CN1588631A - 在(La,Sr)(Al,Ta)O3上制备高质量ZnO单晶薄膜的方法 - Google Patents

在(La,Sr)(Al,Ta)O3上制备高质量ZnO单晶薄膜的方法 Download PDF

Info

Publication number
CN1588631A
CN1588631A CN 200410071047 CN200410071047A CN1588631A CN 1588631 A CN1588631 A CN 1588631A CN 200410071047 CN200410071047 CN 200410071047 CN 200410071047 A CN200410071047 A CN 200410071047A CN 1588631 A CN1588631 A CN 1588631A
Authority
CN
China
Prior art keywords
zno
lsat
substrate
magnesium
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200410071047
Other languages
English (en)
Other versions
CN1294633C (zh
Inventor
杜小龙
薛其坤
英敏菊
梅增霞
曾兆权
郑浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Physics of CAS
Original Assignee
Institute of Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Physics of CAS filed Critical Institute of Physics of CAS
Priority to CNB2004100710473A priority Critical patent/CN1294633C/zh
Publication of CN1588631A publication Critical patent/CN1588631A/zh
Application granted granted Critical
Publication of CN1294633C publication Critical patent/CN1294633C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种在(La,Sr)(Al,Ta)O3上制备高质量ZnO单晶薄膜的方法,其步骤为:对LSAT(111)衬底表面进行低温氧等离子体预处理;然后在超高真空及低温下沉积镁超薄层,再升高衬底温度对镁超薄层进行退火处理,让镁原子在LSAT(111)衬底上迁移、脱附,最后获得极薄镁吸附层,从而实现ZnO薄膜按晶格小失配外延取向生长,制备得到单一O极性、单一畴的原子级光滑的高质量ZnO薄膜。本发明首次提出LSAT(111)衬底表面的镁吸附方法,有效地控制了ZnO的外延取向,克服了现有方法ZnO薄膜按大失配(18.9%)外延取向生长所造成的薄膜应变大、缺陷密度高等问题,所得的光滑ZnO薄膜具有很高的晶体质量与光电性能,完全满足制作高性能光电子器件的要求。

Description

在(La,Sr)(Al,Ta)O3上制备高质量ZnO单晶薄膜的方法
技术领域
本发明涉及一种制备宽禁带半导体氧化锌(ZnO)单晶薄膜的方法,尤其是在(La,Sr)(Al,Ta)O3(简称LSAT)(111)衬底上制备氧化锌薄膜时控制外延取向、消除旋转畴、控制极性从而获得高质量ZnO单晶薄膜的方法。
背景技术
ZnO具有多种优越性能,在透明导电膜、表面声波器件及压电陶瓷等方面有着广泛的应用。ZnO也是一种直接跃迁型II-VI族半导体,室温禁带宽度为3.37eV。由于其很高的自由激子结合能(60meV),ZnO已成为继GaN后又一重要的宽禁带半导体材料,在制备低阈值、高效率的短波长光电子器件方面有着极为广阔的应用前景。器件质量ZnO基外延膜的制备是实现其器件应用的基本点。虽然ZnO单晶衬底已商业化,但其价格非常昂贵,另外大尺寸衬底难以获得,因此,ZnO单晶薄膜的同质外延生长技术目前还无法实现工业应用。与GaN相似,ZnO薄膜大多在Al2O3(0001)衬底上制备。这一体系同样需要解决大失配异质结构体系所带来的薄膜应变大、缺陷密度高等问题。因此,探索适合ZnO外延生长的衬底材料以及相应的高质量薄膜制备技术具有十分重要的意义。
LSAT(铝酸镧·钽酸锶铝)是近年来推出的性能优良的具有钙钛矿结构的人工晶体材料。LSAT没有畴结构,无孪晶,晶体结构完整。在LSAT(111)面上沿c轴外延生长ZnO时,如果面内的外延取向为<11 20>ZnO‖<11 2>LSAT及<10 10>ZnO‖<10 1>LSAT,则该体系的晶格失配仅为2.9%,因此,理论上LSAT是制备ZnO薄膜的理想衬底材料。然而,利用现有方法制备得到的沿c轴生长的ZnO外延膜与LSAT(111)衬底面内取向关系往往与上述理想情况不一致,其面内外延取向为<11 20>ZnO‖<01 1>LSAT及<10 10>ZnO‖<11 2>LSAT,与理想的情况存在着一个30°角的旋转,从而导致高达18.9%的晶格失配。因此所得ZnO外延膜中存在着由于晶格大失配所带来的薄膜应变大、缺陷密度高等问题,其晶体质量及光电性能都很差。因此,发明一种能控制ZnO外延取向实现晶格小失配外延生长的技术是该外延体系的关键点。
发明内容
针对现有技术中存在的问题,本发明的目的是提供一种在(La,Sr)(Al,Ta)O3上制备高质量ZnO单晶薄膜的方法,该方法通过LSAT(111)衬底的表面预处理、镁超薄层的低温沉积及高温退火,实现了单一理想外延取向(晶格失配为2.9%)、单一氧极性的ZnO薄膜生长,从而制备出具有原子级光滑的高质量ZnO单晶薄膜。
为实现上述目的,本发明在(La,Sr)(Al,Ta)O3上制备高质量ZnO单晶薄膜的方法是通过如下的步骤实现:
1)对LSAT(111)衬底背面进行镀钼,并进行清洗,然后将衬底导入分子束外延生长系统;
2)在150~200℃低温下进行25~35分钟的射频氧等离子体处理,射频功率为300~450W,氧气流量为1~3sccm,以得到O终止面的LSAT(111)衬底;
3)在气压<1×10-7Pa及衬底温度介于150~200℃时沉积金属镁,镁束流的等效蒸汽压为0.5~1.5×10-5Pa,控制沉积时间以获得3~5nm厚的薄层;
4)在500~600℃下退火,让镁原子在LSAT(111)衬底上迁移、脱附,最后获得极薄均匀镁吸附层,为外延生长ZnO提供一个形核层;
5)在350~500℃时沉积厚度为10~30nm的ZnO缓冲层,将生长时氧、锌束流调整至接近理想配比而稍稍富锌的范围,可得到O极性的ZnO;
6)在700~800℃温度的氧气氛下退火,退火时间为10~30分钟;
7)在600~680℃进行外延层的生长,将生长时氧、锌束流调整至接近理想配比而稍稍富锌的范围,ZnO薄膜生长结束后,在700~800℃温度的氧气氛下进行退火,退火时间为10~30分钟。
本发明O极性ZnO单晶薄膜制备方法与现有方法的不同之处主要在于生长ZnO缓冲层之前的衬底表面预处理以及Mg薄层的沉积与退火。在较低温度下对LSAT(111)衬底表面进行充分的氧等离子体处理,得到均匀的O终止面,较低的处理温度可避免氧原子从衬底表面脱附;然后快速将生长腔的气压降低到<1×10-7Pa,为低温沉积Mg薄层提供条件。Mg薄层在较高温度下退火,形成均匀镁吸附层,为实现ZnO按小失配外延取向形核起到了关键的作用。ZnO薄膜外延取向的形成通常发生在薄膜和衬底的界面处,在成核的初期即已经形成,并在随后以一种“同质外延”的方式延伸。因此,生长初期的形核对于随后薄膜的外延取向具有决定性的影响,本方法通过衬底表面预处理与Mg形核层相结合的方法,简便而又非常有效地控制了Mg/LAST以及ZnO/Mg异质界面原子结构,从而实现了ZnO单晶薄膜的单一外延取向以及单一氧极性控制生长。通过反射式高能电子衍射仪(RHEED)原位观察结果表明:所得ZnO薄膜按与LSAT衬底晶格失配小的外延取向生长,外延膜表面具有清晰的3×3表面再构。X射线衍射(XRD)、透射电镜(TEM)以及聚焦电子束衍射(CBED)的测试结果表明:上述薄膜均为单一极性、单一畴的薄膜,旋转畴与倒反畴得到完全的抑制,晶体质量与光电性能获得了大幅度的提高。通过原子力显微镜(AFM)的测试结果表明:上述薄膜的RMS粗糙度都在1nm以下,完全满足制作光电子器件的要求。
附图说明
图1为本发明在LSAT(111)面上制备ZnO薄膜工艺流程图;
图2为制备ZnO单晶薄膜时的反射式高能电子衍射原位观察图案;
图3为本发明所制备的O极性ZnO单晶薄膜与通常方法制备的薄膜的X射线衍射扫描图对比图;
图4为本发明所制备的O极性ZnO单晶薄膜与通常方法制备的薄膜的X射线衍射ZnO(0002)面的摇摆曲线扫描对比图;
图5为本发明所制备的O极性ZnO单晶薄膜表面的场发射电子显微镜图。
具体实施方式
下面结合本发明的制备方法和附图对本发明进行详细说明。
如图1所示的本发明的工艺流程图,在LSAT(111)衬底上制备高质量O极性ZnO单晶薄膜的具体步骤如下:
1)对LSAT(111)衬底背面进行镀钼,并进行去脂清洗,然后将衬底导入分子束外延生长系统;
2)在180℃低温下进行30分钟的射频氧等离子体处理,射频功率为350W,氧气流量为2.5sccm,以得到O终止面的LSAT(111)衬底;
3)在气压<1×10-7Pa及衬底温度180℃时沉积金属镁,镁束流的等效蒸汽压为1×10-5Pa,控制沉积时间以获得3~5nm厚的薄层;
4)在550℃下退火,让镁原子在LSAT(111)衬底上迁移、脱附,最后获得极薄均匀镁吸附层,为外延生长ZnO提供一个形核层;
5)在400℃时沉积厚度为15nm的ZnO缓冲层,将生长时氧、锌束流调整至接近理想配比而稍稍富锌的范围,可得到O极性的ZnO;
6)在750℃温度的氧气氛下退火,退火时间为30分钟;
7)在650℃进行外延层的生长,将生长时氧、锌束流调整至接近理想配比而稍稍富锌的范围,ZnO薄膜生长结束后,在750℃温度的氧气氛下进行退火,退火时间为30分钟。
在上述制备薄膜过程中,我们利用反射式高能电子衍射仪(RHEED)对样品进行原位观察,结果如图2所示,其中图2(a)为LSAT(111)衬底表面,图2(b)为沉积在LSAT(111)上的金属镁退火后的表面,图2(c)为长完ZnO缓冲层的表面,图2(d)为ZnO缓冲层退火后的表面,图2(e)为长完ZnO外延层后的表面,图案显示了清晰的3×3再构,表明所得薄膜为单一氧极性、单一畴ZnO,并具有光滑的表面形貌。我们对该薄膜进行了X射线衍射-扫描的测试,并与通常方法制备的ZnO薄膜比较,如图3所示,图3(a)表明通过本方法的制备工艺,ZnO薄膜的外延取向关系为<11 20>ZnO‖<11 2>LSAT及<10 10>ZnO‖<10 1>LSAT,晶格失配为2.9%,而直接在LSAT(111)上通过两步法得到的ZnO薄膜的外延取向为<11 20>ZnO‖<01 1>LSAT及<10 10>ZnO‖<11 2>LSAT如图3(b)所示,此时的晶格失配为18.9%,图3(c)为LSAT衬底(110)面φ扫描图,小的晶格失配大大降低了薄膜的缺陷密度,晶体质量大幅度提高。图4为上述两个薄膜的X射线ZnO(0002)面的摇摆曲线,利用本方法得到的薄膜对应的半高宽为0.1°,而用通常方法得到的薄膜对应的半高宽往往大于0.5°。
由于ZnO薄膜按小晶格失配的外延取向生长,其应变较小,2维生长模式得以实现。图5所示为该样品表面的场发射电子显微镜图,图中显示该薄膜具有非常平整的表面,满足器件制作的要求。

Claims (1)

1、一种在(La,Sr)(Al,Ta)O3上制备高质量ZnO单晶薄膜的方法,其特征在于,包括如下步骤:
1)对LSAT(111)衬底背面进行镀钼,并进行去脂清洗,然后将衬底导入分子束外延生长系统;
2)在150~200℃低温下进行25~35分钟的射频氧等离子体处理,射频功率为300~450W,氧气流量为1~3sccm,以得到O终止面的LSAT(111)衬底;
3)在气压<1×10-7Pa及衬底温度介于150~200℃时沉积金属镁,镁束流的等效蒸汽压为0.5~1.5×10-5Pa,控制沉积时间以获得3~5nm厚的薄层;
4)在500~600℃下退火,让镁原子在LSAT(111)衬底上迁移、脱附,最后获得极薄均匀镁吸附层,为外延生长ZnO提供一个形核层;
5)在350~500℃时沉积厚度为10~30nm的ZnO缓冲层,将生长时氧、锌束流调整至接近理想配比而稍稍富锌的范围,可得到O极性的ZnO;
6)在700~800℃温度的氧气氛下退火,退火时间为10~30分钟;
7)在600~680℃进行外延层的生长,将生长时氧、锌束流调整至接近理想配比而稍稍富锌的范围,ZnO薄膜生长结束后,在700~800℃温度的氧气氛下进行退火,退火时间为1~30分钟。
CNB2004100710473A 2004-07-28 2004-07-28 在(La,Sr)(Al,Ta)O3上制备ZnO单晶薄膜的方法 Expired - Fee Related CN1294633C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100710473A CN1294633C (zh) 2004-07-28 2004-07-28 在(La,Sr)(Al,Ta)O3上制备ZnO单晶薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100710473A CN1294633C (zh) 2004-07-28 2004-07-28 在(La,Sr)(Al,Ta)O3上制备ZnO单晶薄膜的方法

Publications (2)

Publication Number Publication Date
CN1588631A true CN1588631A (zh) 2005-03-02
CN1294633C CN1294633C (zh) 2007-01-10

Family

ID=34604561

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100710473A Expired - Fee Related CN1294633C (zh) 2004-07-28 2004-07-28 在(La,Sr)(Al,Ta)O3上制备ZnO单晶薄膜的方法

Country Status (1)

Country Link
CN (1) CN1294633C (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1328762C (zh) * 2005-05-16 2007-07-25 中国科学院物理研究所 在铝酸镁衬底上高质量锌极性ZnO单晶薄膜的制备方法
CN100340703C (zh) * 2005-06-22 2007-10-03 中国科学院上海光学精密机械研究所 掺钕铝钽酸镧锶激光晶体及其制备方法
CN100352973C (zh) * 2005-07-22 2007-12-05 中国科学院上海光学精密机械研究所 掺镱铝钽酸镧锶激光晶体及其制备方法
CN100422394C (zh) * 2006-03-20 2008-10-01 中国科学院物理研究所 一种在Si(111)衬底上制备高质量ZnO单晶薄膜的方法
CN100431101C (zh) * 2007-05-11 2008-11-05 北京交通大学 光辅助MBE系统及生长ZnO单晶薄膜的方法
CN102762104A (zh) * 2010-02-26 2012-10-31 诺维信公司 用于制备果干的酶预处理
CN110578170A (zh) * 2018-06-07 2019-12-17 松下电器产业株式会社 ScAlMgO4单晶及器件
CN111865257A (zh) * 2020-07-02 2020-10-30 中国科学院上海微系统与信息技术研究所 一种声波谐振器及其制备方法
CN114774844A (zh) * 2022-03-31 2022-07-22 清华大学 在原子级别调控薄膜平整表面成分的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3423631B2 (ja) * 1998-02-05 2003-07-07 キヤノン株式会社 酸化亜鉛薄膜の形成方法、それを用いた半導体素子基板の製造方法及び光起電力素子の製造方法
JP2001072498A (ja) * 1999-07-08 2001-03-21 Nippon Telegr & Teleph Corp <Ntt> 酸化物単結晶薄膜およびその加工方法
JP4817350B2 (ja) * 2001-07-19 2011-11-16 株式会社 東北テクノアーチ 酸化亜鉛半導体部材の製造方法
JP4048316B2 (ja) * 2001-11-27 2008-02-20 独立行政法人科学技術振興機構 単結晶シリコン基板上の酸化亜鉛単結晶膜の製造方法及び製造装置並びに積層構造
CN1182273C (zh) * 2002-08-07 2004-12-29 浙江大学 固体源化学气相沉积生长ZnO薄膜的方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1328762C (zh) * 2005-05-16 2007-07-25 中国科学院物理研究所 在铝酸镁衬底上高质量锌极性ZnO单晶薄膜的制备方法
CN100340703C (zh) * 2005-06-22 2007-10-03 中国科学院上海光学精密机械研究所 掺钕铝钽酸镧锶激光晶体及其制备方法
CN100352973C (zh) * 2005-07-22 2007-12-05 中国科学院上海光学精密机械研究所 掺镱铝钽酸镧锶激光晶体及其制备方法
CN100422394C (zh) * 2006-03-20 2008-10-01 中国科学院物理研究所 一种在Si(111)衬底上制备高质量ZnO单晶薄膜的方法
CN100431101C (zh) * 2007-05-11 2008-11-05 北京交通大学 光辅助MBE系统及生长ZnO单晶薄膜的方法
CN102762104A (zh) * 2010-02-26 2012-10-31 诺维信公司 用于制备果干的酶预处理
CN102762104B (zh) * 2010-02-26 2014-08-06 诺维信公司 用于制备果干的酶预处理
CN110578170A (zh) * 2018-06-07 2019-12-17 松下电器产业株式会社 ScAlMgO4单晶及器件
CN110578170B (zh) * 2018-06-07 2021-01-22 松下电器产业株式会社 ScAlMgO4单晶及器件
CN111865257A (zh) * 2020-07-02 2020-10-30 中国科学院上海微系统与信息技术研究所 一种声波谐振器及其制备方法
CN114774844A (zh) * 2022-03-31 2022-07-22 清华大学 在原子级别调控薄膜平整表面成分的方法

Also Published As

Publication number Publication date
CN1294633C (zh) 2007-01-10

Similar Documents

Publication Publication Date Title
Jiang et al. Manufacture of specific structure of aluminum-doped zinc oxide films by patterning the substrate surface
CN100422394C (zh) 一种在Si(111)衬底上制备高质量ZnO单晶薄膜的方法
CN112831768B (zh) 一种高结晶质量的氮化铪薄膜制备方法及应用
CN101967680A (zh) 一种在氧化镁衬底上制备单斜晶型氧化镓单晶薄膜的方法
CN100545314C (zh) 用于制备高质量氧化锌薄膜的蓝宝石衬底原位处理方法
CN1294633C (zh) 在(La,Sr)(Al,Ta)O3上制备ZnO单晶薄膜的方法
CN105190842A (zh) 成膜方法、半导体发光元件的制造方法、半导体发光元件和照明装置
CN102623521A (zh) 一种氧化亚铜薄膜的制备方法
CN111334856B (zh) 用等离子体辅助分子束外延以准范德华外延生长高质量ZnO单晶薄膜的方法
CN1564314A (zh) 一种制备高质量氧化锌基单晶薄膜的方法
CN1309020C (zh) 一种在铝酸镁衬底上制备ZnO单晶薄膜的方法
CN112831766B (zh) 一种利用磁控溅射在硅衬底上制备金属锆薄膜的方法及应用
CN1302529C (zh) 一种三缓冲层制备氧化锌薄膜的方法
CN101834127B (zh) 一种在蓝宝石衬底上制备高质量ZnO单晶薄膜的方法
CN100587127C (zh) 表面活性剂法制备表面平整的高质量氧化锌外延薄膜
CN1178278C (zh) 射频等离子体分子束外延生长氮化镓的双缓冲层工艺
CN113584446A (zh) 利用磁控溅射在硅衬底上制备的金属铪薄膜、方法和应用
US6800133B1 (en) Process for growing a magnesium oxide film on a silicon (100) substrate coated with a cubic silicon carbide butter layer
CN1328762C (zh) 在铝酸镁衬底上高质量锌极性ZnO单晶薄膜的制备方法
Miyahara et al. Sputter Epitaxy of (ZnO) x (InN) 1-x films on Lattice-mismatched Sapphire Substrate
CN114108087B (zh) 一种正交相五氧化二钽单晶薄膜的制备方法
CN100336942C (zh) 生长高结晶质量氮化铟单晶外延膜的方法
CN201780987U (zh) 一种用于制备氮化物半导体外延材料的蓝宝石基复合衬底
Lobanov et al. Epitaxial GaN layers formed on langasite substrates by the plasma-assisted MBE method
CN101030534A (zh) 一种在硅晶片上制备高质量硅化镁薄膜的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070110