CN1507500A - 形状凝固性良好的铁素体不锈钢板及其制造方法 - Google Patents

形状凝固性良好的铁素体不锈钢板及其制造方法 Download PDF

Info

Publication number
CN1507500A
CN1507500A CNA028094530A CN02809453A CN1507500A CN 1507500 A CN1507500 A CN 1507500A CN A028094530 A CNA028094530 A CN A028094530A CN 02809453 A CN02809453 A CN 02809453A CN 1507500 A CN1507500 A CN 1507500A
Authority
CN
China
Prior art keywords
quality
stainless steel
max
yield strength
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA028094530A
Other languages
English (en)
Other versions
CN1249262C (zh
Inventor
富村宏纪
藤本广
森本宪一
国武保利
平松直人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Publication of CN1507500A publication Critical patent/CN1507500A/zh
Application granted granted Critical
Publication of CN1249262C publication Critical patent/CN1249262C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

一种在被冲压成形成产品型钢时没有诸如回弹或扭转那样尺寸缺陷的铁素体不锈钢板,该钢板在将由式(1)所定义的FM值调节到0或更小的条件下,合金组份为C最高达0.10质量%、Si最高达1.0质量%、Mn最高达1.0质量%、P最高达0.050质量%、S最高达0.020质量%、Ni最高达2.0质量%、Cr为8.0~22.0质量%、N最高达0.05质量%、从Al最高达0.10%、Mo最高达1.0%、Cu最高达1.0%、0.010~0.50质量%的Ti、0.010~0.50质量%的Nb、0.010~0.30质量%的V、0.010~0.30质量%的Zr和0.0010~0.0100质量%的B中选出的一种或多种以及余量基本是Fe,FM=420C-11.5Si+7Mn+23Ni-3.5Cr-12Mo+9Cu-49Ti-50Nb-23V-52Al+470N+20...(1),其机械性能被控制到Lankford值(γ)平面各向异性度(γmax-γmin)≤80以及0.2%屈服强度的各向异性度(σmax-σmin)为≤20N/mm2。该不锈钢板通过将具有特定组成的不锈钢板热轧并随后将热轧钢板在700~800℃下分批退火1~24小时制得。

Description

形状凝固性良好的铁素体不锈钢板及其制造方法
技术领域
本发明涉及一种铁素体不锈钢板,该钢板由于在成形后具有较少如回弹和扭转的尺寸缺陷和良好的形状凝固性,可通过冲压成形、辊轧成形或诸如此类方法被成形成产品型钢,以及还涉及一种制造该钢板的方法。
背景技术
不锈钢板由于其优良的外观及耐蚀性能已被用于各种不同领域,例如建筑物的内或外构件、家庭电气用框架构件以及厨房物品。在本发明中,措词“钢板”包括钢带。
由不锈钢成形的产品经常包括有在弹性复原时产生的尺寸缺陷,因为不锈钢板的弹性应变大于普通钢板。例如,当简单地被弯曲成产品型钢的钢板离开成形模时,由于释放弹性应变弯曲角变得比所设计的角宽。该改变就是所谓的“回弹”。特别是产品是通过轻微冲压由钢板制得的情况下,甚至在产品离开成形模后,弹性应变没有完全释放而是保持在凸缘或冲压底部。该残余的应变引起缺陷,如扭转并显著地降低产品的商业价值。
为了抑制在生产时产生缺陷,在各种不同的不锈钢板中已经使用了较软的奥氏体不锈钢板,如SUS304。然而,奥氏体不锈钢由于高的Ni含量是昂贵的材料。
发明内容
本发明的目的在于提供一种铁素体不锈钢板,该钢板由于显著地降低了Ni的含量,是较廉价的材料,而且形状凝固性被改进,以抑制成形后的尺寸缺陷,如回弹和扭转。
本发明提出了一种新的铁素体不锈钢板,该钢板在由式(1)所定义的FM值被调节到0或更低的条件下,具有由C最高达0.10质量%、Si最高达1.0质量%、Mn最高达1.0质量%、P最高达0.050质量%、S最高达0.020质量%、Ni最高达2.0质量%、Cr为8.0~22.0质量%、N最高达0.05质量%、从0.01~0.50质量%的Ti、0.01~0.50质量%的Nb、0.01~0.30质量%的V、0.01~0.30质量%的Zr和0.0010~0.0100质量%的B中选出的一种或多种以及余量基本是铁所组成的合金化组份。该铁素体不锈钢板具有平面各向异性度(γmax-γmin)为Lankford值(γ)≤0.80以及0.2%屈服强度的各向异性度(σmax-σmin)≤20N/mm2
FM=420C-11.5Si+7Mn+23Ni-3.5Cr-12Mo+9Cu-49Ti-50Nb-
    23V-52Al+470N+20  ...(1)
该不锈钢板较佳地具有沿轧制方向(Direction-L)、以45度角相交Direction-L的方向(Direction-D)以及以直角相交Direction-L的横向方向(Direction-T)中任一方向上的0.2%屈服强度≤350N/mm2
该不锈钢板通过热轧含特定组成的铁素体不锈钢,然后将热轧钢板在700~880℃下,分批退火1~24小时制得。
附图说明
图1是说明弯曲试验的示意图,通过弯曲试验将钢板弯曲成盒形,并测量盒角以评价回弹。
图2是说明有关平面各向异性度(γmax-γmin)Lankford值(γ)和0.2%屈服强度的各向异性度(σmax-σmin)的回弹角曲线图。
具体实施方式
铁素体不锈钢的性能基本上取决于化学组成和制造条件。本发明人已研究并检验了化学组成和制造条件对性能的作用,并发现了通过将特定合金化组成与制造条件结合改进了形状凝固性(换言之,抑制成形后由回弹产生的形变)。
由于在将不钢板塑性成形成产品型钢时,形状凝固性不仅受到单轴形变而且也受到多轴形变的影响,物质性能和沿不同方向的各向异性对形状凝固性产生巨大作用。特别是,沿L、D和T方向Lankford值(γ)和0.2%屈服强度的偏差是主要因素。当沿L、D和T方向的Lankford值(γ)偏差较小时,不锈钢板具有较小的平面各向异性。
当Lankford值(γ)沿L、D和T方向彼此不同时,不锈钢板在每个施加相同应力的部分都有厚度降低的偏差。厚度降低的偏差造成被成形成产品型钢的不锈钢板中残余应变的不规则分布,导致不良的形状凝固性。沿L、D和T方向0.2%屈服强度彼此的偏差意味着在用一定应力使不锈钢板塑性成形时给予不锈钢板彼此不同的各种应变。在这一情况下,形状凝固性也不良。
为了改进形状凝固性,必须降低平面各向异性度(γmax-γmin)和0.2%屈服强度的各向异性度(σmax-σmin),其中γmax和σmax为沿L、D和T方向的最大Lankford值和0.2%屈服强度,而γmin和σmin为沿L、D和T方向的最小Lankford值(γ)和0.2%屈服强度。
通过将不锈钢板的再结晶铁素体晶粒调节到具有相等平面取向的各向同性状态,降低Lankford值(γ)的平面各向异性度(γmax-γmin)和0.2%屈服强度的各向异性度(σmax-σmin)。通过将以细碳氮化合物颗粒形式均匀地分布在钢基体中溶解的C和N的沉积达到铁素体晶粒的各向同性再结晶。铁素体晶粒的各向同性再结晶有效地降低了各向异性度(γmax-γmin,σmax-σmin)。细碳氮化合物颗粒的均匀分布对再结晶铁素体晶体任意生长的作用解释如下:
钢基体中存在的碳氮化合物颗粒充当了不锈钢板最后煺火时,例如分批退火或最终退火时铁素体晶粒再结晶的籽晶。尽管迄今已将晶界和形变区,如冷轧铁素体结构中的滑移带认为是铁素体晶粒再结晶的籽晶,但晶界和形变区通过冷轧延伸。结果,晶界和形变区具有特定的取向,而再结晶铁素体晶粒在定向后生长。另一方面,碳氮化合物颗粒是粒状的并且非常硬(维氏硬度大于1000),使得它们在冷轧时不被延伸而是在与铁素体晶粒接触时在边界处充当铁素体晶粒再结晶的籽晶。
通过合适地控制退火条件保证细碳氮化合物颗粒的均匀分布,以使将在以前热轧工序中生成的轧制织构转化成各向同性铁素体结构。该各向同性结构即至在冷轧状态时也会保持。这就是由于在随后的冷轧工序中施加应力,每个铁素体晶粒被定向,而铁素体晶粒整体仍是均匀并各向同性的。均匀分布的细碳氮化合物颗粒在由冷轧工序到退火工序充当了铁素体晶粒再结晶的籽晶,以达到铁素体晶粒进一步均匀平面定向。因此,降低了平面各向异性度(γmax-γmin),并且不锈钢板被冲压成形具有良好的形状凝性。
本发明的其它特色由如下对合金化组成和制造条件的说明将变得显而易见。
按照本发明的铁素体不锈钢含有如下组成作为基本组份。
C最高达0.10质量%
通过分批退火将C转化成碳化物,并且该碳化物在最后退火工序再结晶时充当铁素体晶粒任意生长的籽晶。然而,C是一种不利地提高退火后冷轧不锈钢板强度的元素。过量的C含量也不利于韧性。因而C含量被控制在0.10质量%或更低。
Si最高达1.0质量%
Si是在炼钢时作为脱氧剂添加的一种元素,但将钢基体固溶硬化得过多。由于过量Si引起硬化并降低延展性,Si含量的上限被定为1.0质量%。
Mn最高达1.0质量%
Mn是一种奥氏体构成元素,由于其小的固溶硬化能力不会对钢材料造成有害作用,其对控制由式(1)定义的FM值有用。然而,过量Mn引起炼钢时烟尘的产生并使生产率恶化。在这一意义上,Mn被控制在1.0质量%或更少。
P最高达0.050质量%
P是对热加工性有害的一种元素。通过控制P含量小于0.050质量%来抑制P的作用。
S最高达0.020质量%
S是在晶界离析并使热加工性恶化的一种元素。通过控制S含量小于0.020质量%抑制这些作用。
Ni最高达2.0质量%
Ni是如Mn一样的奥氏体构成元素并对控制FM值有用。然而,过量添加高于2.0质量%的Ni提高钢的成本并且还使钢硬化。
Cr为8.0~22.0质量%
Cr是一种耐蚀性的基本元素。作为不锈钢为耐蚀性必须至少8质量%的Cr。然而,过量添加大于22.0质量%的Cr使不锈钢板的韧性和可加工性恶化。
N最高达0.05质量%
通过分批退火将N转化成氮化物。该氮化物充当最终退火工序中再结晶时铁素体晶粒任意生长的籽晶。然而,过量N引起韧性降低,因为N提高退火冷轧钢板的强度。因而,N含量控制到0.05质量%或更低。
除上述元素外,铣素体不锈钢另外可含有一种或多种如下元素。
Al最高达0.10质量%
Al是一种在炼钢时作为脱氧剂添加的元素。含量大于0.10质量%的过量Al造成非金属夹杂物的增高,韧性降低以及产生表面缺陷。从而,适当地规定Al含量以使FM值控制到0或更少。
Mo最高达1.0质量%
Mo是一种改进耐蚀性的元素,但过量添加大于1.0质量%的Mo会促使固溶硬化并阻止高温区的动态再结晶,导致降低热加工性。
Cu最高达1.0质量%
Cu是一种在炼钢时由废钢中包含的元素。由于过量Cu对热加工性和耐蚀性不合适,其上限被定为1.0质量%。
Ti为0.01~0.50质量%,Nb为0.01~0.50质量%
V为0.01~0.30质量%,Zr为0.01~0.30质量%
Ti、Nb和V与溶解在钢基体中的C作用并以对可加工性有效的碳化物沉淀。Zr吸收溶解的O为氧化物并改进不锈钢的可加工性和韧性。在各为0.01质量%或更高时指出了这些元素的作用,但过量添加不利于生产率。在这一意义上,这些元素的上限被定为Ti:0.50质量%、Nb:0.50质量%、V:0.30质量%和Zr:0.30质量%。
B为0.0010~0.0100质量%
B是一种均匀分散热轧钢板中转变相并促进最终结构中铁素体晶粒任意生长而不产生聚集结构的元素。通过添加0.0010质量%或更多比例的B典型地表明了转变相的均匀分布。然而,过量添加大于0.0100质量%的B引起热加工性和焊接性的恶化。
FM值不大于0
为了改进形状凝固性而在分批退火时不产生奥氏体相,除了特定比例的合金化元素外,将不锈钢设计成使得将由式(1)所定义的FM值调整至0或更小。
FM=420C-11.5Si+7Mn+23Ni-3.5Cr-12Mo+9Cu-49Ti-50Nb-
    23V-52Al+470N+20  ...(1)
通过控制FM值至0或更小抑制了分批退火时高温区中奥氏体相的产生。另一方面,合金化设计FM>0可以在铁素体基体中产生能以较高比例溶解C和N的奥氏体相。因为C和N的溶解度在奥氏体相和铁素体基体之间是不同的,各向异性度(γmax-γmin和σmax-σmin)由于溶解度不规则而升高。
平面各向异性度(γmax-γmin)Lankford值(γ)≤0.80
0.2%屈服强度的各向异性度(σmax-σmin)≤20N/mm2
当各向异性度(γmax-γmin和σmax-σmin)较小时,铁素体不锈钢被冲压成形产品型钢具有较好的形状凝固性。实验结果证明在(γmax-γmin)≤0.80和(σmax-σmin)≤20N/mm2时形状凝固性优良。
0.2%屈服强度≤350N/mm2
为了给予铁素体不锈钢优良的形状凝固性,较佳的是具有0.2%屈服强度为350N/mm2或更低的无马氏体的完全铁素体结构。强度高于350N/mm2必然需要施加巨大应力以使不锈钢板塑性变形,导致增加回弹和降低形状凝固性。
在700~880℃退火1~24小时
为了降低各向异性度(γmax-γmin和σmax-σmin),在C和N以细碳氮化物颗粒均匀地沉淀在单独铁素体基体中的条件下将铁素体不锈钢板退火。通过在温度为700℃或更高时的分批退火进行碳氮化物的充分沉淀。然而,当在高于880℃温度将不锈钢板分批退火时,相反,由于再结晶铁素体晶粒的显著生长(所谓“二次再结晶”),使不锈钢板成为各向异性结构。
通过如下实施例将更清晰地理解本发明。
在真空炉中熔化表1中所示的一些不锈钢,铸造,锻造而后热轧成厚度为3.0mm。在表2所示的条件下将各个热轧钢板分批退火或中间退火,酸洗并随后冷轧至厚度为0.5mm。在880℃下将冷轧钢板最终退火1分钟,在露天冷却然后再次酸洗。
                                                                                          表1:不锈钢的化学组成和FM值
钢种                                                                                   合金化组分(质量%) FM值
C Si Mn P S Ni Cr N 其它
A  0.034  0.75  0.80  0.035  0.008  0.02  14.65  0.021 -9.7 发明实施例
B  0.036  0.81  0.30  0.029  0.002  1.48  21.85  0.010 -9.8
C  0.008  0.10  0.21  0.033  0.005  0.17  11.34  0.021  Cu:0.23.Ti:0.1 8 -9.0
D  0.022  0.34  0.51  0.035  0.006  0.01  16.08  0.007  Cu:0.45,Ti:0.2 1,Al:0.09,B:0.0035 -34.8
E  0.023  0.78  0.45  0.033  0.002  0.95  12.56  0.045  Mo:0.74,Ti:0.43,Zr:0.21 -7.1
F  0.015  0.03  0.34  0.033  0.005  0.35  11.40  0.011  Nb:0.42 -19.3
G  0.075  0.50  0.26  0.042  0.007  0.11  21.23  0.010  Cu:0.65,V:0.23 -18.9
H  0.006  0.43  0.64  0.026  0.005  0.89  13.23  0.034  B:0.0023 12.2 对比例
I  0.076  0.87  0.26  0.042  0.009  1.64  21.40  0.032  Nb:0.32 5.6
J  0.056  0.78  0.87  0.048  0.006  0.26  12.43  0.045  Mo:0.56,Ti:0.1 8,Zr:0.24 8.7
K  0.075  0.24  0.30  0.033  0.012  2.23  16.23  0.010  Cu:0.30,Al:0.07 49.1
带下划线的数字在本发明规定的范围以外。
试验每种退火钢板试样以测定Lankford值(γ)和0.2%屈服强度如下:
Lankford值(γ)
在对试验块JIS13B施加15%拉伸应变后,沿L、D和T方向测量Lankford值。计算测得的最大和最小值之间差并作为Lankford值(γ)平面各向异性度(γmax-γmin)。
0.2%屈服强度
在以3.3×10-4速率对试验块JIS13B施加拉伸应变后,沿L、D和T各个方向测量0.2%屈服强度。计算测得的最大和最小值之间差并作为0.2%屈服强度的各向异性度(σmax-σmin)。
形状凝固性
由每种退火钢板制得两个试验块,每个具有包括带有尺寸为10m×36mm的四个长方形区域A1~D1,A2~D2的40mm平方区域E1,E2的展开盒形(图1所示)。沿L方向(轧制方向)切割一个试验块,而沿D方向切割另一个。通过装备有直径为4mm端部的矩形冲头的200吨压机,在固定压20吨下以200mm/分的工作速度将平方区E1,E2的所有边弯曲,长方形区A1~D1,A2~D2垂直升高。在相应于所形成盒底部的四角的各个测量点P1~P4测量回弹角θ。通过测量值中最大角θmax评估形状凝固性。
表2示出了各种退火钢板的结果,而图2示出了与各向异性度(γmax-γmin和σmax-σmin)有关的最大回弹角θmax的分布。
由图2可理解到本发明具有γmax-γmin≤0.8和σmax-σmin≤20N/mm2的钢板形状凝固性良好(即最大回弹角θmax≤3°)。另一方面,如最大回弹角θmax>3°所表明的,对比钢板不能满足γmax-γmin≤0.8和σmax-σmin≤20N/mm2的任一项,形状凝固性不良。
                                                               表2:不锈钢板的制造条件和性能
 试验号  钢种    分批退火或中间退火   平面各向异性γmax-γmin     0.2%屈服强度σmax(N/mm2)   0.2%屈服强度的各向异性度σmax-σmin(N/mm2)  最大回弹角θmin(度)      注
周期
    1   A     720     12小时      0.53         256             11     1.7 发明实施例
    2   A     770     8小时      0.65         276             15     2.2
    3   A     835     20小时      0.24         234             12     2.6
    4   A     750     60秒      1.07         276             23     5.2 对比例
    5   A     930     10小时      0.86         241             15     4.6
    6   C     775     10小时      0.32         203             8     1.8 发明实施例
    7   C     845     20小时      0.29         199             5     0.9
    8   C     670     20小时      0.96         219             12     3.9 对比例
    9   C     1000     60秒      1.02         232             25     4.3
    10   B     890     8小时      0.23         322             7     1.6 发明实施例
    11   D     790     10小时      0.74         289             18     2.3
    12   E     835     18小时      0.22         215             12     2.8
    13   F     850     8小时      0.48         221             19     1.7
    14   G     765     22小时      0.54         331             13     1.6
    15   H     750     8小时      1.21         222             21     4.7 对比例
    16   I     750     12小时      1.11         312             12     6.5
    17   J     830     20小时      0.87         254             23     7.3
    18   K     850     15小时      1.23         392             35     8.5
带有下划线的数字在本发明规定范围以外。
工业实用性
按照上述本发明,通过将结晶铁素体晶粒调节到具有均衡的平面取向结构,以使将Lankford值(γ)的平面各向异性度(γmax-γmin)和0.2%屈服强度的各向异性度(σmax-σmin)降低至可能的最小值,改进了铁素体不锈钢板的形状凝固性。由于该不锈钢被塑性成形成具有较小回弹的产品型钢,故它在不同工业领域中有用,例如电气或电子装置部件,如有机EL装置的密封元件,精密加压部件以及建筑构件。

Claims (4)

1.一种铁素体不锈钢板,该钢板具有:在由式(1)所定义的FM值被调节到0或更小的条件下,合金组份为C最高达0.10质量%、Si最高达1.0质量%、Mn最高达1.0质量%、P最高达0.050质量%、S最高达0.020质量%、Ni最高达2.0质量%、Cr为8.0~22.0质量%、N最高达0.05质量%以及余量基本上是铁,
FM=420C-11.5Si+7Mn+23Ni-3.5Cr-12Mo+9Cu-49Ti-50Nb-
    23V-52Al+470N+20 ...(1)
以及机械性能为将Lankford值(γ)的平面各向异性度(γmax-γmin)和0.2%屈服强度的各向异性度(σmax-σmin)分别控制在不大于0.80和20N/mm2
2.权利要求1所述的铁素体不锈钢板,其中合金组份另外含有从Al最高达0.10质量%、Mo最高达1.0质量%、Cu最高达1.0质量%、0.01~0.50质量%的Ti、0.01~0.50质量%的Nb、0.01~0.30质量%的V、0.01~0.30质量%的Zr以及0.0010~0.0100质量%的B中选出的一种或多种。
3.权利要求1所述的铁素体不锈钢板,其中0.2%屈服强度沿轧制方向、与所述轧制方向成45度角的方向以及与所述轧制方向成直角的方向中的任一方向上为不大于350N/mm2
4.一种在塑性转变时制造具有良好形状凝固性的铁素体不锈钢板的方法,该方法包括将具有权利要求1或2所规定的合金组份的铁素体不锈钢热轧并随后将热轧钢板在700~800℃下分批退火1~24小时的步骤。
CNB028094530A 2001-05-10 2002-05-09 形状凝固性良好的铁素体不锈钢板 Expired - Fee Related CN1249262C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP139576/2001 2001-05-10
JP2001139576A JP2002332549A (ja) 2001-05-10 2001-05-10 成形加工時の形状凍結性に優れたフェライト系ステンレス鋼帯およびその製造方法

Publications (2)

Publication Number Publication Date
CN1507500A true CN1507500A (zh) 2004-06-23
CN1249262C CN1249262C (zh) 2006-04-05

Family

ID=18986327

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028094530A Expired - Fee Related CN1249262C (zh) 2001-05-10 2002-05-09 形状凝固性良好的铁素体不锈钢板

Country Status (7)

Country Link
US (1) US20040140023A1 (zh)
EP (1) EP1386977B1 (zh)
JP (1) JP2002332549A (zh)
KR (1) KR20030094325A (zh)
CN (1) CN1249262C (zh)
DE (1) DE60213784T2 (zh)
WO (1) WO2002092867A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008131614A1 (fr) * 2007-04-30 2008-11-06 Zhengzhou Yongtong Special Steel Co., Ltd. Procédé de fusion d'une base d'acier inoxydable à faible teneur en p faisant intervenir de la roche ferrugineuse pauvre contenant du ni et du cr
CN101649418B (zh) * 2009-09-10 2011-06-01 山西太钢不锈钢股份有限公司 一种铁素体不锈钢冷轧钢带及其制造方法
CN102140574A (zh) * 2011-05-11 2011-08-03 北京冶金正源科技有限公司 一种提高430铁素体不锈钢深冲性能的退火工艺
CN101768702B (zh) * 2008-12-31 2012-05-30 宝山钢铁股份有限公司 高成形性耐酸性腐蚀汽车用中铬铁素体不锈钢及制造方法
CN101522932B (zh) * 2006-07-26 2012-07-11 山特维克知识产权股份有限公司 铁素体铬钢
CN103789677A (zh) * 2014-02-11 2014-05-14 江苏省沙钢钢铁研究院有限公司 一种具有高耐腐蚀性的高强钢筋及其制备方法
CN105220074A (zh) * 2015-10-22 2016-01-06 山西太钢不锈钢股份有限公司 一种锅炉吊管托块用中铬铁素体耐热钢制作方法
CN106435129A (zh) * 2016-06-30 2017-02-22 宝钢不锈钢有限公司 一种良好韧性和耐腐蚀性的铁素体不锈钢及其制造方法
CN110144528A (zh) * 2012-04-02 2019-08-20 Ak钢铁产权公司 成本效益的铁素体不锈钢

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100733016B1 (ko) * 2002-06-17 2007-06-27 제이에프이 스틸 가부시키가이샤 Тi첨가 페라이트계 스테인레스 강판 및 그 제조방법
JP2007283378A (ja) * 2006-04-19 2007-11-01 Fujifilm Corp プレス金型、絞り加工方法およびプレス加工品
JP4740021B2 (ja) * 2006-04-20 2011-08-03 新日鐵住金ステンレス株式会社 形状凍結性に優れるCr含有薄鋼板およびその製造方法
US20110061777A1 (en) * 2007-08-20 2011-03-17 Jfe Steel Corporation Ferritic stainless steel sheet having superior punching workability and method for manufacturing the same
KR100963109B1 (ko) 2007-11-22 2010-06-14 주식회사 포스코 고크롬 페라이트계 스테인리스강
KR101423823B1 (ko) * 2012-06-28 2014-07-25 주식회사 포스코 내식성 및 내리징성이 향상된 저크롬 페라이트계 스테인리스강
KR20170056046A (ko) * 2015-11-12 2017-05-23 주식회사 포스코 표면 품질이 우수한 페라이트계 스테인리스강 및 이의 제조 방법
JP6878060B2 (ja) * 2017-03-15 2021-05-26 日鉄ステンレス株式会社 フェライト系ステンレス鋼熱延鋼帯
JP7178791B2 (ja) * 2018-03-30 2022-11-28 日鉄ステンレス株式会社 フェライト系ステンレス鋼管用鋼板
KR102279909B1 (ko) * 2019-11-19 2021-07-22 주식회사 포스코 고투자율 페라이트계 스테인리스강

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153831A (ja) * 1983-02-23 1984-09-01 Sumitomo Metal Ind Ltd フエライト系耐熱ステンレス鋼板の製造法
JP2772237B2 (ja) * 1994-03-29 1998-07-02 川崎製鉄株式会社 面内異方性が小さいフェライト系ステンレス鋼帯の製造方法
JP4065579B2 (ja) * 1995-09-26 2008-03-26 Jfeスチール株式会社 面内異方性が小さく耐リジング性に優れるフェライト系ステンレス鋼板およびその製造方法
JP4221107B2 (ja) * 1999-03-19 2009-02-12 新日本製鐵株式会社 表面性状に優れたフェライト系ステンレス鋼板の製造方法
JP4285843B2 (ja) * 1999-07-21 2009-06-24 新日鐵住金ステンレス株式会社 曲げ加工時の形状凍結性に優れたフェライト系ステンレス鋼とその製造方法
JP2001032023A (ja) * 1999-07-23 2001-02-06 Nippon Steel Corp 表面性状と加工性の良好なフェライト系ステンレス鋼の製造方法
US6413332B1 (en) * 1999-09-09 2002-07-02 Kawasaki Steel Corporation Method of producing ferritic Cr-containing steel sheet having excellent ductility, formability, and anti-ridging properties
JP2001107149A (ja) * 1999-09-30 2001-04-17 Kawasaki Steel Corp 延性、加工性および耐リジング性に優れたフェライト系ステンレス鋼板の製造方法
JP3769479B2 (ja) * 2000-08-07 2006-04-26 新日鐵住金ステンレス株式会社 プレス成形性に優れた燃料タンク用フェライト系ステンレス鋼板

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101522932B (zh) * 2006-07-26 2012-07-11 山特维克知识产权股份有限公司 铁素体铬钢
CN100532579C (zh) * 2007-04-30 2009-08-26 郑州永通特钢有限公司 使用含镍、铬的低品位褐铁矿冶炼低磷不锈钢基料的方法
WO2008131614A1 (fr) * 2007-04-30 2008-11-06 Zhengzhou Yongtong Special Steel Co., Ltd. Procédé de fusion d'une base d'acier inoxydable à faible teneur en p faisant intervenir de la roche ferrugineuse pauvre contenant du ni et du cr
CN101768702B (zh) * 2008-12-31 2012-05-30 宝山钢铁股份有限公司 高成形性耐酸性腐蚀汽车用中铬铁素体不锈钢及制造方法
CN101649418B (zh) * 2009-09-10 2011-06-01 山西太钢不锈钢股份有限公司 一种铁素体不锈钢冷轧钢带及其制造方法
CN102140574B (zh) * 2011-05-11 2012-09-05 北京冶金正源科技有限公司 一种提高430铁素体不锈钢深冲性能的退火工艺
CN102140574A (zh) * 2011-05-11 2011-08-03 北京冶金正源科技有限公司 一种提高430铁素体不锈钢深冲性能的退火工艺
CN110144528A (zh) * 2012-04-02 2019-08-20 Ak钢铁产权公司 成本效益的铁素体不锈钢
CN103789677A (zh) * 2014-02-11 2014-05-14 江苏省沙钢钢铁研究院有限公司 一种具有高耐腐蚀性的高强钢筋及其制备方法
CN103789677B (zh) * 2014-02-11 2016-04-20 江苏省沙钢钢铁研究院有限公司 一种具有高耐腐蚀性的高强钢筋及其制备方法
CN105220074A (zh) * 2015-10-22 2016-01-06 山西太钢不锈钢股份有限公司 一种锅炉吊管托块用中铬铁素体耐热钢制作方法
CN106435129A (zh) * 2016-06-30 2017-02-22 宝钢不锈钢有限公司 一种良好韧性和耐腐蚀性的铁素体不锈钢及其制造方法
CN106435129B (zh) * 2016-06-30 2021-04-02 宝钢德盛不锈钢有限公司 一种良好韧性和耐腐蚀性的铁素体不锈钢及其制造方法

Also Published As

Publication number Publication date
DE60213784T2 (de) 2006-11-30
CN1249262C (zh) 2006-04-05
WO2002092867A1 (fr) 2002-11-21
KR20030094325A (ko) 2003-12-11
EP1386977A4 (en) 2004-12-15
US20040140023A1 (en) 2004-07-22
EP1386977A1 (en) 2004-02-04
DE60213784D1 (de) 2006-09-21
JP2002332549A (ja) 2002-11-22
EP1386977B1 (en) 2006-08-09

Similar Documents

Publication Publication Date Title
CN1249262C (zh) 形状凝固性良好的铁素体不锈钢板
EP3705594B1 (en) High-strength multiphase tinned steel raw plate and manufacturing method therefor
CN1070392C (zh) 罐用钢板及其制造方法
CN1227383C (zh) 用作钢带的双相不锈钢带材
JP6229181B1 (ja) 準安定オーステナイト系ステンレス鋼帯または鋼板並びにその製造方法
JP3691341B2 (ja) 精密打抜き性に優れたオーステナイト系ステンレス鋼板
TW528811B (en) A martensitically hardenable steel and process for its production
US8142576B2 (en) Clutch member and process for manufacturing the same
JP5950653B2 (ja) 耐加工肌荒れ性に優れるフェライト系ステンレス鋼板
JP2000328172A (ja) 深絞り面内異方性の小さい高炭素冷延鋼帯とその製造方法
JP3723569B2 (ja) 精密打抜き性に優れたオーステナイト系ステンレス鋼板の製造方法
JP4561136B2 (ja) 窒化処理用鋼板
JP2002332548A (ja) 成形加工時の形状凍結性に優れたフェライト系ステンレス鋼帯およびその製造方法
JP5197113B2 (ja) ステンレス鋼プレス成形体および製造方法
JP2007031777A (ja) 摺動特性に優れたオーステナイト系ステンレス鋼製部材
JP7355994B2 (ja) 高炭素鋼板およびその製造方法
JP2018141184A (ja) 炭素鋼板
CN112342471B (zh) 一种超高强度纳米晶10Mn2MoVNb结构钢及其制备方法
JP3727646B2 (ja) 精密打抜き性に優れたオーステナイト系ステンレス鋼板の製造方法
JP3913088B2 (ja) 深絞り性に優れた中・高炭素鋼板の製造方法
JP2970361B2 (ja) 型曲げ加工時に発生するスプリングバック量の異方性の小さいオーステナイト系ステンレス鋼
JP3836358B2 (ja) 形状凍結性に優れたフェライト系ステンレス鋼帯およびその製造方法
JP5691563B2 (ja) 形状凍結性に優れた部材の製造方法
CA3150774A1 (en) Low-strength steel sheet for hot stamping, hot-stamped component, and method for manufacturing hot-stamped component
JPH0243807B2 (zh)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060405

Termination date: 20110509