JP2005531719A - ダクト式送風機 - Google Patents
ダクト式送風機 Download PDFInfo
- Publication number
- JP2005531719A JP2005531719A JP2004516953A JP2004516953A JP2005531719A JP 2005531719 A JP2005531719 A JP 2005531719A JP 2004516953 A JP2004516953 A JP 2004516953A JP 2004516953 A JP2004516953 A JP 2004516953A JP 2005531719 A JP2005531719 A JP 2005531719A
- Authority
- JP
- Japan
- Prior art keywords
- airflow
- blower
- fan
- duct
- aircraft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000008859 change Effects 0.000 claims abstract description 7
- 230000003068 static effect Effects 0.000 abstract 1
- 238000001816 cooling Methods 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 239000002826 coolant Substances 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- IWEDIXLBFLAXBO-UHFFFAOYSA-N dicamba Chemical compound COC1=C(Cl)C=CC(Cl)=C1C(O)=O IWEDIXLBFLAXBO-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000003584 silencer Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02K—JET-PROPULSION PLANTS
- F02K3/00—Plants including a gas turbine driving a compressor or a ducted fan
- F02K3/02—Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
- F02K3/025—Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the by-pass flow being at least partly used to create an independent thrust component
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C11/00—Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
- B64C11/001—Shrouded propellers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C15/00—Attitude, flight direction, or altitude control by jet reaction
- B64C15/02—Attitude, flight direction, or altitude control by jet reaction the jets being propulsion jets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C29/00—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
- B64C29/0008—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
- B64C29/0016—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
- B64C29/0025—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being fixed relative to the fuselage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02K—JET-PROPULSION PLANTS
- F02K1/00—Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
- F02K1/002—Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto with means to modify the direction of thrust vector
- F02K1/004—Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto with means to modify the direction of thrust vector by using one or more swivable nozzles rotating about their own axis
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63H—TOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
- A63H27/00—Toy aircraft; Other flying toys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U50/00—Propulsion; Power supply
- B64U50/10—Propulsion
- B64U50/13—Propulsion using external fans or propellers
- B64U50/14—Propulsion using external fans or propellers ducted or shrouded
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Toys (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
ダクト式送風機であって、ダクト4内にあって、気流取り入れ側を有しかつ運転時にダクト内に高圧気流を発生させる、動力で駆動されるファン7と、各ジェットノズル9へ送るために気流を方向を変え二つ以上の支流にするように配置されている気流分割手段18と、を有し、ファンは前記気流分割手段18に隣接して配置されている。この送風機は、垂直離陸能力及び空中静止能力を備え、並びに水平飛行動力源を提供するために航空機のような輸送機関で使用することができる。
Description
この発明はダクト式送風機に関する。この発明は特に、航空機の位置及び姿勢を制御するための変動推力を発生する可動ジェットノズルを使用する、航空機又は飛行船用の送風機に関する。送風機のその他の使用先には、カメラ又は消火剤のような装置を運搬するのに適した空中静止装備を持つプラットホームが含まれる。別の可能性として、空中撮影をするために自由に移動できるプラットホームの提供がある。
航空機において離昇を最初に行いその後に前進加速を行うために可動ジェットノズルを使用する原理は、英国特許明細書第861480号、同第899862号及び同第905651号(ホッカー(Hawker))に開示されている。これらの明細書は、離昇を行うために斜め下向きに回動してエンジンの推力方向を変更させる推力方向変更ノズルの配列体を開示している。この段階の後で、前進加速を行うようにノズルが回動されて、十分に高い速度で、必要な揚力が航空機の翼全体から得られる。その後ノズルは、前進運動をノズル単独で専ら行うように完全に機尾に向かった位置に回動される。
鉛直推力用の向きから後方推力用の向きへのノズル姿勢の変更は、航空機が略水平な飛行姿勢に一貫して保持されるように十分注意して行う必要がある。翼発生気流速度よりも小さい速度で、航空機の飛行姿勢は、しばしば、翼先端、機首及び尾翼に配置されていて飛行士により制御される第2ノズルにより調節することができる。もし、離陸時に横風が存在すれば、航空機の飛行姿勢は、特に注意深く管理する必要があろう。フルサイズの航空機においては、これは、過渡的姿勢において安定性を維持するために使用されるメカニズムである。しかし、航空機が模型航空機であれば、このメカニズムは使用できず、全ての制御調節は各ノズルから出る推力を調節することにより行われなければならない。
前述の明細書に開示されたノズル装置は四つのノズル配置であり、その内の二つは航空機の重心の前方に配置され、残りの二つはこの重心の後方に配置されている。これらのノズルは、比較的安定したプラットホームが形成されるように航空機の機首の右側及び左側に配置される。
この発明によれば、ダクト式送風機が提供されるが、この送風機はダクト内にあり、空気取り入れ側を有しかつ運転時にダクト内に高圧気流を発生させる、動力で駆動されるファンと、各ジェットノズルへ送るために前記気流を方向を変え二つ以上の支流にするように配置されている気流分割手段と、を有し、前記ファンは前記気流分割手段に隣接して配置されている。好ましくは、気流分割手段は、四つの支流を発生するように設定された気流分割板である。
気流分割板からジェットノズルへの支流の送風は、円形、楕円形その他の断面を持つそれぞれの送風管を通して行われる。
ファン回転翼は、ファンを出る気流内に存在する旋回流を低減するように配置されたファン固定翼に隣接して設けることができる。気流分割板は、各ジェットノズルへ向かう個別の気流を調節するように動かすことができる一つ以上の気流制御翼を有して設置される。
好ましくは、気流制御翼は気流分割板の直前に配置される。各制御翼は、気流分割板の斜め壁面に整列する軸の回りに回動して(空気流量の)バランスを取り、その斜め壁面は、分割板の開口部を通る気流に対する障害が最小となる位置に配置されている。
この発明は送風機が取り付けられた可動プラットホーム輸送機関を更に包含する。それは更に送風機を有する航空機をも包含する。
この発明のダクト式送風機の説明は、使用するエンジンを選択することから始まる。本実施例において、これは、グロープラグ点火を採用し回転速度が28000RPMに達する2サイクル水冷却内燃機関(以下、「エンジン」という)である。図1及び図2が、エンジンの出力軸に直接固定された軸流ファン回転翼が搭載されたエンジンを示している。これらの図においてエンジンは作動シリンダ1を有し、これに直角に出力軸2が直線状に配置されている。エンジンは排気消音器3と、気化器付き燃料タンクを含む標準機器とを更に具備している。図1は、ファンにより生成された圧縮気流を閉じ込めるように働くケーシング4により囲まれたファン回転翼を示している。図2において、ケーシング4は、気流入口端でベル形開口6にした小変更をともなって示されている。
エンジンの出力軸2の端部にファン回転翼7が取り付けられ、そのファン回転翼7の翼がシリンダ1の方向へ送風するように整列されている。流入気流は、気流分割板8により4つの流れに分割され、これらの流れは調節式ノズルへ送られ、そのノズル9の内の二つが図1の左手に見える。
ノズル9は、四つの気流を気流分割板8から四つのノズル9へ運ぶ送風管11の端部に配置されている。ノズルの調節は、それぞれの気流を前方、下方又は後方へ向けることを目的としてノズルが回動できるように送風管11の端部の回りに各ノズル9を回動することにより行われる。各ノズルの回動はそのノズルの傍にある第1サーボモータ12を操作することにより行われる。第1サーボモータ12は四つあり、一つのサーボモータ12がノズル9各々のために設けられている。気流効率を改善し気流損失を低減するために、気流案内翼をダクトやノズルの中に設けることも可能であるが、設けなくても良い。
図3は更に構造の詳細を示しているが、そこでは前部ケーシング4は取り外されており、エンジンの左手のノズルが省略されている。ファン回転翼7の直ぐ下流に、ファン固定翼13を有する整流用固定翼が設けられてファンを出る気流内に存在する旋回流を低減する。ノズル9(図1)へ送るための四つの分離した流れに気流が分割されるように配置された四つの通路を備えて気流分割板8が気流を横切って取り付けられている。気流分割板の形状は、流入気流が円滑にかつ流線状に四つの小さな流れに実質的に均等に分割されるようになっている。これには、各気流分割通路の上流側に設けられている濾斗状流入口14が部分的に効果を及ぼしている。
図4はダクトファン固定翼13を備えた気流分割板8を示しているが、その固定翼13は分割板8の前端にあるボスに取り付けられている。更に各気流分割通路の先端で、気流分割板が通路の前部の面に取り付けられた気流制御翼16を支持している。四つの気流制御翼があり、これらはより小さい気流が通過する対になった通路間に配置されている。従って、もし気流制御翼が対になった通路を通る気流に平行に位置付けられれば、二つの通路を通る等しい気流が存在することとなる。しかし、もし気流制御翼が気流に対して小さい角度を付けて位置付けられれば、一方の通路を通る気流は減少するが、他方の通路を通る気流は増加するであろう。対になった通路間に配置された気流制御翼を備えた四つの気流分割通路が存在し、この構成が個別の通路を通過する空気流量に対して広範囲の調節を行うことを可能としている。
図5は四つの気流制御翼16を支持している気流分割板8を示している。各気流制御翼は内側端部でその面17に接触しており、第2サーボモータ18(図1)によりエンジン出力軸に対して放射状の軸の回りに各翼の外側端部が動くことができる。第2サーボモータ18は、作動時にはファン組立体を取り囲むケーシング4に支持されている。
気流分割板8は更に円筒形ボス19を有しているが、これはファン固定翼13が剛構造で支持されることができるようにスプラインを備えている。エンジンの出力軸2(図2)はもちろん、この軸の端部にファン回転翼7が固定できるように気流分割板8を貫通している。
気流分割板8の下流側は固定手段21(図3)を有しているが、四つの気流を案内する送風管が該固定手段により分割板に取り付けられている。図1に示すように、エンジンの左手に配置された送風管11が2本あり、別の2本の管(図1には見えない)が右手にある。各送風管は最後部がノズル9に連結されており、図1に見える2本のノズルが各側で送風機を上昇させようとするジェット推進反力を生ずるように下方を向いて示されている。同様の作用が、その送風機の反対側にあるノズルからも生ずる。しかしノズルは各々、ノズルを支持している送風管の端部の回りに回動することができる。各ノズルの位置は、各ノズル用にそれぞれの第1サーボモータを配置することにより調節される。従って、必要であれば、全てのノズルが上向きの推力を発生することが可能であり、あるいはノズルがそのサーボモータにより適切に位置設定されているならば、前向き推力と上向き推力とを合成することも可能である。
図6は、気流制御翼16がその面17から取り外された後の気流分割板8を示している。
図7は、気流分割板8の別の実施例の4面を示している。分割板の上部にある二つの気流通路は一定の距離で互いに離れており、一方、分割板の下部にある二つの通路は狭い間隔で離れている。この配置により、関連する送風管がエンジン構造体の周囲を通ることができる。
図8は気流分割板の一方からの斜視図であり、定位置にある気流制御翼を示している。
図9は、気流制御翼を定位置に備えた気流分割板の反対側からの図である。その偏向軸20が水平線上にある2組の気流制御翼16が、下方の二つの通路に対する間隔よりも小さい間隔で上方の二つの気流通路に対して間隔を置いていることに気付かれよう。同様にこのことは、送風管がエンジン構造体の回りを通過することを可能としている。
図10は、気流分割板8内の二つの通路間に配置されている気流制御翼の部分断面図である。図の左手と右手とに気流通路が配置されている。反時計方向への最上部気流制御翼16の傾斜により、右手通路を流れてきた気流の一部が左手通路へ方向変換されることが明らかである。気流制御翼が流入気流に平行となる位置へ戻されると、再び等量のエアが二つの通路を流れるようになる。
図11は第2サーボモータ18を備えた気流制御翼16の4面を示している。サーボモータ18は、モータの作動が制御翼を小さい角度で回動させるように傘歯車装置により気流制御翼16に連結された出力軸を有する。各気流制御翼16は、矩形スリーブと中央仕切板とを備えた箱状構造を有する。このように各気流制御翼16は、気流用の二つの平行な通路を形成しており、この箱を回動することにより、気流を回動軸に関していずれの側にも向けることができる。
図12は、この発明のダクト式送風機が組み込まれている航空機の構造を示している。この場合、航空機は、前述の特許明細書の一つに開示されたホッカー(Hawker)機である。その航空機は短距離離着陸仕様であり、前方を向いた空気取り入れ口23を備えているが、これらは胴体の両側に一つずつ配置されている。この航空機は更に、2基の前方ジェットノズル24と同数基の後方ジェットノズル26とを備えている。ノズルは前述したように回動自在であり、図に示された配置では、操縦及び制動目的のため逆推力を生ずるようにノズルは前方へかつ斜め下方に向けられている。
模型航空機に搭載可能で市販の標準無線送信機により操縦することのできる送風機制御装置が案出された。航空機は、動力制御、方向舵、昇降舵、補助翼、フラップ、縦揺れ横揺れ空中静止制御のための十分な操縦機能を備えている。従って、航空機は空中静止することができ、そして空中静止から前進飛行へ移行し、そして空中静止へ復帰することが可能となる。センサに基づく制御装置が組み込まれた。第1及び第2のサーボモータ12、18は、ノズルと気流制御翼とが互いに独立して調節できるように計算機制御の装置により駆動された。実際には、一組の気流制御翼がエンジン軸の反対側にある対応する組の翼と同時に動かされるように、気流制御翼は対で制御されるように配置された。
ダクト式送風機を構築するに際し、多くの構成部品が重量を最小にするため炭素繊維複合材又はプラスチック射出成型法のいずれかにより製作することが可能であることが判明した。ダクト、気流制御翼、エンジンマウンティング、ノズル、回転翼及び固定翼ファン装置、並びに気流分割板は、これら工法のどちらか一方により製作された。気流制御翼16は各々、上部部材及び下部部材によりリンク結合された空気力学的設計の3個の翼の中空箱状構造体を有する。好ましくは、翼の外側は回動中の翼効率を改善するためにわずかに外側に拡げられている。
ダクト式送風機の運転において、送風機は、図12に示すホッカー機に似た航空機の胴体への組み込みに適していることが判明した。エンジン、昇降舵、フラップ及びサーボモータの運転を制御するために航空機に搭載された適切な無線制御装置を用いて、模型航空機を本物のように巧妙に操縦することができる。操縦には、垂直離着陸、前進飛行への移行、空中静止への移行復帰、着陸及び後進飛行が含まれる。
このタイプの航空機における別の有用な動きは、水平面における通常は垂直軸回りの航空機の角運動であるヨーイング運動である。ホッカー機において、ヨーイング運動を発生させるための偶力は、航空機の胴体の機首と後部支柱とに配置された反動制御弁を通過して高速気流を導くことにより得られる。対照的に、この発明の航空機においては、二つの左手胴体側ノズルを一方向へそして二つの(右)手ノズルを反対方向へ回動することにより得られる。このように、ヨーイング運動は反対回動されるノズル列を使用することにより得られる。
図13は、前方に回動された二つの左側ノズル9(図の上部分)と後方に回動された二つの右側ノズル9(図の下部分)とを備えた送風機の平面図を示している。従って推力は、鉛直軸を中心として反時計方向へ航空機を回動するように向けられる。
更に、空中静止姿勢において、横揺れ面か縦揺れ面かの中心点から離れるように航空機が動くと、ノズルが地面に関して常に鉛直方向下向きになるようにノズルは個別に調節することができる。こうすることは、航空機の安定した空中静止を維持するために最大ジェット推力を確実に下向きに供給することに役立つ。
この発明の実施例の以上の説明は、例示としてのみ行われ、添付の特許請求の範囲に規定されたこの発明の範囲から離れることなく、多くの変形をすることが出来る。例えば、2サイクル内燃機関である動力源の代わりに、動力源はモータ制御器及び燃料電池又は再充電可能な蓄電池付きブラシレスモータであっても良い。模型ガスタービンも更なる可能性がある。更に気流制御翼の部材は、3個の空気力学的気流方向変換翼を支持する中空箱構造であると説明してきた。別の実施例において、気流制御翼部材は、この数以上又は以下の気流方向変換翼部材を持つこともできよう。
ダクト内で対角線上の対向位置に配置されている可動気流制御翼を備えた中央ダクトを下って送風される代替構造の送風機を提供することも可能である。そこでは、気流制御翼は、左手又は右手送風管の一方又は両方へ気流の一部を方向転換するように作用する。従ってこの構成は、3個のジェットノズルのみを持つ航空機にも使用できよう。
2サイクルエンジンの運転性能を大いに改善し無限に維持可能な空中静止飛行を可能とするために、冷却システムがエンジンヘッドと排気マニホールド/出力調整パイプの双方のために導入されている。水、エチレングリコール、又は同様な流体冷却材が、エンジン駆動軸により直接的に又は電動機により遠隔操作されて、駆動されるポンプに接続された冷却ダクトによりこれらの構成部品を通って循環される。そして、「熱い」冷却材は、ダクトファンシュラウドと、アルミニウム、炭素繊維複合材又は同様の材料から製作され良好な熱伝導特性を持つ送風管とから形成された熱交換器を回って再循環される。このダクトの内側を強制的に通過させられる高速気流の作用により、流体冷却材から必要量の熱を奪う冷却が実行される。熱交換器の更なる利点は、後部送風管を通過する際に熱伝達の結果として気流を膨張させて、ジェットノズル出口における推力を少量増加させることである。飛行中この熱交換器の外面は、空気取り入れ口直後の流入気流により強制的に通過させられる気流にさらされるであろう。この作用は、利用可能な冷却の効果を更に増加させることができる。
Claims (9)
- ダクト内にあって、空気取り入れ側を有しかつ運転時に前記ダクト内に高圧気流を発生させる、動力で駆動されるファンと、
前記気流を方向を変え二つ以上の支流にして各ジェットノズルへ送るように配置されている気流分割手段と、を有し、
前記ファンは前記気流分割手段に隣接して配置されていることを特徴とする、ダクト式送風機。 - 前記気流分割手段が、四つの支流を発生するように設定された気流分割板であることを特徴とする、請求項1に記載の送風機。
- 前記気流分割手段が、送風管により前記ジェットノズルに連結されていることを特徴とする、請求項1又は2に記載の送風機。
- 前記ファンから出る気流内の旋回流を低減するように配置されたファン固定翼に隣接して配置された回転翼を前記ファンが有することを特徴とする、請求項1から3のいずれか1項に記載の送風機。
- 前記気流分割板が、個別の気流ジェットノズルへの気流を調節するように動かすことのできる気流制御翼を備えていることを特徴とする、請求項1から4のいずれか1項に記載の送風機。
- 翼の動きが、前記分割板の開口部を通過する流れに対して最小の障害となるように、前記気流制御翼が、前記気流分割板の斜め壁面に整列している軸の回りに回動するように取り付けられていることを特徴とする、請求項5に記載の送風機。
- 請求項1から6のいずれか1項に記載の送風機を有することを特徴とする、可動プラットホーム輸送機関。
- 請求項1から6のいずれか1項に記載の送風機を有することを特徴とする、航空機。
- 添付図面のいずれか1つに関して明細書に実質的に記載されている送風機。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0214961A GB0214961D0 (en) | 2002-06-28 | 2002-06-28 | Ducted air power plant |
GB0301177A GB0301177D0 (en) | 2002-06-28 | 2003-01-20 | Ducted air power plant |
PCT/GB2003/002770 WO2004002821A1 (en) | 2002-06-28 | 2003-06-27 | Ducted air power plant |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005531719A true JP2005531719A (ja) | 2005-10-20 |
JP2005531719A5 JP2005531719A5 (ja) | 2006-08-31 |
Family
ID=27665376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004516953A Pending JP2005531719A (ja) | 2002-06-28 | 2003-06-27 | ダクト式送風機 |
Country Status (9)
Country | Link |
---|---|
US (1) | US7581381B2 (ja) |
EP (1) | EP1534590A1 (ja) |
JP (1) | JP2005531719A (ja) |
CN (1) | CN1662419A (ja) |
AU (1) | AU2003246915B2 (ja) |
CA (1) | CA2490886A1 (ja) |
GB (1) | GB2391846B (ja) |
IL (1) | IL165968A0 (ja) |
WO (1) | WO2004002821A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101237865B1 (ko) | 2011-10-07 | 2013-02-27 | 이희용 | 융합 유체 가속기 |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230085329A1 (en) * | 2002-10-01 | 2023-03-16 | Tiger T G Zhou | Jet-propelled vtol hybrid car |
US11571938B2 (en) * | 2002-10-01 | 2023-02-07 | Andrew H B Zhou | Jet-propelled VTOL hybrid car |
AU2003304328A1 (en) | 2003-07-09 | 2005-01-28 | Felix Sanchez Sanchez | Windmill rotor comprising multiple separate wind channels |
MX2007000734A (es) * | 2004-10-29 | 2007-03-30 | Felix Sanchez Sanchez | Propulsor de chorro de aire. |
US8087315B2 (en) | 2006-10-10 | 2012-01-03 | Honeywell International Inc. | Methods and systems for attaching and detaching a payload device to and from, respectively, a gimbal system without requiring use of a mechanical tool |
US7681832B2 (en) | 2007-05-02 | 2010-03-23 | Honeywell International Inc. | Ducted fan air vehicle with deployable wings |
US8251307B2 (en) | 2007-06-11 | 2012-08-28 | Honeywell International Inc. | Airborne manipulator system |
US8025546B2 (en) * | 2008-07-09 | 2011-09-27 | Epf Hobby Co., Ltd. | Ducted fan assembly for radio-controlled model |
US8109711B2 (en) | 2008-07-18 | 2012-02-07 | Honeywell International Inc. | Tethered autonomous air vehicle with wind turbines |
US8123460B2 (en) | 2008-07-23 | 2012-02-28 | Honeywell International Inc. | UAV pod cooling using integrated duct wall heat transfer |
US8387911B2 (en) | 2008-07-25 | 2013-03-05 | Honeywell International Inc. | Ducted fan core for use with an unmanned aerial vehicle |
US8070103B2 (en) | 2008-07-31 | 2011-12-06 | Honeywell International Inc. | Fuel line air trap for an unmanned aerial vehicle |
US8240597B2 (en) | 2008-08-06 | 2012-08-14 | Honeywell International Inc. | UAV ducted fan lip shaping |
US8123169B2 (en) | 2008-11-12 | 2012-02-28 | Honeywell International Inc. | Vertical non-bladdered fuel tank for a ducted fan vehicle |
US8225822B2 (en) | 2008-11-14 | 2012-07-24 | Honeywell International Inc. | Electric fueling system for a vehicle that requires a metered amount of fuel |
US8328130B2 (en) | 2008-12-08 | 2012-12-11 | Honeywell International Inc. | Vertical take off and landing unmanned aerial vehicle airframe structure |
US8375837B2 (en) | 2009-01-19 | 2013-02-19 | Honeywell International Inc. | Catch and snare system for an unmanned aerial vehicle |
US8348190B2 (en) | 2009-01-26 | 2013-01-08 | Honeywell International Inc. | Ducted fan UAV control alternatives |
US8205820B2 (en) | 2009-02-03 | 2012-06-26 | Honeywell International Inc. | Transforming unmanned aerial-to-ground vehicle |
CN101956675B (zh) * | 2010-10-28 | 2012-06-20 | 马可超 | 喷气式风力发电机 |
US20120110978A1 (en) * | 2010-11-08 | 2012-05-10 | Marius Angelo Paul | Absolute universal engine, one from ground to orbit |
FR2985714B1 (fr) * | 2012-01-12 | 2014-03-14 | Andre Chaneac | Amelioration des qualites d'un aeronef a coussin d'air |
US8910464B2 (en) * | 2011-04-26 | 2014-12-16 | Lockheed Martin Corporation | Lift fan spherical thrust vectoring nozzle |
US8960592B1 (en) | 2011-07-19 | 2015-02-24 | D. Anthony Windisch | VTOL propulsion for aircraft |
RU2521459C1 (ru) * | 2013-04-30 | 2014-06-27 | Андрей Иванович Мерзляков | Летательный аппарат с вертикальным взлетом или посадкой |
CN105667782A (zh) * | 2014-11-22 | 2016-06-15 | 吴建伟 | 一种复合式垂直起降飞行器 |
CN104859840B (zh) * | 2015-06-01 | 2017-09-22 | 珠海磐磊智能科技有限公司 | 涵道动力装置和飞行器 |
US11001378B2 (en) | 2016-08-08 | 2021-05-11 | Jetoptera, Inc. | Configuration for vertical take-off and landing system for aerial vehicles |
JP6930743B2 (ja) | 2015-09-02 | 2021-09-01 | ジェトプテラ、インコーポレイテッド | エジェクタ及びエアフォイル形状 |
US10464668B2 (en) | 2015-09-02 | 2019-11-05 | Jetoptera, Inc. | Configuration for vertical take-off and landing system for aerial vehicles |
BR112019027805A2 (pt) | 2017-06-27 | 2020-07-07 | Jetoptera, Inc. | configuração de sistema de decolagem e aterrissagem vertical para veículos aéreos |
US10423831B2 (en) | 2017-09-15 | 2019-09-24 | Honeywell International Inc. | Unmanned aerial vehicle based expansion joint failure detection system |
PL423418A1 (pl) * | 2017-11-12 | 2019-05-20 | Bryzik Grzegorz | Jednostka napędowa pojazdu latającego |
DE102018001247A1 (de) * | 2018-02-16 | 2019-08-22 | Dieter Lang | Schubumkehr am Flugzeugrumpf mit Flügelprofil |
CN108670102B (zh) * | 2018-07-18 | 2024-06-25 | 浙江菲果科技有限公司 | 基于ptc发热的温度可调节干手器 |
CN113226925A (zh) * | 2018-11-09 | 2021-08-06 | 杰托普特拉股份有限公司 | 自适应的竖直起降推进系统 |
US10829204B2 (en) | 2018-11-30 | 2020-11-10 | Textron Innovations Inc. | Electric reaction control system |
GB201900025D0 (en) | 2019-01-02 | 2019-02-13 | Dyson Technology Ltd | A fan assembly |
US11661183B2 (en) | 2020-03-16 | 2023-05-30 | D. Anthony Windisch | Small light vertical take-off and landing capable delta wing aircraft |
CN113306702B (zh) * | 2021-06-11 | 2022-10-11 | 长沙理工大学 | 一种喷气式无人机及其控制方法 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB851379A (en) * | 1957-11-20 | 1960-10-19 | Power Jets Res & Dev Ltd | Aircraft |
GB861480A (en) | 1958-06-02 | 1961-02-22 | Hawker Aircraft Ltd | Improvements in aircraft |
GB899862A (en) | 1959-10-30 | 1962-06-27 | Hawker Aircraft Ltd | Improvements in aircraft control mechanism |
GB905651A (en) | 1959-11-12 | 1962-09-12 | Hawker Aircraft Ltd | Improvements in control nozzle systems for use on aircraft |
FR1280103A (fr) * | 1960-11-18 | 1961-12-29 | Snecma | Moteur à réaction composite pour aérodynes à grand écart de vitesse |
US3155342A (en) * | 1961-05-25 | 1964-11-03 | Bolkow Entwicklungen Kg | Vtol aircraft construction |
GB976854A (en) * | 1961-12-07 | 1964-12-02 | Havilland Engine Co Ltd | Aircraft propulsion apparatus |
US3341154A (en) * | 1963-08-01 | 1967-09-12 | Smith & Sons Ltd S | Control systems for aircraft engine installations |
GB1252077A (ja) * | 1969-03-08 | 1971-11-03 | ||
US3769797A (en) * | 1971-10-28 | 1973-11-06 | Us Air Force | By-pass engine having a single, thrust diverter valve mechanism for a v/stol aircraft |
GB1473088A (ja) * | 1973-06-28 | 1977-05-11 | ||
US4222233A (en) * | 1977-08-02 | 1980-09-16 | General Electric Company | Auxiliary lift propulsion system with oversized front fan |
US4713935A (en) * | 1986-04-08 | 1987-12-22 | Rolls-Royce Inc. | Vectorable nozzles for aircraft |
US5297388A (en) * | 1992-04-13 | 1994-03-29 | Rolls-Royce Inc. | Fluid flow duct with alternative outlets |
US5666803A (en) | 1995-08-14 | 1997-09-16 | Windisch; D. Anthony | Vectored thrust compressor for remote controlled aircraft |
DE19545253A1 (de) | 1995-11-24 | 1997-05-28 | Gerst Hellmut Dr Ing | Variables Bypass-Verhältnis beim Fantriebwerk |
US6604706B1 (en) * | 1998-08-27 | 2003-08-12 | Nicolae Bostan | Gyrostabilized self propelled aircraft |
GB2353983B (en) * | 2000-07-04 | 2003-10-15 | Adrian Alexander Hubbard | Variable mode jet engine-suitable for STOVL |
-
2003
- 2003-06-27 CA CA002490886A patent/CA2490886A1/en not_active Abandoned
- 2003-06-27 AU AU2003246915A patent/AU2003246915B2/en not_active Ceased
- 2003-06-27 CN CN038150220A patent/CN1662419A/zh active Pending
- 2003-06-27 GB GB0315040A patent/GB2391846B/en not_active Expired - Fee Related
- 2003-06-27 EP EP03761692A patent/EP1534590A1/en not_active Withdrawn
- 2003-06-27 WO PCT/GB2003/002770 patent/WO2004002821A1/en active Application Filing
- 2003-06-27 JP JP2004516953A patent/JP2005531719A/ja active Pending
- 2003-06-27 US US10/519,526 patent/US7581381B2/en not_active Expired - Fee Related
-
2004
- 2004-12-23 IL IL16596804A patent/IL165968A0/xx not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101237865B1 (ko) | 2011-10-07 | 2013-02-27 | 이희용 | 융합 유체 가속기 |
Also Published As
Publication number | Publication date |
---|---|
CN1662419A (zh) | 2005-08-31 |
AU2003246915A1 (en) | 2004-01-19 |
US7581381B2 (en) | 2009-09-01 |
GB0315040D0 (en) | 2003-07-30 |
WO2004002821A1 (en) | 2004-01-08 |
IL165968A0 (en) | 2006-01-15 |
CA2490886A1 (en) | 2004-01-08 |
US20050223694A1 (en) | 2005-10-13 |
GB2391846A (en) | 2004-02-18 |
EP1534590A1 (en) | 2005-06-01 |
AU2003246915B2 (en) | 2009-06-11 |
GB2391846B (en) | 2005-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2005531719A (ja) | ダクト式送風機 | |
JP7333144B2 (ja) | 航空機抗力低減システム及び内部冷却電気モータ・システム並びにこれらを使用する航空機 | |
US10919636B2 (en) | Fluidic propulsive system and thrust and lift generator for aerial vehicles | |
CN107848630B (zh) | 包括含具有可移动翼部的输入定子的流线型后方推进器的飞行器 | |
CN107923255B (zh) | 包括具有包含吹气功能的入口定子的后部整流罩推进系统的飞行器 | |
JPH06502364A (ja) | Vtol航空機のための推進ユニット | |
US11136937B2 (en) | Aircraft propulsion assembly comprising a thrust reverser | |
US10669026B2 (en) | Lift cell modules and lift pods | |
WO2024088114A1 (zh) | 可变推力方向的动力装置及飞行器 | |
KR20050016643A (ko) | 덕트형 공기 동력 장치 | |
NZ537834A (en) | Ducted air power plant with air splitter means which can divert air into two or more subsidiary streams | |
JP2020524116A (ja) | ウィングレットエジェクタ構成 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060627 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060627 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090804 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100105 |