CN1642641A - 合成马来酸酐用的催化剂-前体及其制备方法 - Google Patents

合成马来酸酐用的催化剂-前体及其制备方法 Download PDF

Info

Publication number
CN1642641A
CN1642641A CNA038061007A CN03806100A CN1642641A CN 1642641 A CN1642641 A CN 1642641A CN A038061007 A CNA038061007 A CN A038061007A CN 03806100 A CN03806100 A CN 03806100A CN 1642641 A CN1642641 A CN 1642641A
Authority
CN
China
Prior art keywords
catalyst
under
vanadium
weight
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA038061007A
Other languages
English (en)
Other versions
CN1295016C (zh
Inventor
J·维格尼
S·斯托克
M·杜道
C·多布纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of CN1642641A publication Critical patent/CN1642641A/zh
Application granted granted Critical
Publication of CN1295016C publication Critical patent/CN1295016C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • B01J35/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/215Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of saturated hydrocarbyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J35/613

Abstract

本发明涉及一种用于通过对具有至少四个碳原子的烃进行非均相催化气相氧化而制备马来酸酐的含有钒、磷和氧的催化剂前体的制备方法,其中(a)在具有3~6个碳原子的伯或仲、非环状或环状、非支化或支化的饱和醇存在下于80~160℃下将五氧化二钒与浓度为102~110%的磷酸反应;(b)分离形成的沉淀物;(c)通过在250~350℃下对被分离的沉淀物进行热处理而使其有机碳含量≤1.1重量%,所述热处理产物在添加了3.0重量%石墨作为内标物和使用CuKα辐射(λ=1.54×10-10m)后产生的粉末X射线衍射图在2θ区域内的特征是28.5°处存在的任何焦磷酸盐相的峰高与26.6°处由石墨引起的峰高的比值≤0.1;和(d)使步骤(c)得到的热处理产物成型为平均直径至少2mm的颗粒,本发明还涉及一种根据所述方法得到的催化剂前体用以由所述催化剂前体制备催化剂,一种可以由所述方法得到的催化剂,此外还涉及一种在所述催化剂上制备马来酸酐的方法。

Description

合成马来酸酐用的催化剂-前体及其制备方法
本发明涉及一种钒、磷和氧催化剂前体及其制备方法,该催化剂前体用于通过对具有至少四个碳原子的烃进行非均相催化气相氧化而制备马来酸酐。
本发明还涉及一种钒磷氧-催化剂和一种采用本发明的催化剂前体制备该催化剂的方法。
此外,本发明还涉及一种用于通过采用本发明的催化剂对具有至少四个碳原子的烃进行非均相催化气相氧化而制备马来酸酐的方法。
马来酸酐是合成γ-丁内酯、四氢呋喃和1,4-丁二醇的重要中间体,反过来合成的这些化合物可以用作溶剂,或者进一步加工成例如聚合物,如聚四氢呋喃或聚乙烯基吡咯烷酮。
通过在合适的催化剂上氧化烃类(如n-丁烷、n-丁烯或苯)而制备马来酸酐的方法已经确立了。所述方法通常采用钒-磷-氧催化剂(被称作VPO催化剂)(参见Ullmann’s Encyclopedia of Industrial Chemistry,第六版,2000年电子版,章节为“MALEIC AND FUMARIC ACIDS,MaleicAnhydride-Production”)。
广泛采用的钒-磷-氧催化剂一般按照如下方式制备:
(1)由五价钒化合物(如V2O5)、五价或三价磷化合物(如正磷酸和/或焦磷酸、磷酸盐或亚磷酸)和还原醇(如异丁醇)合成磷酸氧钒半水合物前体(VOHPO4·1/2H2O),分离沉淀物,干燥,如果合适的话使其成型(如制片);和
(2)通过煅烧方式预活化产生焦磷酸氧钒((VO)2P2O7)。
由于采用还原醇作为还原剂,因此通常会在所得的前体沉淀物中残留有若干重量百分数的有机化合物,所述有机化合物即使通过费力地冲洗也无法除去。在随后制备催化剂的过程中,尤其是煅烧过程中,这些有机化合物会对催化剂的催化性能产生负面影响。例如,在后来的煅烧操作中,存在这些残留有机化合物蒸发和/或热分解产生气态组分的危险,这会造成催化剂结构中压力增大,从而导致毁坏该催化剂。当煅烧在氧化条件下进行时,这种有害作用特别明显,因为被氧化的降解产物(如一氧化碳或二氧化碳)的形成会使气体体积显著增加。此外,对这些有机化合物的氧化作用会就地产生大量热量,从而导致催化剂遭受热损坏。
另外,所述残留有机化合物会对钒的局部氧化态产生显著影响。因此B.Kubias等人在Chemie Ingenieur Technik 72(3),2000年,第249~251页中说明了在由异丁醇溶液得到的磷酸氢氧钒半水合物前体的厌氧煅烧(在非氧化条件下)中有机碳的还原作用。在所给的实施例中,厌氧煅烧产生的钒的平均氧化态为3.1,而有氧煅烧(在氧化条件下)产生的钒的平均氧化态约为4。
EP-A 0 520 972描述了通过五氧化二钒与磷酸在有机介质(如伯醇或仲醇)中反应制备磷酸氢氧钒半水合物前体的方法。吸附和/或包含的有机化合物的量据说达到40重量%,该引用文献指出于150℃下干燥8小时使得该量为约25重量%,于250℃下干燥(热处理)4小时使得该量为约2重量%。
EP-A 0 520 972的实施例1描述了通过以下方式制备所述前体的方法:在草酸的异丁醇溶液(作为还原有机介质)存在下将五氧化二钒与浓度为105.7%的磷酸反应,同时加热回流,随后倒出上层溶液,于100~150℃下干燥余下的浆料,随后在250~260℃下热处理5小时。随后将得到的催化剂前体与石墨混合,制片,在多种煅烧条件下进行煅烧,以得到含有焦磷酸氧钒的成品催化剂。所描述的制备方法的特殊缺点是前体中吸附和/或包含的有机化合物的含量高,这可以归因于(i)草酸的使用,(ii)倒出上层溶液并使余下的浆料蒸发浓缩,和(iii)所选择的热处理条件。
EP-A 0 520 972的实施例2描述了通过以下方式制备所述前体的方法:在作为还原有机介质的异丁醇的存在下将五氧化二钒与浓度为100%的磷酸反应并同时加热回流,过滤,冲洗,于145℃下干燥。随后在空气中于400℃下煅烧得到的催化剂前体1小时,将其与石墨混合,制片,以得到成品催化剂。由于选择的煅烧温度为400℃,因此在制片之前于粉末状态下就已经发生了产生焦磷酸氧钒的相转变。
WO 00/72963教授了通过以下方式制备磷酸氢氧钒半水合物前体的方法:在异丁醇和多元醇(如二元醇)的存在下将五氧化二钒与正磷酸反应,随后过滤得到的沉淀物,冲洗,于120~200℃下干燥,在空气中于300℃下热处理3小时,制片,在至多600℃下煅烧以使其转化成具有催化活性的形式。于300℃下热处理3小时后,通过这些措施制备的前体的含碳量为0.7~3重量%。根据该引用文献教授的方法采用正磷酸在异丁醇和多元醇存在下制备的催化剂达到了最佳催化性能,该前体的含碳量在300℃下热处理3小时后为0.8~1.5重量%。当在400℃下使用这种催化剂时得到的马来酸酐的产率为约30~45%。相对照而言,将五氧化二钒在异丁醇存在下与正磷酸反应沉淀得到的催化剂(于125℃下干燥5小时后该催化剂前体的含碳量已经相对较低,为0.6重量%)表现出的马来酸酐产率低得多,在400℃下约为17%。
WO 00/72963中的评论表明前体的含碳量低不是获得具有活性和选择性的催化剂的充分条件。其提出的制备方法的缺点是使用了其它有机组分和可以获得的催化剂的性能较差,因此甚至在反应温度为400℃时,马来酸酐的产率也只能达到30~45%。
EP-A 0 056 183教授了通过以下方式制备磷酸氢氧钒半水合物前体的方法:在还原性液体介质中还原五氧化二磷,将得到的中间体与45~90%正磷酸、10~50%焦磷酸、0~10%三磷酸和多磷酸的混合物反应,分离出沉淀物,对其进行干燥和煅烧。实施例1~7对该前体的制备方法作了说明:通过在异丁醇存在下将五氧化二磷与49%正磷酸、42%焦磷酸、8%三磷酸和1%多磷酸的混合物(大约相当于浓度为105%的磷酸)反应并同时加热回流,过滤,于150℃下干燥。随后在空气中于400℃下煅烧得到的催化剂前体1小时,将其与石墨混合,制片,以得到成品催化剂。由于选择煅烧温度为400℃,因此在制片之前于粉末状态下就已经发生了产生焦磷酸氧钒的相转变。
本发明的目的是寻找一种用于制备钒、磷和氧催化剂前体的方法,所述催化剂的前体用于通过对具有至少四个碳原子的烃进行非均相催化气相氧化而制备马来酸酐,该方法不再具有上文所述的缺点,工业上易于实现,并在预活化(其同样应当易于在工业上实现)之后得到颗粒状催化剂,其特征是在单个催化剂颗粒内和不同催化剂颗粒之间具有大体上均匀的钒氧化态,所述颗粒状催化剂具有高活性和高选择性。
我们还发现该目的可以通过一种用于制备钒、磷和氧催化剂前体的方法来实现,所述催化剂的前体用于通过对具有至少四个碳原子的烃进行非均相催化气相氧化而制备马来酸酐,该方法包括:
(a)在具有3~6个碳原子的伯或仲、非环状或环状、非支化或支化的饱和醇存在下于80~160℃下将五氧化二钒与浓度为102~110%的磷酸反应;
(b)分离形成的沉淀物;
(c)通过在250~350℃下对被分离的沉淀物进行热处理而使其有机碳含量≤1.1重量%,所述热处理产物在添加了3.0重量%石墨作为内标物和使用CuKα辐射(λ=1.54×10-10m)后产生的粉末X射线衍射图在2θ区域内的特征是28.5°处存在的任何焦磷酸盐相的峰高与26.6°处由石墨引起的峰高的比值≤0.1;和
(d)使步骤(c)得到的热处理产物成型为平均直径至少2mm的颗粒。
本发明方法的关键之处在于:
·使用浓度为102~110%的磷酸,
·使用具有3~6个碳原子的伯或仲、非环状或环状、非支化或支化的饱和醇,
·在适当的条件下通过热处理使有机碳含量≤1.1重量%,由此实质上避免形成焦磷酸盐相,和
·对热处理过的、大体不含焦磷酸盐相的产物进行成型处理。
下面更详细地说明上述的步骤(a)~(d):
步骤(a)
用于本发明方法的磷酸具有的H3PO4算术含量为102~110重量%。这简单地表示成浓度为102~110%的磷酸。浓度为102~110%的磷酸是包含以下物质的混合物:正磷酸(H3PO4)、焦磷酸(H4P2O7)和分子式为Hn+2PnO3n+1(其中n≥3)的多磷酸。对于本发明方法而言,优选使用浓度为102~108%的磷酸,特别优选浓度为102~106%的磷酸,非常特别优选浓度为104~106%的磷酸。所用磷酸一般通过将五氧化二磷加入水或浓度为例如85~100%的含水磷酸中而制得。
与使用较低浓度的磷酸特别是浓度为85~100%的磷酸和固体正磷酸相比,使用浓度为102~110%的磷酸这种创造性措施和同时采用的其它创造性措施可以令人惊讶地产生具有以下特点的催化剂前体:其可以在相似的条件下产生活性较高和对马来酸酐的选择性较高的催化剂,提供产率较高的马来酸酐。由于其活性较高,因而当使用该催化剂时可以设定例如较低的反应温度。
用于本发明方法的还原组分是具有3~6个碳原子的伯或仲、非环状或环状、非支化或支化的饱和醇,或者这类醇的混合物。对于本发明的方法而言,优选使用伯或仲、非支化或支化的C3~C6链烷醇,或者使用环戊醇或环己醇。适合的醇类包括正丙醇(1-丙醇)、异丙醇(2-丙醇)、正丁醇(1-丁醇)、仲丁醇(2-丁醇)、异丁醇(2-甲基-1-丙醇)、1-戊醇、2-戊醇、3-戊醇、2-甲基-1-丁醇、3-甲基-1-丁醇、3-甲基-2-丁醇、2,2-二甲基-1-丙醇、1-己醇、2-己醇、3-己醇、2-甲基-1-己醇、3-甲基-1-戊醇、4-甲基-1-戊醇、3-甲基-2-戊醇、4-甲基-2-戊醇、2,2-二甲基-1-丁醇、2,3-二甲基-1-丁醇、3,3-二甲基-1-丁醇、3,3-二甲基-2-丁醇、环戊醇、环己醇、和它们的混合物。特别优选使用的是非支化或支化的C3~C5链烷伯醇和环己醇。非常特别优选的是正丙醇(1-丙醇)、正丁醇(1-丁醇)、异丁醇(2-甲基-1-丙醇)、1-戊醇、2-甲基-1-丁醇、3-甲基-1-丁醇和环己醇,特别是异丁醇。
使用具有3~6个碳原子的伯或仲、非环状或环状、非支化或支化的饱和醇这种创造性措施可以简单地除去所述烷醇和其分解产物,从而可以达到热处理过的沉淀物中的有机碳含量低。相对照而言,例如,还原剂如苄醇和其因还原作用产生的分解产物更难除去,最终这意味着不利的高有机碳含量。
此外,在本发明的方法中还可以使用附加的还原组分。实例包括乙醇、甲酸和草酸。本发明的方法优选在不添加附加的还原组分下进行。
优选使用粉末形式的五氧化二钒,特别优选的颗粒范围为50~500μm。当存在尺寸大得多的颗粒时,在使用前粉碎该固体,如果合适的话对其进行筛分。合适的设备的实例是球磨机或行星式球磨机。
在所述催化剂前体的制备过程中,还可以加入被称作助催化剂的组分。合适的助催化剂是周期表中1~15族的元素和其化合物。在例如WO 97/12674和WO95/26817中以及在US 5,137,860、US 5,296,436、US 5,158,923和US 4,795,818中对合适的助催化剂作了描述。优选的助催化剂为以下元素的化合物:钴、钼、铁、锌、铪、锆、锂、钛、铬、镁、镍、铜、硼、硅、锑、锡、铌和铋,特别优选钼、铁、锌、锑、铋和锂。促进的催化剂可以含有一种或多种助催化剂。助催化剂组分一般在步骤(a)中添加,即在具有3~6个碳原子的伯或仲、非环状或环状、非支化或支化的饱和醇存在下将五氧化二钒与浓度为102~110%的磷酸反应的过程中添加。成品催化剂中助催化剂的总含量(分别以氧化物计算)一般不超过约5重量%。
当通过本发明方法制备促进的催化剂前体时,通常在混合五氧化二钒、浓度为102~110%的磷酸和具有3~6个碳原子的伯或仲、非环状或环状、非支化或支化的饱和醇的过程中以有机或无机盐的形式添加助催化剂。合适的助催化剂化合物的实例为上述助催化剂金属的醋酸盐、乙酰丙酮化物、草酸盐、氧化物和醇盐,例如醋酸钴(II)、乙酰丙酮钴(II)、氯化钴(II)、氧化钼(VI)、氯化钼(III)、乙酰丙酮铁(III)、氯化铁(III)、氧化锌(II)、乙酰丙酮锌(II)、氯化锂、氧化锂、氯化铋(III)、乙基己酸铋(III)、乙基己酸镍(II)、草酸镍(II)、氯化氧锆、丁醇锆(IV)、乙醇硅(IV)、氯化铌(V)和氧化铌(V)。至于进一步的细节,参考上面提到的WO OPI文献和US专利。
在本发明的方法中,五氧化二钒、浓度为102~110%的磷酸和具有3~6个碳原子的伯或仲、非环状或环状、非支化或支化的饱和醇的混合过程可以通过多种途径完成。例如,所述组分可以在最初添加,或以纯净的形式、以稀释的形式添加,或者就五氧化二钒来说,以悬浮液的形式加入。稀释或悬浮通常使用具有3~6个碳原子的伯或仲、非环状或环状、非支化或支化的饱和醇来实现。
所述混合过程一般在适合于后续反应的反应设备中进行-例如搅拌容器-并同时进行混合。尽管待混合的组分肯定可以具有不同的温度,但是通常将纯净、稀释或悬浮形式的待混合的所述组分调节至0~160℃。
下面对混合操作的多种变化方案进行说明,但不以限制为目的。
在所述混合的一种变化方案中,在0~50℃下将所述组分一起加入到具有搅拌作用的反应设备中。在这种情况下,各组分的添加顺序一般不重要。
在所述混合的另一变化方案中,将五氧化二钒在具有3~6个碳原子的伯或仲、非环状或环状、非支化或支化的饱和醇中的悬浮液供入反应设备中,然后优选使其温度达到50~160℃,特别优选50~100℃。然后在搅拌条件下将浓度为102~110%的磷酸(如果需要可以用具有3~6个碳原子的伯或仲、非环状或环状、非支化或支化的饱和醇稀释)加入这种悬浮液中。为了降低待加入的磷酸的粘度,有利的是将其温度调节至40~100℃。
在所述混合的另一变化方案中,与上面最后提到的变化方案类似,将五氧化二钒在具有3~6个碳原子的伯或仲、非环状或环状、非支化或支化的饱和醇中的悬浮液供入反应设备中,然后在搅拌条件下将其同样加热至50~160℃。然而与提到的上个变化方案相比,优选的温度范围较高并为80~160℃。此外,将该体系保持在回流条件下大约0.5小时到若干小时,至多例如10小时,以还原五氧化二钒。随后加入浓度为102~110%的磷酸(如果需要,可以在用具有3~6个碳原子的伯或仲、非环状或环状、非支化或支化的饱和醇稀释之后添加所述磷酸)并同时进一步搅拌。
在所述混合的第四种变化方案中,将浓度为102~110%的磷酸(如果需要,可以用具有3~6个碳原子的伯或仲、非环状或环状、非支化或支化的饱和醇将其稀释)作为初始进料供入,然后优选使其达到50~160℃,特别优选50~100℃。然后以固体形式或者如果适合以其在具有3~6个碳原子的伯或仲、非环状或环状、非支化或支化的饱和醇中的悬浮液形式供入五氧化二钒。如果需要,同样可以将五氧化二钒或其悬浮液调节至升高的温度,例如50~100℃。
在所述混合的第五种变化方案中,将具有3~6个碳原子的伯或仲、非环状或环状、非支化或支化的饱和醇作为初始进料供入,然后优选使其达到50~160℃,特别优选50~100℃。然后在搅拌条件下以固体形式或如果合适以在具有3~6个碳原子的伯或仲、非环状或环状、非支化或支化的饱和醇中的悬浮液形式供入五氧化二钒和供入浓度为102~110%的磷酸,如果合适的话所述磷酸可以已经用具有3~6个碳原子的伯或仲、非环状或环状、非支化或支化的饱和醇稀释过。如果适合,可以又将五氧化二钒或其悬浮液调节至升高的温度,例如50~100℃。为了降低待加入的磷酸的粘度,有利的是将其温度调节至40~100℃。五氧化二钒的加入与浓度为102~110%的磷酸的加入可以同时开始,或者存在滞后。优选开始加入五氧化二钒而不加入浓度为102~110%的磷酸,直到进一步添加五氧化二钒,或者仅仅随后添加所述磷酸。
通常根据所述催化剂前体中所需的比例设定浓度为102~110%的磷酸与五氧化二钒的相对摩尔比。在用于制备所述催化剂前体的反应混合物中,磷/钒的摩尔比优选为1.0~1.5,特别优选1.1~1.3。
有利的是具有3~6个碳原子的伯或仲、非环状或环状、非支化或支化的饱和醇的量应当超过化学计量上所需的用于将钒从+5氧化态还原到+3.5~+4.5氧化态的量。该量还应当能够使得其与五氧化二钒形成悬浮液,这样允许与浓度为102~110%的磷酸一起强烈混合。所述醇与五氧化二钒的摩尔比一般为10~25,优选为12~20。
当五氧化二钒、浓度为102~110%的磷酸和C3~C6醇组分已混合后,通过在80~160℃下加热该混合物一段时间(通常为数小时)而使这些化合物反应完全。选择的温度范围取决于多种因素,例如添加的醇的沸点,并可以通过简单的实验使该温度范围最优化。当使用异丁醇(特别优选异丁醇)时,优选在90~120℃、特别优选100~110℃下加热该混合物。挥发性化合物例如水、醇和其降解产物(如醛或羧酸)从反应混合物中蒸发出来,可以将其采出或者使其全部或部分冷凝和再循环。优选的是通过加热回流使其全部或部分再循环。特别优选的是全部再循环。在升高的温度下的反应一般持续数小时,这取决于许多因素,例如添加组分的特性或温度。此外,在特定范围内,温度和选择的加热时间也可以用来设置和影响催化剂前体的性质。对于给定体系来说,温度和时间参数可以简单地通过少量实验而使其最优化。用于所述反应的时间通常为1~25小时。
步骤(b)
反应结束后,分离形成的沉淀物,如果合适的话在冷却阶段和使冷却的反应混合物储存或老化后进行该分离操作。在所述分离过程中,从液相中分离出沉淀物。合适的方法的实例是过滤、倾析和离心。优选通过过滤或离心的方式分离所述沉淀物。沉淀物的分离通常同样在0~160℃下进行,优选在50~150℃下,特别优选在80~150℃下。
可以在进行洗涤的情况下或者在未进行洗涤的情况下进一步处理被分离的沉淀物。洗涤被分离的沉淀物的优点在于可以进一步减少附着的残余物烷醇和其降解产物的量。用于洗涤操作的合适溶剂的实例包括醇类(例如甲醇、乙醇、1-丙醇、2-丙醇和选用于前述反应的具有3~6个碳原子的伯或仲、非环状或环状、非支化或支化的饱和醇)、脂族和/或芳族烃类(例如戊烷、己烷、石油精、苯、甲苯、二甲苯)、酮类(例如2-丙酮(丙酮)、2-丁酮、3-戊酮)、醚类(例如1,2-二甲氧基乙烷、四氢呋喃、1,4-二噁烷)或其混合物。如果洗涤被分离的沉淀物,那么优选使用用于前述反应的具有3~6个碳原子的伯或仲、非环状或环状、非支化或支化的饱和醇。
可以在进行干燥的情况下或者在未进行干燥的情况下进一步处理被分离的沉淀物。一般地,使被分离的沉淀物干燥。干燥可以在多种条件下进行。其通常在压力为0.0(“真空”)~0.1MPa abs(“大气压”)的条件下进行。干燥温度通常为30~250℃,尽管在许多情况下在真空下干燥可以比在大气压下干燥采用更低的温度。干燥过程中,如果合适的话,在产物上面的气氛可以包含氧气、蒸气和/或惰性气体,例如氮气、二氧化碳或稀有气体。干燥优选在含氧或无氧的残余气氛(如空气或氮气)中于压力1~30kPa abs、温度50~200℃下进行。
干燥可以例如在过滤设备中或在独立的设备(如干燥炉或连续带式干燥器)中进行。
步骤(c)
在步骤(c)中,通过在250~350℃下的热处理而使被分离的沉淀物中有机碳含量≤1重量%,所述热处理产物在添加了3.0重量%石墨作为内标物和使用CuKα辐射(λ=1.54×10-10m)后产生的粉末X射线衍射图在2θ区域内的特征是28.5°处存在的任何焦磷酸盐相的峰高与26.6°处由石墨引起的峰高的比值≤0.1。
这里的有机碳是不能通过加入浓度为10重量%的盐酸水溶液和然后在通氮气流的同时加热所述混合物而从粉末状样品中除去的任何碳。有机碳含量由总碳含量与无机碳含量的差值计算。
为了测定总碳含量,在纯氧气流存在下将已知准确重量的粉末状样品放入在约1000℃下加热的石英管中,煅烧样品,确定燃烧气体中存在的二氧化碳的量。通过反过来从检测到的二氧化碳的量和初始样品质量进行计算,这样就可以确定总的碳含量。在“总碳含量的测定”的实例中对该方法作了清楚的描述。
为了测定无机碳含量,将已知准确重量的粉末状样品与浓度为10质量%的盐酸水溶液混合,通过在通入氮气流的同时缓慢加热而排出产生的二氧化碳,确定排出的二氧化碳的量。通过反过来从检测到的二氧化碳的量和初始样品质量进行计算,这样就可以计算出无机碳含量。在“总的碳含量的测定”的实例中对该方法作了清楚的描述。
在本发明的方法中,采用步骤(c)中的热处理操作使有机碳含量优选≤1.0重量%,特别优选≤0.8重量%,非常特别优选≤0.7重量%。
总的碳含量通常≤2.0重量%,优选≤1.5重量%,特别优选≤1.2重量%。
设置≤1.1重量%的低有机碳含量这种创造性措施可以最大限度地减少或防止在随后煅烧颗粒状催化剂前体的过程中对所述催化剂造成损坏,还可以使得待经过催化剂成型过程设置的钒的氧化态非常均匀。当有机碳含量更高时,即处于高于1.1重量%的水平时,由于以下原因:有机化合物的挥发、分解和/或氧化造成局部压力陡然升高、有机化合物与催化剂材料和/或与气相(例如被氧化)的化学反应造成的局部热点、和还原有机化合物与催化剂材料之间的化学反应造成催化剂材料的局部还原,因而存在持续的机械和/或化学损坏的危险。上面最后提到的当有机碳含量高于1.1重量%时催化剂材料的局部还原会导致催化剂成型时钒的氧化态非常不均匀,其中内部区域的钒的氧化态远远低于外部区域的值。
如已经提到的,进行步骤(c)中的热处理使得在添加了3.0重量%石墨作为内标物和使用CuKα辐射(λ=1.54×10-10m)后,所述热处理产物产生的粉末X射线衍射图在2θ区域内的特征是28.5°处存在的任何焦磷酸盐相的峰高与26.6°处由石墨引起的峰高的比值≤0.1。
X射线衍射(XRD)图表明衍射的X射线(以次/秒计,cps)的强度是2倍衍射角(2θ)的函数。使用与3重量%石墨充分混合的粉末状沉淀物记录XRD图。通过具有可调节光栅和准直仪的粉末衍射仪进行记录,以反射形式进行测试。各峰高是由各自信号的最大强度与测试背景之间的差值得到的结果。在“热处理沉淀物的X-射线衍射测量分析”的实例中对该方法作了清楚的描述。
在本发明的方法中,进行步骤(c)中的热处理使得在添加了3.0重量%石墨作为内标物和使用CuKα辐射(λ=1.54×10-10m)后,所述热处理产物产生的粉末X射线衍射图在2θ区域内的特征是28.5°处存在的任何焦磷酸盐相的峰高与26.6°处由石墨引起的峰高的比值优选≤0.08,特别优选≤0.05,非常特别优选≤0.02。
本发明方法中,步骤(c)中的热处理在250~350℃、优选260~350℃、特别优选270~340℃下进行。热处理原则上可以在宽压力范围内进行,采用低压力一般有助于除去有机组分。一般来说,热处理在0.0(“真空”)~0.15MPa abs的压力下进行,优选在约0.1MPa abs(“大气压”)的压力下进行。
热处理占用的时间通常为数分钟至数小时,这取决于许多因素,例如所用磷酸的浓度;所用的具有3~6个碳原子的伯或仲、非环状或环状、非支化或支化的饱和醇的性质;对沉积下来的沉淀物的进一步处理(如对沉淀物的老化处理);和所选择的热处理温度。例如,低温下长时间的热处理可以产生类似于中等或较高温度下较短时间的热处理的结果。对于给定的体系来说,温度和时间参数可以简单地通过少量实验而使其最优化。一般地,必要的热处理时间为0.5~10小时。
热处理过程中的气氛可以包含氧气、蒸气和/或惰性气体,例如氮气、二氧化碳或稀有气体。热处理优选在空气中进行。
可以以间歇方式或连续方式进行热处理操作。合适的设备包括烘箱、马弗炉、带式煅烧装置、流化床干燥器和旋转管。为了得到均匀的热处理产物,一般有利的是采用连续运行的热处理工艺并同时混合待经热处理的粉末。因此特别优选的是在连续运行的旋转管中进行热处理。
步骤(d)
在步骤(d)中,使步骤(c)得到的热处理产物成型为平均直径为至少2mm、优选至少3mm的颗粒。颗粒的平均直径为两个平面平行的板之间的最小尺寸和最大尺寸的平均值。
颗粒是指具有不规则形状的颗粒和具有几何形状的颗粒,其被称为模制品。由步骤(c)得到的热处理产物优选成型为模制品。合适的模制品的实例包括片材、圆柱体、中空圆柱体、珠状物、线材、车轮件(wagon wheel)、挤出物。同样可以使用特殊的形状,例如三叶型和三星形(参见WO 93/01155)或者在外侧具有至少一个槽口的模制品(参见US 5,168,090)。
当通过制片使热处理产物成型时,与例如在制备片材、圆柱体和空心圆柱体中的常规做法类似,通常向粉末中添加制片助剂和充分混合所述两组分。制片助剂通常是催化惰性的,并通过例如提高滑移性能和自由流动性能而提高粉末的成片性能。一种合适的优选制片助剂是石墨。添加的制片助剂一般残留在活化的催化剂中。成品催化剂中制片助剂的量一般为约2~6重量%。
特别优选的是具有大体上中空的圆柱体结构的成型模制品。大体上中空的圆柱体结构是大体上围成具有在两个端间的连续孔隙的圆柱体的结构。圆柱体的特点是具有两个大体上平行的端面和侧面、圆柱体横截面(即在平行于端面的方向上大体上呈环形结构)。连续孔隙的横截面(即在平行于圆柱体端面的方向上)大体上同样呈环形结构。虽然不是为了排除其它空间排布,但是连续孔隙优选位于所述端面的中心处。
短语“大体上”是指本发明的催化剂包括偏离理想几何形状的情况,例如圆形结构中稍微变形的情况、不呈平面平行排列的端面、翘起的角度和边缘、侧面、端面或连续孔隙的内表面中的粗糙表面或凹槽。在制片技术的精度范围内,优选的是圆形端面、连续孔隙的环形横截面、端面成平行排列和宏观上平滑的表面。
大体上中空的圆柱体结构可以通过外径d1、高度h(即两端面间的距离)、内孔径(连续孔隙的直径)d2来描述。外径d1优选为3~10mm,特别优选4~8mm,非常特别优选4.5~6mm。高度h优选为1~10mm,特别优选2~6mm,非常特别优选2~3.5mm。连续孔隙的直径d2优选为1~8mm,特别优选2~6mm,非常特别优选2~3mm。特别优选具有以下特征的中空圆柱体结构:(a)高度h与连续孔隙的直径d2的比值不超过1.5和(b)几何表面积Ageo与几何体积Vgeo的比值为至少2mm-1,例如WO 01/68245中所述的。
在实际煅烧前完全避免在步骤(c)的热处理沉淀物和步骤(d)的成型过程中形成焦磷酸盐相(即通过除去水将磷酸氢氧钒半水合物相(VOHPO4·1/2H2O)转化成催化活性的焦磷酸盐相((VO)2P2O7)的重要性在于与在所述相转变之后进行成型的情况相比其令人惊讶地产生了催化性能更加有利的催化剂结构。
在一个特别优选的用于制备催化剂前体的实施方案中,将五氧化二钒在异丁醇中的悬浮液供入合适的搅拌设备中进料,将该初始进料加热到50~100℃,在进一步搅拌的条件下加入浓度为102~110%的磷酸。在100~110℃下加热并在同时回流的条件下继续搅拌该混合物若干小时。然后过滤所述热悬浮液,用少量异丁醇洗涤固体产物,在100~200℃下减压干燥。然后在空气中约为大气压的条件下于250~350℃对分离和干燥的沉淀物进行连续热处理,优选在旋转管中进行,平均停留时间为0.5~5小时,优选为1~3小时。热处理条件的选择使得热处理产物的有机碳含量为≤1.1重量%,在添加了3.0重量%石墨作为内标物和使用CuKα辐射(λ=1.54×10-10m)后产生的粉末X射线衍射图在2θ区域内的特征是28.5°处存在的任何焦磷酸盐相的峰高与26.6°处由石墨引起的峰高的比值≤0.1。然后将得到的热处理产物与2~6重量%石墨充分混合,对该混合物制片得到呈片状或中空圆柱体的模制品。催化剂前体优选为制片成外径d1为4.5~6mm、高度h为2~3.5mm、连续孔隙的直径d2为2~3mm的中空圆柱体。
本发明还提供一种用于通过对具有至少四个碳原子的烃进行非均相催化气相氧化而制备马来酸酐的催化剂前体,所述前体可以通过上述本发明的方法得到。
本发明的方法可以制备一种用于对具有至少四个碳原子的烃进行非均相催化气相氧化而制备马来酸酐的钒-磷-氧催化剂前体,该催化剂前体易于工业制备、具有特别低的有机碳含量,作为具有特定选择性和特定活性的前体,其使得可以制备具有高活性和高选择性的催化剂。
本发明还提供了一种制备用于对具有至少四个碳原子的烃进行非均相催化气相氧化而制备马来酸酐的钒-磷-氧催化剂的方法,所述方法通过在至少一种包含氧气(O2)、水(H2O)和/或惰性气体的气氛中于250~600℃下处理所述钒-磷-氧催化剂前体而实现,其包括以上述本发明的催化剂前体作为催化剂前体。
可以提到的适合的惰性气体的实例包括氮气、二氧化碳和稀有气体。
煅烧可以在例如竖炉、板式炉(tray furnace)、马弗炉或烘箱中间歇地进行,或者在例如旋转管、带式窑或旋转球窑中连续地进行。其可以包括相继的温度不同(例如加热、保温或冷却)的区段和相继的气氛不同(例如含氧气氛、含蒸气的气氛或无氧的气氛)的区段。适合的预活化方法例如在US 5,137,860和US 4,933,312中和在OPI文献WO 95/29006中作了描述,这里特别地将其并入本文而不是用作限制。特别优选在具有至少两个(例如2~10个)煅烧区的带式窑中的连续煅烧,如果合适的话所述煅烧区具有不同的气氛和不同的温度。通过适应于不同催化剂体系的温度、处理时间和气氛的适当组合,可以影响并因此设计出所述催化剂的机械和催化性能。
在本发明方法中优选如下方式的煅烧工艺:
其中
(i)在至少一个煅烧区中在氧气含量为2~21体积%的氧化气氛下将所述催化剂前体加热到200~350℃,将其保持在这些条件下直到钒具有所需的平均氧化态;和
(ii)在至少另一个煅烧区中在氧气含量≤0.5体积%和氧化氢含量为20~75体积%的非氧化气氛下将所述催化剂前体加热到300~500℃,将其在这些条件下保持≥0.5小时。
在步骤(i)中,于200~350℃、优选250~350℃下将所述催化剂前体置于分子氧含量一般为2~21体积%、优选5~21体积%的氧化气氛中持续一段时间使得钒能够达到所需的平均氧化态。步骤(i)一般采用氧气、惰性气体(如氮气或氩气)、氧化氢(蒸汽)和/或空气的混合物,以及空气本身。从通过一个或多个煅烧区的催化剂前体的角度考虑,煅烧步骤(i)期间的温度可以保持恒定,或者平均说来升高或下降。由于通常在步骤(i)之前存在加热阶段,所以温度一般首先会升高,然后在所需的终值温度下达到稳定。因此,通常在步骤(i)的煅烧区之前存在至少另一个其中对催化剂前体加热的煅烧区。
在本发明的方法中优选选择步骤(i)中进行热处理的时间,从而使得钒的平均氧化态为+3.9~+4.4,优选+4.0~+4.3。根据实施例中描述的方法通过电势滴定测定钒的平均氧化态。
由于设备和时间方面的原因,因此很难测定煅烧操作过程中钒的平均氧化态,有利地在预备实验中确定所需的时间。通常通过一系列测试来达到此目的,所述测试中在特定条件下进行热处理,并在不同的时间后从体系中取出样品、冷却和分析钒的平均氧化态。
步骤(i)中所需时间一般取决于所述催化剂前体的性质、设定的温度、选择的气氛,尤其是氧气含量。一般说来,步骤(i)的所需时间持续超过0.5小时,优选超过1小时。长达4小时、优选长达2小时的时间通常足以达到所需的平均氧化态。然而,在适当调整的条件下(例如较窄的温度范围和/或低的分子氧含量),超过6小时的时间还是必需的。
在步骤(ii)中,于300~500℃、优选350~450℃下将所得的催化剂中间体置于分子氧含量≤0.5体积%、氧化氢(蒸汽)含量为20~75体积%、优选30~60体积%的非氧化气氛中持续≥0.5小时,优选2~10小时,特别优选2~4小时。除了所述的氧化氢,非氧化气氛一般主要含有氮气和/或稀有气体如氩气,但是这不构成任何限制。原则上气体如二氧化碳同样适合。非氧化气氛优选包含≥40体积%的氮气。从通过一个或多个煅烧区的催化剂前体的角度考虑,煅烧步骤(ii)期间的温度可以保持恒定,或者平均说来升高或下降。当步骤(ii)在高于或低于步骤(i)的温度下进行时,通常会在步骤(i)和步骤(ii)之间存在加热或冷却阶段,如果合适所述阶段可以在另外的煅烧区中实现。为了改善从步骤(i)的含氧气氛中的分离效果,可以用惰性气体如氮气冲洗所述处于步骤(i)和(ii)之间的另外的煅烧区。步骤(ii)优选在高于步骤(i)50~150℃的温度下进行。
一般说来,煅烧包括在步骤(ii)后进行的另一个步骤(iii),其中在惰性气氛中冷却煅烧的催化剂前体至≤300℃,优选为≤200℃,特别优选为≤150℃。
当根据本发明方法进行煅烧时,在步骤(i)和(ii)或者(i)、(ii)和(iii)之前、之间和/或之后,还可以包括其它步骤。不用作限制,可以提到的其它步骤包括例如,改变温度(加热、冷却)、改变气氛(转换气氛)、另外的持续时间、催化剂中间体转移至不同的设备,或者整个煅烧操作中断。
由于在煅烧开始前催化剂前体的温度一般<100℃,所以在步骤(i)之前通常必须加热所述催化剂前体。可以采用不同气氛进行加热。优选在如步骤(i)所述的氧化气氛中加热,或者在如步骤(iii)所述的惰性气氛中加热。在加热阶段中可以改变气氛。特别优选在步骤(i)中采用的氧化气氛下加热。
本发明还提供了一种用于通过对具有至少四个碳原子的烃进行非均相催化气相氧化而制备马来酸酐的催化剂,所述催化剂可以通过上述本发明的方法得到。
优选通过本发明方法制备的催化剂的特征在于磷/钒原子比为0.9~1.5,特别优选为0.9~1.2,非常特别优选为1.0~1.1,钒的平均氧化态为+3.9~+4.4,特别优选为4.0~4.3,BET表面积为10~50m2/g,特别优选为20~40m2/g,孔体积为0.1~0.5ml/g,特别优选为0.2~0.4ml/g,堆积密度为0.5~1.5kg/l,特别优选为0.5~1.0kg/l。
通过煅烧本发明的催化剂前体得到的催化剂的特点是在单个催化剂颗粒中和在不同催化剂颗粒之间的钒的氧化态大体均匀。在对具有至少4个碳原子的烃进行非均相催化气相氧化而制备马来酸酐的过程中,根据本发明的催化剂使得可以达到高烃空速和高转化率、高活性、高选择性和高时空产率。
此外,本发明还提供了一种通过借助氧化气氛对具有至少四个碳原子的烃进行非均相催化气相氧化而制备马来酸酐的方法,其包括使用上述本发明的催化剂。
在本发明的制备马来酸酐的方法中,使用的反应器通常是管壳式反应器。合适的烃通常为具有至少四个碳原子的脂族和芳族的饱和和不饱和的烃,例如1,3-丁二烯、1-丁烯、2-顺式-丁烯、2-反式-丁烯、n-丁烷、C4混合物、1,3-戊二烯、1,4-戊二烯、1-戊烯、2-顺式-戊烯、2-反式-戊烯、n-戊烷、环戊二烯、二环戊二烯、环戊烯、环戊烷、C5混合物、己烯、己烷、环己烷和苯。优选使用的是1-丁烯、2-顺式-丁烯、2-反式-丁烯、n-丁烷、苯或其混合物。特别优选使用n-丁烷和含有n-丁烷的液体和气体。所用的n-丁烷可以来自例如天然气、蒸气裂化装置或FCC裂化装置。
烃的添加一般在控制流量的条件下进行,即持续供入单位时间内规定量的烃。烃可以以液态或气态形式计量供入。优选以液态形式计量供入,并随后在进入管壳式反应器前气化。
所用的氧化剂是含氧气体,例如空气、合成空气、富含氧气的气体,或者其它被称为纯氧的气体,即例如源于空气分馏的氧气。含氧气体同样在控制流量的条件下加入。
待通过管壳式反应器的气体通常包含的烃浓度为0.5~15体积%和氧气浓度为8~25体积%。其余部分由其它气体如氮气、稀有气体、一氧化碳、二氧化碳、蒸汽、氧化烃(如甲醇、甲醛、甲酸、乙醇、乙醛(acetyaldehyde)、乙酸、丙醇、丙醛、丙酸、丙烯醛和丁烯醛)及其混合物组成。作为烃总量的一部分,n-丁烷的百分数优选≥90%,特别优选≥95%。
为了确保长的催化剂寿命和进一步提高转化率、选择率、产率、催化剂上的空速和时空产率,在本发明的方法中优选为所述气体提供挥发性的含磷化合物。最初(即在反应器入口处)这种化合物的浓度为至少0.2ppm体积份,即相对于反应器入口处的气体总体积来说挥发性含磷化合物的体积为0.2×10-6份。优选的量为0.2~20ppm体积,特别优选0.5~10ppm体积。挥发性含磷化合物是所有在其使用条件下以所需浓度和气体形式存在的含磷化合物。合适的挥发性含磷化合物的实例包括膦和磷酸酯。特别优选的是磷酸C1~C4烷基酯,非常特别优选磷酸三甲酯、磷酸三乙酯、磷酸三丙酯,特别是磷酸三乙酯。
本发明方法通常在350~480℃下进行。这里提到的温度是如果该方法在不存在化学反应下进行时管壳式反应器中催化剂床的温度。如果所述温度在各点上并不完全相同,那么该术语是指沿着反应区的数均温度。由于氧化反应的放热性质,因此这特别地意味着催化剂中占主要地位的真实温度甚至可能超出所述范围。本发明方法优选在380~460℃、特别优选380~430℃下进行。
本发明方法可以在低于大气压(例如直到0.05MPa abs)或高于大气压(例如直到10MPa abs)的压力下进行。此处所指的压力是管壳式反应器装置中的压力。压力优选为0.1~1.0MPa abs,特别优选0.1~0.5MPa abs。
本发明方法可以在两个优选模式(直通模式和再循环模式)下进行。在直通模式下,将马来酸酐和任何氧化烃副产物从反应器出料中取出,除去其余气体混合物和如果适合的话将其用于产生热量。对于再循环模式来说,又将马来酸酐和任何氧化烃副产物从反应器出料中取出,但是将部分或全部其余气体混合物(包含未反应的烃)再循环至所述反应器。再循环模式的另一变化方案包括除去未反应的烃和将其再循环至所述反应器。
在一个用于制备马来酸酐的特别优选的实施方案中,使用的起始烃类是n-丁烷,以直通模式在本发明的催化剂上进行所述非均相催化气相氧化。
本发明方法采用本发明催化剂时可以达到催化剂的高烃空速和因高活性带来的高转化率。本发明方法还可以达到高选择性、高产量以及由此带来的马来酸酐的高时空产率。
定义
本文所使用的变量定义如下,除非另有规定:
Figure A0380610000222
Figure A0380610000223
产率A=U·S
m马来酸酐        产生的马来酸酐的质量[g]
V催化剂         处于所有反应区的催化剂的堆积体积之和[L]
t               时间单位[h]
V            气相烃的体积,标准化至0℃和0.1013Mpa[L(stp)](算
               术变量。当烃在这些条件之下处于液相时,采用理想
               气体定律计算假设气体体积。)
U              每次通过反应器的烃的转化率
S              每次通过反应器对马来酸酐的选择性
A              每次通过反应器的马来酸酐的产率
nHC,进反应器    反应器入口处烃类的体积流量[mol/h]
nHC,出反应器    反应器出口处烃类的体积流量[mol/h]
nHC,进装置      装置入口处烃类的体积流量[mol/h]
nHC,出装置      装置出口处烃类的体积流量[mol/h]
nMAN,出反应器   反应器出口处马来酸酐的体积流量[mol/h]
nMAN,出装置     反应器出口处马来酸酐的体积流量[mol/h]
实施例
干燥的催化剂前体中残留异丁醇含量的测定
为了测定残留异丁醇含量,准确称量约4g干燥的粉末状催化剂前体和约10g N,N-二甲基甲酰胺,将其装入具有回流冷凝器的可加热的搅拌设备中。然后在搅拌条件下加热该混合物至沸腾温度,在该条件下保持30分钟。经冷却后,过滤该悬浮液,通过气相色谱确定所述滤出液中异丁醇的含量。然后通过在N,N-二甲基甲酰胺中发现的异丁醇的浓度及N,N-二甲基甲酰胺和催化剂前体的初始重量来计算残留异丁醇的含量。
总碳含量的测定
为了测定总碳含量,准确称取约50~200mg粉末状样品,在纯氧气流存在的情况下将其供入加热至约1000℃的石英管中,煅烧。将得到的燃烧气体通过IR池,确定二氧化碳的含量。通过反过来从检测到的二氧化碳的量进行计算,就可以算出样品中的总碳含量。
无机碳含量的测定
为了测定无机碳含量,准确称量约50~200mg粉末状样品,将其与浓度为10质量%的盐酸水溶液混合。排出产生的二氧化碳并同时缓慢加热,在此期间将氮气流通过该混合物,通过将二氧化碳穿过阶式蒸发器(其包含用异丙醇/干冰冷却的冷阱、两个含有高锰酸钾溶液的吸收容器、一个含有浓硫酸的吸收容器和一个二氧化锰管)而使其纯化。将纯化后的气流供入其中充满了0.1重量%百里酚酞的二甲亚砜溶液的库仑计池,以光度计量的方式监测颜色的变化。从传输信号的变化中可以推知供入的二氧化碳的量,从而得出样品中的无机碳含量。
有机碳含量的测定
由总碳含量和无机碳含量之间差值计算得到有机碳含量。热处理沉淀物的X-射线衍射测量分析
为了XRD分析,在西门子D5000 theta/theta X-射线粉末衍射仪中对与3重量%石墨充分混合的粉末状沉淀物进行测试。测试参数如下:
圆形物直径                      435mm
X-射线                          CuKα(λ=1.54×10-10m)
管电压                            40kV
管电流                            30mA
孔隙                              可变V20
准直仪                            可变V20
第二单色器                        石墨
单色器孔隙                        0.1mm
闪烁计数器的检测器孔隙            0.6mm
步长                              0.02° 2θ
步进模式                          连续式
测量时间                          2.4s/步
测量速率                          0.5°2θ/min
通过各信号的最大强度和测量背景之间的差值得出每个峰高。中空圆柱体的侧面耐压强度的测定
为了测定侧面耐压强度,在依次测量中通过分别将中空圆柱体的回转侧面放置在相应的测量装置的平面金属台上。因此两个平面平行的端面处于垂直方向上。然后使平面状金属模具以1.6mm/min的前进速率下降至中空圆柱体上,记录施于中空圆柱体上的压力进程直至该圆柱体断裂。各个中空圆柱体的侧面耐压强度对应于最大的压力。
通过30个单独测量结果的平均值确定侧面耐压强度。
钒的平均氧化态的测定
通过电位滴定法测定钒的平均氧化态。
为了进行测定,在氩气下将200~300mg各样品供入15mL 50%浓度的硫酸与5mL 85%浓度的磷酸的混合物中,加热溶解。随后将该溶液转移至配有两个铂电极的滴定容器中。每次滴定均在80℃下进行。首先用0.1摩尔的高锰酸钾溶液进行滴定。如果在电位曲线中产生两个阶跃,那么钒以+3至小于+4的平均氧化态存在。当只得到一个阶跃时,钒的平均氧化态为+4至小于+5。
在提到的第一种情况下(两个阶跃,+3≤Vox<+4),所述溶液中不含V5+;换句话说,以滴定的方式检测到了所有的钒。V3+和V4+的量由0.1摩尔的高锰酸钾溶液的消耗量和两个阶跃的位置计算得出。于是加权平均值给出了所述平均氧化态。
在提到的第二种情况下(一个阶跃,+4≤Vox<+5),V4+的量由0.1摩尔的高锰酸钾溶液的消耗量计算得到。然后通过用0.1摩尔的硫酸亚铁(II)铵溶液还原所得溶液中所有的V5+和再用0.1摩尔的高锰酸钾溶液进行氧化而计算出钒的总量。钒的总量与V4+量之间的差值得出了初始存在的V5+的量。于是加权平均值给出了所述平均氧化态。
实验设备
所述实验设备装配有进料装置和反应管。对于实验室或实验用规模来说以反应管代替管壳式反应器是完全可行的,条件是该反应管的尺寸在工业反应管的尺寸范围内。在直通模式下运行该设备。
在通过泵控制流量的情况下加入液体形式的烃。在控制流量的情况下加入空气作为氧化气体。再次在控制流量的情况下加入液体形式、水溶液形式的磷酸三乙酯(TEP)。
管壳式反应器装置由具有一根反应器管的管壳式反应器组成。该反应器管的长度为6.5m,内径为22.3mm。在反应器管内,外径为6mm的管保护着具有20个温度测量点的多头热电偶。反应器管周围围绕着具有热传输介质的耐热回路,所述反应气体混合物从顶部至底部穿过该反应器管。用惰性材料填充反应器管的上面0.3m,形成预热区。所述反应区包含2.2升各催化剂。所用的热传输介质是盐熔体。
直接顺着管壳式反应器向下,取出气态产物,供入气相色谱仪以进行在线分析。从所述装置中分离出气态反应器出料的主要物流。
装置按照如下方式操作:
反应器入口处n-丁烷的浓度=2.0体积%
                    WHSV=2000L(stp)/L催化剂·h
                   反应器出口处的压力=0.2MPa abs
                   磷酸三乙酯(TEP)浓度=2ppm体积
                   物流浓度=1.5体积%
实施例1:工业规模的干燥催化剂前体的制备
在8m3的通氮气保护、可在外部通加压水加热的具有溢流断路器的钢/搪瓷搅拌容器中加入6.1m3的异丁醇。在三级叶轮式搅拌器启动后,在回流条件下将异丁醇加热至90℃。当达到该温度,通过螺旋输送机开始加入736kg五氧化二钒。约20分钟后,当已经加入约2/3所需量的五氧化二钒后,继续加入五氧化二钒并同时泵送入900kg浓度为105%的磷酸。另外将0.2m3异丁醇通过泵以清洗该泵。随后,在回流条件下加热该反应混合物至约100~108℃,在该条件下保持14小时。然后将热悬浮液排入预先已经通氮气保护并加热的压力抽滤机中,在约100℃、高达0.35Mpa abs的压力条件下在抽滤机上方进行过滤。通过在100℃下持续供入氮气将滤饼吹干,并同时采用放于中间的高度可调的搅拌器进行搅拌,该过程大约1小时。当滤饼吹干后,加热产物至约155℃,并抽真空到15kPa abs(150mbar abs)。干燥至干燥后的催化剂前体中残留异丁醇的含量<2重量%。
为了生产所需量的催化剂前体(约9t),将进行多次操作过程。
实施例2:以实验室规模对来自实施例1的催化剂前体进行热处理、制片和煅烧
取出约10kg由实施例1得到的干燥前体粉末样品,分成20份,每份约0.5kg,依次在空气中于250℃下(10个样品,实施例2.1)或300℃下(10个样品,实施例2.2)在马弗炉中热处理5小时。然后将在相同温度下热处理的样品充分混合,测定残留异丁醇含量、总碳含量、无机碳含量和有机碳含量。此外,由实施例2.2得到的典型样品与3.0重量%石墨混合,记录其X射线衍射图。如图1所示。热处理的催化剂前体的结果如表1所示。
     表1:在马弗炉中热处理后的催化剂前体的分析数据
  实施例2.1*   实施例2.2
  热处理温度     250℃     300℃
  残留异丁醇含量(重量%)     0     0
总碳含量(重量%) 1.5 0.77
无机碳含量(重量%) 0.15 0.35
  有机碳含量(重量%)     1.35     0.42
  X射线衍射峰高比值I(28.5°)/I(26.6°) <0.02 0.02
*对比实施例
由发明实施例2.2得到的发明催化剂前体的X射线衍射峰高比I(28.5°)/I(26.6°)为0.02,有机碳含量为0.42重量%。另一方面,由对比实施例2.1得到的催化剂前体具有较高的有机碳含量,为1.35重量%。
将两种热处理的催化剂前体分别与3重量%石墨混合,在压片机中压片以得到5×3×2mm(外径×高×内孔直径)的中空圆柱体,其侧面耐压强度为20N。将各为4.5kg的两种中空圆柱体样品依次放入强制通风炉中,按以下方法煅烧:
步骤(1):在空气中以3℃/min的速率加热至250℃,。
步骤(2):进一步在空气中以2℃/min的速率从250加热至350℃。
步骤(3):在该温度下保持15分钟。
步骤(4):在20分钟内从空气气氛转换至氮气/蒸汽(1∶1)气氛。
步骤(5):在该气氛下以1.7℃/min的速率加热至425℃,。
步骤(6):在该温度下保温3小时。
步骤(7):转换至氮气气氛,冷却至室温。
对根据实施例2.1和2.2制备的催化剂的煅烧中空圆柱体中钒的平均氧化态的空间分布进行研究。为此,从以统计方式选择的量的中空圆柱体上通过从其表面(如从外表皮,从内孔和从端面)刮取的方式取出总量约200~300mg样品,并用于测定表面附近区域钒的平均氧化态。此外,从内部区域以机械方式分离出另外200~300mg样品,并用于测定内部区域的钒的平均氧化态。此外,测定BET表面积。结果如表2所示。
表2:在马弗炉中进行不同热处理和然后在相同条件下煅烧的样品的钒的
                     平均氧化态和BET表面积
实施例2.1* 实施例2.2
    Vox.(表面附近区域)     4.3     4.17
    Vox.(内部区域)     3.97     4.17
    BET表面积[m2/g]     20     26
*对比实施例
如表2所示,由实施例2.1得到的对比催化剂的钒的平均氧化态在表面附近区域和内部区域存在显著差异。其在表面附近区域的平均氧化态为4.3和内部区域的平均氧化态为3.97。这种显著差异也可以从平分的中空圆柱体的光学显微照片(如图2所示的)中显见,表现为浅色的表面区域和深色的内部区域。相对照而言,由实施例2.2得到的发明催化剂表现出完全均匀的钒的平均氧化态(为4.17)分布。如图3所示,平分的中空圆柱体的光学显微照片说明了在两个断裂处的颜色均匀。
此外,实施例2.2的发明催化剂的BET表面积为26m2/g,高于实施例2.1的对比催化剂约30%(相对)。
实施例3:由实施例2得到的催化剂的催化实验
在上述实验装置中分别采用在强制通风炉中煅烧的来自实施例2.1和2.2的两种催化剂的统计混合物2.2L进行催化性能测试。在这种情况下,设置盐浴温度以得到约84%的n-丁烷转化率。所得结果如表3所示。
                      表3:催化测试结果
由实施例2.1*得到的催化剂(热处理温度为250℃) 由实施例2.2得到的催化剂(热处理温度为300℃)
盐浴温度[℃]           415          412
转化率U[%]           84.0          83.6
产率A[%]           50.7          55.7
*对比实施例
于300℃下热处理的根据实施例2.2制备的催化剂与于250℃下热处理的根据实施例2.1得到的催化剂相比表现出几乎相同的转化率,但马来酸酐的产率高出10%(相对值)。
实施例4:以工业规模对由实施例1得到的催化剂前体进行热处理
在长6.5米、内径0.9米的包含螺状旋管的旋转管中于空气中对根据实施例1制备的前体粉末进行热处理2小时。旋转管的转速为0.4rpm。该粉末供入旋转管的速率为60kg/h。空气供应量为100m3/h。直接在旋转管外侧测定的五个加热区(长度相等)的温度为250℃、300℃、340℃、340℃和340℃。在整个加工工艺中于统计时间间隔下取出在旋转管中热处理过的总共7个催化剂前体样品,测定残留异丁醇含量、总碳含量、无机碳含量和有机碳含量。
此外,将由实施例4.4得到的典型样品与3.0重量%石墨混合,记录该混合物的X射线衍射图。结果如表4所示,实施例4.4的X射线衍射图如图4所示。
从表4明显看出,所有分析数据都位于很窄的范围内。任何样品中都没有检测到残留异丁醇。总碳含量为0.77~1.10重量%,无机碳含量为0.34~0.60重量%,而有机碳含量为0.40~0.67重量%。由实施例4.4得到的发明催化剂前体的X射线衍射峰高比值I(28.5°)/I(26.6°)<0.01。
此外,测定了前体样品的钒平均氧化态。同样对于该分析值来说,所有7个样品都位于很窄的范围4.00~4.04内。
实施例5:制片、煅烧由实施例4.5得到的催化剂前体和对其进行催化实验
将约4kg由实施例4.5得到的热处理过的催化剂前体与如实施例2所述的石墨混合,制片得到5×3×2mm(外径×高×内孔直径)的中空圆柱体,在具有强制通风炉中对其进行煅烧。如实施例3所述上述试验装置中用2.2L产物进行催化性能实验。在这种情况下,设置盐浴温度以得到约84%的n-丁烷转化率。所得结果如表5所示。
             表5:催化测试结果
  由实施例4.5得到的催化剂
    盐浴温度[℃]   410
    转化率U[%]   84.0
    产率A[%]   56.0
对盐浴温度为410℃和转化率为84.0%的情况,根据实施例4.5热处理后的催化剂的马来酸酐产率为56.0%。因此,所得结果与根据实施例2.2热处理后的催化剂的结果相等。
实施例6:根据EP-A 0 056 183重做的“实施例1~7”(对比实施例)
在实施例6中,重做EP-A 0 056 183的“实施例1~7”。为此,将91g五氧化二钒和112g浓度为105%的磷酸(相当于约49%正磷酸、约42%焦磷酸、约8%三磷酸和约1%较高级的多磷酸的组合物)在搅拌条件加入1.5L异丁醇中,在回流条件下加热所得悬浮液16小时。然后,冷却悬浮液并过滤。在150℃下干燥被分离的沉淀物2小时,在空气中于400℃下热处理1小时。
得到的催化剂前体的BET表面积为19m2/g。钒的平均氧化态为4.62。此外将样品与3.0重量%石墨混合,记录其XRD图,如图5所示。得到的XRD峰高比值I(28.5°)/I(26.6°)为0.24。从这个相对较高的XRD峰高比值可以明显看出:由于在400℃下进行热处理,发生了向焦磷酸钒的明显转化。此外,还存在不希望的V+5OPO4相。
实施例7:根据EP-A 0 520 972重做“实施例1,A部分”(对比实施例)
在实施例7中,重做根据EP-A 0 520 972的“实施例1,A部分”。为此,作为初始进料加入9000mL异丁醇、378.3g草酸和848.4g五氧化二钒,在搅拌条件下加入997.6g浓度为105.7%的磷酸,在回流条件下加热所得悬浮液16小时。当另外一个小时内通过蒸发脱除约25%的异丁醇后,冷却该悬浮液,倒出约一半量的残留异丁醇。转移残留混合物至盘中,在氮气中于110~150℃下干燥24小时。随后将干燥产物在空气中于250~260℃下热处理5小时。
所得催化剂前体的总碳含量为1.7重量%,无机碳含量为0.52重量%,有机碳含量为1.18重量%。
如对比实施例7所示,依照EP-A 0 520 972中公开的方法得到的催化剂前体的有机碳含量高于1.1重量%。
表4:在旋转管中热处理的催化剂前体的分析数据
  实施例   4.1   4.2   4.3   4.4   4.5   4.6   4.7
  残留异丁醇含量[重量%]   0   0   0   0   0   0   0
  总碳含量[重量%]   1.10   1.00   0.95   1.00   0.77   1.00   1.00
  无机碳含量[重量%]   0.43   0.56   0.40   0.34   0.35   0.55   0.60
  有机碳含量[重量%]   0.67   0.44   0.55   0.66   0.42   0.45   0.40
  I(28.5°)/I(26.6°)   n.d.   n.d.   n.d.   <0.01   n.d.   n.d.   n.d.
n.d.:未测定

Claims (10)

1.一种用于制备钒、磷和氧催化剂前体的方法,该催化剂前体是用于通过对具有至少四个碳原子的烃进行非均相催化气相氧化而制备马来酸酐的催化剂的前体,所述方法包括:
(a)在具有3~6个碳原子的伯或仲、非环状或环状、非支化或支化的饱和醇存在下于80~160℃下将五氧化二钒与浓度为102~110%的磷酸反应;
(b)分离形成的沉淀物;
(c)通过在250~350℃下对被分离的沉淀物进行热处理而使其有机碳含量≤1.1重量%,所述热处理产物在添加了3.0重量%石墨作为内标物和使用CuKα辐射(λ=1.54×10-10m)后产生的粉末X射线衍射图在2θ区域内的特征是28.5°处存在的任何焦磷酸盐相的峰高与26.6°处由石墨引起的峰高的比值≤0.1;和
(d)使步骤(c)得到的热处理产物成型为平均直径至少2mm的颗粒。
2.根据权利要求1所述的方法,其中步骤(c)中的热处理在270~340℃下进行。
3.根据权利要求1和2中任一项所述的方法,其中在步骤(c)中使得有机碳含量≤0.8重量%。
4.根据权利要求1至3中任一项所述的方法,其中步骤(c)中的热处理产物在添加了3.0重量%石墨作为内标物和使用CuKα辐射(λ=1.54×10-10m)后产生的粉末X射线衍射图在2θ区域内的特征是28.5°处存在的任何焦磷酸盐相的峰高与26.6°处由石墨引起的峰高的比值≤0.05。
5.根据权利要求1至4中任一项所述的方法,其中步骤(d)中形成大体上中空的圆柱体结构的颗粒。
6.根据权利要求1至5中任一项所述的方法,其中所述的具有3~6个碳原子的伯或仲、非环状或环状、非支化或支化的饱和醇是异丁醇。
7.一种用于通过对具有至少四个碳原子的烃进行非均相催化气相氧化而制备马来酸酐的催化剂前体,其可通过权利要求1至6中任一项所述的方法得到。
8.一种制备用于通过对具有至少四个碳原子的烃进行非均相催化气相氧化而制备马来酸酐的催化剂的方法,该方法通过在至少一种含有氧气O2、水H2O和/或惰性气体的气氛中于250~600℃下对钒、磷和氧催化剂前体进行处理而实现,其包括采用如权利要求7所述的催化剂前体。
9.一种用于通过对具有至少四个碳原子的烃进行非均相催化气相氧化制备马来酸酐的催化剂,其可通过如权利要求8所述的方法得到。
10.一种通过在含氧气体下对具有至少四个碳原子的烃进行非均相催化气相氧化而制备马来酸酐的方法,其包括采用如权利要求9所述的催化剂。
CNB038061007A 2002-03-15 2003-03-12 合成马来酸酐用的催化剂-前体及其制备方法 Expired - Fee Related CN1295016C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10211445.5 2002-03-15
DE10211445A DE10211445A1 (de) 2002-03-15 2002-03-15 Katalysator-Precursor für die Herstellung von Maleinsäureanhydrid und Verfahren zu dessen Herstellung

Publications (2)

Publication Number Publication Date
CN1642641A true CN1642641A (zh) 2005-07-20
CN1295016C CN1295016C (zh) 2007-01-17

Family

ID=27797792

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038061007A Expired - Fee Related CN1295016C (zh) 2002-03-15 2003-03-12 合成马来酸酐用的催化剂-前体及其制备方法

Country Status (9)

Country Link
US (1) US7169732B2 (zh)
EP (1) EP1487577B1 (zh)
JP (1) JP2005526597A (zh)
KR (1) KR20040091739A (zh)
CN (1) CN1295016C (zh)
AT (1) ATE435067T1 (zh)
AU (1) AU2003214117A1 (zh)
DE (2) DE10211445A1 (zh)
WO (1) WO2003078058A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113777098A (zh) * 2020-06-10 2021-12-10 四川精卫食品检测科技有限公司 一种快速测定白酒中甲醇含量的方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10334582A1 (de) 2003-07-28 2005-02-24 Basf Ag Verfahren zur Herstellung von Maleinsäureanhydrid
US20070270597A1 (en) * 2006-05-18 2007-11-22 Basf Aktiengesellschaft Process for preparing maleic anhydride in a microchannel reactor
US8461356B2 (en) 2007-03-23 2013-06-11 Basf Se Process for obtaining maleic anhydride by distillation
WO2009061167A1 (en) * 2007-11-09 2009-05-14 Universiti Putra Malaysia An improved process to produce high surface area nanoparticle vanadium phosphorus oxide catalyst and product derives thereof
US8933277B2 (en) 2009-01-12 2015-01-13 Basf Se Process for preparing polymethylols
WO2011023646A1 (de) 2009-08-26 2011-03-03 Basf Se Katalysator-precursor für die herstellung von maleinsäureanhydrid und verfahren zu dessen herstellung
WO2015092006A2 (en) 2013-12-20 2015-06-25 Basf Se Two-layer catalyst bed
US11289700B2 (en) 2016-06-28 2022-03-29 The Research Foundation For The State University Of New York KVOPO4 cathode for sodium ion batteries
JP7342735B2 (ja) * 2020-03-05 2023-09-12 三菱ケミカル株式会社 リン-バナジウム酸化物触媒前駆体の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4361501A (en) 1980-12-29 1982-11-30 The Standard Oil Company Preparation of vanadium phosphorus catalysts using a mixed phosphorus source
IN164007B (zh) * 1984-09-04 1988-12-24 Halcon Sd Group Inc
US4670415A (en) * 1985-10-28 1987-06-02 Monsanto Company Process for the preparation of iron/lithium -promoted catalysts for the production of maleic anhydride
US4933312A (en) * 1989-01-17 1990-06-12 Amoco Corporation Maleic anhydride catalysts and process for their manufacture
US5158923A (en) * 1990-05-21 1992-10-27 Scientific Design Company, Inc. Phosphorous/vanadium oxidation catalyst
US5168090A (en) * 1990-10-04 1992-12-01 Monsanto Company Shaped oxidation catalyst structures for the production of maleic anhydride
US5137860A (en) * 1991-06-27 1992-08-11 Monsanto Company Process for the transformation of vanadium/phosphorus mixed oxide catalyst precursors into active catalysts for the production of maleic anhydride
DE69227906T2 (de) 1991-07-08 1999-07-01 Huntsman Spec Chem Corp Verfahren zur herstellung von maleinate mit hoher produktivität
US5364824A (en) * 1992-12-08 1994-11-15 Huntsman Specialty Chemicals Corporation Catalysis for the production of maleic anhydride containing vanadium-phosphorus oxide with selected promoter elements
US5296436A (en) * 1993-01-08 1994-03-22 Scientific Design Company, Inc. Phosphorous/vanadium oxidation catalyst
US5543532A (en) 1994-03-31 1996-08-06 E. I. Du Pont De Nemours And Company Catalyst and method for vapor phase oxidation of alkane hydrocarbons
BE1008103A3 (fr) 1994-04-22 1996-01-16 Pantochim Sa Procede de preparation de catalyseurs au vanadium et phosphore et leur utilisation pour la production d'anhydride maleique.
US5945368A (en) 1995-10-02 1999-08-31 Huntsman Petrochemical Corporation Molybdenum-modified vanadium-phosphorus oxide catalysts for the production of maleic anhydride
US5922637A (en) * 1997-03-28 1999-07-13 Scientific Design Company, Inc. Phosphorus/vanadium catalyst preparation
ITMI991233A1 (it) 1999-06-01 2000-12-01 Lonza Spa Procedimento per preparare un precursore di catalizzatore di ossido misto vanadio/fosforo
DE10109087A1 (de) 2001-02-24 2002-10-24 Leoni Bordnetz Sys Gmbh & Co Verfahren zum Herstellen eines Formbauteils mit einer integrierten Leiterbahn

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113777098A (zh) * 2020-06-10 2021-12-10 四川精卫食品检测科技有限公司 一种快速测定白酒中甲醇含量的方法

Also Published As

Publication number Publication date
US7169732B2 (en) 2007-01-30
CN1295016C (zh) 2007-01-17
US20050222436A1 (en) 2005-10-06
ATE435067T1 (de) 2009-07-15
KR20040091739A (ko) 2004-10-28
EP1487577A1 (de) 2004-12-22
EP1487577B1 (de) 2009-07-01
JP2005526597A (ja) 2005-09-08
DE50311660D1 (de) 2009-08-13
WO2003078058A1 (de) 2003-09-25
DE10211445A1 (de) 2003-10-02
AU2003214117A1 (en) 2003-09-29

Similar Documents

Publication Publication Date Title
CN1284623C (zh) 含钒、磷和氧的催化剂的制备方法
CN1177763C (zh) 多金属氧化物
CN1231443C (zh) 由丙烷的非均相催化部分氧化制备丙烯酸的方法
CN1323998C (zh) 通过丙烷的非均相催化的气相氧化制备丙烯酸的方法
CN1308074C (zh) 氧化物催化剂组合物
CN1086605C (zh) 生产丙烯酸用的催化剂和使用该催化剂生产丙烯酸的方法
CN1220551C (zh) 制备多相多金属氧化物材料的方法
CN1091998A (zh) 用于制备马来酐的含钒-磷氧化物及选择的助催化剂元素的催化剂
CN1228300C (zh) 在反应区中用分子氧将丙烯非均相催化气相氧化来制备丙烯酸的方法
CN1500770A (zh) 丙烯醛气相催化氧化制备丙烯酸的方法
CN1295016C (zh) 合成马来酸酐用的催化剂-前体及其制备方法
CN1642640A (zh) 用于制备马来酸酐的催化剂前体及其制备方法
CN1112969C (zh) 多金属氧化物材料
KR20010023221A (ko) 바나듐-인 촉매를 제조하는 방법, 및 말레산 무수물의제조를 위해 이들 촉매를 사용하는 방법
CN1197853C (zh) 生产马来酸酐的方法
CN1596244A (zh) 在不存在分子氧下由丙烷生产丙烯酸的方法
CN1211343C (zh) 在催化剂存在下通过气相氧化反应制备马来酐的方法
US20040014990A1 (en) Preparation of maleic anhydride and catalyst for this purpose
CN1116133A (zh) 多金属氧化物组合物
CN1313440C (zh) 多金属氧化物材料
CN1684936A (zh) 丙烯醛多相催化气相部分氧化为丙烯酸
CN1849170A (zh) 掺杂铌的钒/磷混合氧化物催化剂
CN1735458A (zh) 用于制备马来酸酐的催化剂和方法
CN1040104C (zh) 饱和烃氨氧化方法
CN1033387C (zh) 饱和烃类氨氧化法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070117

Termination date: 20190312