WO2016004852A1 - 一种垂直起降飞行器 - Google Patents

一种垂直起降飞行器 Download PDF

Info

Publication number
WO2016004852A1
WO2016004852A1 PCT/CN2015/083450 CN2015083450W WO2016004852A1 WO 2016004852 A1 WO2016004852 A1 WO 2016004852A1 CN 2015083450 W CN2015083450 W CN 2015083450W WO 2016004852 A1 WO2016004852 A1 WO 2016004852A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
unit
posture
thrust
wing
Prior art date
Application number
PCT/CN2015/083450
Other languages
English (en)
French (fr)
Inventor
吴建伟
Original Assignee
吴建伟
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吴建伟 filed Critical 吴建伟
Publication of WO2016004852A1 publication Critical patent/WO2016004852A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft

Definitions

  • the present invention relates to an aircraft, and more particularly to a vertical take-off and landing aircraft with attitude control devices.
  • the common vertical take-off and landing aircrafts include helicopters, tilt-rotor aircraft, and vertical take-off and landing jets.
  • the vertical take-off and landing aircraft need to rely on attitude control devices to maintain the balance of the aircraft in achieving vertical takeoff and landing.
  • the control device is used to realize the control of the flight attitude of the aircraft horizontal, rolling, pitching, and yaw, and realize the vertical take-off and landing of the aircraft and the longitudinal and lateral flight; the attitude control device refers to a device that controls the flight attitude of the aircraft.
  • Non-rotating ring is mounted on the rotor shaft and is connected to the cycle variable pitch and total distance manipulator through a series of push rods. It can tilt in any direction or vertically.
  • the rotating ring is mounted on the non-rotating ring through the bearing and can rotate with the rotor shaft.
  • the torsion arm is used to ensure that the rotating ring rotates synchronously with the blade.
  • the anti-torsion arm is used to prevent rotation of the non-rotating ring.
  • the helicopter controls the pitch attitude and the roll attitude by manipulating the automatic tilter by the cyclic pitch control device, and can also control the longitudinal attitude and the roll attitude; and control the automatic tilter to change the rotor by the total distance control device.
  • the blade pitch is used to control the vertical speed of the helicopter.
  • the conventional helicopter is also equipped with a tail rotor for balancing the rotor reaction torque, and the helicopter yaw speed can be controlled by changing the total tail rotor pitch.
  • the V-22 Osprey tilt-rotor aircraft jointly designed and manufactured by American Bell and Boeing is connected to an engine compartment at each end of the wing.
  • the engine compartment can be tilted between a horizontal position and a vertical position.
  • a rotor is attached to the engine compartment.
  • the flight attitude control of the V-22 tilt-rotor aircraft is similar to that of the helicopter. It is also used to control the flight attitude of the aircraft by changing the rotor blade period and synchronizing the rotor blade pitch by the periodic variable distance control device and the total distance control device.
  • the V-22 tilt-rotor aircraft produces a longitudinal thrust differential between the rotors by tilting at least one of the engine compartments to control the yaw speed of the aircraft.
  • attitude control devices used in helicopters or tilt-rotor aircraft use complex mechanical components, High material requirements, difficult production, complicated installation, high maintenance costs; and such attitude control devices are only suitable for aircraft using thrusters connected to the engine power as thrust devices, which mostly use turboshaft engines or pistons. Engine.
  • the engine is used to provide the lift required for landing and the thrust required for transitional and normal flight.
  • the two pairs of nozzles are symmetrical to the center of gravity of the aircraft, and are placed on both sides of the fuselage to control the engine thrust vector (change the magnitude and direction of the thrust) through the operating lever of the nozzle and the engine throttle lever.
  • the nose, fuselage and wingtips are equipped with a jet reaction control system that bleeds from the engine to control the flight attitude of vertical, short-range landing or hovering, and can also be used to improve the handling of stalls during normal flight.
  • a jet reaction control system that bleeds from the engine to control the flight attitude of vertical, short-range landing or hovering, and can also be used to improve the handling of stalls during normal flight.
  • the attitude control device for the vertical take-off and landing jet aircraft also uses complex mechanical components, especially the rotatable spout, it not only requires high material requirements, but also is difficult to produce, thus increasing the cost of production and maintenance;
  • Such attitude control devices are only suitable for aircraft using a vector nozzle or a lift engine or even a lift fan connected to the engine power through a transmission as a vertical thrust device, which uses a special vector engine.
  • attitude control devices which are all complicated mechanical structures, and a large number of mechanical components not only increase the manufacturing difficulty, but also increase the cost of production and maintenance;
  • the type of thrust device is limited.
  • the technical problem to be solved by the present invention is to provide a vertical take-off and landing aircraft that can employ various types of thrust devices without an attitude control device of a complicated mechanical structure.
  • the vertical take-off and landing aircraft of the present invention includes a fuselage, a main thrust device that provides a main thrust for the aircraft, wherein the aircraft further includes an attitude control device, and the attitude control device uses electric power, by a power module, N posture adjustment units, N motors corresponding to N posture adjustment units, a governor unit, and a flight control system, wherein N is a natural number greater than or equal to 3;
  • the power module supplies power to the attitude control device;
  • each of the posture units is respectively connected with a motor;
  • the governor unit is electrically connected with the motor for respectively adjusting the output power of each motor, and the governor unit is controlled by the flight control system and Connected to the flight control system signal; at least two postures
  • the elements are symmetrically placed on the left and right sides of the aircraft for use as a roll-to-focus position unit; the aircraft is divided into front and rear portions by the front and rear of the center of gravity, and at least one posture-adjusting unit
  • At least one posture unit can be placed at the front or the rear of the aircraft, or at least two The posture adjustment unit is respectively placed at the front and the rear of the aircraft as a pitch posture unit; the resultant force of the vertical lift generated by all the pitch posture units can be applied to the longitudinal center line of the fuselage.
  • each group of posture adjustment units is respectively connected with a set of motors, and the governor unit respectively controls the output power of each group of motors, and the flight control system implements the governor unit.
  • Control by adjusting the difference in thrust generated by each posture unit, thereby achieving control of the flight attitude.
  • the attitude control device that uses the motor as a power unit to drive the blades controlled by the flight control system is more sensitive, quicker, and easier to operate; each of the attitude units distributed around the front and rear of the aircraft can cause the aircraft to roll, pitch, and The thrust of the yaw makes the attitude control of the aircraft more stable.
  • the attitude control device since the main thrust device provides the main thrust for the aircraft, the attitude control device is mainly used for the control of flight attitudes such as smooth take-off and landing, hovering, rolling, pitching, longitudinal and lateral flight, attitude control device and main thrust device. Separation, independent of the main thrust device, there is no particular limitation on the type of engine and what type of thrust device the aircraft uses.
  • the aircraft further includes a wing, the wing is configured to selectively adjust the angle of attack; the wing is movably coupled to the aircraft, and the wing is operatively coupled to the servo actuator
  • the servo actuator is controlled by the flight control system and is coupled to the flight control system signal.
  • the main thrust device is disposed to be inclined toward the front of the aircraft; as a further improvement, the posture adjusting unit may be disposed to be inclined toward the front of the aircraft.
  • the main thrust device and the attitude adjustment unit can generate a vector component of the vertical thrust and the forward longitudinal thrust. This has the advantage that the aircraft can fly in the forward direction without tilting or tilting the fuselage with a large amplitude.
  • the thrust device and the attitude adjusting unit can generate the vertical lift of the collimator to generate the forward longitudinal thrust vector component to propel the aircraft. go ahead.
  • the aircraft is provided with a vertical tail, and the aircraft is provided with a vertical tail to improve the stability and maneuverability of the flight of the aircraft.
  • the aircraft is configured as a double main wing structure, wherein the first main wing is placed at the front of the aircraft, and the second main wing is placed at the rear of the aircraft, the first main wing and the second main wing The distance between the two is greater than or equal to the diameter of the main thrust device; the second main wing doubles as the horizontal tail; the left and right ends of the first main wing and the second main wing are respectively connected with the posture adjusting unit.
  • the position of the main thrust device that generates the vertical thrust and the position of the wing that generates the fixed wing lift It is not necessary to concentrate on the vicinity of the center of gravity, and the main thrust device does not conflict with the position of the wing, which makes the arrangement of the main thrust device more convenient; in addition, the position adjustment unit is connected to the ends of the left and right half wings of the first main wing and the second main wing to improve the posture. The efficiency of the unit's attitude control.
  • At least two main thrust devices are respectively coupled to the left and right sides of the middle portion of the fuselage.
  • the main thrust device adopts a ducted fan connected to the engine power.
  • the air outlet of the duct is provided with a rudder surface that can selectively swing toward the front and rear direction of the aircraft.
  • the rudder surface is used to change the vector component of the vertical thrust and the longitudinal thrust. Yaw control; the rudder surface is operatively coupled to a servo actuator that is controlled by the flight control system and coupled to the flight control system signal.
  • the two sets of main thrust devices are respectively connected to the left and right sides of the middle section of the fuselage, so that the main thrust device can be concentrated more near the center of gravity of the aircraft, which can improve the stability of the flight of the aircraft.
  • the thrust difference caused by the left and right main thrust devices is reduced.
  • the resulting risks make the aircraft safer.
  • the use of ducted fans as the main thrust device can protect the personnel or items in the aircraft take-off and landing place from being damaged by the fan blades, so it is safer.
  • the fan blades are placed in the ducts to suck in the upper layer of additional ambient air.
  • the air outlet of the main thrust device is provided with a rudder surface that can selectively swing toward the front and rear direction of the aircraft, and the vector component of the vertical thrust and the longitudinal thrust of the main thrust device can be changed through the rudder surface for adjusting the flying height and the longitudinal flying speed;
  • the rudder surface changes the difference in the vector component of the longitudinal thrust of the left and right main thrust devices, performs yaw control, and improves the operability of the aircraft.
  • the attitude adjustment unit further comprises a ducted duct, the duct and the fan blade constitute a ducted fan, and the posture adjusting unit is a ducted fan.
  • the air outlet of the posture adjustment unit is set to be optional
  • the rudder surface that oscillates in the forward and backward directions of the aircraft; the rudder surface is used to change the vector component of the vertical thrust and the longitudinal thrust or yaw control; the rudder surface is operatively connected to the servo actuator, and the servo actuator is controlled by the flight control system And connected to the flight control system signal.
  • the ducted fan as the posture adjustment unit, it can protect the people or articles in the aircraft take-off and landing place from being damaged by the fan blades, so it is safer.
  • the fan blades are placed in the ducts, which can suck in the upper layer of additional ambient air. The effect of the increase in ejector; by increasing the number of blades in the blade and increasing the speed of the engine, it is also possible to increase the thrust and increase the speed.
  • the air outlet is provided with a rudder surface that can selectively swing toward the front and rear directions of the aircraft, and the vector component of the vertical thrust and the longitudinal thrust of the main thrust device can be changed by the rudder surface to adjust the flying height and the longitudinal flying speed;
  • the difference in the vector component of the longitudinal thrust of the left and right main thrust devices is changed, and the yaw control is performed to improve the operability of the aircraft.
  • the wing of the aircraft is disposed on the wing body at the symmetrical position of the left and right half wings, and the roll-aligning unit is disposed in the duct; the air inlet and the air outlet of the duct Covers are provided separately, and the cover can be opened and closed. When the cover is closed, the cover is flat with the airfoil.
  • the aircraft is coupled to the position adjusting unit or the main thrust device by an elongating mechanism.
  • the posture unit is a fan blade or the main thrust device is a rotor blade
  • the airflow generated by the blade or the rotor is not blocked by components such as an airfoil or a fuselage; and can also be used to set the posture unit or the main thrust device at
  • the connection mechanism of a desired position moves the attitude unit or the main thrust device away from the center of gravity of the aircraft.
  • FIG. 1 is a working principle diagram of an attitude control device of a vertical take-off and landing aircraft of the present invention.
  • FIG. 2 is a schematic view of an embodiment of a vertical take-off and landing aircraft of the present invention.
  • FIG. 3 is a plan view showing an embodiment of a vertical take-off and landing aircraft of the present invention.
  • FIG. 4 is a schematic view showing a connection manner of a ducted fan and a ducted rudder surface of the ducted air outlet according to the present invention.
  • FIG. 5 is a schematic view showing a connection manner of a ducted fan and a ducted air guide vane control surface of the ducted air outlet of the present invention.
  • FIG. 6 is a schematic view showing a movable connection mode of a wing according to the present invention.
  • FIG. 7 is a schematic view of a duct provided in the present invention.
  • FIG. 8 is a schematic view of the present invention for connecting a posture unit or a main thrust device through an elongate arm.
  • FIG. 2 is a schematic view of an embodiment of a vertical take-off and landing aircraft of the present invention, including a fuselage 6, a main thrust device 7, and an attitude control device.
  • the attitude control device uses electric energy, and is controlled by the power module 1, the attitude adjusting unit 2, the motor 3, the governor unit 4, and the flight control.
  • the system 5 is composed of a power supply module 1 for supplying power to the attitude control device; the attitude adjustment unit 2 is a fan blade connected to the power of the motor 3, and each of the attitude adjustment units 2 is respectively connected with a corresponding motor 3; 4 electrically connected to the motor 3 for respectively adjusting the output power of each motor 3, the governor unit 4 is controlled by the flight control system 5 and connected to the flight control system 5; at least two of the attitude adjusting units 2 are respectively symmetrical
  • the ground is placed on the left and right portions of the aircraft for use as a roll-to-focus position unit; the aircraft is divided into a front portion and a rear portion by the front and rear of the center of gravity, and at least one posture adjustment unit 2 is placed at the portion opposite to the roll-alignment unit
  • the other, or the combined force of the vertical lift generated by the roll-and-right position unit, can be applied to the center of gravity of the aircraft.
  • At least one posture unit 2 is placed at the front of the aircraft.
  • the rear part can be, or there are at least two posture adjustment units 2 respectively placed at the front and the rear of the aircraft as a pitch adjustment unit; the resultant of the vertical lift generated by all the pitch adjustment units can be applied to the longitudinal direction of the fuselage On the center line 10.
  • the power module 1 may be an electric power storage device, such as a rechargeable battery, a super capacitor, a nuclear battery, etc.; or may be a power generating device including an engine and a power connected generator; or may be an electric power connected to the power generating device Storage device.
  • Motor 3 is optimal for brushless motors, but it is not limited. It can also be other types of motors, such as brush motors, AC motors, DC motors, single-phase motors, three-phase motors, and so on.
  • the governor unit 4 includes an electronic speed controller electronic speed controller. A DC motor governor, an AC motor governor, etc., which can adjust the output power of the motor; the governor unit 4 can be combined with the motor 3 or other equipment.
  • a module can also be an independent governor, which can be a single-group output governor for controlling a single motor, or a multi-group output governor that controls multiple motors separately; the type of governor should be related to the motor
  • the types of 3 are matched, for example, the brushless motor uses a brushless electronic governor, the brushed motor uses a brushed electronic governor, and the like.
  • the governor unit 4 is controlled by the flight control system 5 and is connected to the flight control system 5; the flight control system is an automatic control of the flight attitude and motion parameters.
  • the control system, the flight control system 5 can adopt an electronic flight control system, a digital flight control system, a fly-by-wire control system and the like with a flight control system with automatic control capability; the flight control system 5 is used to collect flight attitude data, analyze and process data, and automatically issue The control signal controls the output power of the motor 3 through the governor unit 4, thereby achieving attitude control of the aircraft.
  • the fan blade refers to a device that converts engine rotational power into propulsion force by rotating in air, and fans, propellers, rotors, and the like also fall within the scope of the blade of the present invention.
  • the posture unit 2 has a certain posture as long as it is not at the center of gravity, since the posture unit 2 is farther from the center of gravity of the aircraft, the efficiency is higher, so the optimal connection position of the posture unit 2 should be the left and right ends of the aircraft. And the front or rear end; in practical applications, different aerodynamic layouts or aircrafts of different shapes have different requirements for the position of the positioning unit 2, and in the case where the posture unit 2 cannot be connected to the end, in principle, The posture unit 2 is disposed as far as possible from the center of gravity of the aircraft.
  • the manner or position of the posture unit 2 can be connected, for example, connected to the wing, connected to the duct in the wing body, connected to the aircraft through the extension arm, and the like.
  • At least two attitude adjustment units 2 are symmetrically placed on the left and right portions of the aircraft respectively for use as a roll alignment unit, that is, at least one is placed at the left portion, and at least one is placed at the right portion, and the two posture adjustment units can be machined.
  • the body 6 or the longitudinal centerline 10 of the fuselage acts as an axis of symmetry.
  • the aircraft is divided into a front portion and a rear portion by the front and rear of the center of gravity, and at least one posture unit 2 may be disposed to be placed as the pitch posture unit with respect to the other portion of the portion where the roll alignment unit is located, for example, the roll alignment unit is disposed at
  • the front pitching posture unit is disposed at the rear portion.
  • the roll posture unit is disposed at the rear, and the pitch posture unit is disposed at the front; or the combined force of the vertical lift generated by the roll posture unit is applied to the aircraft.
  • at least one pitch adjustment unit may be disposed at the front or the rear of the aircraft, for example, when the two roll-aligning units respectively placed on the left and right sides are substantially in the same line with the center of gravity, at least one pitch adjustment
  • the posture unit may be placed at the front or the rear of the aircraft; or at least two posture units 2 may be respectively placed at the front and the rear of the aircraft as a pitch adjustment unit, that is, at the front of the aircraft and
  • the pitch adjustment unit is set at the rear.
  • the combined force of the vertical lift generated by all the pitch attitude units can make the aircraft as a whole pitch, not just the one side of the aircraft; for example, when the number of pitch posture units is odd, a pitch attitude unit can be set.
  • the remaining even number of pitch attitude units are symmetrically placed on the left and right with the longitudinal center line 10 of the fuselage as the axis of symmetry, and when the number of pitch posture units is even, all the pitch adjustment units can
  • the longitudinal center line 10 of the fuselage is symmetrically placed on the left and right sides
  • the resultant of the vertical lift generated by all of the pitch attitude units can be applied to the longitudinal centerline 10 of the fuselage.
  • the longitudinal centerline 10 of the fuselage refers to an axis on the plane that can bisect the left and right sides of the aircraft.
  • the posture control by using the posture unit 2 to generate the lift can improve the vertical lift of the aircraft as a whole, so that the posture control unit 2 performs posture control in a manner of generating lift as a preferred solution; of course, the posture unit 2 can also generate Anti-lift or attitude control that can generate lift and counter-lift
  • the posture adjustment unit 2 may further include a ducted road 11, a duct 11 and a fan blade forming a ducted fan, and the posture unit 2 is a ducted fan. It is also possible to provide a nacelle in the duct 11 and the nacelle is fixed in the duct 11 by a connecting mechanism, which may be a stabilizer, a fixing rib, etc.; the nacelle is used to load the motor 3 or the transmission, and the motor 3 passes the motor The output shaft is connected to the fan blade or to the fan blade via a transmission.
  • a connecting mechanism which may be a stabilizer, a fixing rib, etc.
  • the posture unit 2 and the motor 3 can be connected by other means, for example, a motor mount is provided in the duct 11 , a motor mount is used to mount the motor 3, and a motor output shaft is connected to the fan blade.
  • the posture adjusting unit 2 is a ducted fan ⁇ , and a rudder surface 12 that can selectively swing toward the front and rear directions of the aircraft can be disposed at the air outlet of the ducted fan; the rudder surface 12 is used to change the vector component of the vertical thrust and the longitudinal thrust or
  • the yaw control is operatively coupled to the servo actuator, which is controlled by the flight control system 5 and is coupled to the flight control system 5.
  • FIG. 4 is a schematic view showing a connection manner of a ducted fan and a ducted rudder surface.
  • the rudder surface 12 is movably connected to the duct 11 and the two ends of the rudder surface 12 and the duct 11 are respectively provided with a rotating shaft 14 and a duct 11 A through hole 15 for rotating the rotating shaft 14 is disposed, and the through hole 15 accommodates the rotating shaft 14; one end of the servo actuator is connected to the rudder surface 12, and the other end is connected to the duct 11; this is only an embodiment and is not limited, and may be adopted.
  • connection methods such as the air outlet of the duct 11 is provided with a stabilizer surface, and the control surface of the rudder surface is hinged to the stabilizer; the connection mode of the servo actuator is determined according to the shape or type of the servo actuator, and more The manner in which the servo actuator is operatively coupled to the rudder surface 12 is achieved.
  • the rudder surface 12 is not limited to a blade rudder surface, and a double-leaf or multi-blade rudder surface may be used.
  • the multi-blade rudder surface may also be combined into a guide sluice surface 12a, as shown in FIG. 5, a ducted fan and a ducted duct.
  • connection of the guide vane control surface of the air outlet may be a connection method of the above-mentioned steering surface 12 and the duct 11, or other connection methods such as a louver may be employed. Since the connection method of the rudder surface or the guide rudder surface is relatively common and diverse, it will not be further described here.
  • the blade of the posture adjustment unit 2 will form a reaction torque after the rotation, and the balance reaction torque should be adopted.
  • Set or set the device to balance the reaction torque It is possible to balance the reaction torque by setting the rotation direction of the blade of each posture unit 2 to the forward and reverse pairs, the coaxial double paddle with the reaction torque cancellation, and the tilting posture unit in the opposite direction of the reaction torque. setting.
  • the device that balances the reaction torque can be a tail rotor, a rudder surface placed below the airflow, or other types of devices, such as the NOTAR tail rotor used by the Boeing MD600N helicopter, which is a favorable interaction between the jet ejector and the rotor under the airflow.
  • a device that acts to create an anti-torque; a device that balances the reactive torque is not required. Yaw control can also be achieved by means of a balanced reaction torque setting method or a device that balances the reaction torque.
  • the so-called thrust device refers to a device that converts engine power into thrust, and the main thrust device 7 provides the main thrust for the aircraft.
  • the main thrust device 7 may be a rotor connected to the power of the engine, a ducted fan, or other thrust devices, such as a vector engine, a turbofan engine, etc., which can provide a vertical thrust; a rotor or a ducted fan may be used.
  • Turbine shaft engine or piston engine; the number of main thrust devices 7 is not limited and may be one set, two sets or multiple sets.
  • the main thrust device 7 adopts a power-connected rotor or ducted fan of the engine.
  • the reaction torque can be balanced by referring to the balance reaction torque of the above-mentioned posture adjusting unit, and the reaction torque of the attitude adjusting unit can be integrated to balance the reaction torque by the above method.
  • the main thrust device 7 is a device that uses a power-connected rotor or ducted fan to balance the reaction torque. Yaw control can also be achieved by means of a balanced reaction torque setting method or a device that balances the reaction torque.
  • the resultant force of the vertical lift generated by the main thrust device 7 deviates from the center of gravity of the aircraft, the balance of the aircraft can be achieved by the attitude control device, but this increases the burden of the attitude control device, so the preferred connection position of the main thrust device 7 is all the main thrust devices.
  • the resultant force of the resulting lift can be applied to the position of the aircraft's large center of gravity, i.e., the position of the main thrust device 7 is substantially balanced by the aircraft.
  • the aircraft may also be provided with a wing 8, the wing 8 is arranged to selectively adjust the angle of attack; the wing 8 is movably connected to the aircraft, The wing 8 is operatively coupled to a servo actuator that is controlled by the flight control system 5 and is coupled to the flight control system 5.
  • the aircraft may be provided as a dual main wing structure in which the first main wing 8a is placed at the front of the aircraft, the second main wing 8b is placed at the rear of the aircraft, and the distance between the first main wing 8a and the second main wing 8b is greater than or equal to the main thrust device.
  • FIG. 7 is a schematic view of the movable connection of the wing.
  • the wing 8 has a through hole 17 through which the shaft can pass.
  • the through hole 17 passes through the rotating shaft 18, and the wing 8 can rotate around the rotating shaft 18.
  • One end of the rotating shaft 18 is connected to the body 6.
  • the other end is connected to the posture unit 2; the wing 8 is hinged to one end of the servo actuator, and the other end of the servo actuator is connected to the body 6; this is only one embodiment and is not limited, and may be other connections.
  • the wing 8 can be freely adjusted by the wing 8 and the hinge surface; the connection mode of the servo actuator depends on the type and shape of the servo actuator, and the connection position is not limited to the machine.
  • the body 6 and the wing 8 may also be other operatively connected and positioned positions of the attitude unit 2 and the wing 8.
  • the wing 8 may be provided with ailerons or flaps, or the ailerons may be provided with the flaps, and the ailerons of the second main wing 8b may double as the elevator; but the ailerons or flaps or ailerons and flaps and the elevators Not required.
  • the main thrust device 7 may be disposed to be inclined toward the front of the aircraft, and the posture unit 2 may be disposed to be inclined toward the front of the aircraft, so that the body 6 is in a horizontal state, and the main thrust device 7 and the posture unit 2 may be vertical.
  • the vector component of the thrust and the forward longitudinal thrust; the aircraft may also be provided with a vertical tail 9.
  • the angles at which the main thrust device 7 and the posture adjusting unit 2 are inclined are optimal from 15 degrees to 45 degrees, which is not limited; although the angle of inclination also takes into consideration factors such as the idle speed of the aircraft design, the thrust-to-weight ratio, etc., the main thrust device 7 And the inclination angle of the posture adjustment unit 2 cannot exceed 90 degrees.
  • the vertical tail 9 is arranged to be connected to the upper part of the tail of the aircraft fuselage 6 or other connection manners.
  • two vertical tails 9 are respectively connected above the left and right half wings of the second main wing 8b to form a double vertical tail structure.
  • the vertical tail 9 has no rudder ⁇ as a stable direction; the vertical empenna 9 can also be provided with a rudder, and the rudder control system can also be equipped with a damper to stop the yaw phenomenon of the aircraft in high-altitude high-speed flight, rudder and Dampers are not required.
  • Two main thrust devices 7 may be respectively symmetrically connected to the left and right sides of the middle portion of the fuselage 6; the main thrust device 7 may be a ducted fan connected to the engine power, and the air outlet of the duct 11 may be provided.
  • a rudder surface 12 that selectively oscillates in the forward and backward directions of the aircraft; the rudder surface 12 is used to change the vector component of the vertical thrust and the longitudinal thrust or to perform yaw control; the rudder surface 12 is operatively coupled to the servo actuator, the servo actuator It is controlled by the flight control system 5 and is signaled to the flight control system 5.
  • FIG. 4 is a schematic view showing a connection manner of a ducted fan and a ducted rudder surface.
  • the rudder surface 12 is movably connected to the duct 11 and the two ends of the rudder surface 12 and the duct 11 are respectively provided with a rotating shaft 14 and a duct 11 A through hole 15 for rotating the rotating shaft is disposed, and the through hole 15 accommodates the rotating shaft 14; one end of the servo actuator is connected to the rudder surface 12, and the other end is connected to the duct 11; this is only an embodiment and is not limited, and other
  • the connection method for example, the duct air outlet is provided with a stabilizer surface, the rudder surface 12 is hinged with the stabilizer surface, etc.; the connection manner of the servo actuator is determined according to the shape or type of the servo actuator, and can be implemented in various ways.
  • the servo actuator is operatively coupled to the rudder surface 12.
  • the rudder surface 12 is not limited to a blade rudder surface, and a double-leaf or multi-blade rudder surface may be used.
  • the multi-blade rudder surface may also be combined into a guide sluice surface 12a, as shown in FIG. 5, a ducted fan and a ducted duct.
  • a schematic diagram of the connection manner of the guide vane control surface of the air outlet, the connection of the guide vane surface 12a may be a connection method of the above-mentioned steering surface 12 and the duct 11, or other connection methods such as a louver may be employed.
  • the main thrust device 7 does not have to use two, and a plurality of main thrust devices 7 may be symmetrically connected to the left and right sides of the middle portion of the fuselage 6 respectively; the main thrust device 7 does not have to use a ducted fan. It can be a rotor or a turbofan engine.
  • the posture adjusting unit 2 may also be a ducted fan, and the air outlet of the ducted fan shown in FIG. 4 and FIG. a rudder surface 12 that selectively swings toward the front and rear of the aircraft, the rudder surface 12 may also be a guide sluice surface 12a; the rudder surface 12 is used to change a vector component of vertical thrust and longitudinal thrust or yaw control;
  • the face 12 is operatively coupled to a servo actuator that is controlled by the flight control system 5 and is signally coupled to the flight control system 5.
  • the connection manner of the duct air outlet 12 or the guide vane surface 12a of the duct outlet has been described above, and will not be repeatedly described herein.
  • the so-called servo actuator referred to above refers to an actuator of a flight control system, also known as a steering gear; it directly directs the control surfaces of the aircraft according to the output command of the flight control computer (eg, a composite steering gear) Type) or indirect (such as auxiliary steering type) control;
  • the flight control computer eg, a composite steering gear
  • auxiliary steering type indirect (such as auxiliary steering type) control;
  • servo actuators electro-hydraulic servo actuators, or other types of servo actuators, such as electric servo actuators or Pneumatic servo actuators and more.
  • the ducted fan mentioned above includes ducted ducts, and there are two kinds of ducts, one is a through hole reserved for the wing or the fuselage, and the other is an independent ducted body, due to the wing Or the size of the through hole reserved for the fuselage is limited by the size of the wing or the fuselage, so a separate ducted body may be preferred.
  • the posture adjusting unit 2 is respectively connected to the ends of the left and right half wings of the first main wing 8a and the second main wing 8b.
  • the posture unit 2 is in the left or right part of the aircraft, and is at the front or the rear of the aircraft; this kind of posture adjustment unit can be used both as a roll-adjusting posture and as a pitch-adjusting posture.
  • attitude adjustment units 2 are symmetrically placed in the left and right portions of the aircraft respectively for use as a roll-to-focus position unit; the aircraft is divided into front and rear portions with a center of gravity, at least one tone
  • the posture unit 2 is placed at the other portion of the portion with respect to the roll alignment unit, or the resultant force of the vertical lift generated by the roll alignment unit can be applied to the center of gravity of the aircraft, and at least one posture unit 2 is placed
  • the front or rear of the aircraft may be, or at least two posture units 2 are respectively placed at the front and the rear of the aircraft as a pitch attitude unit; the resultant of the vertical lift generated by all the pitch posture units Acting on the longitudinal centerline of the fuselage 10 "requirements.
  • the aircraft is an aircraft raft that can fly at a faster speed in a fixed wing manner, such as a tilt-rotor aircraft and a vertical take-off and landing jet, etc.
  • a fixed wing manner such as a tilt-rotor aircraft and a vertical take-off and landing jet, etc.
  • the duct can be arranged on the wing body at the symmetrical position of the left and right half wings, and the roll alignment unit is disposed in the duct;
  • the air inlet and the air outlet are respectively provided with a cover plate 13, and the cover plate 13 can be opened and closed. When the cover plate 13 is closed, the cover plate 13 is flat with the airfoil.
  • the cover 13 When the aircraft moves up and down or hovering vertically, the cover 13 is snoring and the posture unit 2 is turned on; when the aircraft is flying in the fixed wing mode, the cover 13 is closed and the posture unit 2 stops rotating.
  • the wing can be used to set the duct and the position adjusting unit 2 is disposed in the duct.
  • the posture unit 2 is mounted on a tilting rotor aircraft or a vertical take-off and descending jet aircraft, and has a fixed wing and can be faster. Flying on the aircraft.
  • the posture unit 2 or the main thrust device 7 can be connected by an elongating mechanism.
  • a schematic view of the attitude adjusting unit or the main thrust device connected to the extension arm 19 as shown in Fig. 8 can be connected to the posture unit 2 or the main thrust device 7 via the extension arm 19.
  • a passage for accommodating the drive shaft can be provided inside the extension arm 19, of course, it is not necessary to provide a passage.
  • the posture unit 2 is a blade or the main thrust device 7 is a rotor blade, the airflow generated by the blade or the rotor is not blocked by the airfoil or the fuselage 6 and the like.
  • the length of the extension arm 19 should be greater than or equal to the radius of the blade or rotor, and the shape of the extension arm 19 should be such as to minimize the occurrence of the blade
  • the airflow is preferably blocked, for example, a cylindrical shape, a rhombic shape in cross section, and a shape of a water chestnut upward; etc.; the other air-extension mechanism may be connected to the posture unit 2 so that the airflow generated by the blade or the rotor is not blocked, for example, by vertical Set the stabilizer connection and so on.
  • the elongating arm 19, the vertically disposed stabilizer, and the like may also be used as a connecting mechanism for setting the posture unit 2 or the main thrust device 7 at a desired position, for example, by the elongating mechanism. 2 or the main thrust device 7 is away from the center of gravity of the aircraft.
  • the attitude adjustment unit 2 can be connected to the helicopter by the extension mechanism.
  • the main thrust device 7 of the helicopter is a rotor, and the rotor is disposed at the center of gravity of the top of the helicopter fuselage.
  • the posture unit 2 can be symmetrically placed on the left and right sides of the helicopter by the elongate arms, and at least one posture unit 2 is placed at the tail of the helicopter; the posture unit 2 at the tail can also be set to Selectively oscillate in the left and right direction of the aircraft to replace the tail rotor for yaw control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Toys (AREA)

Abstract

一种垂直起降飞行器,包括机身(6)、为飞行器提供主要推力的主推力装置(7)和姿态控制装置,所述姿态控制装置包括用于调整飞行器滚转、俯仰姿态的多个调姿单元(2),所述调姿单元包括由电机(3)驱动的扇叶。根据本发明的飞行器在姿态调节方面省却了复杂的机械结构,降低了制造难度和维护成本。

Description

说明书 发明名称:一种垂直起降飞行器
[0001] 技术领域
[0002] 本发明涉及一种飞行器, 尤其涉及一种带有姿态控制装置的垂直起降飞行器。
[0003] 背景技术
[0004] 目前常见的垂直起降飞行器有直升机、 倾转旋翼飞机及垂直起降的喷气式飞机 , 垂直起降飞行器在实现垂直起降吋需要依靠姿态控制装置来保持飞行器的平 衡, 需要依靠姿态控制装置来实现飞行器水平、 滚转、 俯仰、 偏航的飞行姿态 的控制, 以及实现飞行器的垂直起降以及纵向、 横向飞行; 姿态控制装置就是 指控制飞行器飞行姿态的装置。
[0005] 传统的直升机安装有自动倾斜器, 自动倾斜器由两个主要零件组成: 一个不旋 转环和一个旋转环。 不旋转环被安装在旋翼轴上, 并通过一系列推拉杆与周期 变距和总距操纵装置相连。 它能够向任意方向倾斜, 也能垂直移动。 旋转环通 过轴承被安装在不旋转环上, 能够同旋翼轴一起旋转。 扭力臂用于保证旋转环 与桨叶一起同步旋转。 防扭臂则用于阻止不旋转环旋转。 这两个环作为一个单 元体同吋倾斜和上下。 旋转环通过拉杆与变距摇臂相连。 直升机是通过周期变 距操纵装置操纵自动倾斜器使旋翼桨叶周期变距实现俯仰姿态及滚转姿态的控 制, 也可以控制纵向速度及横向速度; 通过总距操纵装置操纵自动倾斜器同步 改变旋翼桨叶桨距用于控制直升机的垂直速度。 传统的直升机还安装有尾桨用 于平衡旋翼反作用扭矩, 通过改变尾桨总距可以控制直升机偏航速度。
[0006] 由美国贝尔公司和波音公司联合设计制造的 V-22鱼鹰式倾转旋翼飞机在机翼的 两端部各连接有一个发动机舱, 发动机舱可以在水平位置与垂直位置之间倾转 , 发动机舱上连接有旋翼。 V-22倾转旋翼飞机的飞行姿态控制与直升机类似, 也是通过周期变距操纵装置及总距操纵装置使旋翼桨叶周期变距及同步改变旋 翼桨叶桨距用于控制飞机飞行姿态。 V-22倾转旋翼飞机通过倾转至少一个发动 机舱, 从而在旋翼之间产生纵向推力差异, 用于控制飞机的偏航速度。 因为用 于直升机或倾转旋翼飞机的姿态控制装置都是采用复杂机械部件, 所以对制作 材料要求高、 生产难度大、 安装复杂、 维护成本高; 而且此类的姿态控制的装 置只适用于采用了与发动机功率连接的旋翼作为推力装置的飞行器, 该类飞行 器大多采用涡轮轴发动机或者活塞式发动机。
[0007] 由英国霍克飞机公司和布里斯托尔航空发动机公司研制的"鹞"式战斗机, 它实 现垂直 /短距起落的基本原理在于采用一台 4个可旋转喷口的"飞马"涡扇发动机来 提供起落吋所需的升力以及过渡飞行和正常飞行所需的推力。 两对喷口对称于 飞机重心, 分置机身两侧, 通过喷口操纵系统的操纵杆和发动机油门杆, 实现 发动机推力矢量的控制 (改变推力的大小和方向)。 机头、 机身和翼梢装有从发动 机引气的喷气反作用操纵系统, 用以控制垂直、 短距起落或悬停吋的飞行姿态 , 在正常飞行中也可用以改善失速吋的操纵性。 因为用于垂直起降喷气式飞机 的姿态控制的装置也是采用复杂的机械部件, 特别是可旋转喷口, 不仅对制作 的材料要求高、 而且生产难度大, 所以提高了生产和维护的成本; 而且此类姿 态控制装置只适用于采用了矢量喷口或举升发动机甚至通过传动装置与发动机 功率连接的升力风扇作为垂直推力装置的的飞行器, 此类飞行器采用特制的矢 量发动机。
[0008] 上述类型的垂直起降飞行器用来作为姿态控制的装置都是采用复杂的机械结构 的, 大量的机械部件不仅增加了制造的难度, 也提高的生产和维护的成本; 而 且飞行器所采用的推力装置的类型被限制。
[0009] 发明内容
[0010] 本发明要解决的技术问题是提供一种没有复杂机械结构的姿态控制装置的、 可 以采用多种类型推力装置的垂直起降飞行器。
[0011] 为解决上述技术问题, 本发明的垂直起降飞行器包括了机身、 为飞行器提供主 要推力的主推力装置, 其中飞行器还包括姿态控制装置, 姿态控制装置使用电 育 , 由电源模块、 N个调姿单元、 对应 N个调姿单元的 N个电机、 调速器单元、 以及飞行控制系统组成, 其中 N为大于或等于 3的自然数; 电源模块为姿态控制 装置提供电源; 调姿单元为与电机功率连接的扇叶, 每个调姿单元分别连接有 电机; 调速器单元与电机电性连接, 用于分别调节每个电机的输出功率, 调速 器单元接受飞行控制系统控制并与飞行控制系统信号连接; 至少有两个调姿单 元分别对称地置于飞行器的左部及右部用作滚转调姿单元; 飞行器以重心的前 后分为前部与后部, 至少有一个调姿单元置于相对于滚转调姿单元所处该部的 另一部, 或当滚转调姿单元所产生的垂直升力的合力可作用在飞行器大体重心 处吋至少有一个调姿单元置于飞行器的前部或后部均可, 或有至少两个调姿单 元分别置于飞行器的前部及后部, 作为俯仰调姿单元; 所有的俯仰调姿单元所 产生的垂直升力的合力可作用在机身纵向中线上。
[0012] 通过设置有用作滚转和俯仰控制的调姿单元, 每组调姿单元各自连接有一组电 机, 调速器单元分别控制每组电机的输出功率, 飞行控制系统对调速器单元实 施控制, 通过调节各个调姿单元所产生的推力的差异, 从而实现飞行姿态的控 制。 这样的好处是, 采用了使用电能的姿态控制装置可以免去原先复杂的机械 部件, 使飞行器的机械结构得到简化。 通过飞行控制系统控制的以电机作为动 力装置来驱动扇叶的姿态控制装置反应更加灵敏迅速而且更加易于操作; 分布 于飞行器左右以及前或后的各个调姿单元可以产生使飞行器滚转、 俯仰以及偏 航的推力, 从而使飞行器的姿态控制更为稳定。 此外, 由于主推力装置为飞行 器提供了主要的推力, 姿态控制装置主要用作平稳起降、 悬停、 滚转、 俯仰及 纵向飞行、 横向飞行等飞行姿态的控制, 姿态控制装置与主推力装置分离, 独 立于主推力装置, 所以飞行器对于采用何种类型的发动机及何种类型的推力装 置没有特别的限制。
[0013] 作为本发明垂直起降飞行器的进一步改进, 飞行器还包括机翼, 机翼设置为可 以选择性地调整迎角; 机翼与飞行器活动连接, 机翼与伺服作动器可操作地连 接, 伺服作动器接受飞行控制系统控制并与飞行控制系统信号连接。 这样的好 处是, 飞行器在向前纵向飞行吋, 飞行器的机身无论处于何种倾斜角度, 机翼 都能处于最优的迎角, 提高了机翼的效率。
[0014] 作为本发明垂直起降飞行器的进一步改进, 主推力装置设置为朝飞行器前方倾 斜; 作为更进一步改进, 还可以将调姿单元设置为朝飞行器前方倾斜。 主推力 装置及调姿单元可以产生垂直推力及向前的纵向推力的矢量分量。 这样的好处 是, 飞行器在向前纵向飞行吋不用倾斜或不用较大幅度倾斜机身, 推力装置及 调姿单元便可产生垂直升力的同吋产生向前的纵向推力的矢量分量推动飞行器 前进。 作为本发明垂直起降飞行器的进一步改进, 飞行器设置有垂直尾翼, 飞 行器设置有垂直尾翼可以提高飞行器飞行的稳定性和操纵性。
[0015] 作为本发明垂直起降飞行器的进一步改进, 飞行器设置为双主翼结构, 其中第 一主翼置于飞行器的前部, 第二主翼置于飞行器的后部, 第一主翼与第二主翼 的之间距离大于或等于主推力装置的直径; 第二主翼兼作水平尾翼; 第一主翼 及第二主翼的左右端部分别连接有调姿单元。 通过采用双翼结构的机翼, 可以 提高了飞行器纵向飞行吋的稳定性及增加升力; 通过采用双翼结构的机翼的飞 行器, 其产生垂直推力的主推力装置与产生固定翼升力的机翼的位置可以不用 集中在重心附近, 主推力装置与机翼位置没有冲突, 可以使主推力装置布置更 加方便; 此外调姿单元连接在第一主翼及第二主翼的左右半翼的端部可以提高 调姿单元的姿态控制的效率。
[0016] 作为本发明垂直起降飞行器的进一步改进, 至少有两个主推力装置分别连接于 机身的中段的左右两侧。 主推力装置采用与发动机功率连接的涵道风扇, 涵道 的出风口设置有可以选择性地朝飞行器前后方向摆动的舵面, 舵面用于改变垂 直推力及纵向推力的矢量分量, 也可以作偏航控制; 舵面与伺服作动器可操作 地连接, 伺服作动器接受飞行控制系统控制并与飞行控制系统信号连接。 两组 主推力装置分别连接于机身的中段的左右两侧, 可以使主推力装置更加集中在 飞行器的重心附近, 可以提高飞行器飞行的稳定性; 同吋降低因左右主推力装 置产生推力差异吋而所造成的风险, 使飞行器更加安全。 使用涵道风扇作为主 推力装置, 可以保护飞行器起降场所的人员或物品不被扇叶所伤害, 所以更加 安全; 此外扇叶置于涵道中, 可以吸进上层额外的环境空气, 起到一定的引射 增升的作用; 通过增加扇叶的叶片数量和提高发动机的转速, 还可以增加推力 和提高速度。 主推力装置的出风口设置有可以选择性朝飞行器前后方向摆动的 舵面, 可以通过舵面改变主推力装置垂直推力及纵向推力的矢量分量, 用于调 节飞行高度和纵向飞行速度; 也可以通过舵面改变左右主推力装置纵向推力的 矢量分量的差异, 进行偏航控制, 提高的飞行器的操作性。
[0017] 作为本发明垂直起降飞行器的更进一步改进, 调姿单元还包括涵道, 涵道与扇 叶组成涵道风扇, 调姿单元为涵道风扇。 调姿单元的出风口设置有可以选择性 地朝飞行器前后方向摆动的舵面; 舵面用于改变垂直推力及纵向推力的矢量分 量或作偏航控制; 舵面与伺服作动器可操作地连接, 伺服作动器接受飞行控制 系统控制并与飞行控制系统信号连接。 使用涵道风扇作为调姿单元, 可以保护 飞行器起降场所的人员或物品不被扇叶所伤害, 所以更加安全; 此外扇叶置于 涵道中, 可以吸进上层额外的环境空气, 起到一定的引射增升的作用; 通过增 加扇叶的叶片数量和提高发动机的转速, 还可以增加推力和提高速度。 出风口 设置有可以选择性朝飞行器前后方向摆动的舵面, 可以通过舵面改变主推力装 置垂直推力及纵向推力的矢量分量的大小, 用于调节飞行高度和纵向飞行速度 ; 也可以通过舵面改变左右主推力装置纵向推力的矢量分量的差异, 进行偏航 控制, 提高的飞行器的操作性。
[0018] 作为本发明垂直起降飞行器的另一种改进, 飞行器的在左右半翼对称位置的翼 体上设置有涵道, 滚转调姿单元设置在涵道内; 涵道的进风口和出风口分别设 置有盖板, 盖板可以打幵和关闭, 当盖板关闭吋, 盖板与翼面持平。 这样的好 处是, 当飞行器处于纵向高速飞行吋, 关闭上下盖板, 可以减少调姿单元造成 的空气阻力, 并增加翼面的面积。
[0019] 作为本发明垂直起降飞行器的另一种改进, 飞行器通过伸长机构与调姿单元或 主推力装置连接。 当调姿单元为扇叶或主推力装置为旋翼吋, 使扇叶或旋翼所 产生的气流不被翼面或机身等部件所阻挡; 还可以用作将调姿单元或主推力装 置设置在某个需要的位置吋的连接机构, 例如通过伸长机构使调姿单元或主推 力装置远离飞行器的重心。
[0020] 附图说明
[0021] 下面结合附图和具体实施方式对本发明作进一步详细的说明。
[0022] 图 1是本发明垂直起降飞行器的姿态控制装置工作原理图。
[0023] 图 2是本发明一种垂直起降飞行器实施例示意图。
[0024] 图 3是本发明一种垂直起降飞行器实施例平面示意图。
[0025] 图 4是本发明一种涵道风扇及涵道出风口舵面连接方式示意图。
[0026] 图 5是本发明一种涵道风扇及涵道出风口导流叶栅舵面连接方式的示意图。
[0027] 图 6是本发明一种机翼活动连接方式示意图。 [0028] 图 7是本发明翼体设置涵道示意图。
[0029] 图 8是本发明一种通过伸长臂连接调姿单元或主推力装置的示意图。
[0030] 具体实施方式
[0031] 图 2所示本发明一种垂直起降飞行器实施例示意图, 包括了机身 6、 主推力装置 7以及姿态控制装置。
[0032] 由图 1所示本发明垂直起降飞行器的姿态控制装置工作原理图可知, 姿态控制 装置使用电能, 由电源模块 1、 调姿单元 2、 电机 3、 调速器单元 4、 飞行控制系 统 5组成; 电源模块 1为姿态控制装置提供电源; 调姿单元 2为与电机 3功率连接 的扇叶, 每个调姿单元 2各自连接有一个与之相对应的电机 3 ; 调速器单元 4与电 机 3电性连接, 用于分别调节每个电机 3的输出功率, 调速器单元 4接受飞行控制 系统 5控制并与飞行控制系统 5信号连接; 至少有两个调姿单元 2分别对称地置于 飞行器的左部及右部用作滚转调姿单元; 飞行器以重心的前后分为前部与后部 , 至少有一个调姿单元 2置于相对于滚转调姿单元所处该部的另一部, 或当滚转 调姿单元所产生的垂直升力的合力可作用在飞行器大体重心处吋至少有一个调 姿单元 2置于飞行器的前部或后部均可, 或有至少两个调姿单元 2分别置于飞行 器的前部及后部, 作为俯仰调姿单元; 所有的俯仰调姿单元所产生的垂直升力 的合力可作用在机身纵向中线 10上。
[0033] 电源模块 1可以是电功率储存装置, 例如充电电池、 超级电容、 核电池等等; 也可以是发电装置, 包括发电机和功率连接发电机的发动机; 也可以是连接有 发电装置的电功率储存装置。 电机 3采用无刷电机最优, 但并非是限定, 也可以 是其它类型的电机, 如有刷电机、 交流电机、 直流电机、 单相电机、 三相电机 等等。 调速器单元 4包括电子调速器 electronic speed controller. 直流电机调速器 、 交流电机调速器等可以调节电机输出功率的装置; 调速器单元 4可以为与电机 3或其它设备组合在一起的一个模块, 也可以是独立的调速器, 可以是单组输出 控制单个电机的调速器, 也可以是多组输出分别控制多个电机的调速器; 调速 器的类型应该与电机 3的类型相匹配, 例如无刷电机采用无刷电子调速器、 有刷 电机采用有刷电子调速器等等。 调速器单元 4接受飞行控制系统 5控制并与飞行 控制系统 5信号连接; 飞行控制系统是进行飞行姿态和运动参数实施控制的自动 控制系统, 飞行控制系统 5可以采用电子飞行控制系统、 数字式飞行控制系统、 电传操纵系统等具备自动控制能力的飞行控制系统; 利用飞行控制系统 5采集飞 行姿态数据、 分析处理数据、 自动发出控制信号, 通过调速器单元 4控制电机 3 的输出功率, 从而实现对飞行器的姿态控制。 所述的扇叶是指在空气中旋转将 发动机转动功率转化为推进力的装置, 风扇、 螺旋桨、 旋翼等也属于本发明所 述的扇叶的范围。
虽然调姿单元 2只要不处于重心处就具备一定的调姿作用, 但因为调姿单元 2距 离飞行器的重心越远效率越高, 所以调姿单元 2最优的连接位置应该是飞行器的 左右端部以及前或后的端部; 在实际应用上, 不同气动布局或不同外形的飞行 器对调姿单元 2布置的位置的要求不同, 调姿单元 2不能连接在端部的情况下, 原则上应该将调姿单元 2设置在尽可能远离飞行器重心的位置。 调姿单元 2连接 的方式或位置可以有多种, 例如连接在机翼处、 连接在翼体内的涵道、 通过伸 长臂与飞行器连接等等。 至少有两个调姿单元 2分别对称地置于飞行器的左部及 右部用作滚转调姿单元, 即至少一个置于左部, 至少一个置于右部, 两个调姿 单元可以以机身 6或机身纵向中线 10作为对称轴。 飞行器以重心的前后分为前部 与后部, 可以设置至少一个调姿单元 2置于相对于滚转调姿单元所处该部的另一 部作为俯仰调姿单元, 例如滚转调姿单元设置在前部则俯仰调姿单元设置在后 部, 相反, 滚转调姿单元设置在后部则俯仰调姿单元设置在前部; 或者当滚转 调姿单元所产生的垂直升力的合力可作用在飞行器大体重心处吋可以设置至少 一个俯仰调姿单元置于飞行器的前部或后部均可, 例如当分别置于左右的两个 滚转调姿单元大体与重心处于平面的同一直线吋, 至少一个俯仰调姿单元置于 飞行器的前部或后部均可; 或者可以有至少两个调姿单元 2分别置于飞行器的前 部及后部作为俯仰调姿单元, 即可以同吋在飞行器的前部及后部设置俯仰调姿 单元。 所有的俯仰调姿单元所产生的垂直升力的合力可以使飞行器整体实现俯 仰, 而不只是实现飞行器的一侧的俯仰; 例如当俯仰调姿单元个数为奇数吋, 可以设置一个俯仰调姿单元在机身纵向中线 10上, 其余偶数个数的俯仰调姿单 元以机身纵向中线 10为对称轴分别对称地置于左右, 当俯仰调姿单元个数为偶 数吋, 所有俯仰调姿单元可以以机身纵向中线 10为对称轴分别对称地置于左右 , 这样所有的俯仰调姿单元所产生的垂直升力的合力可作用在机身纵向中线 10 上。 机身纵向中线 10是指平面上可以将飞行器左右平分的轴线。 此外, 利用调 姿单元 2产生升力的方式来进行姿态控制可以提高飞行器总体的垂直升力, 所以 调姿单元 2以产生升力的方式来进行姿态控制为优选方案; 当然调姿单元 2还可 以通过产生反升力或既可以产生升力又可以产生反升力的方式来进行姿态控制
[0035] 作为本发明的进一步改进, 调姿单元 2还可以包括涵道 11, 涵道 11与扇叶组成 涵道风扇, 调姿单元 2为涵道风扇。 还可以在涵道 11中设置短舱, 短舱通过连接 机构固定在涵道 11中, 连接机构可以是安定面、 固定肋等部件; 短舱用于装载 电机 3或传动装置, 电机 3通过电机输出轴与扇叶连接, 或通过传动装置与扇叶 连接。 当然, 还可以通过其它方式连接调姿单元 2与电机 3, 例如在涵道 11中设 置有电机安装座, 电机安装座用于安装电机 3, 电机输出轴连接扇叶等方式。 调 姿单元 2为涵道风扇吋, 还可以在涵道风扇的出风口设置有可以选择性地朝飞行 器前后方向摆动的舵面 12; 舵面 12用于改变垂直推力及纵向推力的矢量分量或 作偏航控制; 舵面 12与伺服作动器可操作地连接, 伺服作动器接受飞行控制系 统 5控制并与飞行控制系统 5信号连接。 图 4所示一种涵道风扇及涵道出风口舵面 连接方式示意图, 舵面 12与涵道 11活动连接, 舵面 12与涵道 11连接的两端分别 设置有转轴 14, 涵道 11设置有供转轴 14转动的通孔 15, 通孔 15容纳转轴 14; 伺 服作动器的一端与舵面 12连接, 另一端与涵道 11连接; 这只是一个实施例而并 非限定, 还可以采用其它的连接方式, 例如涵道 11出风口设置有安定面, 舵面 1 2与安定面铰接等方式; 伺服作动器的连接方式要根据伺服作动器的外形或类型 而定, 可以采用多种方式实现伺服作动器与舵面 12可操作地连接。 舵面 12不限 定一叶舵面, 也可以采用双叶或多叶舵面, 多叶舵面还可以组合为导流叶栅舵 面 12a, 如图 5所示一种涵道风扇及涵道出风口导流叶栅舵面连接方式的示意图, 导流叶栅舵面 12a的连接可以采用上述舵面 12与涵道 11的连接方法, 也可以采用 其它的例如百叶窗形式的连接方法。 因为舵面或导流叶栅舵面的连接方法比较 常见而且多样, 在此不再作进一步的说明。
[0036] 调姿单元 2的扇叶在旋转吋会形成反作用扭矩, 应该采取平衡反作用扭矩的设 置或者设置平衡反作用扭矩的装置。 可以采用将各个调姿单元 2的扇叶的旋转方 向设置为正向与反向两两搭配、 采用反作用扭矩抵消的共轴双桨、 往反作用扭 矩相反的方向倾斜调姿单元等可以平衡反作用扭矩的设置。 平衡反作用扭矩的 装置可以是尾桨、 设置在气流下方的舵面, 也可以是其它类型的装置, 例如波 音公司 MD600N直升机采用的 NOTAR尾桨, 即用喷气引射和旋翼下洗气流的有 利交互作用形成反扭力的装置; 平衡反作用扭矩的装置不是必需的。 还可以利 用平衡反作用扭矩的设置方法或者设置平衡反作用扭矩的装置来实现偏航控制
[0037] 所谓推力装置是指将发动机功率转换为推力的装置, 主推力装置 7为飞行器提 供主要的推力。 主推力装置 7可以是功率连接发动机的旋翼、 涵道风扇, 也可以 是其它的推力装置, 例如矢量发动机、 涡扇发动机等可以提供垂直推力的推力 装置; 采用旋翼或涵道风扇吋发动机可以采用涡轮轴发动机或活塞式发动机; 主推力装置 7数量不限, 可以为一组、 双组或多组。 主推力装置 7采用功率连接 发动机的旋翼或涵道风扇吋可以参考上述调姿单元平衡反作用扭矩的方法来平 衡反作用扭矩, 还可以综合调姿单元的反作用扭矩利用上述方法来平衡反作用 扭矩, 在此不再作重复说明; 同样, 主推力装置 7为采用功率连接发动机的旋翼 或涵道风扇吋平衡反作用扭矩的装置不是必需的。 还可以利用平衡反作用扭矩 的设置方法或者设置平衡反作用扭矩的装置来实现偏航控制。 虽然主推力装置 7 产生的垂直升力的合力偏离飞行器重心处吋可以依靠姿态控制装置实现飞行器 的平衡, 但是这样会增加姿态控制装置的负担, 所以主推力装置 7优选的连接位 置是所有主推力装置 7所产生的升力的合力可作用在飞行器大体重心处的位置, 即主推力装置 7设置的位置大体上可使飞行器平衡。
[0038] 图 2所示的本发明一种垂直起降飞行器实施例示意图, 飞行器还可以设置机翼 8 , 机翼 8设置为可以选择性地调整迎角; 机翼 8与飞行器活动连接, 机翼 8与伺服 作动器可操作地连接, 伺服作动器接受飞行控制系统 5控制并与飞行控制系统 5 信号连接。 飞行器可以设置为双主翼结构, 其中第一主翼 8a置于飞行器的前部, 第二主翼 8b置于飞行器的后部, 第一主翼 8a与第二主翼 8b之间的距离大于或等于 主推力装置 7的直径; 第二主翼 8b兼作水平尾翼; 第一主翼 8a及第二主翼 8b的左 右端部分别连接有调姿单元 2。 图 6是一种机翼活动连接方式示意图, 机翼 8中间 有可以通过转轴的通孔 17, 通孔 17中通过转轴 18, 机翼 8可以环绕转轴 18转动; 转轴 18的一端连接机身 6, 另一端连接调姿单元 2; 机翼 8与伺服作动器的一端铰 接, 伺服作动器的另一端与机身 6连接; 这只是其中一个实施例而并非限定, 也 可以是其它连接的方式, 例如通过机翼 8与安定面铰接等方式使机翼 8可以随意 调整迎角; 伺服作动器的连接方式要视伺服作动器的类型和外形而定, 连接的 位置也不限于机身 6与机翼 8, 也可以是调姿单元 2与机翼 8等其它的可操作地的 连接方式与位置。 机翼 8可以设置有副翼或襟翼, 或副翼与襟翼同吋都设置, 第 二主翼 8b的副翼可兼作升降舵; 但副翼或襟翼或副翼与襟翼的组合以及升降舵 都不是必需的。
[0039] 可以将主推力装置 7设置为朝飞行器前方倾斜, 还可以将调姿单元 2设置为朝飞 行器前方倾斜, 使机身 6处于水平状态吋主推力装置 7及调姿单元 2可以产生垂直 推力及向前的纵向推力的矢量分量; 飞行器还可以还设置有垂直尾翼 9。 主推力 装置 7及调姿单元 2所倾斜的角度以 15度至 45度最佳, 这并非是限定; 虽然倾斜 的角度还要考虑到飞行器设计吋速、 推重比等因素, 但主推力装置 7及调姿单元 2的倾斜角度不能超过 90度。 设置垂直尾翼 9吋垂直尾翼 9可以与飞行器机身 6尾 部上方连接, 也可以是其它连接方式, 例如两个垂直尾翼 9分别连接在第二主翼 8b的左右半翼的上方, 形成双垂尾结构; 垂直尾翼 9没有方向舵吋作为稳定方向 的作用; 垂直尾翼 9还可以设置有方向舵, 方向舵操纵系统中还可以装有阻尼器 , 以制止飞行器在高空高速飞行中出现的偏航摇摆现象, 方向舵及阻尼器都不 是必需的。
[0040] 可以设置两个主推力装置 7分别对称地连接于机身 6的中段的左右两侧; 主推力 装置 7可以采用与发动机功率连接的涵道风扇, 涵道 11的出风口设置有可以选择 性地朝飞行器前后方向摆动的舵面 12; 舵面 12用于改变垂直推力及纵向推力的 矢量分量或作偏航控制; 舵面 12与伺服作动器可操作地连接, 伺服作动器接受 飞行控制系统 5控制并与飞行控制系统 5信号连接。 虽然主推力装置 7所产生的垂 直升力的合力不在重心处吋可以依靠姿态控制装置来实现飞行器的平衡, 但是 这样会增加姿态控制装置的负担, 所以主推力装置 7优选的连接位置可以是所有 主推力装置 7所产生的升力的合力可作用在飞行器大体重心处的位置, 即置于左 右的主推力装置 7大体与重心在同一平面的直线上。 图 4所示一种涵道风扇及涵 道出风口舵面连接方式示意图, 舵面 12与涵道 11活动连接, 舵面 12与涵道 11连 接的两端分别设置有转轴 14, 涵道 11设置有供转轴转动的通孔 15, 通孔 15容纳 转轴 14; 伺服作动器的一端与舵面 12连接, 另一端与涵道 11连接; 这只是一个 实施例而并非限定, 还可以采用其它的连接方式, 例如涵道出风口设置有安定 面, 舵面 12与安定面铰接等方式; 伺服作动器的连接方式要根据伺服作动器的 外形或类型而定, 可以采用多种方式实现伺服作动器与舵面 12可操作地连接。 舵面 12不限定一叶舵面, 也可以采用双叶或多叶舵面, 多叶舵面还可以组合为 导流叶栅舵面 12a, 如图 5所示一种涵道风扇及涵道出风口导流叶栅舵面连接方式 的示意图, 导流叶栅舵面 12a的连接可以采用上述舵面 12与涵道 11的连接方法, 也可以采用其它的例如百叶窗形式的连接方法。 因为舵面 12或导流叶栅舵面 12a 的连接方法比较常见而且多样, 在此不再作进一步的说明。 当然, 主推力装置 7 不一定要采用两个, 还可以是多个主推力装置 7分别对称地连接于机身 6的中段 的左右两侧; 主推力装置 7不一定要采用涵道风扇, 还可以是旋翼或涡扇发动机 等。
[0041] 如图 2所示的本发明一种垂直起降飞行器实施例示意图, 调姿单元 2还可以是涵 道风扇, 如图 4及图 5所示的涵道风扇的出风口设置有可以选择性地朝飞行器前 后方向摆动的舵面 12, 所述舵面 12还可以是导流叶栅舵面 12a; 舵面 12用于改变 垂直推力及纵向推力的矢量分量或作偏航控制; 舵面 12与伺服作动器可操作地 连接, 伺服作动器接受飞行控制系统 5控制并与飞行控制系统 5信号连接。 涵道 风扇出风口设置舵面 12或导流叶栅舵面 12a的连接方式以上已有说明, 在此不再 作重复描述。
[0042] 上面所提及所谓的伺服作动器是指一种飞行控制系统的执行机构, 亦称舵机; 它按照飞控计算机的输出指令对飞行器的各操纵面进行直接 (如复合舵机型) 或间接 (如辅助舵机型) 控制; 伺服作动器有多种类型, 可以采用电液伺服作 动器, 也可以采用其它类型的伺服作动器, 例如电动式伺服作动器或气动式伺 服作动器等等。 [0043] 上面所提及的涵道风扇, 包括了涵道, 涵道有两种, 一种是机翼或机身预留的 通孔, 另一种是独立的涵道体, 由于机翼或机身预留的通孔的大小被机翼或机 身的大小所限制, 所以可以采用独立的涵道体作为优选。
[0044] 应当说明的是, 如图 2所示的本发明一种垂直起降飞行器实施例示意图, 调姿 单元 2分别连接在第一主翼 8a及第二主翼 8b的左右半翼的端部, 调姿单元 2既处于 飞行器的左部或右部, 又同吋处于飞行器的前部或后部; 这种使调姿单元既可 以用作滚转调姿的作用, 又可以用作俯仰调姿的作用的布置, 符合"至少有两个 调姿单元 2分别对称地置于飞行器的左部及右部用作滚转调姿单元; 飞行器以重 心的前后分为前部与后部, 至少有一个调姿单元 2置于相对于滚转调姿单元所处 该部的另一部, 或当滚转调姿单元所产生的垂直升力的合力可作用在飞行器大 体重心处吋至少有一个调姿单元 2置于飞行器的前部或后部均可, 或有至少两个 调姿单元 2分别置于飞行器的前部及后部, 作为俯仰调姿单元; 所有的俯仰调姿 单元所产生的垂直升力的合力可作用在机身纵向中线 10上"的要求。
[0045] 作为本发明的另一个改进, 当飞行器为可以以固定翼方式以较快的速度飞行的 飞行器吋, 例如倾转旋翼飞机及垂直起降的喷气式飞机等, 为减少飞行器在高 速飞行吋调姿单元 2所造成的阻力, 如图 7所示的翼体设置涵道示意图, 可以在 左右半翼对称位置的翼体上设置有涵道, 滚转调姿单元设置在涵道内; 涵道的 进风口和出风口分别设置有盖板 13, 盖板 13可以打幵和关闭, 当盖板 13关闭吋 , 盖板 13与翼面持平。 当飞行器垂直起降或悬停吋, 盖板 13打幵, 调姿单元 2幵 启; 当飞行器以固定翼模式纵向飞行吋, 盖板 13关闭, 调姿单元 2停止转动。 可 以采用这种翼体设置涵道并且调姿单元 2设置在涵道内的办法, 将调姿单元 2安 装在倾转旋翼飞机或垂直起降的喷气式飞机等具有固定翼并且可以以较快速度 飞行的飞行器上。
[0046] 作为本发明的另一个改进, 可以通过伸长机构连接调姿单元 2或主推力装置 7。
如图 8所示的一种通过伸长臂 19连接调姿单元或主推力装置的示意图, 可以通过 伸长臂 19连接调姿单元 2或主推力装置 7。 可以在伸长臂 19内部设置可以容纳传 动转轴的通道, 当然, 设置通道不是必需的。 当调姿单元 2为扇叶或主推力装置 7为旋翼吋, 为使扇叶或旋翼所产生的气流不被翼面或机身 6等部件所阻挡, 可 以通过伸长臂连接调姿单元 2或主推力装置 7; 伸长臂 19的长度应该大于或等于 扇叶或旋翼的半径, 伸长臂 19的形状应该以尽量减少其对扇叶所产生的气流的 阻挡为宜, 例如圆柱形、 截面为菱形并且菱角向上的形状等; 还可以通过其它 伸长机构与调姿单元 2连接目的使扇叶或旋翼所产生的气流不被阻挡, 例如通过 垂直设置的安定面连接等等。 上述伸长臂 19、 垂直设置的安定面等伸长机构还 可以用作将调姿单元 2或主推力装置 7设置在某个需要的位置吋的连接机构, 例 如通过伸长机构使调姿单元 2或主推力装置 7远离飞行器的重心。 可以通过伸长 机构连接调姿单元 2的方法, 将调姿单元安装在直升飞机, 直升机的主推力装置 7为旋翼, 旋翼设置在直升飞机机身的顶部的重心处, 滚转调姿单元 2可以通过 伸长臂对称地分别地置于直升飞机的左部及右部, 并且至少有一个调姿单元 2置 于直升飞机的尾部; 处于尾部的调姿单元 2还可以设置为可以选择性地朝飞行器 左右方向摆动, 用于代替尾桨作偏航控制。
最后所应说明的是, 以上实施例仅用以说明本发明的技术方案而非限制, 尽管 参照较佳实施例对本发明进行了详细说明, 本领域的普通技术人员应当理解, 可以对本发明的技术方案进行修改或等同替换, 而不脱离本发明技术方案的精 神和范围。 依据本发明的技术实质对以上实施例所作的任何简单修改、 等同变 化与修饰, 均仍属于本发明技术方案的范围内。
技术问题
问题的解决方案
发明的有益效果

Claims

权利要求书
一种垂直起降飞行器, 包括机身 (6)、 为飞行器提供主要推力的主推 力装置 (7), 其特征在于: 所述的飞行器还包括姿态控制装置, 所述 姿态控制装置使用电能, 由电源模块 (1)、 N个调姿单元 (2)、 对应 N个 调姿单元 (2)的 N个电机 (3)、 调速器单元 (4)、 以及飞行控制系统 (5)组 成, 其中 N为大于或等于 3的自然数; 所述电源模块 (1)为姿态控制装 置提供电源; 所述调姿单元 (2)为与电机 (3)功率连接的扇叶, 每个调 姿单元 (2)分别连接有电机 (3); 所述调速器单元 (4)与电机 (3)电性连接 , 用于分别调节每个电机 (3)的输出功率, 所述调速器单元 (4)接受飞 行控制系统 (5)控制并与飞行控制系统 (5)信号连接; 至少有两个调姿 单元 (2)分别对称地置于飞行器的左部及右部作为滚转调姿单元; 飞 行器以重心的前后分为前部与后部, 至少有一个调姿单元 (2)置于相 对于滚转调姿单元所处该部的另一部, 或当滚转调姿单元所产生的垂 直升力的合力可作用在飞行器大体重心处吋至少有一个调姿单元 (2) 置于飞行器的前部或后部均可, 或有至少两个调姿单元 (2)分别置于 飞行器的前部及后部, 作为俯仰调姿单元; 所有的俯仰调姿单元所产 生的垂直升力的合力可作用在机身纵向中线 (10) 上。
根据权利要求 1所述的飞行器, 其特征在于: 所述飞行器还包括机翼( 8), 机翼 (8)设置为可以选择性地调整迎角; 所述机翼 (8)与飞行器活 动连接, 机翼 (8)与伺服作动器可操作地连接, 伺服作动器接受飞行 控制系统 (5)控制并与飞行控制系统 (5)信号连接。
根据权利要求 2所述的飞行器, 其特征在于: 所述主推力装置 (7)及所 述调姿单元 (2)设置为朝飞行器前方倾斜, 使机身处于水平状态吋所 述主推力装置 (7)及所述调姿单元 (2)可以产生垂直推力及向前的纵向 推力的矢量分量; 所述飞行器还设置有垂直尾翼 (9) 。
根据权利要求 1所述的飞行器, 其特征在于: 所述主推力装置 (7)设置 为朝飞行器前方倾斜, 使机身处于水平状态吋所述主推力装置 (7)可 根据权利要求 4所述的飞行器, 其特征在于: 所述调姿单元 (2)设置为 朝飞行器前方倾斜, 使机身处于水平状态吋调姿单元 (2)可以产生垂 直推力及向前的纵向推力的矢量分量。
根据权利要求 1至 5所述的任一飞行器, 其特征在于: 所述飞行器设置 为双主翼结构, 其中第一主翼 (8a) 置于飞行器的前部, 第二主翼 ( 8b) 置于飞行器的后部, 第一主翼 (8a) 与第二主翼 (8b) 的之间距 离大于或等于主推力装置 (7)的直径; 第二主翼 (8b) 兼作水平尾翼 ; 第一主翼 (8a) 及第二主翼 (8b) 的左右端部分别连接有调姿单元 (2) 。
根据权利要求 6所述的飞行器, 其特征在于: 至少有两个主推力装置( 7)分别对称地连接于机身 (6) 的中段的左右两侧。
根据权利要求 7所述的飞行器, 其特征在于: 所述主推力装置 (7)采用 与发动机功率连接的涵道风扇, 涵道 (11) 的出风口设置有可以选择 性地朝飞行器前后方向摆动的舵面 (12) ; 所述舵面 (12)用于改变垂 直推力及纵向推力的矢量分量或作偏航控制; 所述舵面 12与伺服作动 器可操作地连接, 伺服作动器接受飞行控制系统 (5)控制并与飞行控 制系统 (5)信号连接。
根据权利要求 8所述的飞行器, 其特征在于: 所述调姿单元 (2)还包括 涵道 (11) , 涵道 (11) 与扇叶组成涵道风扇, 所述调姿单元 (2)为 涵道风扇; 所述调姿单元 (2)的出风口设置有可以选择性地朝飞行器 前后方向摆动的舵面 (12) ; 所述舵面 (12) 用于改变垂直推力及纵 向推力的矢量分量或作偏航控制; 所述舵面 (12) 与伺服作动器可操 作地连接, 伺服作动器接受飞行控制系统 (5)控制并与飞行控制系统 (5 )信号连接。
根据权利要求 1至 5所述的任一飞行器, 其特征在于: 所述调姿单元 (2 )还包括涵道 (11) , 涵道 (11) 与扇叶组成涵道风扇, 所述调姿单 元 (2)为涵道风扇。
根据权利要求 10所述的飞行器, 其特征在于: 所述调姿单元 (2)的出 风口设置有可以选择性地朝飞行器前后方向摆动的舵面 (12); 所述舵 面 (12)用于改变垂直推力及纵向推力的矢量分量或作偏航控制; 所述 舵面 (12)与伺服作动器可操作地连接, 伺服作动器接受飞行控制系统( 5)控制并与飞行控制系统 (5)信号连接。
[权利要求 12] 根据权利要求 1所述的飞行器, 其特征在于: 所述飞行器还包括机翼(
8), 在左右半翼对称位置的翼体上设置有涵道, 滚转调姿单元设置在 涵道内; 涵道的进风口和出风口分别设置有盖板 (13), 盖板 (13)可以 打幵和关闭, 当盖板 (13)关闭吋, 盖板 (13)与翼面持平。
[权利要求 13] 根据权利要求 1至 5所述的任一飞行器, 其特征在于: 飞行器通过伸长 机构与调姿单元 (2) 或主推力装置 (7) 连接。
PCT/CN2015/083450 2014-07-08 2015-07-07 一种垂直起降飞行器 WO2016004852A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410321266.6 2014-07-08
CN201410321266.6A CN105292444A (zh) 2014-07-08 2014-07-08 一种垂直起降飞行器

Publications (1)

Publication Number Publication Date
WO2016004852A1 true WO2016004852A1 (zh) 2016-01-14

Family

ID=55063579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083450 WO2016004852A1 (zh) 2014-07-08 2015-07-07 一种垂直起降飞行器

Country Status (2)

Country Link
CN (1) CN105292444A (zh)
WO (1) WO2016004852A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018076047A1 (en) * 2016-10-24 2018-05-03 Hybridskys Technology Pty Ltd Hybrid aircraft
EP3656669A1 (en) 2018-11-26 2020-05-27 AIRBUS HELICOPTERS DEUTSCHLAND GmbH A vertical take-off and landing multirotor aircraft with at least eight thrust producing units
EP3702276A1 (en) 2019-02-27 2020-09-02 AIRBUS HELICOPTERS DEUTSCHLAND GmbH A multirotor joined-wing aircraft with vtol capabilities
EP3702277A1 (en) 2019-02-27 2020-09-02 AIRBUS HELICOPTERS DEUTSCHLAND GmbH A multirotor aircraft that is adapted for vertical take-off and landing (vtol)
US11325694B2 (en) * 2016-04-27 2022-05-10 Korea Aerospace Research Institute Aerial vehicle having incline-controllable wings
US20220363376A1 (en) * 2021-04-04 2022-11-17 Autonomous Flight Systems Inc. Free Wing Multirotor Transitional S/VTOL Aircraft

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105857600A (zh) * 2016-03-18 2016-08-17 西安交通大学 一种动力与控制相分离的高机动多功能无人飞行器
US20190291863A1 (en) * 2016-05-18 2019-09-26 A^3 By Airbus Llc Vertical takeoff and landing aircraft with tilted-wing configurations
CN107585294A (zh) * 2016-07-08 2018-01-16 袁洪跃 一种内旋翼飞行器结构
US10384774B2 (en) 2016-09-08 2019-08-20 General Electric Company Tiltrotor propulsion system for an aircraft
CN106516100A (zh) * 2016-09-11 2017-03-22 珠海市磐石电子科技有限公司 垂直起降飞行器
CN106628138B (zh) * 2016-11-21 2024-01-23 深圳市特研创新科技有限公司 一种太阳能供电垂直升降无人机
CN106477036A (zh) * 2016-11-29 2017-03-08 四川特飞科技股份有限公司 一种矩形组合涵道飞行器及其飞行控制系统和方法
CN109383793A (zh) * 2017-08-07 2019-02-26 深圳光启合众科技有限公司 垂直起降飞行器及其控制方法
CN107697281A (zh) * 2017-09-20 2018-02-16 大连民族大学 一种涵道垂直起降无人飞行器
WO2019062257A1 (zh) * 2017-09-29 2019-04-04 清华大学 一种基于倾转涵道的双升力涵道垂直起降飞机
CN107719671A (zh) * 2017-10-09 2018-02-23 武汉卓尔无人机制造有限公司 一种涵道风扇推进全电动无人机
CN108725793A (zh) * 2018-04-13 2018-11-02 河南大诚通用航空科技有限公司 一种基于压力传感技术的植保无人机
CN108688803A (zh) * 2018-07-26 2018-10-23 杨福鼎 一种可垂直起降的飞行器
EP3730404B1 (en) * 2019-04-23 2021-08-18 LEONARDO S.p.A. Vertical take-off and landing aircraft and related control method
TWI782333B (zh) * 2020-09-29 2022-11-01 瑞鑑航太科技股份有限公司 飛行載具
CN112407246B (zh) * 2020-11-03 2022-09-27 中国直升机设计研究所 一种涵道盖板
CN113788139B (zh) * 2021-10-26 2024-05-24 上海磐拓航空科技服务有限公司 一种多功能气动舵面精准控制飞行器轨迹的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1202861A (zh) * 1995-10-24 1998-12-23 汉斯·J·伯恩 混合式飞机
CN1384793A (zh) * 1999-10-26 2002-12-11 弗朗茨·布赫 飞机和操作飞机的方法
CN102114914A (zh) * 2011-01-21 2011-07-06 文杰 分布式动力多旋翼垂直起降飞行器及其控制方法
US20110315809A1 (en) * 2009-10-09 2011-12-29 Richard David Oliver Three wing, six-tilt propulsion unit, vtol aircraft
CN102897315A (zh) * 2011-07-29 2013-01-30 奥格斯塔韦斯兰股份公司 垂直升降飞机
CN103072688A (zh) * 2013-01-22 2013-05-01 西安交通大学 可倾转四旋翼飞行器
CN103448910A (zh) * 2013-08-31 2013-12-18 西北工业大学 一种可垂直起降的高速飞行器
CN103832583A (zh) * 2012-11-26 2014-06-04 罗傲 一种带有升力平衡风扇的可以倾斜旋翼的飞机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1202861A (zh) * 1995-10-24 1998-12-23 汉斯·J·伯恩 混合式飞机
CN1384793A (zh) * 1999-10-26 2002-12-11 弗朗茨·布赫 飞机和操作飞机的方法
US20110315809A1 (en) * 2009-10-09 2011-12-29 Richard David Oliver Three wing, six-tilt propulsion unit, vtol aircraft
CN102114914A (zh) * 2011-01-21 2011-07-06 文杰 分布式动力多旋翼垂直起降飞行器及其控制方法
CN102897315A (zh) * 2011-07-29 2013-01-30 奥格斯塔韦斯兰股份公司 垂直升降飞机
CN103832583A (zh) * 2012-11-26 2014-06-04 罗傲 一种带有升力平衡风扇的可以倾斜旋翼的飞机
CN103072688A (zh) * 2013-01-22 2013-05-01 西安交通大学 可倾转四旋翼飞行器
CN103448910A (zh) * 2013-08-31 2013-12-18 西北工业大学 一种可垂直起降的高速飞行器

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11325694B2 (en) * 2016-04-27 2022-05-10 Korea Aerospace Research Institute Aerial vehicle having incline-controllable wings
WO2018076047A1 (en) * 2016-10-24 2018-05-03 Hybridskys Technology Pty Ltd Hybrid aircraft
EP3656669A1 (en) 2018-11-26 2020-05-27 AIRBUS HELICOPTERS DEUTSCHLAND GmbH A vertical take-off and landing multirotor aircraft with at least eight thrust producing units
US11554862B2 (en) 2018-11-26 2023-01-17 Airbus Helicopters Deutschland GmbH Vertical take-off and landing multirotor aircraft with at least eight thrust producing units
EP3702276A1 (en) 2019-02-27 2020-09-02 AIRBUS HELICOPTERS DEUTSCHLAND GmbH A multirotor joined-wing aircraft with vtol capabilities
EP3702277A1 (en) 2019-02-27 2020-09-02 AIRBUS HELICOPTERS DEUTSCHLAND GmbH A multirotor aircraft that is adapted for vertical take-off and landing (vtol)
US10981650B2 (en) 2019-02-27 2021-04-20 Airbus Helicopters Deutschland GmbH Multirotor joined-wing aircraft with VTOL capabilities
US11691722B2 (en) 2019-02-27 2023-07-04 Airbus Urban Mobility Gmbh Multirotor aircraft that is adapted for vertical take-off and landing
US20220363376A1 (en) * 2021-04-04 2022-11-17 Autonomous Flight Systems Inc. Free Wing Multirotor Transitional S/VTOL Aircraft

Also Published As

Publication number Publication date
CN105292444A (zh) 2016-02-03

Similar Documents

Publication Publication Date Title
WO2016004852A1 (zh) 一种垂直起降飞行器
CN112262075B (zh) 电动倾转旋翼飞行器
AU2018337666B2 (en) Wing tilt actuation system for electric vertical take-off and landing (VTOL) aircraft
CN106585976B (zh) 一种倾转旋翼/升力风扇高速长航时飞行器布局
CN110316370B (zh) 一种分布式动力倾转机翼飞机的布局与控制方法
JP5421503B2 (ja) 自家用航空機
US8302903B2 (en) Aircraft attitude control configuration
US6817570B2 (en) Ducted fan vehicles particularly useful as VTOL aircraft
WO2016062223A1 (zh) 一种垂直起降飞行器
WO2016066131A1 (zh) 一种复合式垂直起降飞行器
CN108298064B (zh) 非常规偏航控制系统
CN105683041A (zh) 能够垂直起动的飞行设备
US20050178881A1 (en) Ducted fan vehicles particularly useful as VTOL aircraft
US9611036B1 (en) Rotor-mast-tilting apparatus and method for lower flapping loads
CN204223181U (zh) 一种复合式垂直起降飞行器
WO2016058502A1 (zh) 一种尾坐式飞行器
CN106915459A (zh) 一种混合式倾转旋翼无人机
CN109515704B (zh) 基于摆线桨技术的涵道卷流旋翼飞行器
TW201902785A (zh) 可兼具垂直升降與定翼飛行之雙模式航空器簡易俯仰控制裝置
WO2016078622A1 (zh) 一种复合式垂直起降飞行器
CN204223177U (zh) 一种垂直起降飞行器
JP2022530223A (ja) 垂直離着陸航空機、および関連する制御方法
CN207029549U (zh) 一种混合式倾转旋翼无人机
WO2022238431A1 (en) Aircraft
CN114945510A (zh) 推力换向式飞机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15819697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15819697

Country of ref document: EP

Kind code of ref document: A1