CN1599041A - 具高崩溃电压及低逆向漏电流的萧特基二极管及制造方法 - Google Patents

具高崩溃电压及低逆向漏电流的萧特基二极管及制造方法 Download PDF

Info

Publication number
CN1599041A
CN1599041A CNA200410038164XA CN200410038164A CN1599041A CN 1599041 A CN1599041 A CN 1599041A CN A200410038164X A CNA200410038164X A CN A200410038164XA CN 200410038164 A CN200410038164 A CN 200410038164A CN 1599041 A CN1599041 A CN 1599041A
Authority
CN
China
Prior art keywords
layer
schottky diode
schottky
oxide layer
epitaxial loayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA200410038164XA
Other languages
English (en)
Other versions
CN1305121C (zh
Inventor
吴协霖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN1599041A publication Critical patent/CN1599041A/zh
Application granted granted Critical
Publication of CN1305121C publication Critical patent/CN1305121C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66143Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28537Deposition of Schottky electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Bipolar Transistors (AREA)

Abstract

本发明是一种具高崩溃电压及低逆向漏电流的萧特基二极管及制造方法。所述制造方法包含以下步骤:提供一n+重掺杂半导体基板,该半导体基板上具有一n-外延层形成于其上。一第一氧化层形成于n-外延层上。一图案化制程随即图案化第一氧化层以定义护环区域。除去光阻图案层后,沉积一多晶硅层,再进行硼或BF2 +的离子布植。进行高温退火活化离子并形成p+区于n-外延层中。一热氧化制程氧化多晶硅层并扩大p+区而形成护环。进行一第二光罩及蚀刻过程,以定义出主动区。一阻障金属层沉积于主动区上并施以金属硅化程序。未反应的金属层移除后,沉积一阳极金属导电层,再施以第三光罩并图案化以定义阳极区域。另以金属导电层形成于基板背面以作为阴极。

Description

具高崩溃电压及低逆向漏电流的萧特基二极管及制造方法
技术领域
本发明是有关于一种萧特基半导二极管元件,尤指一种具有漏电流小及高场崩溃电压的萧特基二极管结构及制造方法。
背景技术
萧特基二极管是一种广泛应用于功率整流元件的整流应用,例如于电源供应器的开关、马达控制、电信开关、工厂自动化、电子自动化等等及许多高速电力开关应用。虽然萧特基二极管具有高速开关特性,然而高逆向漏电流及低崩溃电压大大的限制其在高逆向电压及高温环境下的应用。
习知技术美国专利第3,541,403号揭示应用p+型护环扩散区包围萧特基接触区可以增加逆向崩溃电压。p型护环扩散区是由硼-氮为扩散源或由硼或BF2 +离子布植所产生。然而,过高剂量的硼离子植入会造成表面损伤以及高漏电流。除此之外,p-n接面曲率效应也会严重影响逆向漏电流以及崩溃电压(请参考S.M.Sze所著“Physics of SemiconductorDevices”第二版第二章)。为使植入的硼离子扩散至硅基板深处,在高温长时间的热处理为必须过程。经过这样的处理后,可以获得较大的p-n接面曲率,以减低逆向漏电流及获取较大的崩溃电压。
发明内容
本发明的目的之一即为提出一新方法以制造具有高崩溃电压、低漏电流且可高速切换的萧特基二极管。
本发明揭露一种萧特基二极管结构及其制造方法,包含以下步骤:首先,提供一n+重掺杂半导体基板,该半导体基板上具有一n-外延层形成于其上。随后,一第一氧化层形成于n-外延层上。一图案化制程随即图案化第一氧化层以定义护环区域(guard ring,GR)。在除去光阻图案层之后,一多晶硅层利用LPCVD或APCVD法沉积于所有区域。随后,进行硼或BF2 +的离子布植程序。随后,进行高温退火以驱使多晶硅层内的硼离子扩散而进入n-外延层中。接下来,一热氧化制程接着进行以完全氧化多晶硅层而形成热氧化层,同时更驱使硼离子更深入硅基板。一第二光罩及蚀刻过程随后进行,以定义出主动区。紧接着,一阻障金属(barriermetal)层沉积于主动区上并施以金属硅化程序。在未反应的金属层移除后,最后再沉积一阳极金属导电层,再施以第三光罩并图案化以定义阳极区域。另以金属导电层则形成于基板背面以作为阴极。
附图说明
图1A至图1C显示传统萧特基二极管具有p+护环结构的制造方法的横截面示意图;
图2显示根据本发明的方法,以光阻图案定义护环的横截面示意图;
图3显示根据本发明的方法,形成一多晶硅层于所有区域后,再施以B+ or BF2 +离子布植的横截面示意图;
图4显示根据本发明的方法,以多晶硅层为杂质来源,施以退火制程使杂质扩散进入n-外延层以形成p+区的横截面示意图;
图5显示根据本发明的方法,施以热氧化制程以形成第二氧化层,同时使p+掺杂区扩大的横截面示意图;
图6显示根据本发明的方法,再涂布一第二光阻图案于第二氧化层上,以定义主动区的横截面示意图;
图7显示根据本发明的方法,以第二光阻图案为罩幕,除去裸露的第二氧化层后,再形成萧特基金属硅化层于主动区上,最后再形成一阳极金属层,基板背面形成阴极金属层的横截面示意图;
图8A及图8B显示根据本发明的方法,元件的概要布局示意图;
图9显示根据本发明的方法,示萧特基二极管横截面示意图。
符号说明:
10:n+型半导体基板
20:n-型外延层
20A:外延层表面
25:第一氧化层
30:氧化层
35:护环(p型离子掺杂区)
40:光阻图案
50:阳极金属层
100:半导体基板
101:n+型半导体基板
102:n-型外延层
110:第一氧化层
140:多晶硅层
140A:第二氧化层
150:p+型护环区
160:光阻图案
165:p+型护环区
170:萧特基金属硅化层
180:阳极金属层(也称顶部金属层)
190:阴极
具体实施方式
本发明揭露一萧特基二极管结构及其制造方法。请参照图2的横截面示意图,显示一半导体基板100包含一n+重掺杂基板101和n-轻掺杂外延层102。一厚约100nm至2000nm的氧化层110,接着以热氧化或CVD法形成于n-外延层上。一包含开口115A的光阻图案115接着形成在氧化层110上以定义护环区。
仍请参考图2,一蚀刻步骤以光阻图案115为罩幕接着实施以蚀刻裸露的氧化层。随后移除光阻图案115。
继续请参照图3,一多晶硅层140厚约20nm至1000nm接着以低压气相沉积法(low pressure chemical vapor deposition,LPCVD)沉积于全部区域上。继之高剂量的BF2 +或硼离子全面布植于n-外延层上。布植剂量与布植能量分别约为1E11至5E16/cm2与10至400KeV。
参照图4,接着高温退火(thermal anneal)制程进行,以活化离子,并驱使动离子进入基板形成p+区域150。以多晶硅层140为杂质的扩散源。
接下来,参照图5,高温氧化制程接着进行以氧化多晶硅层140以形成第二氧化层140A。同时p+区150的杂质进一步纵向及横向扩散开来而形成护环区165。
随后,参照图6,一定义主动区的光阻图案160接着形成于第二氧化层140A上。主动区的范围包含由一终止区(termination region)200a上的部分护环与终止区另一端200b的部分护环所包含的范围间,请同时参考图9。
在主动区被定义后,一湿式蚀刻以光阻图案160为罩幕接着将所有暴露出的氧化层区域140A、110除去。
请见图7,在除去光阻图案160后,萧特基金属层(Schottky barriermetal layer)紧接着覆盖在全部区域之上。萧特基金属层可选自Ti、TiN、Ni、Cr、Pd、Pt、W、Mo等。随后再施以约200℃~850℃退火制程以形成金属硅化层170。
在氧化层140A之上未与硅反应的金属紧接着被除去,随后一厚金属层180覆盖于全部区域之上。此金属层再被图案化以形成阳极区域,最后的阳极金属层区域将覆盖所有主动区以及一部分在终止区的蚀刻平台。此金属层可选自TiNi/Ag双金属层的堆栈结构或Al单一金属层其中一种。
一研磨制程随后进行以除去在前述制程中形成于基板背面上的各层材料,最后,再使用溅镀一金属层190以作为阴极。
图8A及图8B为依据本发明的方法的一概略布局示意图,图标包含多个正方形护环区165或长方形护环区165。
图9为一根据本发明方法所制造的萧特基二极管的横截面示意图,具有两个护环在终止区及两个护环在主动区。
本发明具有以下优点:
2、在终止区的护环区165既宽且又平坦,因此,空乏区的弯折区可预期要比传统的元件更远离主动区。
3、高剂量布植所导致的离子损伤可以忽略,这是因本发明是借由多晶硅层来做为杂质扩散源,这部分可以参考作者的另一篇美国专利第5,347,161号。基于上述的好处,可预期本发明所制造的萧特基二极管将有高的崩溃电压与低的逆向漏电流。

Claims (9)

1.一种具高崩溃电压及低逆向漏电流的萧特基二极管的制造方法,至少包含以下步骤:
提供一半导体基板,该基板含有一第一导体层及一外延层,该两层具有相同导电型杂质掺杂,且该外延层掺杂浓度低于该第一导体层;
形成一第一氧化层于该外延层上;
形成一第一光阻图案于该氧化层上以定义护环区域;
进行一第一蚀刻制程蚀刻该第一氧化层,以该光阻图案为罩幕;
除去该第一光阻图案;
形成一多晶硅层于所有裸露的表面;
全面进行离子布植,以布植p型杂质于多晶硅层中;
施以一退火制程,活化该p型杂质,同时以该多晶硅层为p型杂质的来源向该多晶硅层下的该外延层扩散,以形成p型区域;
施以高温氧化制程,用以将该多晶硅层氧化成为第二氧化层,同时使p型区域扩大而形成护环区;
形成第二光阻图案于该第二氧化层上,以定义出主动区;
施以蚀刻制程,蚀刻该第二氧化层,以该第二光阻图案为罩幕;
除去该第二光阻图案;
形成一萧特基阻障金属层于所有裸露的表面;
进行一退火制程,以使该萧特基阻障金属层与硅反应,因此形成一金属硅化物层;
除去未反应的萧特基阻障金属层;
形成一顶部金属层于裸露的表面;
图案化该顶部金属层以定义阳极区域;
施以研磨制程,以研磨该半导体基板背面,至裸露该第一导体层;及
形成一金属层于该半导体基板背面以作为阴极。
2、根据权利要求1所述萧特基二极管的制造方法,其中上述的BF2 +及/或硼离子植入剂量与能量分别为1E11至5E16/cm2,及10至400KeV。
3、根据权利要求1所述的方法,其中上述的多晶硅层厚度为10nm至1000nm。
4、根据权利要求1所述萧特基二极管的制造方法,其中上述的退火制程在200℃至850℃下进行。
5、根据权利要求1所述萧特基二极管的制造方法,其中上述的萧特基阻障金属层是选自于Ti、TiN、Ni、Cr、Mo、Pt、Zr、W及其组合的其中的一种与硅反应产生的金属硅化层构成,而顶部金属层是选自TiNi及Ag堆栈层或Al单层的其中一种构成。
6、根据权利要求1所述萧特基二极管的制造方法,其中上述的第二光阻图案覆盖住部分该护环区域,所以该主动区位在两个护环间并且包含部分的护环。
7、一种具高崩溃电压及低逆向漏电流的萧特基二极管,其特征在于所述萧特基二极管至少包含以下部分:
一半导体基板,包含一第一导电层及一外延层形成于其上,其中该第一导电层及该外延层掺杂有第一型导电性杂质,且该外延层掺杂浓度较低;
一阴极金属层形成于该第一导电层背面上;
四个护环线状排列于该外延层内,且掺杂有第二型导电型杂质,其中,最外侧的两个护环部分被一氧化层覆盖,并作为终止区;
一萧特基硅化层于该外延层上,且位于分开的该氧化层之间;及
一阳极金属层形成于该萧特基硅化层上并延伸以覆盖该氧化层上。
8、根据权利要求7所述的萧特基二极管,其特征在于:该护环区由两种第二型导电型杂质扩散所形成。
9、根据权利要求7所述的萧特基二极管,其特征在于:该萧特基硅化层是选自Ti、TiN、Ni、Cr、Mo、Pt、Zr及W及其组合的其中的一种与硅反应产生的金属硅化层构成,而其中该阳极金属层是由TiNi及Ag堆栈层或Al单层的其中一种构成。
CNB200410038164XA 2003-09-17 2004-05-11 具高崩溃电压及低逆向漏电流的萧特基二极管及制造方法 Expired - Fee Related CN1305121C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/663,666 2003-09-17
US10/663,666 US6825073B1 (en) 2003-09-17 2003-09-17 Schottky diode with high field breakdown and low reverse leakage current

Publications (2)

Publication Number Publication Date
CN1599041A true CN1599041A (zh) 2005-03-23
CN1305121C CN1305121C (zh) 2007-03-14

Family

ID=33452765

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200410038164XA Expired - Fee Related CN1305121C (zh) 2003-09-17 2004-05-11 具高崩溃电压及低逆向漏电流的萧特基二极管及制造方法

Country Status (3)

Country Link
US (1) US6825073B1 (zh)
CN (1) CN1305121C (zh)
TW (1) TWI234289B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100372128C (zh) * 2005-07-28 2008-02-27 浙江大学 一种锗硅肖特基二极管及其制作方法
CN103050548A (zh) * 2012-12-27 2013-04-17 北京燕东微电子有限公司 肖特基二极管及其制造方法
CN104183485A (zh) * 2013-05-23 2014-12-03 上海宝芯源功率半导体有限公司 一种超级势垒整流器结构及其制作方法
CN104576362A (zh) * 2014-12-08 2015-04-29 天水天光半导体有限责任公司 一种100v肖特基二极管制作工艺
CN104637812A (zh) * 2013-11-13 2015-05-20 上海华虹宏力半导体制造有限公司 成长高可靠性igbt终端保护环的方法
CN104659110A (zh) * 2014-12-22 2015-05-27 天津天物金佰微电子有限公司 稳压二极管及其加工工艺
CN105336606A (zh) * 2015-12-10 2016-02-17 天水天光半导体有限责任公司 一种降低二次击穿比率的40v肖特基二极管的制作工艺
CN105355554A (zh) * 2015-12-10 2016-02-24 天水天光半导体有限责任公司 一种100v肖特基二极管台面制作方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7229866B2 (en) * 2004-03-15 2007-06-12 Velox Semiconductor Corporation Non-activated guard ring for semiconductor devices
US7227234B2 (en) * 2004-12-14 2007-06-05 Tower Semiconductor Ltd. Embedded non-volatile memory cell with charge-trapping sidewall spacers
US7544557B2 (en) * 2004-12-15 2009-06-09 Tower Semiconductor Ltd. Gate defined Schottky diode
US7368760B2 (en) * 2004-12-15 2008-05-06 Tower Semiconductor Ltd. Low parasitic capacitance Schottky diode
US7485941B2 (en) * 2004-12-15 2009-02-03 Tower Semiconductor Ltd. Cobalt silicide schottky diode on isolated well
EP1691407B1 (en) * 2005-02-11 2009-07-22 EM Microelectronic-Marin SA Integrated circuit having a Schottky diode with a self-aligned floating guard ring and method for fabricating such a diode
US7279390B2 (en) * 2005-03-21 2007-10-09 Semiconductor Components Industries, L.L.C. Schottky diode and method of manufacture
US7820473B2 (en) * 2005-03-21 2010-10-26 Semiconductor Components Industries, Llc Schottky diode and method of manufacture
US7195952B2 (en) * 2005-03-22 2007-03-27 Micrel, Inc. Schottky diode device with aluminum pickup of backside cathode
US20080036048A1 (en) * 2006-08-10 2008-02-14 Vishay General Semiconductor Llc Semiconductor junction device having reduced leakage current and method of forming same
DE102007011406B4 (de) * 2007-03-08 2009-10-22 Austriamicrosystems Ag Verfahren zur Herstellung einer Schottky-Diode und Halbleiterbauelement mit Schottky-Diode
US20080293205A1 (en) * 2007-05-23 2008-11-27 Oh-Kyum Kwon Method of forming metal silicide layer, and method of manufacturing semiconductor device using the same
RU2550374C1 (ru) * 2014-02-21 2015-05-10 Открытое акционерное общество "Оптрон" Кремниевый диод с барьером шоттки и способ его изготовления
JP2022500878A (ja) * 2018-09-21 2022-01-04 エルファウンドリー エッセ.エッレ.エッレ 半導体の垂直ショットキーダイオード及びその製造方法
CN111146294B (zh) * 2019-12-05 2023-11-07 中国电子科技集团公司第十三研究所 肖特基二极管及其制备方法
US11349010B2 (en) * 2019-12-30 2022-05-31 Taiwan Semiconductor Manufacturing Company Ltd. Schottky barrier diode with reduced leakage current and method of forming the same
TWI743818B (zh) * 2020-06-02 2021-10-21 台灣半導體股份有限公司 具有多保護環結構之蕭特基二極體

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5109256A (en) * 1990-08-17 1992-04-28 National Semiconductor Corporation Schottky barrier diodes and Schottky barrier diode-clamped transistors and method of fabrication
US5163179A (en) * 1991-07-18 1992-11-10 The United States Of America As Represented By The Secretary Of The Air Force Platinum silicide infrared diode
US6211560B1 (en) * 1995-06-16 2001-04-03 The United States Of America As Represented By The Secretary Of The Air Force Voltage tunable schottky diode photoemissive infrared detector
US5888891A (en) * 1996-08-23 1999-03-30 International Rectifier Corporation Process for manufacturing a schottky diode with enhanced barrier height and high thermal stability
DE19723176C1 (de) * 1997-06-03 1998-08-27 Daimler Benz Ag Leistungshalbleiter-Bauelement und Verfahren zu dessen Herstellung
DE19853743C2 (de) * 1998-11-21 2000-10-12 Micronas Intermetall Gmbh Halbleiter-Bauelement mit wenigstens einer Zenerdiode und wenigstens einer dazu parallel geschalteten Schottky-Diode sowie Verfahren zum Herstellen der Halbleiter-Bauelemente
US6184564B1 (en) * 1998-12-28 2001-02-06 International Rectifier Corp. Schottky diode with adjusted barrier height and process for its manufacture
US6624030B2 (en) * 2000-12-19 2003-09-23 Advanced Power Devices, Inc. Method of fabricating power rectifier device having a laterally graded P-N junction for a channel region
DE19930781B4 (de) * 1999-07-03 2006-10-12 Robert Bosch Gmbh Diode mit Metall-Halbleiterkontakt und Verfahren zu ihrer Herstellung
CN1337747A (zh) * 2000-08-04 2002-02-27 北京普罗强生半导体有限公司 新型金属半导体接触制作肖特基二极管
US20020074591A1 (en) * 2000-08-16 2002-06-20 Macronix International Co.,Ltd. Non-volatile flash memory cell with application of drain induced barrier lowering phenomenon
FR2816113A1 (fr) * 2000-10-31 2002-05-03 St Microelectronics Sa Procede de realisation d'une zone dopee dans du carbure de silicium et application a une diode schottky
DE10101081B4 (de) * 2001-01-11 2007-06-06 Infineon Technologies Ag Schottky-Diode
FR2832547A1 (fr) * 2001-11-21 2003-05-23 St Microelectronics Sa Procede de realisation d'une diode schottky sur substrat de carbure de silicium
CN1171319C (zh) * 2002-06-26 2004-10-13 浙江大学 高频肖特基二极管

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100372128C (zh) * 2005-07-28 2008-02-27 浙江大学 一种锗硅肖特基二极管及其制作方法
CN103050548A (zh) * 2012-12-27 2013-04-17 北京燕东微电子有限公司 肖特基二极管及其制造方法
CN104183485A (zh) * 2013-05-23 2014-12-03 上海宝芯源功率半导体有限公司 一种超级势垒整流器结构及其制作方法
CN104183485B (zh) * 2013-05-23 2017-11-10 上海宝芯源功率半导体有限公司 一种超级势垒整流器结构及其制作方法
CN104637812A (zh) * 2013-11-13 2015-05-20 上海华虹宏力半导体制造有限公司 成长高可靠性igbt终端保护环的方法
CN104576362A (zh) * 2014-12-08 2015-04-29 天水天光半导体有限责任公司 一种100v肖特基二极管制作工艺
CN104659110A (zh) * 2014-12-22 2015-05-27 天津天物金佰微电子有限公司 稳压二极管及其加工工艺
CN104659110B (zh) * 2014-12-22 2017-11-21 天津天物金佰微电子有限公司 稳压二极管及其加工工艺
CN105336606A (zh) * 2015-12-10 2016-02-17 天水天光半导体有限责任公司 一种降低二次击穿比率的40v肖特基二极管的制作工艺
CN105355554A (zh) * 2015-12-10 2016-02-24 天水天光半导体有限责任公司 一种100v肖特基二极管台面制作方法
CN105355554B (zh) * 2015-12-10 2019-01-18 天水天光半导体有限责任公司 一种100v肖特基二极管台面制作方法
CN105336606B (zh) * 2015-12-10 2019-04-30 天水天光半导体有限责任公司 一种降低二次击穿比率的40v肖特基二极管的制作工艺

Also Published As

Publication number Publication date
CN1305121C (zh) 2007-03-14
TWI234289B (en) 2005-06-11
TW200512942A (en) 2005-04-01
US6825073B1 (en) 2004-11-30

Similar Documents

Publication Publication Date Title
CN1305121C (zh) 具高崩溃电压及低逆向漏电流的萧特基二极管及制造方法
US7078780B2 (en) Schottky barrier diode and method of making the same
CN1209822C (zh) 沟槽金属氧化物半导体器件和端子结构
CN1211843C (zh) 形成沟槽金属氧化物半导体器件和端子结构的方法
US9064904B2 (en) MOS P-N junction Schottky diode device and method for manufacturing the same
CN109742148B (zh) 碳化硅umosfet器件及其制备方法
US6998694B2 (en) High switching speed two mask Schottky diode with high field breakdown
JPS6138870B2 (zh)
US8853748B2 (en) Rectifier with vertical MOS structure
US7368371B2 (en) Silicon carbide Schottky diode and method of making the same
TWI237901B (en) Schottky barrier diode and method of making the same
CN103887168B (zh) 萧特基整流元件的制造方法及形成方法
US6936905B2 (en) Two mask shottky diode with locos structure
CN112885924A (zh) 一种太阳能电池及其制作方法
CN112133769A (zh) 太阳能电池及其制造方法
US9595617B2 (en) MOS P-N junction diode with enhanced response speed and manufacturing method thereof
CN111799338B (zh) 一种沟槽型SiC JBS二极管器件及其制备方法
US20120012176A1 (en) Solar cell and method of manufacturing the same
CN113658922A (zh) 用于增强可靠性的jbs碳化硅二级管器件结构及制造方法
CN113299732A (zh) 半导体器件、芯片、设备和制造方法
CN111799336B (zh) 一种SiC MPS二极管器件及其制备方法
KR100598348B1 (ko) 실리콘 기반 씨모스 공정을 이용한 쇼트키 다이오드제조방법
CN114883409B (zh) 功率半导体器件及其应用
RU2815034C1 (ru) Контактирующий задней стороной солнечный элемент и изготовление такого элемента
EP4068392A1 (en) Photovoltaic device with passivated contact and corresponding method of manufacture

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070314

Termination date: 20130511