CN1605154A - 耦合器、集成电子元件和电子设备 - Google Patents

耦合器、集成电子元件和电子设备 Download PDF

Info

Publication number
CN1605154A
CN1605154A CNA028254260A CN02825426A CN1605154A CN 1605154 A CN1605154 A CN 1605154A CN A028254260 A CNA028254260 A CN A028254260A CN 02825426 A CN02825426 A CN 02825426A CN 1605154 A CN1605154 A CN 1605154A
Authority
CN
China
Prior art keywords
coupler
circuit
capacitor
frequency
inductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA028254260A
Other languages
English (en)
Other versions
CN100550616C (zh
Inventor
M·K·马特斯卡姆梅雷
T·G·S·M·里克斯
M·马特斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Callehan Tiele Co ltd
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN1605154A publication Critical patent/CN1605154A/zh
Application granted granted Critical
Publication of CN100550616C publication Critical patent/CN100550616C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/48Networks for connecting several sources or loads, working on the same frequency or frequency band, to a common load or source

Abstract

一种具有第一线路(1)和第二线路(2)的耦合器(10),也包括具有电容器(5)和电感器(4)的谐振结构(3)。因此,耦合器(10)发送耦合信号S31,该耦合信号实质上是在高于谐振结构(3)的谐振频率的频域上与频率无关的。同时,该信号S31具有高度的方向性。耦合器(10)能够作为集成电子元件诸如多层基底、薄膜模块或IC的一部分。它能够应用于电子设备(100)中的功率放大器(101)和天线(103)之间。这样,该耦合信号S31将被提供给控制电路(102)。

Description

耦合器、集成电子元件和电子设备
本发明涉及一种耦合器,包括连接信号输入端至信号输出端的第一线路,和连接一个匹配连接至第二输出端的第二线路,其中第一和第二线路相互电感和电容性地耦合。
本发明也涉及一种集成电路元件,该集成电路元件在100MHz和更高的频率上使用并且实施滤波和/或切换功能,以及包括一基底和多个电绝缘和电传导层。
本发明也涉及一种电子设备,其包括经由耦合器的第一线路而相互连接的功率放大器和功率发射器,所述耦合器还具有第二线路,该第二线路具有连接到控制电路的第二输出端。
所述耦合器可从US-A5,818,307中获悉。该文献的图1公开了一种定向耦合器,其中第一线路和第二线路相互平行地存在于印刷电路板上,使得存在耦合。电阻性负载存在于第二线路的匹配连接上并且肖特基二极管存在于第二线路的第二输出端上。选择负载阻抗以使得反射最小并且增加方向性,以及选择电容器以便在所关心的频率上谐振,从而在第二输出端提供电压输出。
为了实现最佳的耦合器,耦合器对信号输出端和输入端以及对匹配连接所产生的影响应该小并且对第二输出端的影响应该相对大。理论上,可以描述为耦合器具有四个效应:在信号输入端处的回程损耗S11,在信号输出端处的插入损耗S21,在第二输出端处的耦合S31以及在匹配连接处的隔离S41。可以理解插入损耗S21必须非常小,优选地小于0.5dB,以及耦合相比于隔离S41和回波损耗S11应当是很大的并且相对于隔离S41和回波损耗S11是可辨别的。
然而,已经发现已知的耦合器具有的耦合S31取决于频率。从而,能够仅在一个相对小的频域上将其相对于隔离S41和回波损耗S11被区分出来。这意味着耦合S31在用作通信频带(诸如蓝牙、DCS、GSM以及UMTS的频带)的频域上不是恒定的。结果,必须在控制电路或在耦合器的输出端中对耦合S31的频率相关性进行补偿。
因此,本发明的第一目的是提供一种在开始段落所提及的耦合器类型,其中第二输出(耦合S31)的幅度合理地独立于用作频带的频率间隔的频率。
所述目的被实现,因为:存在一个谐振结构,并且第一线路和第二线路被电感和电容性地耦合到该谐振结构。
令人惊奇地发现,添加的谐振结构导致期望的效果。耦合S31证明在高于谐振结构的谐振频率的一个间隔内的频率中是合理地频率无关的。其优点是:在高于谐振频率的一个非常大的频域上,使耦合S31比隔离S41和回程损耗S11显然要更大。从1.3GHz的谐振频率一直到大约4GHz的谐振频率,耦合S31比隔离S41和回程损耗S11大15dB。耦合S31超过隔离S41的较大差值导致本发明耦合器的另外的优点:在第二输出端获得方向性不需要二极管。
本发明的耦合器表现为是基于在第一和第二线路之间存在直接耦合和谐振耦合的事实。采用两种耦合机制的组合来产生一个实现本发明目的的耦合器。随之通过变化谐振结构而可设置谐振频率。通过改变直接耦合和谐振耦合而可设置耦合器的最佳频率响应,例如,改变线路之间的距离、线路的几何图形以及线路之间的材料的介电常数。电感器和电容器的大小也可以改变。
本发明耦合器的一个优点在于:该耦合器能够用于不同的应用中,而无需精心地重新设计。由于耦合器较好的方向性,所以原则上通过改变例如电容器的电容量,便足以改变谐振频率。对于适度的频率变化,甚至可能根本无需修改该耦合器。
从EP-A1047150可获知一种耦合器,其中在第二线路中包括一电感器和一电容器。可是这样会在整个频域上影响耦合S31和其他的信号S11、S21和S41。如通过该专利申请的图6和典型实施例3所说明的那样,耦合S31-称为C-在较大的频率间隔上基本不是恒定的。此外,方向性相当地小,例如小于10dB。除此之外,在此已知的耦合器中,在谐振频率处信号S11,S31和S41有可比幅度的的工作状态是完全不存在的。
本发明的耦合器能够以多种方式来实现。能够使用谐振结构的分立元件来实现。这样电感器线圈的平面必须被定向为基本上与第一线路平行。具有分立元件的这种实施例对在较低的频率上使用特别有利,例如100MHz或者更低的频率。由于谐振频率与电容和电感的乘积的平方根成反比,因此电容和电感必须很高。其能够通过陶瓷多层电容器和具有多匝线圈的电感器来实现。
在一优选的实施例中,谐振结构包括一薄膜电容器和一薄膜电感器,并且第一和第二线路与该电感器是电感和电容地耦合的。谐振结构的实施具有以下优点:耦合器能够集成到任一多层电子元件中。就其功能来说,因为在平板印刷图案中定义了相互重叠(且因此定义了用于电容耦合的相关区域),因此能够很好地设计该耦合器以便使得第一和第二线路与谐振结构之间的电感和电容耦合最佳。进一步的优点是:部件能够被最小化并且所有各个耦合器都将是同等的并且不依赖于个体元件的变化以及彼此之间的相对位置。
在薄膜实施例中,存在几种变型。在一优选的变型中,第一线路存在于第一导电层中,第二线路存在于第二导电层中以及谐振结构的电感器存在于布置在第一和第二导电层之间的一个或多个导电层中。优选地,在第二导电层上提供电容器的其中一个电极。在该变型中,谐振结构被夹在第一和第二线路的层之间。为了在第一和第二线路之间获得足够的电容耦合,这些线路优选地处于同一平面上,该平面被定向为基本上垂直于电感器的平面。该实施例的优点在于:第一线路和谐振结构之间的耦合量不同于谐振结构和第二线路之间的耦合量。例如,能够在电感器和第二线路之间提供具有相对高的介电常数的介电层以便最大化耦合。该介电层也可用于电容器。另一优点在于:第二导电层能够具体化为一薄层,诸如金、铝等等的层,而第一线路和电感器的层能够具体化为包括例如铜的厚层。这样不仅具有使电感器和第二线路将有高Q-因子的优点,而且它们还适合于高频率。
在另一优选的变型中,具有一匝线圈的谐振结构的电感器存在于第一导电层并且第一和第二线路存在于第二导电层。该实施例的优点在于:耦合器构成一个相对小的单元。因此,有助于将其集成到集成电子元件中。例如,该耦合器能够被集成到多层基底中。其优点在于:第一导电层存在于基底的表面上,而谐振结构被嵌入基底内。
在该实施例的进一步的详细细节中,电容器包括第一和第二电极,所述第一电极存在于第一导电层并且所述第二电极存在于第二导电层,以及第一和第二导电层通过包含介电层和绝缘层的隔离物而相互分离,电容器的第一和第二电极之间不存在绝缘层。在此,所述绝缘层指的是一种具有低的介电常数的层,例如其介电常数等于或小于SiO2的介电常数。优选的实例包括诸如苯并环丁烯(benzocyclobutene)、HSQ、MSQ、多孔硅和其它低K材料的材料层。在此,介电层指的是一种具有相对高的介电常数的层,例如,其具有的介电常数高于SiO2的介电常数。优选的实例包括Si3N4以及以钛酸钡和氧化钽为基础的材料。
所述详细细节具有以下优点:仅需要两个导电层来实现耦合器。这些层可存在于具有粗糙表面的基底上。优选地,在所用频率上,在超过电磁波的穿透深度的厚度中,适于导电层的材料为铝、铜、镍、银等等。用于所述详细细节的技术可从Th.Rijks等人的Proceedings IMAPS2001中获知,并且在未与公开的专利申请号EP01203071.4(PHNL010579)的文献中描述了该技术。
根据本发明的耦合器的另一实施例包括一可调谐电容器。使用这样的可调谐电容器能够对谐振结构的谐振频率进行期望的改变。如以上所解释的那样,耦合器的频域将随着谐振频率的漂移而漂移。可调谐电容器能够作为微型机电元件(MEMS)实施。这样,MEMS电容器可存在于基底上,然而第一和第二线路存在于基底内。作为选择,所述线路和MEMS电容器以及电感器能够存在于集成电路的互连结构中。
通过附加一第三线路,能够利用耦合器的频域的调谐,该第三线路将匹配连接与第三输出端进行连接并且被电感和电容性地耦合到第一线路以及被电感和电容性地耦合到谐振结构。第三线路允许关于经由第一线路运行的信号的第二反馈。可以使耦合器的设计最佳化,以便使得第二和第三线路之间的相互耦合最小。它们可以存在于同一导电层上,但是位于第一线路的相反侧。作为选择,它们也可存在于不同的导电层上,且位于谐振结构的相反侧,以及它们中的每个都与第一线路处于同一平面中。
在此实施例中,本发明的耦合器适合作为一个双频带耦合器。由于谐振结构的频率的可调谐性,第三线路可给出关于与第二线路不同的频率的反馈。而且,优选地,第三线路向除第二线路之外的元件提供反馈。此实施例的耦合器能够用作用于两个功率放大器的耦合器,每一功率放大器专门用于一特定的频域,并且它们被连接在同一个天线上。设想将具有两个功率放大器和一个天线的这种设计应用于具有不同标准(诸如GSM和蓝牙)的移动通信中。本领域的技术人员将能理解,对于两个放大器和一个天线的连接必须有连接点。这能够被实现为一个开关,诸如pin-二极管或MEMS开关,或者实现为滤波器,例如带通滤波器。优选地使用MEMS开关。该开关的第一个优点在于:其能够与MEMS-电容器一起制作和封装。更重要的优点在于:MEMS开关具有低损耗并且提供极好的隔离。同样可以理解,连接点能够存在于耦合器的两侧,例如功率放大器和耦合器之间以及耦合器和天线之间。在连接点存在于耦合器和天线之间的情况中,来自第二功率放大器的第四线路将存在于耦合器中。
对于提供可调谐电容器的替代,可以通过在第一和第二线路之间插入一个以上的谐振结构,而使耦合器适于不同的频域。以这种方式能够在一个以上的频域上获得作为频率的函数的平面耦合(flat coupling)。
在另一和/或又一实施例中,一层或多层磁性材料存在于耦合器中。由于存在磁性材料层,所以当通过谐振结构和线路之间及其周围的层所构成的介质的有效磁导率增强时,谐振结构与第一和第二线路之间的电感耦合也将增加。由于对于谐振结构来说,每单位长度的电感增加,以及由此而引起耦合量增加,所以当维持谐振频率时,电感器的尺寸能够减小。结果,耦合器的尺寸能够最小化。优选地使两层磁性材料定位于谐振结构的相反侧。作为选择,或附加的,它能够存在于第一和第二线路之间。本领域技术人员将能理解,磁性材料层能够定位在耦合器中的其他任何地方,这种位置依赖于耦合器特定的设计。适合的磁性材料本身是已经知道的,优选的是铁氧体材料,但是最优选的是一种以粉末形式存在并且嵌入绝缘基质材料例如聚合物或SiO2中的磁性材料层。这样的层是商业可获得的。其优点是这样的层能够作为液体施加(通过旋涂、印刷等等)并且能够非常好地集成在多层元件中。
本发明的第二个目的是提供一种开始段落中所提及类型的集成电子元件,其中集成有耦合器。
该目的被实现,因为:
-电子元件配备有根据权利要求2-7任一所述的耦合器,
-该耦合器的第一和第二线路、电感器以及电容器的电极在电子元件的导电层上实现,以及
-该第一和第二线路与谐振结构通过电子元件的至少一个绝缘层而被相互分离。
特别是在移动通信领域中,个体元件诸如所使用的晶体管、电容器和电感器的数量将不断地增加。同时,这些元件中的每一个被最小化。由于高频而导致所有的相互连接起到电感器的作用并且潜在地作为寄生电容器电极。因此,存在一种向可被设计作为一个整体的集成电子元件发展的趋势。这些集成电子元件可包含有源元件。然后无源元件定位在有源元件之上的互连结构中,或者在基底转移工艺中与有源元件邻接。作为选择,集成电子元件仅包括或几乎仅包括无源元件和互连。例子包括多层基底,例如陶瓷或叠层,包括多个多层电容器的模块以及基底上的无源网络,它们是根据制作集成电路的已知技术来制造的。
本发明的耦合器的薄膜实施例非常适合于集成到集成电子元件中,因为它能够仅用薄膜元素来体现。将能理解,该元件的导电层包括在表面上的那些。同时也要理解,电子元件的绝缘层具有可变的介电常数和有效的磁导率并且可按所期望的被最佳化。在存在可调谐电容器的情况中,优选地,元件是基底上任一类型的无源网络。在元件包括磁性材料层的情况中,该层可作为薄膜层而被集成;然而,它也能够作为电子元件之上的分立元件而存在。
例如,从EP641037中获知:一种电子设备,包括经由耦合器的第一线路而相互连接的功率放大器和功率发送器,所述耦合器此外还配备有具有连接到控制电路的第二输出端的第二线路。该文献的图7是示出了耦合器应用的方块图。该图示出:耦合器具有放大器和天线之间的第一线路以及具有在用于吸收电功率的接地电阻电极和自动增益控制电路之间的第二线路。使用这种电路,则放大器的部分输出被传输到耦合器的第二输出端并且返回到自动增益控制电路。将从天线返回的部分高频信号传输到接地电阻电极,例如匹配连接。
已知的电子设备的缺陷是,耦合器仅适应于有限的频域,并且在控制电路或在耦合器中实施的附加的频率补偿器是必需的。
所以,本发明的第三个目的是提供一种在开始段落中所提及类型的具有健壮耦合的电子设备。该目的被实现,因为存在根据权利要求1-7任一所述的耦合器。由于包括本发明的耦合器,所以电子设备适合于更大的频域。发送器可以是任一发送元件,但优选为天线。耦合器本身可存在,但优选地作为根据权利要求8所述集成电子元件的一部分存在。在优选的实施例中,电子设备包括两个功率放大器并且耦合器以双频带耦合器的实施方式存在。
耦合器可以在本发明的电子设备内的不同位置上执行耦合功能。第一应用是,所述耦合器用于从功率放大器输出到天线的信号的测量和反馈。该该应用中,控制电路连接到功率放大器。由于天线与基站之间的距离是不恒定的,所以输出信号的强度必须足够大以便到达基站。然而,已经通过标准化而对有关进入基站的信号的强度设置限制。除此之外,所有的能量必须通过电池来提供,使得由于耦合器的不正常工作而造成的任何能量浪费都将减少电池的使用寿命。对于该应用,在放大器之后直接地给出耦合器是优选的。
在第二应用中,耦合器用于输入信号的测量。在该应用中,功率放大器是一种公知的低噪声放大器类型。耦合器一般定位于该低噪声放大器之前,例如,在发送器/接收器开关和低噪声放大器之间的线上。控制电路将控制低噪声放大器以便对输入信号进行必要的放大。
在另一应用中,耦合器执行天线的反射功率的测量功能。该应用旨在最小化和优选地防止在天线处反射的功率放大器的任一大信号到达和损坏低噪声放大器。这对于宽带应用诸如UMTS来说是很重要的。耦合器的第二输出端连接到控制电路,该控制电路适配在天线之前的阻抗匹配电路。在该应用中,耦合器直接定位在天线之前。控制电路将调谐存在于发送器/接收器开关与天线之间的阻抗匹配网络。
参考附图,详细地描述本发明的耦合器、集成电子元件和电子设备的这些和其他方面,其中:
图1示出耦合器第一实施例的俯视透视图;
图2示出在图1的V-V所示的平面中耦合器第一实施例的图解剖面图;
图3示出耦合器第二实施例的图解剖面图;
图4示出电子设备第一实施例的等效电路图;
图5示出作为频率的函数的耦合器第一实施例的输出信号的幅度;
图6示出图5的细节的放大;
图7示出作为频率的函数的耦合器第一实施例的插入损耗;
图8示出最为频率的函数的耦合器第一实施例的改进型的输出信号的幅度;
图9示出耦合器第三实施例的图解顶视图;
图10示出作为频率的函数的耦合器第三实施例的输出信号的幅度;
图11示出作为频率的函数的耦合器第三实施例的插入损耗;
图12示出耦合器第四实施例的图解顶视图;以及
图13示出了包括耦合器第四实施例的电子设备的第二实施例的等效电路图。
图1示出了本发明耦合器10的第一实施例的俯视透视图。为清楚起见,省略了基底和绝缘层。耦合器10包括连接信号输入端11至信号输出端21的第一线路1。同时也包括连接匹配连接41至第二输出端31的第二线路2。匹配连接41连接到50Ω的接地电阻。第二输出端31连接到控制电路。第一线路1和第二线路2以660μm的相互距离62而被定位。它们通过苯并环丁烯的绝缘层而彼此分离,所述绝缘层具有2.6的相对介电常数和大约为1的有效磁导率。第一线路1从信号输入端11到信号输出端21的长度为1.4mm。第一和第二线路具体化为厚度为5μm、宽度为50μm的铜线。
谐振结构3基本被定位为平行于与由第一和第二线路1,2所构成的平面。线路1,2与谐振结构3之间的相互距离61为8μm。谐振结构3包括具有一匝线圈的电感器4,以及具有第一电极51和第二电极52的电容器5。第一电极51与电感器4处于同一层。第二电极52用通路53连接到电感器4。电感器4的大小为1.0mm×0.77mm并且具有2nH的电感。电容器具有7.4pF的电容量。这样产生1.36GHz的谐振频率。对于本领域技术人员来说很明显第一和第二线路起到边缘耦合线路的作用。
图2示出沿着图1所指示的V-V平面的耦合器10的图解剖面图。电感器4是由Cu构成的第一导电层81的一部分,该层厚度为5μm并且存在于基底80上。该层通过电镀而沉积在包括Au的电镀基(未示出)上。电容器5的第一电极51也是第一导电层81的一部分。该层与平面化层86一起平面化,所述平面化层81可或者在沉积第一导电层81之前沉积,或者在其之后沉积。在那之上存在有介电层82。在该实例中介电层82包括SiN并且具有6-7的相对介电常数。根据期望的图案来构造它以便提供电感器4与电容器5的第二电极52之间的连接。在其上,沉积绝缘层83。在该实例中绝缘层83包括苯并环丁烯,并且具有2.6的相对介电常数。此后,包括第一线路1、第二线路2以及第二电容器电极52的第二导电层84被沉积。第二导电层84包括Cu,并且在通过溅射而施加阻挡层TiN和电镀基Cu(未示出)后,通过电镀来沉积。第一和第二线路1,2之间的距离62为660μm并且线路1,2与电感器4之间的距离为8μm。
图3示出了耦合器10的第二实施例的图解剖面图。在该实施例中,第一线路1和第二线路2处于不同的导电层;例如,第二线路2处于第一导电层81中。第一线路1处于第三导电层87中。电感器4存在于第二导电层84上,所述第一线路1和第二线路2都耦合于该电感器4。第二导电层84非对称地放置于第一和第三导电层81,87之间。第一线路1和电感器4之间的距离61不同于第二线路2和电感器4之间的距离63。此外,分离层也是不同的。介电层82仅存在于第一和第二导电层81,84之间(然而,这可以是不同的)。磁性材料层85和绝缘层83都位于第二和第三导电层84,87之间。因而,第一线路1和电感器4之间的耦合量不同于电感器4和第二线路2之间的耦合量。第一导电层81还包括电容器5的第一电极51,同时第二电极52存在于第二导电层84中。第一电极51通过通路53连接到电感器4。第一导电层81嵌入平面化层86中。
在图3中,第一和第二线路1,2是以虚线的形式示出的。这表明第一和第二线路1,2实际上位于不同于电感器4的一个垂直平面内。设计该位置在不同的垂直平面内以便获得第一线路1和第二线路2之间适当的直接耦合,所述第一线路1和第二线路2之间相距距离62。
图4示意性示出本发明电子设备100的电子表示。耦合器10位于功率放大器101和功率发送器103之间,所述功率发送器103在该实例中为天线。耦合器10包括具有信号输入端11和信号输出端21的第一线路1以及具有匹配连接41和第二输出端31的第二线路2。匹配连接被连接到接地电阻104。第二输出端31连接到控制电路102。基于第二输出端31所输出的信号S31,控制电路调整功率放大器101的输出。技术人员将能理解:控制电路102可以是功率放大器101的一部分。此外,耦合器10还包括谐振结构3。
图5示出了相对于频率f而测定的一些信号的幅度M的曲线图。该曲线图的主体是如图1和2所示的第一实施例中的耦合器10,该耦合器已被对于1.8GHz的频率而最优化。在该曲线图中,带有交叉的线与S31,也就是第二输出端31处的信号有关,其也称为耦合。带有加号的线与S11,也就是信号输入端11的输出信号有关,其也称为回程损耗或反射。带有块的线与S41,也就是匹配连接41的输出信号有关,其也称为隔离。根据图5可以得出:谐振频率是1.3GHz并且所有的信号S11,S31,S41具有相同的幅度。令人惊讶的是,这些信号恰好在高于该谐振频率的频率处分开。耦合S31具有大约-18dB的幅度,并且随着频率增大,在4GHz处,耦合S31线性增加到-15dB。回程损耗S11朝着4GHz处的-30dB减少。隔离S41在1.8GHz处减少到-45dB,并且随后在4GHz处增加到-30dB。结果,在信号S31与信号S11和S41之间维持大约15dB的差值直到4GHz。该差值也称为方向性。该差值在1.8GHz周围甚至大约为25dB,这被认为是很重要的。可以看出,在该实例中谐振结构在高于2.5GHz的频率上没有扮演重要角色。然而,如果设计谐振结构以具有较高的谐振频率,则那是被假定为不同的方面。
图6示出了在1.5和1.8GHz之间的频域上,图5的放大曲线图。如所看到的那样,信号S31的幅度几乎恒定。其优点在于以下事实:在控制电路中不需要对用作通信频带的一个频域内的耦合S31的频率变化执行补偿。
图7示出了相对于频率f测定的一信号的幅度M的另一曲线图。该曲线图的主体再一次是第一实施例的耦合器10。该曲线图示出了信号输出端21的信号S21,也称为插入损耗。在1.5和2GHz之间的域上,该插入损耗是在-0.12和-0.08dB之间,因此非常小。
图8示出了相对于频率f测定的一信号的幅度M的曲线图,该曲线图涉及第一实施例的一个略有不同的方案。在该方案中,电感器具有一匝线圈并且谐振频率是1.36GHz。俯视图和剖面图如图1和2所示。电感器4的大小为1.4×0.84mm,电容器5的大小为0.56mm2,从而产生1.36GHz的谐振频率。在该曲线图中,带有交叉的线与S31,也就是第二输出端31的信号相关,也称为耦合。带有加号的线与S11,也就是信号输入端11的输出信号相关,也称为回程损耗或反射。带有块的线与S41,也就是匹配连接41的输出信号相关,也称为隔离。根据图8可以得到:所有信号S11、S31和S41在谐振频率处具有相同的幅度。这些信号仅在高于该谐振频率时分开。耦合S31在1.7GHz处具有大约为-21dB的幅度,并且随着频率的增加,在5GHz处,耦合S31线性增加到-14dB。回程损耗S11朝着1.8GHz处的-42dB减少并且随后增加到-29dB。隔离S41在3.6GHz处减少到-46dB,并随后增加。
图9示出了本发明耦合器10的第三实施例的图解顶视图。该实施例通过以下技术来实现,所述技术具有通过苯并环丁烯的绝缘层和氮化硅的介电层而分离的第一和第二导电层。该实施例的剖面图基本上与图2所示的剖面图相同。耦合器10包括第一线路1、第二线路2以及具有电容器5和电感器4的谐振结构。在第三实施例中,电感器4具有三匝线圈,因此与图8所示的第一实施例的形式相比,耦合器10的表面积减少了三分之一。其具有1.5mm的长度和0.6mm的宽度。电感器线圈的宽度是30μm,并且它们的间距为20μm。第一和第二线路1,2具有130μm的宽度。电容器5的第一和第二电极51,52的大小为240×250μm。
图10是相对于频率f测定的一些信号的幅度M的曲线图。在该曲线图中,符号所涉及的信号与图5和图8中的一样:带有块的线指示S41,带有加号的线指示S11以及带有交叉的线指示S31。如图10所示,当频率增加时,作为频率的函数的耦合S31的增加程度不是很陡。对于作为DCS-频带使用的1.8GHz周围的频率,以及对于作为蓝牙-频带使用的2.4GHz周围的频率,耦合S31相当恒定。而且,隔离S41和回程损耗S11很低,例如是-50dB或更小,从而能够提供良好的方向性。
图11是相对于频率f测定的一个信号的幅度M的另一曲线图。所述曲线图的主体再一次是第三实施例的耦合器10。该曲线图示出了信号输出端21的信号S21,也称为插入损耗。在低于2.5GHz的频域内,插入损耗的范围是0到-0.1dB之间,因此很小。
图12示出了本发明耦合器10的第四实施例的示意性顶视图。在该实施例中,耦合器10包括:除电容器5之外,还有可调谐电容器7。所述可调谐电容器7具体为微型机电开关(MEMS)电容器。此外,不但存在第一线路1和第二线路2,而且还有第三线路6。在该实施例中,谐振结构的谐振频率能够在耦合器10运行期间设置。这样允许使用单个耦合器10来耦合与一个天线相关的不同频率的信号,例如大约1.8GHz的DCS频带的信号和大约2.4GHz的蓝牙频带的信号。由于存在第三线路6,因此耦合器的输出可提供给不同的控制电路,所述每一不同的控制电路适于特定的放大器。可以理解,作为一种可选的方案,可在控制电路内部提供开关。
可调谐电容器7实际上是一个具有第一和第二电极的电容器,所述第一和第二电极通过包括介电材料层和1μm的空气(air)的电介质来分离,在该情况中,介电材料层是厚度为0.425μm的Si3N4。在第二电极之上,提供有桥75,该桥机械地将可调谐电容器连接到激励电容器(actuation capacitor)71,72。这些激励电容器71,72的尺寸是可调谐电容器的一半并且包含作为电介质的空气(air)。每一激励电容器的电极之一经互连74接地,而另一电极却被施加DC电压。如果所提供的DC电压为10-20V,那么激励电容器71,72的电极将相互吸引。由于存在桥75,可调谐电容器的第二电极将被向下推向第一电极。所以提供较大的电容量,以及降低谐振频率。可调谐电容器7的电容量能够在大约为8到150pF/mm2的范围内调谐。在该实施例中,可调谐电容器7与电容器5平行。因此,电容器5确定较高的谐振频率,并且通过闭合可调谐电容器7而能够降低谐振频率。在可调谐电容器的领域的技术人员将能理解,所施加的DC电压取决于电容器的特定构造。此外,可提供MEMS开关和标准的电容器来代替MEMS-电容器,由此而产生双频带耦合器。
在图12的实施例中,第一、第二和第三线路1,2,6提供在第一导电层内,所述第一导电层被诸如SiO2的绝缘材料层所覆盖。作为选择,所述第一导电层可存在于多层基底中。第一、第二以及第三线路1,2,6是边缘耦合线路。第一线路1处在中间以便对第二线路2和第三线路6提供充分的直接耦合。为了在第一线路1和谐振结构3之间提供充分的耦合,电感器4包括较宽的线圈。作为选择,电感器具有多匝线圈。电感器4和电容器5,7,71,72的第一电极被提供在第二导电层内。在该第二导电层之上提供介电材料层,在该情况中为Si3N4。该层以传统的方法来形成图案,使其存在于电容器5,7内而不是存在于电容器71,72内。接着,根据期望的图案而提供牺牲层。在该图案中,在电容器5处不存在牺牲层。接着,在期望的图案中施加第三导电层。该图案包括电容器5,7,71,72的第二电极。最后,除去牺牲层以便获得可调谐电容器7和激励电容器71,72。
图13示意性示出了本发明电子设备100的第二实施例的电路图。该实施例包括如图12所示的耦合器10。耦合器10存在于功率放大器开关110和功率发送器103之间,在该实例中,功率发送器是天线。耦合器10包括第一、第二和第三线路1,2,6以及具有电感器4、电容器5和可调谐电容器7的谐振结构3。第一线路1连接放大器开关110和天线103。第二线路2和第三线路6各自存在于接地电阻104,114和控制电路102,112之间。控制电路102将向功率放大器101提供反馈。第二控制电路112将向功率放大器111提供反馈。
结论:本发明提供具有第一线路和第二线路的耦合器,该耦合器进一步包括具有电容器和电感器的谐振结构。以此,耦合器传送耦合信号S31,该耦合信号实际上是高于谐振结构的谐振频率的频域之上与频率无关的。同时,信号S31具有很大的方向性。耦合器能够作为集成电子元件(诸如多层基底、薄膜模块或IC)的一部分。该耦合器能够应用在功率放大器和天线之间的电子设备内。以此将耦合信号S31提供给控制电路。

Claims (12)

1.一种耦合器(10),包括将信号输入端(11)连接到信号输出端(21)的第一线路(1),以及将匹配连接(41)连接到第二输出端(31)的第二线路(2),该第一和第二线路(1,2)相互电感和电容性地耦合,其特征在于:
-存在谐振结构(3),以及
-该第一线路(1)和第二线路(2)被电感和电容性地耦合至该谐振结构(3)。
2.如权利要求1所述的耦合器(10),其特征在于:
谐振结构(3)包括薄膜电容器(5)和薄膜电感器(4),并且第一和第二线路(1,2)被电感和电容性地耦合至电感器(4)。
3.如权利要求2所述的耦合器(10),其特征在于:
谐振结构(3)的电感器(4)具有一匝线圈,其位于第一导电层(81)内,以及该第一和第二线路(1,2)存在于第二导电层(84)内。
4.如权利要求3所述的耦合器(10),其特征在于:
-电容器(5)包括第一和第二电极(51,52),所述第一电极(51)存在于第一导电层(81)内并且第二电极(52)存在于第二导电层(84)内,以及
-第一和第二导电层(81,84)被包括介电层(82)和绝缘层(83)的隔离物分离,在电容器(5)的第一和第二电极(51,52)之间不存在绝缘层(83)。
5.如权利要求2所述的耦合器(10),其特征在于:电容器(5)是可调谐电容器。
6.如权利要求5所述的耦合器(10),其特征在于:存在有第三线路(6),该第三线路(6)将连接一个匹配连接到第三输出端,并且被电感和电容性地耦合至第一线路(1),以及被电感和电容性地耦合至谐振结构(3)。
7.如权利要求1所述的耦合器(10),其特征在于:存在磁性材料层(85)。
8.一种集成电子元件,在100MHz和更高的频率上使用,并且执行滤波和/或开关功能,以及包括基底(80)和多个电绝缘(83,86)和导电层(81,84,87),其特征在于:
-所述电子元件配备有根据权利要求2-7的任一所述的耦合器(10),
-该耦合器(10)的第一和第二线路(1,2)、电感器(4)和电容器(5)的电极(51,52)在该电子元件的导电层(81,84,87)中实现,以及
-该第一和第二线路(1,2)与谐振结构(3)通过该电子元件的至少一个绝缘层(83)分离。
9.一种电子设备(100),包括经由耦合器(10)的第一线路(1)而相互连接的功率放大器(101)和功率发送器(103),所述耦合器(10)还配备有第二线路(2),该第二线路(2)具有连接到控制电路(102)的第二输出端(31),其特征在于:存在根据权利要求1-7的任一所述的耦合器(10)。
10.如权利要求9所述的电子设备(100),其特征在于:
-存在第二功率放大器(101)、第二控制电路(102)以及根据权利要求6所述的耦合器(10),以及
-耦合器(10)的第三线路(6)的第三输出端连接到第二控制电路(102),由此第二功率放大器(101)的输出可被控制。
11.如权利要求9所述的电子设备,其特征在于:耦合器(10)作为如权利要求8所要求的集成电子元件的一部分而存在。
12.根据权利要求9-11任一所述的电子设备(100)在至少0.1GHz的频率上的使用。
CNB028254260A 2001-12-20 2002-12-05 耦合器、集成电子元件和电子设备 Expired - Lifetime CN100550616C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP01205038 2001-12-20
EP01205038.1 2001-12-20

Publications (2)

Publication Number Publication Date
CN1605154A true CN1605154A (zh) 2005-04-06
CN100550616C CN100550616C (zh) 2009-10-14

Family

ID=8181479

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028254260A Expired - Lifetime CN100550616C (zh) 2001-12-20 2002-12-05 耦合器、集成电子元件和电子设备

Country Status (9)

Country Link
US (1) US7187250B2 (zh)
EP (1) EP1459444B1 (zh)
JP (1) JP4101763B2 (zh)
KR (1) KR100981524B1 (zh)
CN (1) CN100550616C (zh)
AT (1) ATE394831T1 (zh)
AU (1) AU2002351137A1 (zh)
DE (1) DE60226493D1 (zh)
WO (1) WO2003055065A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101908881A (zh) * 2010-07-28 2010-12-08 锐迪科创微电子(北京)有限公司 定向耦合器及包含该定向耦合器的射频功率放大器
CN103346377A (zh) * 2013-06-14 2013-10-09 深圳市共进电子股份有限公司 一种双频可调定向耦合器
CN104737365A (zh) * 2012-10-18 2015-06-24 贺利实公司 具有可变频率响应的方向性耦合器
CN107592119A (zh) * 2016-07-07 2018-01-16 三星电机株式会社 射频开关电路和具有内置耦合器的设备
CN107645029A (zh) * 2017-10-24 2018-01-30 苏州市新诚氏通讯电子股份有限公司 氧化铝陶瓷基板30dB耦合片
CN110071355A (zh) * 2019-04-18 2019-07-30 成都芯图科技有限责任公司 一种基于芯片的定向耦合器及集成结构
US10505517B2 (en) 2016-07-07 2019-12-10 Samsung Electro-Mechanics Co., Ltd. Radio frequency switch circuit and apparatus having built-in coupler
CN113574735A (zh) * 2019-03-13 2021-10-29 阿维科斯公司 具有宽带性能的紧凑型薄膜可表面安装的耦合器
US20220416824A1 (en) * 2021-06-25 2022-12-29 Realtek Semiconductor Corporation Communication apparatus having feedback calibration mechanism

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100755088B1 (ko) * 2003-03-28 2007-09-03 티디케이가부시기가이샤 다층 기판 및 그 제조방법
US7299015B2 (en) * 2004-05-27 2007-11-20 Matsushita Electric Industrial Co., Ltd. Transmission output control circuit, and wireless device using the same
JP4784606B2 (ja) * 2005-09-30 2011-10-05 パナソニック株式会社 シート状複合電子部品とその製造方法
FI20065339A0 (fi) * 2006-05-18 2006-05-18 Nokia Corp Antennin sovitusmittaus ja vahvistuksen ohjaus
EP1870834A1 (en) * 2006-06-20 2007-12-26 Assa Abloy Identification Technology Group AB Support for marked articles and article to be accomodated in such support
DE102007008753A1 (de) 2007-02-22 2008-08-28 Rohde & Schwarz Gmbh & Co. Kg Hochlastkoppler
US8032093B1 (en) 2008-05-28 2011-10-04 Triquint Semiconductor, Inc. Power detection arrangement with harmonic suppressor
KR101730139B1 (ko) * 2009-12-14 2017-05-11 삼성전자주식회사 무선 전력 전송을 위한 공진기를 구비하는 배터리 팩
JP5738647B2 (ja) * 2011-03-28 2015-06-24 フェリカネットワークス株式会社 通信装置、通信制御方法、およびプログラム
US20130207741A1 (en) * 2012-02-13 2013-08-15 Qualcomm Incorporated Programmable directional coupler
US9165723B2 (en) 2012-08-23 2015-10-20 Harris Corporation Switches for use in microelectromechanical and other systems, and processes for making same
US9053873B2 (en) 2012-09-20 2015-06-09 Harris Corporation Switches for use in microelectromechanical and other systems, and processes for making same
US9053874B2 (en) 2012-09-20 2015-06-09 Harris Corporation MEMS switches and other miniaturized devices having encapsulating enclosures, and processes for fabricating same
US9356352B2 (en) 2012-10-22 2016-05-31 Texas Instruments Incorporated Waveguide coupler
JP2014090080A (ja) * 2012-10-30 2014-05-15 Ibiden Co Ltd プリント配線板、プリント配線板の製造方法及び電子部品
CN105210292B (zh) 2013-03-15 2018-03-23 维斯普瑞公司 调谐系统、装置以及方法
US10249930B2 (en) * 2016-04-29 2019-04-02 Skyworks Solutions, Inc. Tunable electromagnetic coupler and modules and devices using same
TW201905948A (zh) * 2017-06-26 2019-02-01 以色列商以色列維夏公司 寬頻耦合電容器
US10320048B2 (en) * 2017-08-17 2019-06-11 Microelectronics Technology, Inc. Circuit board and communication device with side coupler
WO2019155869A1 (ja) * 2018-02-07 2019-08-15 株式会社村田製作所 方向性結合器及びモジュール
US11621470B2 (en) * 2021-02-02 2023-04-04 Samsung Electronics Co., Ltd Compact high-directivity directional coupler structure using interdigitated coupled lines
US20230360889A1 (en) * 2022-05-03 2023-11-09 Tokyo Electron Limited Apparatus for Edge Control During Plasma Processing

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3740675A (en) * 1970-08-17 1973-06-19 Westinghouse Electric Corp Yig filter having a single substrate with all transmission line means located on a common surface thereof
CA1097755A (en) * 1976-02-26 1981-03-17 Mitsuo Makimoto Electrical tuning circuit
US4543543A (en) * 1982-12-03 1985-09-24 Raytheon Company Magnetically tuned resonant circuit
US5818307A (en) * 1997-03-11 1998-10-06 Motorola, Inc. Directional coupler having inductor crossing microstrip transmission line
FR2792463B1 (fr) 1999-04-19 2004-03-12 Peugeot Citroen Automobiles Sa Antenne de vehicule automobile
JP2001036311A (ja) * 1999-07-16 2001-02-09 Toko Inc 方向性結合器

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101908881B (zh) * 2010-07-28 2012-11-07 锐迪科创微电子(北京)有限公司 定向耦合器及包含该定向耦合器的射频功率放大器
CN101908881A (zh) * 2010-07-28 2010-12-08 锐迪科创微电子(北京)有限公司 定向耦合器及包含该定向耦合器的射频功率放大器
CN104737365A (zh) * 2012-10-18 2015-06-24 贺利实公司 具有可变频率响应的方向性耦合器
CN103346377A (zh) * 2013-06-14 2013-10-09 深圳市共进电子股份有限公司 一种双频可调定向耦合器
CN107592119A (zh) * 2016-07-07 2018-01-16 三星电机株式会社 射频开关电路和具有内置耦合器的设备
CN107592119B (zh) * 2016-07-07 2019-11-05 三星电机株式会社 射频开关电路和具有内置耦合器的设备
US10505517B2 (en) 2016-07-07 2019-12-10 Samsung Electro-Mechanics Co., Ltd. Radio frequency switch circuit and apparatus having built-in coupler
CN107645029A (zh) * 2017-10-24 2018-01-30 苏州市新诚氏通讯电子股份有限公司 氧化铝陶瓷基板30dB耦合片
CN107645029B (zh) * 2017-10-24 2023-08-15 苏州市新诚氏通讯电子股份有限公司 氧化铝陶瓷基板30dB耦合片
CN113574735A (zh) * 2019-03-13 2021-10-29 阿维科斯公司 具有宽带性能的紧凑型薄膜可表面安装的耦合器
CN110071355A (zh) * 2019-04-18 2019-07-30 成都芯图科技有限责任公司 一种基于芯片的定向耦合器及集成结构
CN110071355B (zh) * 2019-04-18 2021-03-12 成都芯图科技有限责任公司 一种基于芯片的定向耦合器及集成结构
US20220416824A1 (en) * 2021-06-25 2022-12-29 Realtek Semiconductor Corporation Communication apparatus having feedback calibration mechanism
US11770144B2 (en) * 2021-06-25 2023-09-26 Realtek Semiconductor Corporation Communication apparatus having feedback calibration mechanism

Also Published As

Publication number Publication date
KR20040066182A (ko) 2004-07-23
EP1459444B1 (en) 2008-05-07
JP4101763B2 (ja) 2008-06-18
EP1459444A1 (en) 2004-09-22
US20050116788A1 (en) 2005-06-02
WO2003055065A1 (en) 2003-07-03
DE60226493D1 (de) 2008-06-19
JP2005513904A (ja) 2005-05-12
US7187250B2 (en) 2007-03-06
AU2002351137A1 (en) 2003-07-09
CN100550616C (zh) 2009-10-14
KR100981524B1 (ko) 2010-09-10
ATE394831T1 (de) 2008-05-15

Similar Documents

Publication Publication Date Title
CN100550616C (zh) 耦合器、集成电子元件和电子设备
US7423500B2 (en) Low-pass filter capable of preventing unnecessary electromagnetic coupling
US20090195334A1 (en) High frequency module provided with power amplifier
US10158338B2 (en) Filter and layout structure thereof
CN1893172A (zh) 多层带通滤波器
CN1663120A (zh) 具有一个多层衬底的电子组件和制造方法
JP2004521536A (ja) 高周波プリント回路基板ビア
KR101492268B1 (ko) 반도체 디바이스용 인덕터와 그 제조 방법 및 반도체 디바이스의 형성 방법
CN106716634A (zh) 高频元器件
CN1300939C (zh) 高频开关组件及安装该高频开关组件的高频仪器
WO2012085235A1 (de) Filteranordnung und verfahren zum herstellen einer filteranordnung
CN1261981A (zh) 集成双频噪声衰减器
US8922300B2 (en) Filter and layout structure thereof
JP2001185972A (ja) 積層フィルタ
JPH1197962A (ja) 高周波部品
JP3811035B2 (ja) アンテナ切替回路の実装構造
US11362635B2 (en) Filter, multiplexer and communication module
JP2002290186A (ja) 低域通過フィルタ
KR200263615Y1 (ko) 감쇠극을 갖는 유전체 필터
KR100581633B1 (ko) 적층형 세라믹 칩 필터
JPH10209707A (ja) 積層フィルタおよび積層モジュール
KR20160101640A (ko) 안테나 대역폭 확장장치
CN1160856C (zh) 组合切换电路和组合切换装置
JP3415595B2 (ja) ダイオードスイッチおよびダイオードスイッチの切り換え方法
CN116057649A (zh) 滤波器模块、滤波器元件以及电子设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: NXP CO., LTD.

Free format text: FORMER OWNER: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Effective date: 20070810

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20070810

Address after: Holland Ian Deho Finn

Applicant after: NXP B.V.

Address before: Holland Ian Deho Finn

Applicant before: Koninklijke Philips Electronics N.V.

C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: CALLAHA XILE CO., LTD.

Free format text: FORMER OWNER: KONINKL PHILIPS ELECTRONICS NV

Effective date: 20120202

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20120202

Address after: American Delaware

Patentee after: Callehan Tiele Co.,Ltd.

Address before: Holland Ian Deho Finn

Patentee before: NXP B.V.

CX01 Expiry of patent term

Granted publication date: 20091014

CX01 Expiry of patent term