * 1992-04-13 1994-03-29 Rolls-Royce Inc. Fluid flow duct with alternative outlets
US5666803A (en) * 1995-08-14 1997-09-16 Windisch; D. Anthony Vectored thrust compressor for remote controlled aircraft
DE19545253A1 (de) 1995-11-24 1997-05-28 Gerst Hellmut Dr Ing Variables Bypass-Verhältnis beim Fantriebwerk
WO2000015497A2 (en) * 1998-08-27 2000-03-23 Nicolae Bostan Gyrostabilized self propelled aircraft
GB2353983B (en) * 2000-07-04 2003-10-15 Adrian Alexander Hubbard Variable mode jet engine-suitable for STOVL

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016078622A1 (zh) * 2014-11-22 2016-05-26 吴建伟 一种复合式垂直起降飞行器
CN104859840A (zh) * 2015-06-01 2015-08-26 何春旺 涵道动力装置和飞行器
CN108670102A (zh) * 2018-07-18 2018-10-19 浙江菲果科技有限公司 基于ptc发热的温度可调节干手器

Also Published As

Publication number Publication date
EP1534590A1 (en) 2005-06-01
WO2004002821A1 (en) 2004-01-08
US20050223694A1 (en) 2005-10-13
AU2003246915A1 (en) 2004-01-19
GB0315040D0 (en) 2003-07-30
GB2391846B (en) 2005-10-05
IL165968A0 (en) 2006-01-15
US7581381B2 (en) 2009-09-01
AU2003246915B2 (en) 2009-06-11
JP2005531719A (ja) 2005-10-20
CA2490886A1 (en) 2004-01-08
GB2391846A (en) 2004-02-18

Similar Documents

Publication Publication Date Title
CN1662419A (zh) 管道式气流动力设备
US11912393B2 (en) Aircraft drag reduction system including an internally cooled motor system and aircraft using same
CN108349585B (zh) 用于飞行器的流体推进系统以及推力和升力发生器
US8636241B2 (en) Hybrid jet/electric VTOL aircraft
US4037807A (en) Flight vehicle
US20120111994A1 (en) Cross-flow fan propulsion system
US5149012A (en) Turbocraft
US9868523B2 (en) Vertical take-off and landing (VTOL) fixed wing aircraft
US8157520B2 (en) Fan, airfoil and vehicle propulsion systems
CN107696812B (zh) 油电混合动力系统及具有其的垂直起降飞行汽车
CN113492989A (zh) 具有混合推进的飞行器
EP3774532B1 (en) Aircraft propulsion and torque mitigation technologies
JP2011502847A (ja) 航空機用の自律ローターシステム
CN112443423A (zh) 一种气驱动涵道风扇喷气推进动力系统
NZ273272A (en) Flight apparatus; can be fastened a persons back to permit controlled flight: uses compressed air jet to provide lift
CN114771827A (zh) 一种可垂直起降的飞行器及其控制方法
CN114026023A (zh) 垂直起降式飞行器和相关控制方法
WO2009044998A1 (en) Taking off and landing airplane using variable rotary wings
CN110606194B (zh) 一种射流推进式垂直起降无人机
US11332241B2 (en) Centrifugal fans for vertical take-off and landing (VTOL) aircraft propulsion
CN208291467U (zh) 一种固定翼双涵道风扇矢量动力短距起降装置
KR20050016643A (ko) 덕트형 공기 동력 장치
NZ537834A (en) Ducted air power plant with air splitter means which can divert air into two or more subsidiary streams
CN117963144B (zh) 一种飞机的推进传动装置及使用方法
US20240280066A1 (en) Propulsion systems and vehicles using the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication