WO2016078622A1 - 一种复合式垂直起降飞行器 - Google Patents
一种复合式垂直起降飞行器 Download PDFInfo
- Publication number
- WO2016078622A1 WO2016078622A1 PCT/CN2015/095238 CN2015095238W WO2016078622A1 WO 2016078622 A1 WO2016078622 A1 WO 2016078622A1 CN 2015095238 W CN2015095238 W CN 2015095238W WO 2016078622 A1 WO2016078622 A1 WO 2016078622A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wing
- landing aircraft
- nozzle
- vertical take
- posture
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C29/00—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
- B64C29/02—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis vertical when grounded
- B64C29/04—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis vertical when grounded characterised by jet-reaction propulsion
Definitions
- the present invention relates to a vertical takeoff and landing aircraft, and more particularly to a composite vertical takeoff and landing aircraft.
- the S-72 composite aircraft is a compound vertical take-off and landing tester for the "X-wing” system developed by Sikorsky.
- the aircraft uses the "rotor/wing” technology (Rotor/Wing, RW).
- the "X-wing” is a concept of a "stopped rotor” system.
- the main rotor of the four blades can be used to fly vertically like a conventional helicopter. Once it reaches a sufficient forward flight rate, it stops rotating in midair. , as a fixed-wing flight like "X shape”.
- the "X-wing” uses a circulation control rotor (CCR), which relies on the CCR rotor to blow high-pressure air from the trailing edge of the rotor blade to propel the rotor.
- CCR circulation control rotor
- the X-50A " ⁇ " UAV developed by Boeing is a compound vertical take-off and landing machine. This type of composite aircraft is called a canard Rotor/Wing (CRW) aircraft.
- the X-50A " ⁇ ” is designed with a helicopter-like wide rotor. It uses a top rotor like a normal helicopter on a take-off. When the plane is flat and the rotor is locked on the fuselage, it becomes a fixed wing.
- the aircraft has both helicopter-like vertical takeoff and landing and air hovering capabilities, as well as high-speed cruising flights like fixed-wing aircraft. This design not only combines the flight performance of two different types of aircraft, but also enhances their flight envelopes.
- the X-50A " ⁇ " drone has a duck-shaped front wing and a wide horizontal tail with a glyph/wing on the top. In the helicopter mode, the rotor/wing rotates under the action of the tip of the jet wing, generating lift.
- the inline rotor/wing is equivalent to a two-blade rotor, which can be used for flapping and leading-lag action with a seesaw hinge, so the X-50A " ⁇ ⁇ " drone compensates for asymmetric lift.
- the power unit of the X-50A " ⁇ ” drone is a turbofan engine that draws high-pressure airflow from the compressor and delivers it through the pipeline to the wingtips of the rotor/wing to drive the jet tip.
- the X-50A " ⁇ ” drone has no tail rotor because the jet wing tip does not produce counter-torque. After reaching a certain level of flying speed, the duck front and horizontal tails generate enough lift, and the rotor/wing is locked. As a fixed wing, the airplane turns into a fixed wing state.
- the X-50A " ⁇ " uses a wide-chord rigid hub that can be locked by a dual-purpose rotor/winged rotor. Short and short The wide and rigid rotating wing fundamentally solves the problem that many slender flexible rotor blades are difficult to solve.
- the main technical problem of the C RW aircraft is the flight control problem during the conversion of the lift generation mechanism, which is easy to cause control cross-coupling; and the fuselage is easily subject to severe airflow disturbance, and the airspeed in both directions is superimposed and the wing is superimposed. Still in the rotating working state of the rotor, the aircraft will produce an unrecoverable head-up torque that can directly cause the aircraft to lose control.
- all the "rotor/wing" technology (Rotor/Wing, RW) that is converted in the lift generation mechanism has control problems during the transition of the mechanism. The mechanism is switched for several tens of seconds, and the fast is also 10 seconds. If the conversion is too fast, it will easily lead to loss of control.
- the conversion of the same mechanism has speed and height restrictions. It can be converted without any conversion anywhere. In the battle, this conversion time and height and speed requirements have caused great trouble to the tactical action.
- the technical problem to be solved by the present invention is to provide a composite vertical take-off and landing aircraft that can more smoothly convert the lift generating mechanism.
- a composite vertical take-off and landing aircraft of the present invention includes a fuselage, a rotor/wing that can be switched to a rotor state or a fixed wing state, and a locking device for locking the rotor/wing
- the composite vertical take-off and landing aircraft further includes a posture control nozzle for attitude control, a high-pressure air conduit, an engine for generating high-pressure air, a posture nozzle connected with a high-pressure air conduit, and a high-pressure air conduit for conveying the engine.
- the high-pressure air generated; the direction of the attitude nozzle is set such that the attitude nozzle can generate the direction of the vector component of the vertical thrust or the vertical thrust; at least two attitude nozzles are respectively placed on the left and right portions of the aircraft as a roll-to-turn attitude
- the device, the composite vertical take-off and landing aircraft further includes a pitching attitude device.
- the flight control during the conversion of the lift generation mechanism is more stable, and the attitude control nozzle independent of the rotor/wing does not cause the cross-coupling of the flight control; the control of the posture nozzle used as the roll attitude can make the aircraft generate the lift mechanism.
- the control of the posture nozzle used as the roll attitude can make the aircraft generate the lift mechanism.
- the pitch attitude adjusting device is at least There is a positional nozzle placed at the front or rear of the aircraft.
- This has the advantage that the flight control during the lift generation mechanism is more stable by providing a positional nozzle that is independent of the rotor/wing (RW), independent of the rotor/wing attitude.
- RW rotor/wing
- the problem of cross-coupling of flight control is caused; the control of the pitching nozzle used as the pitch attitude can make the aircraft get rid of the complicated posture device such as the automatic tilter, and the efficiency of the pitch attitude is greatly improved, so that the aircraft can be converted more safely and smoothly. Go to fixed wing mode or helicopter mode.
- the positional nozzle can also be placed at the end of the composite vertical take-off and landing aircraft. This has the advantage that the attitude nozzle is placed at the end away from the center of gravity of the aircraft, which improves the efficiency of the attitude control of the attitude nozzle.
- the composite vertical take-off and landing aircraft further includes a fixed wing; and two posture-adjusting nozzles used as roll-aligning devices are respectively placed on the fixed wing.
- the left and right wings As a further improvement, the composite vertical take-off and landing aircraft further includes a horizontal tail fin, and further includes two posture-adjusting nozzles respectively placed on the left and right sides of the horizontal tail, which can be used as a pitch attitude setting device.
- the fixed wing can be attached to the middle of the general fuselage or to the center of gravity of the aircraft. This conventional layout allows the aircraft to be more stable in the flight state of the fixed wing.
- the composite vertical take-off and landing aircraft further includes a duck front wing and a horizontal tail wing, and the duck front wing includes a left front wing and a right front wing, and horizontal
- the tail includes a left tail and a right tail; there are four posture nozzles placed on the left front wing, the right front wing, the left tail, and the right tail; the posture nozzle also serves as a roll and pitch attitude device.
- the alignment nozzles can be placed at the approximate tips of the left front wing, the right front wing, the left rear wing, and the right rear wing, respectively.
- the advantage of this is that the duck-style layout can misplace the fixed wing of the rotor/wing and the duck front wing and the horizontal tail.
- the duck front wing and the horizontal tail will not block the rotor/wing down airflow.
- the advantage of the positional nozzles placed at the main tips of the left front wing, the right front wing, the left rear wing, and the right rear wing is the improved efficiency of the attitude control of the nozzle.
- the posture nozzle is further provided with a tilting device that allows the airflow ejected by the posture nozzle to be tilted toward the left and right sides of the composite vertical take-off and landing aircraft.
- the posture nozzle may also be arranged to be tiltable between a position where horizontal thrust is generated and a position where vertical thrust is generated, and the composite vertical take-off and landing aircraft further includes tilting to tilt the posture nozzle Transfer device.
- the posture nozzle can generate the vector component of the vertical thrust and the left and right horizontal thrust.
- the airflow generated by the tilting nozzles can be tilted left or right to perform the lateral flight.
- the roll control is performed or enhanced by the air flow generated by the left or right tilting attitude nozzle.
- the advantage that the posture nozzle is set to be tiltable between the position at which the horizontal thrust is generated and the position at which the vertical thrust is generated is such that the posture nozzle can generate a vector component of the longitudinal horizontal thrust at the same angle at which the vertical thrust is generated, and can be tilted forward and backward.
- the transfer attitude nozzle performs or enhances the pitch control, and can also perform vertical horizontal flight by tilting each of the adjustment nozzles back and forth.
- FIG. 1 is a schematic view showing the connection of a posture nozzle of a composite vertical take-off and landing aircraft according to the present invention.
- FIG. 2 is a schematic view of an embodiment of a composite vertical take-off and landing aircraft of the present invention.
- FIG. 3 is a schematic view of another embodiment of a composite vertical take-off and landing aircraft of the present invention.
- FIG. 1 is a schematic diagram showing a joint nozzle connection of a composite vertical take-off and landing aircraft according to the present invention.
- the composite vertical take-off and landing aircraft of the present invention includes a fuselage 2, which can be switched to a rotor state or a fixed wing state.
- Rotor/wing 1 locking device for locking rotor/wing 1; wherein the composite vertical take-off and landing aircraft further includes a posture nozzle 3 for attitude control, a high pressure air duct 4, and a high pressure air for generating
- the engine 8 is connected to the high-pressure air duct 4, and the high-pressure air duct 4 is used for conveying high-pressure air generated by the engine;
- the direction of the position-adjusting nozzle 3 is set such that the position-adjusting nozzle 3 can generate a vertical thrust or a vertical thrust vector
- the direction of the component; at least two posture nozzles 3 are respectively placed on the left and right portions of the aircraft as a roll-adjusting device, and the compound vertical-and-down aircraft further includes a pitch-adjusting device.
- the pitching attitude device can be at least one alignment nozzle 3 placed at the front or rear of the aircraft.
- the direction of the posture nozzle 3 can be set such that the posture nozzle 3 can generate the direction of the vector component of the vertical thrust or the vertical thrust; of course, the counter-lifting force generated by the posture nozzle 3 can also control the flight attitude, but the attitude nozzle 3
- the generation of the anti-lift force causes the aircraft to lose a portion of the lift, so the direction in which the posture nozzle 3 is set may cause the direction of the vector component of the lift nozzle 3 to generate lift or lift.
- the posture control nozzle 3 can also be provided with a control valve, the control valve is connected with the servo actuating device, and the servo actuating device is used for controlling the control valve.
- the automatic tilter can consist of two main parts: a non-rotating ring and a rotating ring.
- the non-rotating ring is mounted on the rotor shaft and connected to the cycle variable pitch and total distance manipulator through a series of push rods. It can tilt in any direction or vertically.
- the rotating ring is mounted on the non-rotating ring through the bearing and is rotatable together with the rotor shaft.
- the torsion arm is used to ensure that the rotating ring rotates synchronously with the blade.
- the anti-torsion arm is used to prevent rotation of the non-rotating ring.
- the rotating ring is connected to the variable pitch rocker arm by a tie rod.
- the automatic tilting device can be operated by the periodic variable distance operating device to realize the control of the pitch attitude and the rolling attitude of the rotor blade period, and the longitudinal speed and the lateral speed can be controlled; and the automatic tilting device is operated by the total distance operating device to synchronously change the rotor blade
- the blade pitch is used to control the vertical speed of the helicopter.
- the engine 8 may employ a turbofan engine or a turbojet engine, or may use other types of engines, such as a turboshaft engine power connection compressor, etc., using a high pressure air duct 4 to deliver high pressure air generated inside the engine or the compressor to the tuning.
- the posture nozzle 3 ejects an air flow to generate a thrust, thereby achieving posture control.
- the engine 8 can be the main engine that drives the rotor/wing 1 in the same way, or it can be an independent engine that specializes in the attitude nozzle 3.
- a circulation control rotor (CCR) technique can be employed to rely on the CCR rotor to blow high pressure air from the trailing edge of the rotor blade to propel the rotor. That is, the high-pressure airflow is taken from the compressor, and is sent to the wing tip of the rotor/wing 1 through the pipeline to drive the jet wing tip, thereby driving the rotation of the rotor/wing 1.
- CCR circulation control rotor
- the posture nozzle 3 can be placed at the end of the composite vertical take-off and landing aircraft.
- the posture nozzles for the roll posture are respectively placed at the left end and the right end of the aircraft, and the posture nozzles for the pitch posture are placed at the front end or the rear end of the aircraft.
- FIG. 2 is a schematic view of an embodiment of a composite vertical take-off and landing aircraft according to the present invention
- the composite vertical take-off and landing aircraft further includes a fixed wing 5; two postures used as a roll-adjusting device
- the nozzles 3 are respectively placed on the left and right halves of the fixed wing 5.
- the composite vertical take-off and landing aircraft further includes a horizontal tail 6 and two pitching nozzles 3 respectively disposed at the left and right portions of the horizontal tail 6 for use as a pitching attitude device.
- the fixed wing can be attached to the middle of the general fuselage or to the center of gravity of the aircraft.
- FIG. 3 is a schematic view showing another embodiment of a composite vertical take-off and landing aircraft according to the present invention.
- the composite vertical take-off and landing aircraft further includes a duck front wing 7, a horizontal tail 6, and a duck front wing 7.
- the horizontal tail 6 includes a left tail and a right tail; there are four posture nozzles 3 respectively placed on the left front wing, the right front wing, the left tail, and the right tail; the posture nozzle 3 doubles as a roll and pitch attitude Device.
- the alignment nozzles 3 are placed at the approximate tips of the left front wing, the right front wing, the left tail, and the right tail, respectively.
- the posture nozzle 3 is further provided with a tilting device, and the tilting device enables the airflow emitted by the posture nozzle 3 to face the composite
- the vertical take-off and landing aircraft are tilted to the left and right.
- the tilting device may include a movable connecting member that is movably connected to the high-pressure air duct 4, and an actuating device, and the adjusting nozzle 3 is connected to the actuating device for driving the tilting nozzle 3 to tilt;
- the movable connecting member may be a rotating collar, a bushing, or other device such as a three-bearing thrust vector nozzle.
- the tilting device may also be a control rudder surface or a guide vane, and an actuating device; a control rudder surface or a guide vane may be provided at the air outlet of the aligning nozzle 3, and the direction of the airflow may be changed by tilting the control rudder surface or the guide vane.
- the movable connection controls the rudder surface or the guide vane, and the control rudder surface or the guide vane is connected with the actuating device, and the actuating device is used to drive the control rudder surface or the guide vane to tilt to the left and right of the aircraft.
- the posture nozzle 3 is arranged to be tiltable between a position at which a horizontal thrust is generated and a position at which a vertical thrust is generated, and the composite vertical take-off and landing aircraft further includes a tilting tilting of the posture nozzle 3 Transfer device.
- the tilting device may include a movable connecting member that is movably connected to the positioning nozzle 3, and an actuating device that tilts the positioning nozzle 3 forward and backward; the movable connecting member may be a rotating collar, a sleeve, or other device, such as a three-bearing Thrust vector nozzles, etc.
- the above-mentioned actuating device and servo actuating device according to the present invention may be any one of a servo drive, a rotary actuator, a servo actuator, etc., and the servo actuator refers to a kind.
- the actuator of the flight control system also known as the steering gear; it can directly control the control surfaces of the aircraft (such as composite steering gear type) or indirect (such as auxiliary steering gear type) according to the output command of the flight control computer;
- the mounting method of the actuating device depends on the type of the actuating device, and may be directly connected to the actuating device, or may be indirectly connected through a mechanism such as a crankshaft, a rotating shaft, a gear, and a transmission shaft.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Aviation & Aerospace Engineering (AREA)
- Toys (AREA)
- Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
Abstract
本发明涉及一种复合式的垂直起降飞行器;包括机身(2)、可以切换为旋翼状态或固定翼状态的旋翼/机翼(1)、用于锁定旋翼/机翼(1)的锁定装置;其中,该复合式垂直起降飞行器还包括用于姿态控制的调姿喷嘴(3)、高压空气导管(4)、用于产生高压空气的发动机(8),调姿喷嘴(3)与高压空气导管(4)连接,高压空气导管(4)用于输送发动机所产生的高压空气;调姿喷嘴(3)的方向设置为使调姿喷嘴(3)可以产生垂直推力或垂直推力的矢量分量的方向;至少有两个调姿喷嘴(3)分别置于飞行器的左部及右部作为滚转调姿装置,该复合式垂直起降飞行器还包括俯仰调姿装置这样的好处是,通过设置有独立于旋翼/机翼的调姿喷嘴,使升力产生机制转换期间的飞行控制更加稳定,可以更加安全、平稳地转换到固定翼模式或直升机模式。
Description
一种复合式垂直起降飞行器
[0001] 技术领域
[0002] 本发明涉及一种垂直起降飞行器, 尤其涉及一种复合式的垂直起降飞行器。
[0003] 背景技术
[0004] S-72型复合式飞行器为西科斯基研制的 "X翼"系统的复合式垂直起降试验机, 该飞行器使用了"旋翼 /机翼"技术 (Rotor/Wing, RW) 。 "X翼"是作为 "停转旋翼 " (stopped rotor) 系统的构思, 四片桨叶的主旋翼能用于像常规直升机一样垂 直飞行, 一旦达到足够的前飞速率后就在半空中停止转动, 作为像 "X形状"的固 定翼飞行。 此外, "X翼"采用了环流控制旋翼 (circulation control rotor, CCR) , 依靠 CCR旋翼从旋翼桨叶叶片后缘吹出高压空气, 推动旋翼转动。
[0005] 波音公司研制的 X-50A"蜻蜓"无人机是一种复合式垂直起降试验机, 这种复合 式飞行器称之为鸭式旋翼 /机翼 (Canard Rotor/Wing, CRW) 飞行器, X-50A"蜻 蜓"设计有类似直升机的宽旋翼, 它在起飞吋就像普通直升机一样使用顶部旋翼 , 当飞机平飞吋, 旋翼被锁定在机身上, 它就成为固定机翼, 从而使飞机既具 有直升机一样的垂直起降和空中悬停能力, 又能像固定翼飞机那样高速巡航飞 行, 这种设计不仅融合了两种不同种类飞机的飞行性能, 提高了各自的飞行包 线, 而且还具有较低的信号特征值和很好的高速飞行生存性。 X-50A "蜻蜓"无人 机具有鸭式前翼和宽大的水平尾翼, 机顶上有一字形的旋翼 /机翼。 在直升机模 式状态下, 旋翼 /机翼在喷气翼尖的作用下旋转, 产生升力。 一字形的旋翼 /机翼 相当于双叶旋翼, 可以用跷跷板铰链完成挥舞和领先 -滞后动作, 所以 X-50A "蜻 蜓"无人机对非对称升力的补偿还是常规的。 X-50A "蜻蜓"无人机的动力装置是 一台涡扇发动机, 从压缩机引出高压气流, 通过管路输送到旋翼 /机翼的翼尖, 驱动喷气翼尖。 由于喷气翼尖不产生反扭力, X-50A"蜻蜓"无人机没有尾桨。 达 到一定的平飞速度后, 鸭式前翼和水平尾翼产生足够的升力, 旋翼 /机翼锁住, 作为固定的机翼, 飞机转入固定翼状态。
[0006] X-50A"蜻蜓"采用宽弦刚性桨毂可锁定的两用旋翼 /机翼 (stopped rotor) 。 粗短
宽厚的刚性旋转机翼从根本上解决了很多细长的柔性旋翼桨叶难以解决的问题
, 但是和常规直升机相比, 这些飞机的悬停和非常规机动性能受到一定损失。 C RW飞行器最主要的技术问题是来自于升力产生机制转换期间的飞行控制问题, 容易造成控制交叉耦合; 而且机身容易受到了严重的气流扰动, 在两个方向的 空速发生叠加而且机翼仍处于旋翼的旋转工作状态吋, 飞机会产生一个难以恢 复的抬头力矩, 可以直接导致飞机失控。 事实上, 所有在升力产生机制中转换 的"旋翼 /机翼"技术 (Rotor/Wing, RW) 都有这个机制转换期间的控制问题, 机 制转换动辄几十秒, 快的也要 10几秒, 转换过快容易造成失控, 同吋机制转换 也有速度和高度的限制, 不是随吋随地想转换就可以转换的。 在战斗中, 这个 转换吋间和高度、 速度的要求给战术动作带来很大的困扰。
[0007] 发明内容
[0008] 本发明要解决的技术问题是提供一种可以更加平稳地转换升力产生机制的复合 式垂直起降飞行器。
[0009] 为解决上述的技术问题, 本发明一种复合式的垂直起降飞行器包括机身、 可以 切换为旋翼状态或固定翼状态的旋翼 /机翼、 用于锁定旋翼 /机翼的锁定装置; 其 中, 该复合式垂直起降飞行器还包括用于姿态控制的调姿喷嘴、 高压空气导管 、 用于产生高压空气的发动机, 调姿喷嘴与高压空气导管连接, 高压空气导管 用于输送发动机所产生的高压空气; 调姿喷嘴的方向设置为使调姿喷嘴可以产 生垂直推力或垂直推力的矢量分量的方向; 至少有两个调姿喷嘴分别置于飞行 器的左部及右部作为滚转调姿装置, 该复合式垂直起降飞行器还包括俯仰调姿 装置。
[0010] 这样的好处是, 通过设置有独立于旋翼 /机翼 (Rotor/Wing, RW) 的调姿喷嘴
, 使升力产生机制转换期间的飞行控制更加稳定, 独立于旋翼 /机翼的调姿喷嘴 不会造成飞行控制交叉耦合的问题; 调姿喷嘴用作滚转姿态的控制可以使飞行 器在升力产生机制转换期间不会发生机身翻滚而导致失速的情况, 可以保持机 身的水平状态, 使飞行器可以更加安全、 平稳地转换到固定翼模式或直升机模 式。
[0011] 作为本发明一种复合式的垂直起降飞行器的进一步改进, 俯仰调姿装置为至少
有一个置于飞行器的前部或后部的调姿喷嘴。 这样的好处是, 通过设置有独立 于旋翼 /机翼 (Rotor/Wing, RW) 的调姿喷嘴, 使升力产生机制转换期间的飞行 控制更加稳定, 独立于旋翼 /机翼的调姿喷嘴不会造成飞行控制交叉耦合的问题 ; 调姿喷嘴用作俯仰姿态的控制可以使飞行器摆脱自动倾斜器等复杂的调姿装 置, 使俯仰调姿的效率大大提高, 从而使飞行器可以更加安全、 平稳地转换到 固定翼模式或直升机模式。
[0012] 作为本发明一种复合式的垂直起降飞行器的进一步改进, 调姿喷嘴还可以置于 该复合式垂直起降飞行器的端部。 这样的好处是, 调姿喷嘴设置在远离飞行器 重心的端部, 这样可以提高调姿喷嘴姿态控制的效率。
[0013] 作为以上本发明复合式的垂直起降飞行器的一种改进, 该复合式垂直起降飞行 器还包括固定机翼; 两个用作滚转调姿装置的调姿喷嘴分别置于固定机翼的左 半翼及右半翼。 作为更进一步改进, 该复合式垂直起降飞行器还包括水平尾翼 , 还包括两个调姿喷嘴分别置于水平尾翼的左部及右部, 可以用作俯仰调姿装 置。 固定机翼可以连接在大体机身的中段, 也可以连接在飞行器重心附近。 这 种常规的布局可以使飞行器在固定翼的飞行状态下更为稳定。
[0014] 作为本发明一种复合式的垂直起降飞行器的另一种改进, 该复合式垂直起降飞 行器还包括鸭式前翼、 水平尾翼, 鸭式前翼包括左前翼、 右前翼, 水平尾翼包 括左尾翼、 右尾翼; 有 4个调姿喷嘴分别置于左前翼、 右前翼、 左尾翼、 右尾翼 ; 调姿喷嘴兼作滚转与俯仰调姿装置。 作为更进一步改进, 调姿喷嘴可以分别 置于左前翼、 右前翼、 左尾翼、 右尾翼的大体梢部处。 这样的好处是, 鸭式布 局可以把旋翼 /机翼和鸭式前翼、 水平尾翼等固定机翼的位置错幵, 鸭式前翼、 水平尾翼不会遮挡旋翼 /机翼的下洗气流, 提高的旋翼 /机翼的效率。 调姿喷嘴分 别置于左前翼、 右前翼、 左尾翼、 右尾翼的大体梢部处的好处是提高的调姿喷 嘴姿态控制的效率。
[0015] 作为以上各个实施例的进一步改进, 调姿喷嘴还设置有倾斜装置, 倾斜装置使 调姿喷嘴所喷出的气流可以朝该复合式垂直起降飞行器的左、 右方倾斜。 作为 更进一步改进, 调姿喷嘴还可以设置为可以在产生水平推力的位置与产生垂直 推力的位置之间进行倾转, 复合式垂直起降飞行器还包括使调姿喷嘴倾转的倾
转装置。 通过左右倾斜调姿喷嘴所产生的气流, 使调姿喷嘴可以产生垂直推力 与左右水平推力的矢量分量, 可以利用同吋左或右倾斜各个调姿喷嘴所产生的 气流从而进行横向飞行, 还可以利用左或右倾斜调姿喷嘴所产生的气流进行或 增强滚转控制。 调姿喷嘴设置为可以在产生水平推力的位置与产生垂直推力的 位置之间进行倾转的好处使可以使调姿喷嘴在产生垂直推力的同吋产生纵向水 平推力的矢量分量, 可以通过前后倾转调姿喷嘴进行或增强俯仰控制, 还可以 通过同吋前后倾转各个调姿喷嘴, 进行纵向水平飞行。
[0016] 附图说明
[0017] 下面结合附图和具体实施方式对本发明作进一步详细的说明。
[0018] 图 1是本发明一种复合式垂直起降飞行器的调姿喷嘴连接示意图。
[0019] 图 2是本发明一种复合式垂直起降飞行器的一种实施例示意图。
[0020] 图 3是本发明一种复合式垂直起降飞行器的另一种实施例示意图。
[0021] 具体实施方式
[0022] 如图 1所示本发明一种复合式垂直起降飞行器的调姿喷嘴连接示意图, 本发明 一种复合式垂直起降飞行器包括机身 2、 可以切换为旋翼状态或固定翼状态的旋 翼 /机翼 1、 用于锁定旋翼 /机翼 1的锁定装置; 其中, 该复合式垂直起降飞行器还 包括用于姿态控制的调姿喷嘴 3、 高压空气导管 4、 用于产生高压空气的发动机 8 , 调姿喷嘴 3与高压空气导管 4连接, 高压空气导管 4用于输送发动机所产生的高 压空气; 调姿喷嘴 3的方向设置为使调姿喷嘴 3可以产生垂直推力或垂直推力的 矢量分量的方向; 至少有两个调姿喷嘴 3分别置于飞行器的左部及右部作为滚转 调姿装置, 该复合式垂直起降飞行器还包括俯仰调姿装置。 俯仰调姿装置可以 为至少一个置于飞行器的前部或后部的调姿喷嘴 3。 调姿喷嘴 3的方向可以设置 为使调姿喷嘴 3可以产生垂直推力或垂直推力的矢量分量的方向; 当然, 利用调 姿喷嘴 3产生反升力也可以对飞行姿态进行控制, 但是调姿喷嘴 3产生反升力会 令飞行器损失一部分升力, 所以应该以调姿喷嘴 3设置的方向可以使调姿喷嘴 3 产生升力或升力的矢量分量的方向为优选。 调姿喷嘴 3还可以设置有控制阀门, 控制阀门与伺服作动装置连接, 伺服作动装置用于对控制阀门进行控制。
[0023] 当然, 也可以利用其它装置来作为俯仰调姿装置, 例如直升机的自动倾斜器。
自动倾斜器可以由两个主要零件组成: 一个不旋转环和一个旋转环。 不旋转环 被安装在旋翼轴上, 并通过一系列推拉杆与周期变距和总距操纵装置相连。 它 能够向任意方向倾斜, 也能垂直移动。 旋转环通过轴承被安装在不旋转环上, 能够同旋翼轴一起旋转。 扭力臂用于保证旋转环与桨叶一起同步旋转。 防扭臂 则用于阻止不旋转环旋转。 这两个环作为一个单元体同吋倾斜和上下。 旋转环 通过拉杆与变距摇臂相连。 可以通过周期变距操纵装置操纵自动倾斜器使旋翼 桨叶周期变距实现俯仰姿态及滚转姿态的控制, 也可以控制纵向速度及横向速 度; 通过总距操纵装置操纵自动倾斜器同步改变旋翼桨叶桨距用于控制直升机 的垂直速度。
[0024] 发动机 8可以采用涡扇发动机或涡喷发动机, 也可以利用其它类型的发动机, 例如涡轮轴发动机功率连接压缩机等, 利用高压空气导管 4输送发动机内部或压 缩机产生的高压空气到调姿喷嘴 3, 调姿喷嘴 3喷出气流产生推力, 从而实现姿 态的控制。 发动机 8可以为同吋驱动旋翼 /机翼 1的主发动机, 也可以为独立的、 专门服务于调姿喷嘴 3的发动机。
[0025] 可以采用环流控制旋翼 (circulation control rotor, CCR) 技术, 依靠 CCR旋翼 从旋翼桨叶叶片后缘吹出高压空气, 推动旋翼转动。 即利用从压缩机引出高压 气流, 通过管路输送到旋翼 /机翼 1的翼尖, 驱动喷气翼尖, 从而带动旋翼 /机翼 1 的转动。 当然, 也可以采用直升机传统的机械式的驱动方式。
[0026] 作为进一步改进, 调姿喷嘴 3可以置于复合式垂直起降飞行器的端部。 例如用 于滚转调姿的调姿喷嘴分别置于飞行器的左端及右端, 用于俯仰调姿的调姿喷 嘴置于飞行器的前端或后端。 通过将调姿喷嘴远离飞行器重心的设置, 增强调 姿喷嘴 3对于姿态的控制。
[0027] 如图 2所示本发明一种复合式垂直起降飞行器的一种实施例示意图, 该复合式 垂直起降飞行器还包括固定机翼 5 ; 两个用作滚转调姿装置的调姿喷嘴 3分别置 于固定机翼 5的左半翼及右半翼。 进一步地改进, 该复合式垂直起降飞行器还包 括水平尾翼 6, 还包括两个调姿喷嘴 3分别置于水平尾翼 6的左部及右部用作俯仰 调姿装置。 固定机翼可以连接在大体机身的中段, 也可以连接在飞行器重心附 近。
[0028] 如图 3所示本发明一种复合式垂直起降飞行器的另一种实施例示意图, 该复合 式垂直起降飞行器还包括鸭式前翼 7、 水平尾翼 6, 鸭式前翼 7包括左前翼、 右前 翼, 水平尾翼 6包括左尾翼、 右尾翼; 有 4个调姿喷嘴 3分别置于左前翼、 右前翼 、 左尾翼、 右尾翼; 调姿喷嘴 3兼作滚转与俯仰调姿装置。 作为更进一步改进, 调姿喷嘴 3分别置于左前翼、 右前翼、 左尾翼、 右尾翼的大体梢部处。
[0029] 作为以上本发明一种复合式垂直起降飞行器各个实施例的更进一步改进, 调姿 喷嘴 3还设置有倾斜装置, 倾斜装置使调姿喷嘴 3所喷出的气流可以朝该复合式 垂直起降飞行器的左、 右方倾斜。
[0030] 倾斜装置可以包括调姿喷嘴 3与高压空气导管 4活动连接的活动连接部件、 以及 作动装置, 调姿喷嘴 3与作动装置连接, 作动装置用于驱动调姿喷嘴 3倾斜; 活 动连接部件可以是旋转套环、 轴套, 也可以是其它装置, 例如三轴承推力矢量 喷管等。 倾斜装置也可以是控制舵面或导流叶、 以及作动装置; 可以在调姿喷 嘴 3的气流出口设置有控制舵面或导流叶, 通过倾斜控制舵面或导流叶改变气流 的方向, 活动连接控制舵面或导流叶, 控制舵面或导流叶与与作动装置连接, 作动装置用于驱动控制舵面或导流叶朝该飞行器左、 右方倾斜。
[0031] 作为更进一步改进, 调姿喷嘴 3设置为可以在产生水平推力的位置与产生垂直 推力的位置之间进行倾转, 复合式垂直起降飞行器还包括使调姿喷嘴 3倾转的倾 转装置。 倾转装置可以包括活动连接调姿喷嘴 3的活动连接部件、 使调姿喷嘴 3 前后倾转的作动装置; 活动连接部件可以是旋转套环、 轴套, 也可以是其它装 置, 例如三轴承推力矢量喷管等。
[0032] 本发明以上所述的作动装置、 伺服作动装置可以采用伺服驱动器 (servo drives ) 、 旋转驱动器 (rotary actuator) 、 伺服作动器等任意一种, 伺服作动器是指一 种飞行控制系统的执行机构, 亦称舵机; 它可以按照飞控计算机的输出指令对 飞行器的各操纵面进行直接 (如复合舵机型) 或间接 (如辅助舵机型) 控制; 伺服作动器有多种类型, 可以采用电液伺服作动器, 也可以采用其它类型的伺 服作动器, 例如电动式伺服作动器或气动式伺服作动器等等。 作动装置的安装 方式因作动装置的类型而定, 可以是直接连接作动装置, 也可以通过曲轴、 转 轴、 齿轮、 传动轴等机构间接连接。
[0033] 最后所应说明的是, 以上实施例仅用以说明本发明的技术方案而非限制, 尽管 参照较佳实施例对本发明进行了详细说明, 本领域的普通技术人员应当理解, 可以对本发明的技术方案进行修改或等同替换, 而不脱离本发明技术方案的精 神和范围; 依据本发明的技术实质对以上实施例所作的任何简单修改、 等同变 化与修饰, 均仍属于本发明技术方案的范围内。
[0034]
技术问题
问题的解决方案
发明的有益效果
Claims
[权利要求 1] 一种复合式垂直起降飞行器, 包括机身 (2) 、 可以切换为旋翼状态 或固定翼状态的旋翼 /机翼 (1) 、 用于锁定所述旋翼 /机翼 (1) 的锁 定装置; 其特征在于: 该复合式垂直起降飞行器还包括用于姿态控制 的调姿喷嘴 (3) 、 用于产生高压空气的发动机 (8) 、 高压空气导管
(4) , 所述的调姿喷嘴 (3) 与所述的高压空气导管 (4) 连接, 所 述高压空气导管 (4) 用于输送所述发动机 (8) 所产生的高压空气; 所述调姿喷嘴 (3) 的方向设置为使所述的调姿喷嘴 (3) 可以产生垂 直推力或垂直推力的矢量分量的方向; 至少有两个所述调姿喷嘴 (3 ) 分别置于飞行器的左部及右部作为滚转调姿装置, 所述的复合式垂 直起降飞行器还包括俯仰调姿装置。
[权利要求 2] 根据权利要求 1所述的复合式垂直起降飞行器, 其特征在于: 所述的 俯仰调姿装置为至少一个置于飞行器的前部或后部的调姿喷嘴 (3)
[权利要求 3] 根据权利要求 1或 2所述的复合式垂直起降飞行器, 其特征在于: 所述 的调姿喷嘴 (3) 置于所述复合式垂直起降飞行器的端部。
[权利要求 4] 根据权利要求 1所述的复合式垂直起降飞行器, 其特征在于: 该复合 式垂直起降飞行器还包括固定机翼 (5) ; 所述两个用作滚转调姿装 置的调姿喷嘴 (3) 分别置于所述固定机翼 (5) 的左半翼及右半翼。
[权利要求 5] 根据权利要求 4所述的复合式垂直起降飞行器, 其特征在于: 该复合 式垂直起降飞行器还包括水平尾翼 (6) , 还包括两个所述调姿喷嘴 (3) 分别置于所述水平尾翼 (6) 的左部及右部作为俯仰调姿装置。
[权利要求 6] 根据权利要求 2所述的复合式垂直起降飞行器, 其特征在于: 该复合 式垂直起降飞行器还包括鸭式前翼 (7) 、 水平尾翼 (6) , 所述的鸭 式前翼 (7) 包括左前翼、 右前翼, 所述的水平尾翼 (6) 包括左尾翼 、 右尾翼; 有 4个所述的调姿喷嘴 (3) 分别置于所述的左前翼、 右前 翼、 左尾翼、 右尾翼; 所述的调姿喷嘴 (3) 兼作滚转与俯仰调姿装
[权利要求 7] 根据权利要求 6所述的复合式垂直起降飞行器, 其特征在于: 所述的 调姿喷嘴 (3) 分别置于所述的左前翼、 右前翼、 左尾翼、 右尾翼的 大体梢部处。
[权利要求 8] 根据权利要求 1、 2、 4、 5、 6、 7所述的任一复合式垂直起降飞行器, 其特征在于: 所述的调姿喷嘴 (3) 设置为可以在产生水平推力的位 置与产生垂直推力的位置之间进行倾转; 所述的复合式垂直起降飞行 器还包括使所述调姿喷嘴 (3) 倾转的倾转装置。
[权利要求 9] 根据权利要求 1、 2、 4、 5、 6、 7所述的任一复合式垂直起降飞行器, 其特征在于: 所述的调姿喷嘴 (3) 还设置有倾斜装置, 所述的倾斜 装置使所述调姿喷嘴 (3) 所喷出的气流可以朝所述复合式垂直起降 飞行器的左、 右方倾斜。
[权利要求 10] 根据权利要求 9所述的复合式垂直起降飞行器, 其特征在于: 所述的 调姿喷嘴 (3) 设置为可以在产生水平推力的位置与产生垂直推力的 位置之间进行倾转, 所述的复合式垂直起降飞行器还包括使所述调姿 喷嘴 (3) 倾转的倾转装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410672672.7A CN105667782A (zh) | 2014-11-22 | 2014-11-22 | 一种复合式垂直起降飞行器 |
CN201410672672.7 | 2014-11-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016078622A1 true WO2016078622A1 (zh) | 2016-05-26 |
Family
ID=56013317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/095238 WO2016078622A1 (zh) | 2014-11-22 | 2015-11-21 | 一种复合式垂直起降飞行器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105667782A (zh) |
WO (1) | WO2016078622A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106005394A (zh) * | 2016-07-22 | 2016-10-12 | 中国航空工业集团公司西安飞机设计研究所 | 一种救援飞行器 |
CN106927039A (zh) * | 2016-12-09 | 2017-07-07 | 河北工业大学 | 矢量拉力装置及垂直起降无人机矢量拉力控制方法 |
CN109899177B (zh) * | 2018-08-08 | 2023-02-17 | 珠海市蓝鹰贸易有限公司 | 多核心机带加力燃烧室涡扇航空动力系统及飞行器 |
CN113955128A (zh) * | 2020-07-05 | 2022-01-21 | 滕德选 | 垂直/短距起降战机的动力系统 |
CN113277078B (zh) * | 2021-04-13 | 2024-08-16 | 中电科芜湖通用航空产业技术研究院有限公司 | 垂直起降飞机及其操纵方法 |
CN114572384A (zh) * | 2022-03-10 | 2022-06-03 | 哈尔滨工业大学 | 姿态可控模块单元、飞行器及姿态控制方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3117750A (en) * | 1961-12-07 | 1964-01-14 | Havilland Engine Co Ltd | Aircraft propulsion apparatus |
JPH05185988A (ja) * | 1992-01-09 | 1993-07-27 | Mitsubishi Heavy Ind Ltd | ヘリコプタ |
US5246188A (en) * | 1989-09-14 | 1993-09-21 | Koutsoupidis Theodore K | Wing turbines in conjuction with propulsion systems for aircraft and helicopters |
US5666803A (en) * | 1995-08-14 | 1997-09-16 | Windisch; D. Anthony | Vectored thrust compressor for remote controlled aircraft |
US5788181A (en) * | 1995-10-16 | 1998-08-04 | Mcdonnell Douglas Helicopter Co. | Thermostatic metal actuator for nozzle actuation |
CN1662419A (zh) * | 2002-06-28 | 2005-08-31 | Vtol技术有限公司 | 管道式气流动力设备 |
CN2827873Y (zh) * | 2005-07-06 | 2006-10-18 | 雷良榆 | 翼面射流固定翼直升飞机 |
US7837141B2 (en) * | 2006-03-22 | 2010-11-23 | The Boeing Company | Reaction drive rotor/wing variable area nozzle |
CN102336267A (zh) * | 2011-07-28 | 2012-02-01 | 西北工业大学 | 一种飞行模式可变的旋转机翼飞机 |
CN102616371A (zh) * | 2011-01-28 | 2012-08-01 | 北京航空航天大学 | 一种实施鸭翼展向活塞式射流间接涡控技术的方法与装置 |
CN204279944U (zh) * | 2014-11-22 | 2015-04-22 | 吴建伟 | 一种复合式垂直起降飞行器 |
-
2014
- 2014-11-22 CN CN201410672672.7A patent/CN105667782A/zh active Pending
-
2015
- 2015-11-21 WO PCT/CN2015/095238 patent/WO2016078622A1/zh active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3117750A (en) * | 1961-12-07 | 1964-01-14 | Havilland Engine Co Ltd | Aircraft propulsion apparatus |
US5246188A (en) * | 1989-09-14 | 1993-09-21 | Koutsoupidis Theodore K | Wing turbines in conjuction with propulsion systems for aircraft and helicopters |
JPH05185988A (ja) * | 1992-01-09 | 1993-07-27 | Mitsubishi Heavy Ind Ltd | ヘリコプタ |
US5666803A (en) * | 1995-08-14 | 1997-09-16 | Windisch; D. Anthony | Vectored thrust compressor for remote controlled aircraft |
US5788181A (en) * | 1995-10-16 | 1998-08-04 | Mcdonnell Douglas Helicopter Co. | Thermostatic metal actuator for nozzle actuation |
CN1662419A (zh) * | 2002-06-28 | 2005-08-31 | Vtol技术有限公司 | 管道式气流动力设备 |
CN2827873Y (zh) * | 2005-07-06 | 2006-10-18 | 雷良榆 | 翼面射流固定翼直升飞机 |
US7837141B2 (en) * | 2006-03-22 | 2010-11-23 | The Boeing Company | Reaction drive rotor/wing variable area nozzle |
CN102616371A (zh) * | 2011-01-28 | 2012-08-01 | 北京航空航天大学 | 一种实施鸭翼展向活塞式射流间接涡控技术的方法与装置 |
CN102336267A (zh) * | 2011-07-28 | 2012-02-01 | 西北工业大学 | 一种飞行模式可变的旋转机翼飞机 |
CN204279944U (zh) * | 2014-11-22 | 2015-04-22 | 吴建伟 | 一种复合式垂直起降飞行器 |
Also Published As
Publication number | Publication date |
---|---|
CN105667782A (zh) | 2016-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3439951B1 (en) | Rotating wing assemblies for tailsitter aircraft | |
US8256704B2 (en) | Vertical/short take-off and landing aircraft | |
WO2016078622A1 (zh) | 一种复合式垂直起降飞行器 | |
US10077108B2 (en) | Vertical take-off and landing (VTOL) aircraft with exhaust deflector | |
WO2016066131A1 (zh) | 一种复合式垂直起降飞行器 | |
US8376264B1 (en) | Rotor for a dual mode aircraft | |
US20160236775A1 (en) | Vertical takeoff and landing aircraft | |
US9296477B1 (en) | Multi-rotor helicopter | |
CN108298064B (zh) | 非常规偏航控制系统 | |
WO2016004852A1 (zh) | 一种垂直起降飞行器 | |
US11053000B2 (en) | Aerodyne with vertical-takeoff-and-landing ability | |
CN105083550A (zh) | 垂直起降固定翼飞行器 | |
AU2016344527B2 (en) | Air vehicle and method and apparatus for control thereof | |
US6932296B2 (en) | Cycloidal VTOL UAV | |
US10464667B2 (en) | Oblique rotor-wing aircraft | |
US20170008622A1 (en) | Aircraft | |
TWI627104B (zh) | 可兼具垂直升降與定翼飛行之雙模式航空器簡易俯仰控制裝置 | |
US10112697B2 (en) | Aircraft with thrust vectoring tail | |
WO2016062223A1 (zh) | 一种垂直起降飞行器 | |
CN205022862U (zh) | 带有倾转机构的动力装置和固定翼飞行器 | |
US20120175461A1 (en) | Rotor hub and blade root fairing apparatus and method | |
CN106927035B (zh) | 大机动性自转旋翼机及其控制方法 | |
CN108528692A (zh) | 一种折叠机翼双旋翼飞行器及其控制方法 | |
US20070034737A1 (en) | Dual axis control for cycloidal propeller | |
CN103754360A (zh) | 一种类飞碟式旋翼机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15861528 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/11/2017) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15861528 Country of ref document: EP Kind code of ref document: A1 |