CN1592034A - 电动发电机 - Google Patents
电动发电机 Download PDFInfo
- Publication number
- CN1592034A CN1592034A CNA2004100685965A CN200410068596A CN1592034A CN 1592034 A CN1592034 A CN 1592034A CN A2004100685965 A CNA2004100685965 A CN A2004100685965A CN 200410068596 A CN200410068596 A CN 200410068596A CN 1592034 A CN1592034 A CN 1592034A
- Authority
- CN
- China
- Prior art keywords
- salient pole
- winding
- group
- motor generator
- salient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/12—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
- H02K21/14—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
- H02K21/16—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/10—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
- B60L50/16—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/02—Details
- H02K21/04—Windings on magnets for additional excitation ; Windings and magnets for additional excitation
- H02K21/046—Windings on magnets for additional excitation ; Windings and magnets for additional excitation with rotating permanent magnets and stationary field winding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2220/00—Electrical machine types; Structures or applications thereof
- B60L2220/10—Electrical machine types
- B60L2220/14—Synchronous machines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2220/00—Electrical machine types; Structures or applications thereof
- B60L2220/10—Electrical machine types
- B60L2220/16—DC brushless machines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2220/00—Electrical machine types; Structures or applications thereof
- B60L2220/50—Structural details of electrical machines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
- Windings For Motors And Generators (AREA)
- Wind Motors (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
本发明的电动发电机具有在多个凸极上卷绕绕组的定子、以及沿圆周方向等间隔配置数量多于凸极的永磁体的转子,前述凸极由第一凸极群及第二凸极群构成,该第一凸极群具有多个卷绕加上同相电压的绕组而且相互相邻、同时相互相邻的凸极的绕组卷绕方向相反的凸极组I、II及III,该第二凸极群由位于异相的凸极组之间并卷绕绕组的凸极构成,对第一绕组群8及第二绕组群9分别输入输出电力,通过采用这样的结构,既能够形成节省空间及降低成本的结构,还能够输入输出多种不同功率,而且能够自由设计其输入输出功率的分配。
Description
技术领域
本发明涉及电动发电机,特别涉及能够适用于纯粹的电动汽车(PEV)及混合型电动汽车(HEV)及燃料电池汽车(FCEV)等电动汽车、多输出的风力发电机、以及内燃发电机等的电动发电机。
背景技术
例如,在将内燃机及电动机作为驱动部的混合型电动汽车中采用的结构是,具备电动机驱动的高压系列电池、以及灯和音响灯辅助设备用的低压系列电池这两种电池,该高压系列电池利用车辆上安装的电动发电机充电。
图28所示为已有的混合型电动汽车的构成。其构成如下,101为内燃机,102为电动机,通过103的动力切换及传递机构,将某一方或双方的动力传递给车轮。电动机102利用来自高压电池104的功率,通过功率变换装置进行驱动控制。106为交流发电机,随着内燃机101的旋转而发电,对低压系列电池107充电。在高压电压104充电时,使电动机102作为发电机动作,通过功率变换装置105进行充电。
另外,作为其他的已有的混合型电动汽车,还知道有一种是从高压电池104通过DC-DC变换器进行充电,来代替上述那样用交流发电机106对低压系列电池107进行充电。
另外,关于电动发电机,提出许多励磁绕组方式的电动发电机,也知道有一种与高压系列电池连接的绕组与低压系列电池连接的绕组的两个绕组的方案(例如参照日本专利特开平6-105512号公报)。
然后,在上述那样的已有的电动汽车驱动系统的情况下存在的问题是,必须对驱动系统的高压系列及辅助设备用的低压系列分别备有电动发电机,或者必需备有单一的电动发电机及DC-DC变换器,除了安装空间增大外,成本也提高。
再有,在励磁绕组方式中采用的两个绕组的情况下存在的问题是,若卷绕车辆驱动用的绕组,则电动发电机的体积非常大,车辆上不能安装,同时还存在的问题是,由于是励磁绕组,因此难以同时对各绕组进行控制。
发明内容
因此,本发明鉴于上述已有的问题,目的在于提供一种电动发电机,它以采用永磁体的励磁方式,将多种电动发电机组合构成一体,通过这样能够从节省空间及降低层本的结构,输出输入不同的多种功率,还进一步能够自由设计该输出输入功率的分配。
为了达到上述目的,本发明的电动发电机具有在定子铁心设置的多个凸极的各个凸极上卷绕绕组的定子、以及在转子铁心上沿圆周方向等间隔配置数量多于前述凸极数量的永磁体的转子,前述凸极由第一凸极群及第二凸极群构成,前述第一凸极群具有多个由卷绕加上同相电压的绕组而且相互相邻、同时相互相互相邻的凸极的绕组卷绕方向相反的多个凸极构成的组,前述第二凸极群由位于第一凸极群的相互相邻的凸极组之间的一个或多个凸极构成、而且在多个凸极的情况下相邻凸极的绕组卷绕方向相反,第一凸极群及第二凸极群的每个凸极群对各绕组分别输入输出电力。
若采用这样的结构,由于是采用永磁体的励磁方式,而且在数量少于该永磁体的各凸极上分别卷绕绕组,是这样简单的结构,因此能够形成节省空间及降低成本的结构,而且用第一凸极群及第二凸极群构成该凸极,对第一凸极群的绕组及第二凸极群的绕组分别输入及输出功率,通过这样能够输入输出多种功率,而且通过任意选择第一凸极群及第二凸极群的凸极数,能够自由设计输入输出功率的分配。
另外,本发明的其他的电动大发电机具有在定子铁心设置的多个凸极的各个凸极上卷绕绕组的定子、以及在转子铁芯上沿圆周方向等间隔配置数量多于前述凸极数量的永磁体的转子,将前述凸极区分为由卷绕加上同相电压的绕组而且相互相邻、同时相互相邻的凸极的绕组卷绕方向相反的多个凸极构成的多个组,再进一步在各组内将凸极分成多个二次凸极群,每个凸极群对各绕组分别输入输出电力。
若采用这样的结构,由于是采用永磁体的励磁方式,而且在数量少于该永磁体的各凸极上分别卷绕绕组,是这样简单的结构,因此能够形成节省空间及降低成本的结构,而且在凸极的多个组内将各凸极分成多个二次凸极群,各二次凸极群相对于各绕组分别输入输出电力,这样能够输入输出多种电力,通过任意设定二次凸极群,能够自由设计输入输出功率的分配。
另外,本发明的另外其他的电动发电机具有在定子铁芯设置的多个凸极的各个凸极上卷绕绕组的定子、以及在转子铁芯上沿圆周方向等间隔配置数量多于所述凸极数量的永磁体的转子,所述凸极由第一凸极群及第二凸极群构成,所述第一凸极群具有多个由卷绕加上同相电压的绕组而且相互相邻、同时相互相邻的凸极的绕组卷绕方向相反的多个凸极构成的组,所述第二凸极群由位于第一凸极群的相互异相的凸极组之间的一个或多个凸极构成。而且在多个凸极的情况下相互相邻凸极的绕组卷绕方向相反,第一凸极群的各凸极组内及第二凸极群内的某一方或双方将凸极分成多个二次凸极群,第一凸极群及第二凸极群的每个凸极群、或者在它们分成二次凸极群的情况下的每个该二次凸极群对各卷组分别别输入输出功率。
若采用这样的结构,通过同时采用上述两项发明的电动发电机,除了它们的共同的效果以外,还能够分别输入输出不同的三种及三种以上的功率,并能够任意设定其功率分配。
另外,本发明的另外其他的电动发电机具有在定子铁心设置的多个凸极的各个凸极上卷绕绕组的定子。以及在转子铁芯上沿圆周方向等间隔配置数量多于所述凸极数量的永磁体的转子,将前述凸极区分为卷绕加上同相电压的绕组而且相互相邻、同时相互相邻凸极的绕组卷绕方向相反的多个组,并将这样构成的单元沿轴向重叠配置多个,每个单元改变叠厚或直径,对各单元的绕组分别输入输出电力。
若采用这样的结构,由于是采用永磁体的励磁方式,而且在数量少于该永磁体的各凸极上分别卷绕绕组,是这样简单的结构,因此能够形成节省空间及降低成本的结构,而且通过改变单元的叠厚或直径,能够任意设定功率分配,能分别输入输出多种功率。
另外,在这些电动发电机的结构中,转子是将永磁体配置在转子铁心表面的结构,也可以埋入铁心配置,获得磁阻转矩那样的结构。另外,这些电动发电机不仅能够适用于在定子内侧配置可自由旋转的转子的内转子型电动发电机,而且还能够适用于在定子的外周配置可自由旋转的转子的外转子型电动发电机。
附图说明
图1所示为本发明第一实施形态的简要结构剖视图。
图2为说明第一实施形态的绕组接线状态的接线图。
图3所示为第一实施形态的第一变形例的剖视图。
图4为在第一实施形态的第二变形例中凸极形成倾斜状态的说明图。
图5所示为第一实施形态的第三变形例中输出引线配置状态的轴向剖视图。
图6所示为第一实施形态的第四变形例的主要部分结构剖视图。
图7A~图7B所示为本发明的第二实施形态,图7A为主要部分的立体图,图7B为磁阻型转子的平面图。
图8为本发明第三实施形态的定子铁心剖视图。
图9所示为本发明第四实施形态的简要结构剖视图。
图10所示为第四实施形态的第一变形例的主要部分结构剖视图。
图11所示为第四实施形态的第二变形例的主要部分结构剖视图。
图12所示为第四实施形态的第三变形例的主要部分结构剖视图。
图13所示为本发明第五实施形态的主要部分结构剖视图。
图14为第五实施形态的变形例的定子铁心剖视图。
图15为第五实施形态的其他变形例的定子铁心剖视图。
图16所示为本发明第六实施形态的主要部分结构剖视图。
图17A~图17B所示为第六实施形态的变形例,图17A所示为主要部分结构剖视图,图17B为图17A的沿箭头XVIIB的视图。
图18A~图18B所示为第六实施形态的其他变形例,图18A所示为主要部分结构剖视图,图18B为图18A的沿箭头XVIIIB的视图。
图19所示为本发明第七实施形态的主要部分结构剖视图。
图20A~图20C分别所示为第七实施形态的各种变形例的主要部分结构剖视图。
图21所示为本发明第八实施形态的主要部分结构剖视图。
图22所示为本发明第九实施形态的主要部分结构剖视图。
图23所示为本发明第十实施形态的简要结构剖视图。
图24所示为第十实施形态的变形例的简要结构剖视图。
图25A~图25B所示为本发明的第十一实施形态,图25A所示为简要结构轴向剖视图,图25B所示为变形结构例的简要结构轴向剖视图。
图26安装有本发明的电动发电机的电动汽车的简要结构图。
图27使用安装有本发明的电动发电机的风力机、内燃机、外燃机的发电机的简要结构图。
图28为安装已有技术例的电动发电机的混合型电动汽车简要结构图。
具体实施方式
以下参照图1~图27对本发明的电动发电机的各实施形态进行说明。
第一实施形态
首先,参照图1~图6说明本发明电动发电机的第一实施形态,图1为将本实施形态的电动发电机沿垂至于旋转中心轴的面进行剖面的剖视图,图2为它的绕组的接线图。在图1中,在将电磁钢片层叠而构成的定子铁心1上设置构成第一凸极群4的多个凸极2及构成第二凸极群5的多个凸极3(画上斜线,以与凸极2区别),在凸极2上卷绕构成第一绕组群8的绕组6,在凸极3上卷绕构成第二绕组群9的绕组7,这样构成定子10。
另外,在将电磁钢片层叠而构成的转子铁心12上等间隔埋入配置多个(偶数)永磁体13,这样构成转子11,与定子10的凸极2、3之间隔着很小的间隙配置,能绕旋转中心○自由旋转。永磁体13这样配置,使得相互相邻的永磁体面向不同的磁场方向。另外,永磁体13可以埋入转子铁心12,也可以配置在转子铁心12的表面,若如图所示采用埋入的结构,则转子11的与定子10相对的部分如图1的箭头m所示,形成磁阻低磁通比较容易通过的部分及因永磁体13的作用形成的磁阻高而磁通比较难通过的部分,这样q轴方向的电感与d轴方向的电感产生差异,能够产生磁阻转矩,能够使产生的转矩形成高转矩,这一点是比较好的。
在图1及图2中,卷绕第一绕组群8的绕组6的第一凸极群4的凸极2全部为6个,如图2所示,分为3个凸极组,即对在该凸极2上卷绕的绕组6加上U相电压的凸极组I、加上V相电压的凸极组II及加上W相电压的凸极组III,对各凸极组分别配设两个凸极2。然后,各凸极组I、II及III以电角度为120°的相位差配置,第一绕组群8构成U相、V相及W相的三相绕组。另外,在各凸极组I、II及III中,相互相邻的凸极2的绕组6的卷绕方向互相取相反方向,使得相邻的凸极2的极性互相反转而构成。这样,能够缓和磁场的偏移,能够减少电动机驱动时在绕组端子之间产生的反电动势的波形失真,能够降低铁损。另外,这些在2个凸极2上卷绕的绕组6在图示的例子中是串联连接,但也可以是并联连接。另外,在图示的例子中三相绕组是星形联接,但也可以三角形联接。14是第一绕组群8的各相绕组6的端子,15是各相绕组6的中性联接点。
在凸极组I、II与III之间各配置1个卷绕第二绕组群9的绕组7的第二凸极群5的凸极3,分别加上r相、s相及t相的电压。16是第二绕组群9的各相绕组7的端子,17是各相绕组7的中性联接点。另外,在图示的例子中,在第二绕组群9的凸极组I、II与III之间的配置的凸极3是1个,但在多个的情况下,相互相邻的凸极3的绕组7的卷绕方向互相取相反方向,使得相邻的凸极3的极性互相反转而构成。
这样,在本实施形态中,第一凸极群4的各凸极组I、II及III分别具有2个凸极2(即第一凸极群4为2齿),将U相、V相及W相的一套绕组作为1组,具有1组的绕组组数,用6个凸极2构成。另外,第二凸极群5在各凸极组I、II与III之间具有1个凸极3(即第二凸极群5为1齿),将r相、s相及t相的一套绕组作为1组,具有1组的绕组组数,用3个凸极3构成。因此,定子10具有第一凸极群4的6个凸极2及第二凸极群5的3个凸极3,共计有9个凸极。
这里,设第一凸极群4的凸极2的个数为t1,第二凸极群5的凸极3的个数为t2,总凸极数为T(=t1+t2),第一凸极群4的齿数与第二凸极群5的齿数之和为n,绕组组数为s,k为正整数,则总凸极数T由下式给出,即
T=3×s×n ……(1)
另外,转子11的永磁体13的极数P满足下式,即
p=2×(s(±1+3k)) ……(2)
而且设定为大于T的值。
上述式(2)是根据在第一绕组群4中依次流过U、V及W的电流时能平稳旋转的条件来决定的。即,若设永磁体的极对数为P/2,则永磁体的感应的电压波形Be可以表示为
Be=sin(P/2×θ) ……(3)
这里由于是三相电动机,因此U、V及W在电角度上各相差120°。所以,在以电角度相差120°对各相绕组通电时,只要转子以相同角度沿相同方向旋转即可,因而只要下式成立即可,即
sin(P/2(θ+120/s))
=sin(P/2×θ±120+360k) ……(4)
式(4)表示在感应电压波形(转子)处于从某一时刻的Be=0起相差电角度120°的位置(式子的表现是机械角度)时,在定子一侧的其他轴上,若与相差120°(U、V、W的相差)的位置相同,则即使依次在从U至V、再从V至W的相差120°的位置通电,转子位置(感应电压波形Be)也始终在电气上取得相同的值,表示能够平稳旋转1圈,若整理式(4),则极对数P/2为
P/2=s(±1+3k) ……(5)
极数P如上述式(2)所示,是绕组组数s的函数。
作为这样求出的极数P与总凸极数T的组合的具体例子,可以举出表1所示的关系。
在表1中,永磁体13的极数P可以取大于T的各种数值,但若如画斜线的栏目所示,采用大于T的数值中最小的值,则效率最高,因此是比较理想的。在本实施形态中,由于由凸极2及3形成的总凸极数T为9,因此永磁体13的极数P设定为10。
表1
在以上的结构中,是对第一凸极群4及第二凸极群5分别输入输出功率而构成。因而,通过任意选择构成第一凸极群5的凸极2的数量及构成第二凸极群5的凸极3的数量,能够自由设计输入输出功率的分配。另外,本实施形态的电动发电机由于是以采用永磁体13的励磁方式,而且在数量少于永磁体的凸极2及3上分别卷绕集中卷绕的绕组6及7的简单结构因此能够形成紧凑、低成本的结构。
另外,在图1及图2的图示例子中,第一凸极群4的凸极2的配置间距与永磁体13的配置间距、即360/P(=36°)相等,第二凸极群5的凸极3以120°间隔配置,通过这样将与凸极2之间3的间隔设定为42°。这样,若使第一凸极群4的凸极2的配置间隙与永磁体1 3的配置间隙近似相等,则由于凸极2与永磁体13的相位一致,因此没有相位偏移,能够得到很好的控制性能。另外,若从整个定子10的圆周来看,由于第一凸极群4的凸极2及第二凸极群5的凸极3的配置间距不均匀,因此产生齿槽转矩不均匀的问题。因此,第一凸极群4的凸极2的配置间距要根据控制性与齿槽转矩哪一个特性优先,在等于永磁体13的配置间距的360/P(=36°)与以等间隔配置凸极2及3的360/T(=40°)之间选择。
另外,如上所所述,由于P>T,因此永磁体13的配置间距小于凸极2及3的平均配置间距,所以如图1所示,设永磁体13的圆周方向的有效宽度为的d1,凸极2及3的前端部的圆周方向宽度为d2,则可以设定为d1≤d2,实际上是这样设定的。通过这样,由于整个永磁体13一定与凸极2及3的前端部重叠,因此感应电压波形为正弦波,能够防止发生感应电压波形失真,能够提高发电电压的控制性,是比较理想的。
另外,在凸极2及3的配置间距不是360/T时,若图3所示,调整凸极2及3的前端部沿圆周方向向两侧延伸的脚18的长度,使得凸极2与2之间的开口槽角度os1和凸极2与3之间的开口槽角度os2近似相同,则能够减小永磁体13在通过开口槽时的磁路的磁导率变化,能减小齿槽转矩。
另外,在第一凸极群4的凸极2的配置间距不是360/P时,若在各凸极组I、II及III中,如图4所示,对凸极2设置360/P之间的任意角度的倾斜,则能够减少凸极2与永磁体13的相位偏移的影响,能够既力图减少齿槽转矩,又特别是能够提高高速下的控制性。另外,在图4所示的例子中,所示的例子是设置角度β的倾斜,它是凸极2的一端的配置间距是360/T,而另一端的配置间距是360/P而形成的,但也可以设置0~β之间的任意角度的倾斜。
另外,第一绕组群6的输出引线19及第二绕组群8的输出引线20分别如图5所示,采用沿电动发电机的轴向的互相相反方向引出的结构,能够以紧凑的结构很容易确保输出引线19与20之间的绝缘。
另外,在第一凸极群4的凸极2的配置间距θs与永磁体13的配置间距(360/P)不一致、360/P<θs≤360/T时,在各凸极组I、II及III中,为了消除因凸极2与2之间的相位差而而引起的磁通密度的差异,比较理想的是使各凸极2的绕组6的卷绕部截面积如图6所示,相对于位于转子11的旋转方向后方侧的凸极2的截面积w1,使位于前方侧的凸极2的截面积w2减小,再使位于更前方的凸极2的截面积w3更减小。通过这样,在各凸极组I、II及III中,磁通密度均匀,各凸极2上卷绕的绕组6中产生的感应电压一定,发生电压的控制性提高。另外,对于减小截面积的凸极2,能够增大绕组6的导线直径,因此能够减少铜损,能够提高效率。
第二实施形态
下面参照图7A~图7B,说明本发明的第二实施形态。另外,在以下实施形态说明中,对于与前述的实施形态共同的构成要素,则附加相同的参照标号,并省略说明,主要仅说明不同点。
在上述实施形态中,所示的例子是转子11仅由在转子铁心12中埋入永磁体13的永磁型转子构成,而在本实施形态中,是将转子铁心12中埋入永磁体13的永磁型转子部21、与图7B所示那样在转子铁心23的外周部隔开等间隔形成凹进部24而形成与永磁体13相同数量的凸极25的磁阻型转子部22,如图7A所示那样沿轴向层叠而构成转子11。
根据该结构,能够更多地利用磁阻转矩,从而能够得到下面那样的效果。即,在不使凸极2的配置间距采用360/P,从而与控制性相比,优先考虑齿槽转矩特性时,特别是高速旋转时的控制性恶化,但通过利用磁阻转矩,能够提高控制性,能够构成齿槽转矩特性好、而且高速时也具有很好的控制性的电动发电机。
第三实施形态
下面参照图8说明本发明的第三实施形态。在上述实施形态中,是对第一凸极群4为2齿、第二凸极群5为1齿、合计为3齿的电动发电机进行了说明,而在本实施形态中,所举的电动发电机的例子是,第一凸极群4为3齿,第二凸极群5为2齿,合计为5齿,总凸极数为15,永磁体13的极数为16(未图示)。这样,在第二凸极群5的齿数为多个时,设第一凸极群4的凸极2的配置间距为24°(360/T),同时设第二凸极群5的凸极3的配置间距为22.5°(360/P)。再进一步调整各凸极2及3的前端部沿圆周方向两侧延伸的脚18的长度,使得凸极2与2之间的开口槽角度os1、凸极2与3之间的开口槽角度os2、以及凸极3与3之间的开口槽角度os3近似相同。
根据该结构,在使用第一凸极群4作为电动机或发电机、而使第二凸极群5主要作为发电机使用时,利用第一凸极群4能够得到齿槽转矩特性好的的电动机,而且由于第二凸极群5的凸极3与永磁体13的相位完全一致,从而发生电压的控制性提高,因此能够得到良好的发电电压特性,再加上由于使凸极间的开口槽均匀,因此能够减小永磁体13通过开口槽时的磁路的磁导率变化,在第二凸极群5中也能够减小齿槽转矩。
第四实施形态
下面参照图9~图12,说明本发明的第四实施形态。图9所示的电动发电机的例子是,第一凸极群4为5齿,第二凸极群5为2齿,合计为7齿,总凸极数为21,永磁体13的极数为22。这样,在第二凸极群5有多个凸极3时,如图10所示,这样构成即在相互相邻的各凸极3上,除了绕组7,另外还沿同方向卷绕控制绕组26,并串联连接,将直流电源28通过控制部27与这些控制绕组26连接,流过控制用的直流电流。另外,如图11所示,在第二凸极群3的相互相邻的凸极3的数量是奇数时,比较理想的是同极性的凸极3上卷绕的控制绕组26的匝数之和与反极性的凸极3上卷绕的控制绕组26的匝数之和近似相等。另外,也可以如图12所示,跨越第二凸极群5的相互相邻的凸极3与3之间卷绕控制绕组。另外,在图10~图12中,所示的是在凸极3的前端侧配置绕组7、而在根部侧配置控制绕组26的例子,但该绕组7与控制绕组26的配置关系也可以反过来。
采用该结构,通过在相位不同的相邻凸极3上沿同方向卷绕控制绕组26并串联连接,能够使控制绕组26中感应的电压为零,其结果能够从直流电源28通过控制部27在控制绕组26中流过直流电流,这样通过直流电流,能够使凸极3的磁阻变化,控制与凸极3上卷绕的绕组的交链磁通量。其结果,能够控制绕组7产生的发电电压,能够从第二凸极群5上卷绕的第二绕组群9取出规定电压的功率。
第五实施形态
下面参照图13~图15,说明本发明的第五实施形态。在本实施形态中,如图13所示,在第二凸极群5的相互相邻的凸极3与3之间设置分流的旁路29,使得通过这些凸极3的来自永磁体13的磁通相对于绕组7的卷绕部产生分流。
由于绕组7中感应的电压与转速成正比,因此高速旋转时将产生相当高的高压电,而根据该结构,通过适当设定旁路29,能够在最高转速时也能够将绕组7的感应电压抑制在最大允许电压以下。
再有,也可以如图14所示,将凸极3的设置在比绕组卷绕部30更前端侧的本来的凸极宽度a0的部分之间用旁路连接,同时使凸极3的绕组卷绕部30的凸极宽度a2小于旁路29的宽度a1。这样,在以高速旋转时,由于凸极3的绕组7的卷绕部与凸极宽度a2较窄,因此磁通饱和,发电电压达到顶点,能够将感应电压控制为一定值。另外,若减小凸极3的绕组卷绕部30的凸极宽度a2,为由于凸极3的强度降低,因此也可以如图15所示,在凸极3与3之间用1个或多个桥路31将旁路29与定子铁心1的轭铁部之间连接,以确保必要的强度。
第六实施形态
下面参照图16~图18B,说明本发明的第六实施形态。在上述实施形态中,所示的例子是设置使来自永磁体13的磁通分流的旁路29,对最大感应电压加以限制,而在本实施形态中,是如图16所示构成的,即在旁路29上卷绕控制绕组32,来控制流过该控制绕组32的电流。
根据该结构,通过在控制绕组32中流过电流,使其产生与图16中实线箭头所示的来自永磁体13的磁通通过旁路29的方向相反的虚线箭头所示的控制绕组磁通,就能够控制通过旁路29的磁通量,这样能够控制通过凸极3的绕组卷绕部的来自永磁体13的磁通量,主动地控制绕组7中感应的电压,即使从第二绕组群9取出电流变化,也能够进行控制,使得将输出电压维持在规定值。
在图16的例子中,所示的例子是沿旁路29的旋转轴心方向的周围卷绕控制绕组32,这样使得控制绕组磁通通过旁路29、凸极3、定子轭铁及突极3,但也可以如图17A~图17B所示,在旁路29的旋转轴心方向的中间部分形成卷绕控制绕组32用的缝隙33,在旁路29的旋转轴心方向的一部分的周围卷绕1个或多个控制绕组32,使控制绕组磁通如虚线所示,在旁路29内呈环形通过。另外,也可以如图18A~图18B所示,在旁路29的圆周方向的中间部分形成卷绕控制绕组32的多个缝隙34,在旁路29的圆周方向的一部分的周围卷绕1个或多个控制绕组32,使控制绕组磁通如虚线所示,在旁路29内成环形通过。
第七实施形态
下面参照图19及图20A~20C,说明本发明的第七实施形态,在本实施形态中,如图19所示,设置例如铜、铝、铁或它们的合金构成的环形的短路环35,比使其在凸极3的绕组7的卷绕部更靠近转子11的一侧部分包围凸极3。
根据该结构,利用与短路环35交链的来自永磁体13的磁通,在短路环35中感应电压,若设能够忽略直流电阻值,则由于产生与该交链磁通同相位方向相反的磁通,对来自永磁体13的磁通产生抵消方向的作用,因此与绕组7交链的磁通减少,能够抑制绕组7的发生电压,能够使得高速旋转时第二绕组群9的端电压不超过规定值。另外,由于仅在凸极3上设置短路35,因此结构简单,零部件数量少,而且可靠性也非常好。
在图19的例子中,所示的例子是在比绕组7更靠近转子11一侧的位置在凸极3的外周配置短路环35,但也可以如图20A所示,在凸极3的与转子11相对的内圆周面的中间部分设置凹进部36,设置短路环35,使其包围该凹进部36与凸极3的转子旋转方向的两侧面的任一侧面之间。若这样构成,则来自永磁体13的磁通的一部分与短路环35交链,而且该短路环35产生的磁通的一部分如箭头37所示,分散在短路环35的周围形成的闭合磁路中,抑制了利用短路环35对来自永磁体13的磁通的抵消效果。因而,通过在凸极3的一部分设置短路环35,能够调整其磁通抵消效果。
另外,同样也可以如图20B所示,在凸极3的内圆周面设置2个凹进部36,设置短路环35,使得包围夹在凹进部36与36之间的凸起部38。若这样,则利用短路环35形成的磁通的一部分如箭头37a及37b所示,分散在短路环35的周围形成的闭合磁路中,能够调整在凸极3的一部分设置短路环35而产生的磁通抵消效果。另外如图20C所示,设置2个短路环35使其分别包围2个凹进部36与凸极3的转子旋转方向的两侧面之间,也能够取得同样的作用效果。
第八实施形态
下面参照图21说明本发明的第八实施形态。本实施形态是同时采用上述参照图13~15(特别是图15)说明的第五实施形态和参照图19及图20A~20C说明的第七实施形态,是将凸极3与3之间用旁路29连接,同时在凸极3上设置短路环35,再进一步增大凸极3沿转子旋转方向的宽度,同时沿转子旋转方向隔开适当间隔形成1个和多个缝隙39,既减小凸极3的截面积又确保强度。同时配置1个和多个短路环35,使其包围缝隙39与凸极3的转子旋转方向的侧面之间及缝隙39与39之间。
若采用该结构,由于能够复合得到设置旁路29及短路环35所产生的上述作用效果,同时确保凸极3的强度,而且减小与各短路环35价廉的磁通量,因此作为短路环35,即使采用电流容量小的短路环,也没有产生烧坏的危险,能够以紧凑的结构使通过凸极3的绕组7的卷绕部的交链磁通近似一定,有效地减少高速旋转时的发生电压,使输出电压近似一定。另外,作为变形例,也可以采用不设置旁路29的结构,在这种情况下,通过在凸极3上设置缝隙39,并设置预与之对应的短路环35,就能够获得上述效果。
第九实施形态
下面参照图22说明本发明的第九实施形态。在本实施形态中,是在上述参照图13~15(特别是图15)说明的第五实施形态中,在该旁路29上卷绕发电用绕组40,使其取出功率,同时配置短路环41,使其包围该旁路29,通过这样使得发电用绕组40的端电压在高速旋转时也不会超过规定范围。通过这样在旁路29上也设置发电用绕组40,能够高效地取出功率。
第十实施形态
下面参照图23及24,说明本发明的第十实施形态。在上述的实施形态中,所示的电动发电机包括具有同相的多个凹构2构成的多个凸极组I及II及III的第一凸极群4、以及配置在凸极组之间的由1个或多个凸极3构成的第二凸极群5,凸极2及3的总数T小于永磁体13的极数P而构成,使其对第一及第二凸极群4及5分别输入输出功率,而在本实施形态中,如图23所示构成,在定子10上仅设置第一凸极群4,将该凸极2分成由卷绕分别加上U相及V相及W相电压的绕组6而且相互相邻、同时相互相邻的凸极2的绕组6的卷绕方向相反的多个凸极2构成的多个凸极组I、II及III,再在各凸极组I、II及III内,分别将凸极2分成多个二次凸极群I-1、I-2、II-1、II-2、III-1及III-2,这些二次凸极群(I-1、II-1、III-1)及(I-2、II-2、III-2)的每个二次凸极群对各自绕组6分别输入输出功率。
在该结构中,二次凸极群(I-1、II-1、III-1)及(I-2、II-2。III-2)的每个二次凸极群对各自绕组6分别输入输出功率,通过这样也能够分别输入输出多种功率,同时通过任意设定二次凸极群,能够自由设计输入输出功率的分配。另外,与上述实施形态相同,通过使永磁体13的极数P采用大于凸极2的总数T的数而且式(2)能够成立的极数P的最小的数,能够提高体积效率。
在图23的例子中,所示的是在二次凸极群(I-1、II-1、III-1)与(I-2、II-2、III-2)之间凸极2的沿转子旋转方向的宽度相同,但如图24所示,设第一二次凸极群(I-1、II-1、III-1)的凸极宽度为w1,第二二次凸极群(I-2、II-2、III-2)的凸极宽度为w2,通过取w1>w2,由于通过各自凸极2的交链磁通的饱和量不同,因此能够改变取出功率的分配。
另外,也可以对上述第一施形态中的第一凸极群4采用该第十实施形态,同时采用第二凸极群5,这样可提供从第一凸极群4的第一及第二二次凸极群和第二凸极群3能够分别输入输出3种或3种以上的功率的电动发电机。
第十一实施形态
下面参照图25A~25B,说明本发明第十一实施形态。如图23所示,具有在多个凸极2上的各个凸极上卷绕绕组6的定子10、以及沿圆周方向等间隔配置数量多于凸极2的数量的永磁体13的转子11,凸极2分成由卷绕分别加上U相及V相及W相电压的绕组6而且相互相邻、同时相互相邻的凸极2的绕组6的卷绕方向相反的多个凸极2构成的多个凸极组I、II及III,而本实施形态中,与图23不同的是,将不进行分成二次凸极群的多个单元42及43沿旋转轴心方向层叠配置而构成。另外,在图25A中,多个单元42及43的转子11是公用的形成一体的转子。
在该结构中,能够对各单元42及43分别输入输出功率,而且通过任意改变单元43及43的层厚及直径,能够任意设定功率分配。另外,与上述实施形态相同,通过使永磁体13的极数P采用大于凸极2的总数T的数而且式(2)能够成立的极数P的最小的数,能够提高体积效率。
另外,在本实施形态中,在发电功率较小的一方的单元43中,也可以如图25B所所示,采用无定子铁心仅由绕组构成的定子44,通过这样能够减少电动发电机的轴向长度。
再有,作为本实施形态的变形例,也可以将图1所示的具有第一凸极群4及第二凸极群5而构成的单元、与图23所示的将凸极组分成二次凸极群而构成的单元沿旋转轴心方向层叠配置,能够取出更多的电力。
图26是安装有本发明的电动发电机的电动汽车的简要结构图。在图26中,动力切换机构53向轮胎传递引擎5 1或电动发电机52的动力,或引擎51与电动发电机52两者的动力。电动发电机52具有两个独立的绕组,一个绕组端部通过电力变换装置54连接于高电压电池56(例如240V的电池),另一绕组端部通过另一电力变换装置54连接于低电压电池55(例如12V的电池)。
在图26所示的结构系统中,电动发电机分开连接于不同的两个电源,本发明的电动发电机在结构上也采用内部绕组独立配置的结构,因此容易确保绝缘。
又,将电动发电机52的一个绕组连接于高电压电池56上,以该绕组产生的动力使车辆行走,另一绕组连接于低电压电池55上,形成作为对该低电压电池55进行充电的发电机进行控制的结构,这样就能够在利用电动发电机52的动力驱动车辆行驶的情况下对低电压电池进行充电,即使是没有准备交流发电机、DC-DC变换器等分立构件的情况下也能够对低压电池55进行充电,能够节省成本和空间。
还有,在使用风力机、内燃机、外燃机57的发电机的情况下,如图27所示,利用风力等外部能量驱动电动发电机52,可以通过各自独立的电力变换装置54,作为独立的电源、例如12V电池、AC100V使用。
另外,在以上的实施形态中,说明的仅仅是在定子10的内侧配置自由旋转的转子11的内转子型电动发电机,但很明显,本发明也同样能够适用于在定子的外周配置自由旋转的转子的外转子型电动发电机,而且采用本发明能获得同样的效果。
以上各实施形态的电动发电机可作为PEV(Pure Vehicle:纯粹电动汽车)、HEV(Hybrid Electric Vehicle:混合型电动汽车)、FCEV(Fuel Cell ElectricVehicle:燃料电池电动汽车)等各种电动汽车的驱动用电动机使用,通过这样由于不需要像以往那样具备高压系列及低压系列的两种电动发电机,也不需要另外具备DC-DC变换器,因此能够构成节省空间而且降低成本的电动汽车驱动系统。另外,在风力发电机及内燃机或外燃机发电机等系统中,通过采用该电动发电机,由于也能够输入输出多种功率,同时能够自由设计其功率分配,因此能够发挥同样的效果。
如上所述,本发明的电动发电机由于是以采用永磁体的励磁方式而且在数量上少于永磁体的凸极上卷绕集中绕组的、简单而且在低成本的电动发电机,而且用第一凸极群及第二凸极群构成凸极,对第一及第二凸极群的绕组分别输入输出电力,因此能够输入输出多种功率,同时通过任意选择第一及第二凸极群的凸极数,能够自由设计输入输出功率的分配,可用于各种电动汽车,风力发电机及内燃机或外燃机发电机等。
Claims (48)
1.一种电动发电机,其特征在于,具有在定子铁心设置的多个凸极的各个凸极上卷绕绕组的定子、以及在转子铁心上沿圆周方向等间隔配置数量多于所述凸极数量的永磁体的转子,所述凸极由第一凸极群及第二凸极群构成,所述第一凸极群具有多个由卷绕加上同相电压的绕组而且相互相邻、同时相互相邻的凸极的绕组卷绕方向相反的多个凸极构成的组,所述第二凸极群由位于第一凸极群的相互异相的凸极组之间的1个或多个凸极构成、而且在多个凸极的情况下相邻凸极的绕组卷绕方向相反,第一凸极群及第二凸极群的每个凸极群对各绕组分别输入输出功率。
2.如权利要求1所示的电动发电机,其特征在于,使所述凸极前端部圆周方向的宽度尺寸近似等于或大于所述永磁体圆周方向的有效宽度。
3.如权利要求1所示的电动发电机,其特征在于,设第一凸极群的凸极数为t1,第二凸极群的凸极数为t2,总凸极数T为(t1+t2),第一凸极群的1组的凸极数及与其相邻的1个第二凸极群的凸极数之和为n,将分别卷绕U、V、W三相绕组的三个凸极组作为1组的绕组组数为s,k为正整数,则总凸极数T为
T=3×s×n
转子的极数P满足下式
P=2×(s(±1+3k))
而且取大于T的最小的P。
4.如权利要求1所述的电动发电机,其特征在于,设第一凸极群的凸极数为t1,第二凸极群的凸极数为t2,总凸极数T为(t1+t2),转子的极数为P,则凸极的配置角度θs满足下式
360/P≤θs≤360/T
5.如权利要求1所述的电动发电机,其特征在于,设总凸极数为T,则取所述第一凸极群的凸极间的间距为360/T,设转子极数为P,则取所述第二凸极群的凸极间的间距为360/P。
6.如权利要求5所述的电动发电机,其特征在于,第二凸极群的凸极前端部以360/T的间距配置,使开口槽均匀。
7.如权利要求1所述的电动发电机,其特征在于,在所述第一凸极群的凸极的配置间距不是360/P时,改变凸极的绕组卷绕部的截面积,以消除同相而且互相相邻的凸极间的相位差异而引起的磁通密度的差异,使磁通密度均匀。
8.如权利要求1所述的电动发电机,其特征在于,在所述第一凸极群的凸极的配置间距不是360/P时,对同相而且互相相邻的凸极设置至360/P之间的任意角度的倾斜。
9.如权利要求1所述的电动发电机,其特征在于,将转子铁心上配置永磁体的永磁型转子部与转子铁心上设置磁性凸极性的磁阻型转子部在轴向上层叠构成转子。
10.如权利要求1所述的电动发电机,其特征在于,在相邻的同相凸极上分别沿同方向卷绕控制绕组并串联连接,在控制绕组中流过直流电流来控制发电电压。
11.如权利要求1所述的电动发电机,其特征在于,在相邻的同相凸极之间设置使磁通分流的旁路。
12.如权利要求11所述的电动发电机,其特征在于,在设旁路的宽度为a1、发电绕组的凸极宽度为a2时,取a2<a1。
13.如权利要求1所述的电动发电机,其特征在于,在凸极的全部或一部分上设置短路环。
14.如权利要求1所述的电动发电机,其特征在于,在相邻的同相凸极之间设置使磁通分流的旁路,而且在所述旁路上卷绕发电用绕组,取出功率。
15.一种电动发电机,其特征在于,具有在定子铁心设置的多个凸极的各个凸极上卷绕绕组的定子、以及在转子铁心上沿圆周方向等间隔配置数量多于所述凸极数量的永磁体的转子,将所述凸极区分为由卷绕加上同相电压的绕组而且相互相邻、同时相互相邻的凸极的绕组卷绕方向相反的多个凸极构成的多个组,再进一步在各组内将凸极分成多个二次凸极群,各二次凸极群对各绕组分别输入输出功率。
16.如权利要求15所述的电动发电机,其特征在于,设凸极的1组的凸极数为n,将分别卷绕U、V、W的三相绕组的三个凸极组作为1组的绕组组数为s,k为正整数,则总凸极数T为
T=3×s×n
转子的极数P满足下式
P=2×(s(±1+3k))
而且取大于T的最小的P。
17.如权利要求15所述的电动发电机,其特征在于,在二次凸极群之间改变凸极宽度,改变各二次凸极群之间输入输出的功率分配。
18.如权利要求15所述的电动发电机,其特征在于,在相邻的同相凸极上分别沿同方向卷绕控制绕组并串联连接,在控制绕组中流过直流电流来控制发电电压。
19.如权利要求15所述的电动发电机,其特征在于,在相邻的同相凸极之间设置使磁通分流的旁路。
20.如权利要求19所述的电动发电机,其特征在于,在设旁路的宽度为a1、发电绕组的凸极宽度为a2时,取a2<a1。
21.如权利要求15所述的电动发电机,其特征在于,在凸极的全部或一部分上设置短路环。
22.如权利要求15所述的电动发电机,其特征在于,在相邻的同相凸极之间设置使磁通分流的旁路,而且在所述旁路上卷绕发电用绕组,取出功率。
23.一种电动发电机,其特征在于,具有在定子铁心设置的多个凸极的各个凸极上卷绕绕组的定子、以及在转子铁心上沿圆周方向等间隔配置数量多于所述凸极数量的永磁体的转子,所述凸极由第一凸极群及第二凸极群构成,所述第一凸极群具有多个由卷绕加上同相电压的绕组而且相互相邻、同时相互相邻的凸极的绕组卷绕方向相反的多个凸极构成的组,所述第二凸极群由位于第一凸极群的相互异相的凸极组之间的一个或多个凸极构成、而且在多个凸极的情况下相邻凸极的绕组卷绕方向相反,第一凸极群的各凸极组内及第二凸极群内的某个一方或双方将凸极分成多个二次凸极群,第一凸极群及第二凸极群的每个凸极群、或者在它们分成二次群极的情况下的每个该二次凸极群对各卷组分别输入输出功率。
24.如权利要求23所述的电动发电机,其特征在于,设第一凸极群的凸极数为t1,第二凸极群的凸极群为t2,总凸极数T为(t1+t2),第一凸极群的1组的凸极数及与其相邻的一个第二凸极群的凸极数之和为n,将分别卷绕U、V、W的三相绕组的三个凸极组作为1组的绕组组数为s,k为正整数,则总凸极数T为
T=3×s×n
转子的极数P满足下式
P=2×(s(±1+3k)
而且取大于T的最小的P。
25.如权利要求23所述的电动发电机,其特征在于,在相邻的同相凸极上分别沿同方向卷绕控制绕组并串联连接,在控制绕组中流过直流电流来控制发电电压。
26.如权利要求23所述的电动发电机,其特征在于,在相邻的同相凸极之间设置使磁通分流的旁路。
27.如权利要求26所述的电动发电机,其特征在于,在设旁路的宽度为a1、发电绕组的凸极宽度为a2时,取a2<a1。
28.如权利要求23所述的电动发电机,其特征在于,在凸极的全部或一部分上设置短路环。
29.如权利要求23所述的电动发电机,其特征在于,在相邻的同相凸极之间设置使磁通分流的旁路,而且在所述旁路上卷绕发电用绕组,取出功率。
30.一种电动发电机,其特征在于,具有在定子铁心设置的多个凸极的各个凸极上卷绕绕组的定子、以及在转子铁心上沿圆周方向等间隔配置数量多于所述凸极数量的永磁体的转子,将所述凸极区分为卷绕加上同相电压的绕组而且相互相邻、同时相互相邻的凸极的绕组卷绕方向相反的多个组,并将这样构成的单元沿轴向堆叠配置多个,每个单元改变叠厚或直径,对各单元的绕组分别输入输出电力。
31.如权利要求30所述的电动发电机,其特征在于,设凸极的1组的凸极数为n,将分别卷绕U、V、W的三相绕组的三个凸极组作为1组的绕组组数为s,k为正整数,则总凸极数T为
T=3×s×n
转子的极数P满足下式
P=2×(s(±1+3k)
而且取大于T的最小的P。
32.如权利要求30所述的电动发电机,其特征在于,发电功率小的一方的单元的定子是不用定子铁心而构成的。
33.如权利要求30所述的电动发电机,其特征在于,在相邻的同相凸极上分别沿同方向卷绕控制绕组并串联连接,在控制绕组中流过直流电流来控制发电电压。
34.如权利要求30所述的电动发电机,其特征在于,在相邻的同相凸极之间设置使磁通分流的旁路。
35.如权利要求34所述的电动发电机,其特征在于,在设旁路的宽度为a1、发电绕组的凸极宽度为a2时,取a2<a1。
36.如权利要求30所述的电动发电机,其特征在于,在凸极的全部或一部分上设置短路环。
37.如权利要求30所述的电动发电机,其特征在于,在相邻的同相凸极之间设置使磁通分流的旁路,而且在所述旁路上卷绕发电用绕组,取出功率。
38.如权利要求10、18、25、33所述的电动发电机,其特征在于,在相邻的发电用凸极数为奇数时,使同极性凸极上卷绕的控制绕组的绕组数之和与反极性凸极上卷绕的控制绕组的绕组数之和近似相等。
39.如权利要求1、15、23、30的任一项所述的电动发电机,其特征在于,跨过相邻的同相凸极之间卷绕控制绕组,在控制绕组中流过直流电流来控制发电电压。
40.如权利要求12、20、27、35所述的电动发电机,其特征在于,在连接定子的凸极之间的定子轭铁与旁路之间设置桥路连接。
41.如权利要求11、19、26、34所述的电动发电机,其特征在于,在旁路上卷绕控制绕组,在控制绕组中流过电流来控制发电电压。
42.如权利要求13、21、28、36所述的电动发电机,其特征在于,用一个或多个缝隙将凸极分割成多个磁路,在全部或一部分的磁路上设置短路环。
43.如权利要求14、22、29、37所述的电动发电机,其特征在于,在旁路上设置短路环。
44.如权利要求1、15、23、30的任一项所述的电动发电机,其特征在于,将分别取出多种功率的电力线沿轴向的相反方向取出。
45.一种电动汽车,其特征在于,具有权利要求1、15、23、30的任一项所述的电动发电机。
46.一种风力发电机,其特征在于,具有权利要求1、15、23、30的任一项所述的电动发电机。
47.一种内燃机或外燃机发电机,其特征在于,具有权利要求1、15、23、30的任一项所述的电动发电机。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003303068A JP2005073450A (ja) | 2003-08-27 | 2003-08-27 | モータジェネレータ |
JP2003303068 | 2003-08-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1592034A true CN1592034A (zh) | 2005-03-09 |
Family
ID=34101197
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2004100685965A Pending CN1592034A (zh) | 2003-08-27 | 2004-08-27 | 电动发电机 |
Country Status (4)
Country | Link |
---|---|
US (1) | US7288868B2 (zh) |
EP (1) | EP1511160A3 (zh) |
JP (1) | JP2005073450A (zh) |
CN (1) | CN1592034A (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1937356B (zh) * | 2006-09-15 | 2010-05-12 | 江苏大学 | 定子永磁式双凸极容错电机 |
WO2010051691A1 (zh) * | 2008-11-05 | 2010-05-14 | 鹤山市鹤龙机电有限公司 | 一种小型直驱永磁同步风力发电机及其小型风力发电系统 |
CN102263445A (zh) * | 2010-05-31 | 2011-11-30 | 德昌电机(深圳)有限公司 | 无刷电机 |
CN102725946A (zh) * | 2010-01-29 | 2012-10-10 | 三菱电机株式会社 | 逆变器一体型驱动模块及其制造方法 |
CN105375729A (zh) * | 2015-12-11 | 2016-03-02 | 哈尔滨东安发动机(集团)有限公司 | 一种多裕度、多功率通道永磁发电机 |
CN105659472A (zh) * | 2013-09-30 | 2016-06-08 | 捷豹路虎有限公司 | 电机 |
CN106787312A (zh) * | 2016-12-08 | 2017-05-31 | 广西南宁凯得利电子科技有限公司 | 双动力无刷直流电机 |
CN108574350A (zh) * | 2018-05-29 | 2018-09-25 | 南方电机科技有限公司 | 一种轴向磁通马达的定子、轴向磁通马达及自动化设备 |
WO2019228328A1 (zh) * | 2018-05-29 | 2019-12-05 | 南方电机科技有限公司 | 一种定子、马达及自动化设备 |
Families Citing this family (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4449035B2 (ja) * | 2004-03-10 | 2010-04-14 | 日立オートモティブシステムズ株式会社 | 電動車両用の永久磁石回転電機 |
JP4668721B2 (ja) * | 2004-11-30 | 2011-04-13 | 日立オートモティブシステムズ株式会社 | 永久磁石式回転電機 |
JP4626405B2 (ja) * | 2005-06-01 | 2011-02-09 | 株式会社デンソー | ブラシレスモータ |
US7579738B2 (en) * | 2005-10-31 | 2009-08-25 | Greenee Energy Inc. | Multi-phase electrical motor for use in a wheel |
JP4877625B2 (ja) * | 2005-11-07 | 2012-02-15 | 義明 小宮山 | 自動車用車載発電蓄電設備 |
JP4835168B2 (ja) * | 2006-01-25 | 2011-12-14 | 日本電産株式会社 | 電機子のコア、電機子、モータ、記録ディスク駆動装置およびコアプレートの製造方法 |
FR2907613B1 (fr) * | 2006-10-20 | 2012-11-16 | Converteam Motors Sa | Rotor et stator de moteur electrique. |
DE102007004561A1 (de) * | 2007-01-30 | 2008-07-31 | Robert Bosch Gmbh | 18/8-Synchronmotor |
US20080271935A1 (en) * | 2007-05-03 | 2008-11-06 | Erkan Mese | Multiple winding electric machine |
DE102007045314A1 (de) * | 2007-09-21 | 2009-04-23 | Siemens Ag | Dieselelektrisches Fahrzeug |
EP2104202A1 (en) * | 2008-03-18 | 2009-09-23 | Phase Motion Control S.r.l. | Electric Motor with permanent magnet rotor |
US7777384B2 (en) * | 2008-04-02 | 2010-08-17 | Hamilton Sundstrand Corporation | Permanent magnet dynamoelectric machine with variable magnetic flux excitation |
US7859231B2 (en) * | 2008-04-02 | 2010-12-28 | Hamilton Sundstrand Corporation | Permanent magnet electric generator with variable magnet flux excitation |
JP5180297B2 (ja) * | 2008-05-30 | 2013-04-10 | パナソニック株式会社 | 同期電動機駆動システム |
WO2010013433A1 (ja) * | 2008-07-30 | 2010-02-04 | パナソニック株式会社 | 同期電動機 |
IT1397343B1 (it) * | 2008-07-30 | 2013-01-10 | Ducati Energia S P A | Generatore elettrico a magneti permanenti per turbine eoliche |
US8080960B2 (en) | 2008-08-20 | 2011-12-20 | Hamilton Sundstrand Corporation | Direct flux regulated permanent magnet brushless motor utilizing sensorless control by DC and AC excitation |
LT5678B (lt) * | 2008-10-13 | 2010-08-25 | Uab "Žalia Rūta" | Ampero jėgos elektros variklis arba generatorius |
JP5341908B2 (ja) * | 2008-10-28 | 2013-11-13 | パナソニック株式会社 | 同期電動機 |
US8085003B2 (en) * | 2009-01-19 | 2011-12-27 | Hamilton Sundstrand Corporation | Voltage regulated permanent magnet generator |
US20100301695A1 (en) * | 2009-04-03 | 2010-12-02 | Asmo Co., Ltd. | Rotor and Motor |
JP4463872B1 (ja) * | 2009-05-15 | 2010-05-19 | 英男 河村 | 永久磁石式発電機の制御装置 |
WO2011016235A1 (ja) * | 2009-08-06 | 2011-02-10 | パナソニック株式会社 | 同期電動機及び同期電動機駆動システム |
JP5178688B2 (ja) * | 2009-10-30 | 2013-04-10 | 三菱電機株式会社 | 永久磁石型回転電機の固定子 |
JP2011167055A (ja) * | 2010-01-14 | 2011-08-25 | Yaskawa Electric Corp | 永久磁石形同期回転電機の回転子、当該永久磁石形同期回転電機、当該永久磁石形同期回転電機を用いた車両、昇降機、流体機械、または加工機 |
KR101348545B1 (ko) * | 2010-04-13 | 2014-01-10 | 에이비비 리써치 리미티드 | 원주에서 스큐잉된 회전자 극들 또는 고정자 코일들을 갖는 전기 기계 |
JP2012080715A (ja) * | 2010-10-05 | 2012-04-19 | Sinfonia Technology Co Ltd | モータ |
US10193430B2 (en) * | 2013-03-15 | 2019-01-29 | Board Of Trustees Of Michigan State University | Electromagnetic device having discrete wires |
US9871427B2 (en) | 2013-03-15 | 2018-01-16 | Ingersoll-Rand Company | Stator winding for an electric motor |
JP5926699B2 (ja) * | 2013-03-21 | 2016-05-25 | 日立オートモティブシステムズ株式会社 | 回転電機および電動車両 |
WO2015022804A2 (en) * | 2013-08-14 | 2015-02-19 | Yamaha Hatsudoki Kabushiki Kaisha | Synchronous drive motor |
JP2015149830A (ja) * | 2014-02-06 | 2015-08-20 | トヨタ自動車株式会社 | 回転電機 |
JP2017522852A (ja) * | 2014-08-01 | 2017-08-10 | ピアッジオ・アンド・シー.・エス.ピー.エー.Piaggio & C. S.P.A. | 永久磁石電気モータ・発電機およびスクーターに永久磁石電気モータ・発電機を備えたハイブリッドモータ |
EP3086445B1 (en) * | 2015-04-22 | 2022-09-21 | Goodrich Actuation Systems Limited | Electromechanical actuator damping |
US9598141B1 (en) * | 2016-03-07 | 2017-03-21 | Future Motion, Inc. | Thermally enhanced hub motor |
US10112680B2 (en) | 2016-03-07 | 2018-10-30 | Future Motion, Inc. | Thermally enhanced hub motor |
JP2018026985A (ja) * | 2016-08-12 | 2018-02-15 | 株式会社ミツバ | 始動発電機用三相回転電機 |
FR3065591B1 (fr) * | 2017-04-20 | 2021-01-01 | Valeo Equip Electr Moteur | Machine electrique tournante a largeur d'encoche statorique variable |
CN107681802B (zh) * | 2017-10-31 | 2024-01-12 | 泰豪科技股份有限公司 | 五相发电机及发电系统 |
EP3490113B1 (en) * | 2017-11-24 | 2021-04-21 | Goodrich Actuation Systems Limited | Damped electric motor |
US11482360B2 (en) * | 2017-12-12 | 2022-10-25 | The Boeing Company | Stator secondary windings to modify a permanent magnet (PM) field |
US20200044497A1 (en) * | 2018-08-06 | 2020-02-06 | GM Global Technology Operations LLC | Electric motor |
JP7172843B2 (ja) * | 2019-05-13 | 2022-11-16 | 株式会社デンソー | モータ |
DE102020205351A1 (de) | 2020-04-28 | 2021-10-28 | Vitesco Technologies Germany Gmbh | Stator für eine elektrische Maschine und elektrische Maschine mit einem Stator |
CN112713668B (zh) * | 2020-12-22 | 2021-12-03 | 郑州轻工业大学 | 一种定子极宽不均匀分布的三相双凸极电机 |
WO2023229500A1 (ru) * | 2022-05-27 | 2023-11-30 | Дмитрий Максимович ФИЛИППОВ | Магнитная система электрической машины с многослойной сверхкомпактной обмоткой |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1545175A (en) * | 1916-05-08 | 1925-07-07 | Us Light & Heat Corp | Dynamo-electric machine |
US3183386A (en) * | 1962-05-17 | 1965-05-11 | Gen Electric | Multiple output generator |
GB1523467A (en) * | 1975-11-06 | 1978-08-31 | Plessey Co Ltd | Rotary electric machines |
DE3004752A1 (de) * | 1979-02-09 | 1980-08-21 | Iii James F Murray | Elektrischer generator |
US4447737A (en) | 1980-12-29 | 1984-05-08 | Lockheed Corporation | Variable frequency induction generator |
US4550267A (en) * | 1983-02-18 | 1985-10-29 | Sundstrand Corporation | Redundant multiple channel electric motors and generators |
GB2150362B (en) | 1983-11-18 | 1986-11-19 | Dowty Fuel Syst Ltd | Alternating-current electrical generator |
US4761576A (en) * | 1985-11-12 | 1988-08-02 | General Motors Corporation | Motor driven air moving apparatus for high speed, constant duty operation |
US5006745A (en) * | 1988-08-03 | 1991-04-09 | Victor Company Of Japan, Ltd. | Polyphase direct current motor |
JP2712608B2 (ja) | 1989-08-21 | 1998-02-16 | トヨタ自動車株式会社 | 電気自動車用駆動装置 |
EP0506702A1 (de) * | 1989-12-22 | 1992-10-07 | Siemens Aktiengesellschaft | Synchronmaschine |
US5036237A (en) * | 1990-04-09 | 1991-07-30 | Electric Motors And Specialties, Inc. | Shaded pole motor |
US5164622A (en) | 1990-06-14 | 1992-11-17 | Applied Motion Products, Inc. | High pole density three phase motor |
US5334894A (en) * | 1991-05-14 | 1994-08-02 | Shinko Electric Co., Ltd. | Rotary pulse motor |
JPH06105512A (ja) | 1992-09-24 | 1994-04-15 | Nippondenso Co Ltd | 車両用電源装置 |
JPH07264822A (ja) * | 1994-03-18 | 1995-10-13 | Hitachi Ltd | 多相多重化電動機 |
US5714823A (en) * | 1994-08-29 | 1998-02-03 | Sundstrand Corporation | Quasi regulated permanent magnet generator |
KR100200667B1 (ko) * | 1996-01-18 | 1999-06-15 | 윤종용 | 브러시리스 직류모터 |
US6888280B2 (en) * | 1999-04-01 | 2005-05-03 | Jean-Yves Dubé | High performance brushless motor and drive for an electrical vehicle motorization |
US6744164B2 (en) * | 2000-05-24 | 2004-06-01 | Matsushita Electric Industrial Co., Ltd. | Motor, electric vehicle and hybrid electric vehicle |
EP1235327A3 (en) * | 2001-02-21 | 2004-07-07 | Kabushiki Kaisha Moric | Stator coil structure for rotary electrical machine and method of manufacturing the same |
US6844648B2 (en) * | 2001-09-28 | 2005-01-18 | Reliance Electric Technologies, Llc | Electric motor stator and motor incorporating same |
EP1492216A4 (en) | 2002-03-29 | 2011-03-23 | Panasonic Corp | ENGINE |
KR20040105698A (ko) * | 2002-05-29 | 2004-12-16 | 마츠시타 덴끼 산교 가부시키가이샤 | 전동발전기 |
US6965183B2 (en) * | 2003-05-27 | 2005-11-15 | Pratt & Whitney Canada Corp. | Architecture for electric machine |
-
2003
- 2003-08-27 JP JP2003303068A patent/JP2005073450A/ja not_active Withdrawn
-
2004
- 2004-08-26 EP EP04255159A patent/EP1511160A3/en not_active Withdrawn
- 2004-08-26 US US10/926,145 patent/US7288868B2/en active Active
- 2004-08-27 CN CNA2004100685965A patent/CN1592034A/zh active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1937356B (zh) * | 2006-09-15 | 2010-05-12 | 江苏大学 | 定子永磁式双凸极容错电机 |
WO2010051691A1 (zh) * | 2008-11-05 | 2010-05-14 | 鹤山市鹤龙机电有限公司 | 一种小型直驱永磁同步风力发电机及其小型风力发电系统 |
US9539909B2 (en) | 2010-01-29 | 2017-01-10 | Mitsubishi Electric Corporation | Inverter-integrated driving module and manufacturing method therefor |
CN102725946A (zh) * | 2010-01-29 | 2012-10-10 | 三菱电机株式会社 | 逆变器一体型驱动模块及其制造方法 |
CN102263445B (zh) * | 2010-05-31 | 2016-07-06 | 德昌电机(深圳)有限公司 | 无刷电机 |
CN102263445A (zh) * | 2010-05-31 | 2011-11-30 | 德昌电机(深圳)有限公司 | 无刷电机 |
CN105659472A (zh) * | 2013-09-30 | 2016-06-08 | 捷豹路虎有限公司 | 电机 |
CN105659472B (zh) * | 2013-09-30 | 2018-05-29 | 捷豹路虎有限公司 | 电机 |
CN105375729A (zh) * | 2015-12-11 | 2016-03-02 | 哈尔滨东安发动机(集团)有限公司 | 一种多裕度、多功率通道永磁发电机 |
CN106787312A (zh) * | 2016-12-08 | 2017-05-31 | 广西南宁凯得利电子科技有限公司 | 双动力无刷直流电机 |
CN108574350A (zh) * | 2018-05-29 | 2018-09-25 | 南方电机科技有限公司 | 一种轴向磁通马达的定子、轴向磁通马达及自动化设备 |
WO2019228328A1 (zh) * | 2018-05-29 | 2019-12-05 | 南方电机科技有限公司 | 一种定子、马达及自动化设备 |
CN108574350B (zh) * | 2018-05-29 | 2021-04-02 | 南方电机科技有限公司 | 一种轴向磁通马达的定子、轴向磁通马达及自动化设备 |
Also Published As
Publication number | Publication date |
---|---|
EP1511160A2 (en) | 2005-03-02 |
US20050046304A1 (en) | 2005-03-03 |
US7288868B2 (en) | 2007-10-30 |
EP1511160A3 (en) | 2006-03-15 |
JP2005073450A (ja) | 2005-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1592034A (zh) | 电动发电机 | |
US6979927B2 (en) | Automotive alternating-current dynamoelectric machine | |
CN1249895C (zh) | 旋转电机及使用该旋转电机的滑轮驱动装置 | |
US8471428B2 (en) | Rotating electrical machine | |
CN1579042A (zh) | 电动发电机 | |
US7067949B2 (en) | Rotary electric machine | |
CN1214809A (zh) | 双凸极永磁电机 | |
CN1842955A (zh) | 车辆用起动发电装置 | |
JP2001169490A (ja) | 車両用回転電機 | |
CN1841889A (zh) | 开关磁阻发电机 | |
CN1799192A (zh) | 用于多方式电机的脉冲宽度调制控制电路和装备有这种控制电路的多方式电机 | |
WO2007088598A1 (ja) | 回転電機 | |
CN1897420A (zh) | 串联旋转电机 | |
US20030107287A1 (en) | Dynamoelectric machine | |
WO2005101620A1 (ja) | 車両用回転電機装置 | |
CN1792028A (zh) | 控制一台用于热机式机动车辆的多相可逆旋转电机的方法 | |
CN201490855U (zh) | 多转子永磁发电机 | |
JP2004215483A (ja) | モータジェネレータ | |
CN110492708B (zh) | 叠层式游标电机 | |
JP2012249381A (ja) | 車両用電源システム | |
CN100350725C (zh) | 车辆用交流发电机 | |
CN1897422A (zh) | 一种永磁发电机 | |
WO2010122760A1 (ja) | 車両用交流発電機 | |
CA2504132A1 (en) | Improved magneto multiple pole charging system | |
CN110350713B (zh) | 发动机单元和车辆 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |