CN1465130A - 减轻传导电磁干扰的有源共模emi滤波器 - Google Patents

减轻传导电磁干扰的有源共模emi滤波器 Download PDF

Info

Publication number
CN1465130A
CN1465130A CN02802238A CN02802238A CN1465130A CN 1465130 A CN1465130 A CN 1465130A CN 02802238 A CN02802238 A CN 02802238A CN 02802238 A CN02802238 A CN 02802238A CN 1465130 A CN1465130 A CN 1465130A
Authority
CN
China
Prior art keywords
common mode
amplifier
current
active
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN02802238A
Other languages
English (en)
Inventor
薛承基
孙尧赞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN1465130A publication Critical patent/CN1465130A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/15Arrangements for reducing ripples from dc input or output using active elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/123Suppression of common mode voltage or current
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/42Balance/unbalance networks
    • H03H7/425Balance-balance networks
    • H03H7/427Common-mode filters

Abstract

本发明涉及一种有源共模EMI滤波器,其通过使用与该系统工作电压无关的分立式放大器直流电源,能够使用低电压的放大器设备,以及能够通过高频耦合电容器在该系统内运行该漏电流,该高频耦合电容器在低频区起隔离滤波电路作用,并且在高频区与该系统的主电路形成闭合电路。因此,除了现有技术的滤波电路之外,不考虑该目标系统的工作电压,使用快速的有源器件是可允许的。本发明可以解决现有技术的问题,为了使双极晶体管承受该系统总的直流电压,应该使用具有较高的额定电压的晶体管,同时使用一种方法用于检测和补偿该高频共模电流。

Description

减轻传导电磁干扰的有源共模EMI滤波器
技术领域
本发明涉及一种减轻传导电磁干扰的有源共模EMI(电磁干扰)滤波器,尤其是涉及用于检测和补偿共模电流的有源共模EMI滤波器,其通过使用一个与该系统工作电压无关的分离式放大器直流电源,能够使用低电压放大器设备,并且通过起在低频区用于该滤波电路被与该主电路隔开的作用的耦合电容器,在该系统内循环该漏电流,以及提供在滤波电路和主电路之间的低阻通路,用于由该系统产生的高频共模电流。
背景技术
由该系统产生的高频共模电流通过传导的电磁干扰不仅影响连接到该公共耦合端其他的电子设备,而且产生辐射的EMI,因为在该信源和该系统之间高频漏电流的循环通道是比较大的,并且可以是一个用于该辐射的天线。
首先,通过一个例子描述在电子控制系统中产生的该高频漏电流,并且描述消除该漏电流的现有技术。
图1是用于说明通过PWM(脉宽调制)反向器系统产生的高频漏电流,该PWM反向器系统连接到一个单相ac输入端。在图1中,为了满足该谐波规则,具有一个前端单相二极管桥式整流器的PFC(功率因子校正器)通常被使用。一个交流电机被用作PWM反向器的加载设备。在该电机驱动系统中,该PWM反向器通常工作在1~20kHz的切换频率上,并且FET(场效应晶体管)或者IGBT(绝缘栅双极晶体管)被用作电源开关。FET或者IGBT的快速切换伴随着系统寄生元件产生高频电压和电流。尤其是,通过FET或者IGBT的快速切换,高压脉冲波形存在于‘a’点、‘b’点和‘c’点。在图1中,该交流电机被连接到地‘g’。在具有快速瞬变值的高电压被施加于电机的情况下,高频漏电流被产生,并且其被通过在该系统和地之间的寄生电容(例如Clg、Csg)发送以及被返回给信源。在图1中,在电机的零点‘s’和接地‘g’之间的该电压被作为图2中的Vsg测量,并且该相应的漏电流被作为图2中的isg测量。
作为一个用于抑制上述的漏电流的现有技术,已经在该系统的输入/输出使用一个图3的无源共模滤波器。图3的共模扼流圈增加了该共模电流通路的串联阻抗,并且Cy提供了一个用于该高频漏电流在该系统内循环、具有低阻抗的路径。为了提高图3无源滤波器的衰减,应该增加该滤波器的LC值。但是,为了安全缘故,Cy是有限的。在这种情况下,应该增加共模扼流圈的电感,而不是增加Cy值,以提高该滤波器的衰减,其导致该包括滤波级的整个系统的成本和容量的增加。
为了解决无源共模EMI滤波器的问题,已经对有源共模EMI滤波器进行了一些研究。
图4示出一个现有的有源EMI滤波器的概念结构。该有源EMI滤波器用于抑制通过切换信源产生的波纹电压或者电流。在该有源EMI滤波器中,高频电流或者电压信号被检测,并且被乘‘-A’增益以补偿高频电流或者电压,其引起抑制在该信源的高频波动信号的结果。虽然有源EMI滤波器被对于标准模式噪声实施,这种想法还可以适用于以类似的方式抑制该共模噪声。
图5示出用于该PWM反向器系统的有源共模EMI滤波器。图5a和图5b示出一个用于检测和补偿该共模电压的有源共模EMI滤波器,以及图5c示出一个用于检测和补偿共模电流的有源共模EMI滤波器。
图5a和图5b是检测该PWM反向器的共模电压的电路,并且使用该共模变换器和该推挽放大器增加其到输出电压上,其引起抑制在电机端子上共模电压的结果。
但是,图5a的该滤波电路被连接到该PWM反向器的直流总线(bus),并且因为该双极晶体管将承受整个的直流总线电压,其实施可能是困难的。图5b使用一个单独的直流电源(50V)解决这个问题,但是与图5a的那些相比较其要求双极晶体管更高的额定电流。
图5c是一个使用连接到该PWM反向器的直流总线的推挽放大器检测和补偿该漏电流的电路。图5c具有如在图5a的情况下双极晶体管额定电压相同的问题。一般而言,如果使用具有更高的额定电压的晶体管,那么该滤波电路的额定电流和可应用的带宽将是有限的。
发明内容
本发明具有一个目的提供一个有源共模EMI滤波器,用于不考虑该系统工作电压能够使用低电压的设备抑制共模电流。
本发明的另一个目的是提供一个共模EMI滤波器,不考虑该系统工作电压检测和补偿共模电流。
为了实现前述的目的,本发明的有源共模EMI滤波器包括:一个连接到主电源的共模电感,在具有不同方向(标准模式电流)的电流流入每个绕组的情况下,偏转该磁力线,并且在具有相同方向(共模电流)的电流流动的情况下,作为一个电感工作;一个安装在相同的磁芯中的辅助绕组,去检测来自信源的共模电流的流动;一个输入级连接到该辅助绕组的放大器;一个作为放大级的偏置电源与该主电源隔开的放大器直流电源;一个被设置在该放大器的一个输出端和地之间的输出电容器;和被设置在该放大器直流电源和主电路之间的耦合电容器,起用于在低频区与该主电路隔开的滤波电路,以及在高频区与主电路构成闭合电路的作用。
附图说明
图1是用于说明在PWM(脉宽调制)反向器系统中的漏电流,该PWM反向器系统连接到一个单相ac输入端;
图2示出Vsg和isg的信号波形,Vsg是在马达零点‘s’和地之间的电压,i是按照该Vsg的漏电流;
图3示出现有技术无源共模滤波器的原理;
图4示出现有的有源EMI滤波器的概念结构;
图5示出用于PWM反向器系统的有源共模EMI滤波器;图5a和图5b示出一个用于检测和补偿该共模电压的有源共模EMI滤波器;图5c示出一个用于检测和补偿该共模电流的有源共模EMI滤波器;
图6示出一个按照本发明的有源共模EMI滤波器的示意图;
图7作为一个实施按照本发明的有源共模EMI滤波器的例子,示出一个单相ac系统或者dc系统滤波器的例子;
图8作为一个实施按照本发明的有源共模EMI滤波器的例子,示出另一个单相ac系统或者dc系统滤波器的例子;
图9作为一个实施按照本发明的有源共模EMI滤波器的例子,示出一个三相ac系统滤波器的例子;
图10作为一个实施按照本发明的有源共模EMI滤波器的例子,示出另一个用于三相ac系统滤波器的例子;
图11示出一个用于本发明的辅助输出滤波器的例子;
图12示出在介绍的实验中使用的PWM反向器系统;
图13示出在介绍的实验中使用的本发明的有源共模EMI滤波器;
图14示出一个在介绍的实验中分别地测量建立的共模EMI的DMRN(差模抑制网络);
图15示出如果没有本发明的有源共模EMI滤波器,该传导的EMI频谱和漏电流的信号波形;
图16示出该传导的EMI频谱和漏电流的信号波形,这里该放大器电路被除去,仅有该共模电感LCM被包括在本发明的有源共模EMI滤波器中;
图17示出该传导的EMI频谱和漏电流的信号波形,这里安置了本发明的有源共模EMI滤波器。
具体实施方式
在下文中参考附图提供了本发明有源共模EMI滤波器的详细解释。
图6示出一个按照本发明的有源共模EMI滤波器的示意图。
在图6中,通过在不同的方向设置2线(单相ac或者dc)、3线(三相ac)或者多端输入绕组LCM偏移磁通,并且在电流具有相同方向流动的情况下,LCM作为一个电感是一个通用标准电感。一个单独的直流电源(Vc)被用作该放大器的偏置源。设置在放大器电源(Vc)和主源电路之间的耦合电容器(C0)通过在低频信号切断电路起对于该有源滤波器电路与该主源电路隔开的作用,并且在高频时构成在该滤波电路和该主源电路之间的闭合电路。该放大器的输出端经由输出电容器(Cc)连接到地。
更具体地说,LCM作为一个电感器,只有当共模电流流动时,就会在其磁芯中感生出与该共模电流成正比的磁通。这个磁通引起对安装相同的磁芯中的辅助绕组的电动势,并且这个电动势驱动跨导放大器的输入。该放大器的输出按照该检测的共模电流经由输出电容器(Cc)提供补偿电流至地。
对于高频共模电流,耦合电容器(C0)构成该低阻通路,因此该有源滤波器电路在高频被电连接至该主源电路。此外,该共模电感器增加了系统的串联阻抗,因此该电感器禁止来自电源的高频电流的流动。因此,由该系统产生的该高频共模电流经由该放大器、耦合电容器(C0)和该输出电容器(Cc)仅在该系统内循环,因此抑制了来自电源(Vs)的高频共模电流。
图7至图11示出实施按照本发明的有源共模EMI滤波器的详细的例子。
图7作为一个实施按照本发明的有源共模EMI滤波器的例子,示出一个单相交流系统或者直流系统滤波器的例子。该共模电感(LCM)被设置在电源输入端和该系统之间,耦合电容器(C0)被设置在该放大器直流电源和该系统的输入级之间,该放大器的输出端经由输出电容器(Cc)连接到地,以及该系统连接到地。本发明的有源共模EMI滤波器检测经由该电感LCM的高频共模电流的流动,并且通过使该放大器去产生与检测的经由耦合电容器(C0)和输出电容器(Cc)的共模电流的方向相反的补偿电流,仅在本发明的滤波器和系统的地之间循环该漏电流(由该系统产生的),因此,其抑制来自电源的高频共模电流的流动。在该系统输入和放大器的直流电源之间的耦合电容器,在提供高阻抗的低频区将放大器电源与该系统隔开,并且同时它们构成用于高频共模电流(由系统产生的)的闭合电路,提供低阻通路。
图8作为一个实施有源共模EMI滤波器的例子,示出另一个交流或者直流系统滤波器的例子。即,如与图7相同的情况,图8是一个按照本发明设置有源EMI滤波器至单相交流或者直流制的输入级的例子。在图8中,耦合电容器(C0)被设置在该放大器直流电源和在系统中紧接于前端整流器(或者转换器)的该直流总线级之间。该共模电感(LCM)被设置在交流或者直流电源输入端和该前端整流器(或者转换器)之间,另一个交流/直流或者直流/直流负载系统被连接到表示为Vdc的直流总线级,并且其被连接到地。该放大器的输出端经由该输出电容器(Cc)被连接到地。在图8中示出的电路检测经由该电感LCM的高频共模电流的流动,并且通过使该放大器产生与检测的经由耦合电容器(C0)和输出电容器(Cc)的共模电流的方向相反的补偿电流,仅在本发明的滤波器和地之间循环该高频漏电流(由该系统产生的),因此,其抑制来自电源的高频共模电流的流动。此时,耦合电容器(C0)将该放大器电源与该直流总线级隔开,在低频区提供高阻抗,同时它们构成用于高频共模电流(由该系统产生的)的该闭合电路,提供低阻通路。
图9作为一个实施有源共模EMI滤波器的例子,示出一个三相交流系统滤波器的例子。即,图9是一个实施按照本发明的有源共模EMI滤波器为三相系统输入级的例子。在图9中,耦合电容器(C0)被设置在该放大器直流电源和该三相线路的每个相之间,以便在高频时在三相电源和放大器电源之间进行短接。该电感(LCM)被在该系统中设置在该电源输入端和前端整流器(或者转换器)之间,并且该系统被连接到地。本发明放大器的输出端经由输出电容器(Cc)被连接到地。通过检测经由该电感LCM的高频共模电流的流动,并且使该放大器产生与检测的经由耦合电容器(Cc)和输出电容器(C0)的电流的方向相反的补偿电流,仅在本发明的系统地和滤波器之间循环由该系统产生的高频共模电流。因此,来自电源的该共模电流的流动被抑制。此时,耦合电容器(C0)将该放大器直流电源与该三相输入电源隔开,在低频区提供高阻抗,同时它们构成用于高频共模电流(由该系统产生的)的该闭合电路,提供低阻通路。
图10作为一个实施按照本发明的有源共模EMI滤波器的例子,示出另一个用于三相交流系统滤波器的例子。如与图9相同的情况,图10是一个本发明的有源EMI滤波器设置为三相交流系统的例子。在图10中,耦合电容器(C0)被设置在该系统的放大器直流电源和直流总线级(紧接于该三相整流器或者转换器)之间。该电感(LCM)被设置在电源输入端和前端整流器(或者转换器)之间,另一个交流/直流或者直流/直流负载系统被连接到表示为Vdc的直流总线级。该负载系统被连接到地。该放大器的输出端经由该输出电容器(Cc)被连接到地。经由该电感(LCM)高频电流的流动被检测,并且该放大器产生与经由耦合电容器(C0)和输出电容器(Cc)检测的电流的方向相反的补偿电流,因此,该漏电流(由该系统产生的)被在本发明的负载系统的地和滤波电路之间循环,因此,高频共模电流的流动被抑制。此时,耦合电容器(C0)将该放大器直流电源与该直流总线电压隔开,在低频区提供高阻抗,同时它们构成用于高频共模电流(由该系统产生的)的该闭合电路,提供低阻通路。
图11示出用于本发明的有源共模EMI滤波器的辅助输出滤波器。如果输入信号很快,以至该放大器可能产生与该检测的共模电流有相位差的不正确的补偿电流,那么即使利用本发明的有源共模EMI滤波器,该EMI可能变得更恶劣。在这种情况下,这些超出该放大器带宽的高频补偿电流应该被抑制。作为一个例子,图11示出一个使用Lc和re抑制高频补偿电流的例子。这些无源滤波器部件可以适用于本发明的图7~10中的电路。
在下文中作为一个例子描述施加该有源共模EMI滤波器至具体的系统的实验。
图12示出在这个实验中使用的PWM反向器系统。该系统是一个用于空调器的压缩机驱动单元,并且该输入EMI滤波器已经改动和增加适合于该传导的EMI分析。图13示出在这个实验中使用的本发明的有源共模EMI滤波器。实验系统的参数和操作条件在下面的列表1中描述。
[列表1]
主电源 单相,220v
PWM反向器 60Hz固定输出频率,具有2.5kHz切换频率的不连续的PWM。
开关装置 三菱DIP-IPM PS21205
载荷设备 三相3.7kW感应电动机
PFC 用于谐波减少的行频切换
共模 LCM:2MH,N=13,铁氧体torroid,
电感器(扼流圈) 7.5μH的漏磁电感LCM2:6mH,N=27,铁氧体(ferrite torroid),35μH的漏磁电感
Y电容器,输出电容器,耦合电容器 高压电容器(2KV)Cy:2.2nFCc,C0:10nF
X电容器 聚丙烯电容器CX1,CX2,CX4:470nFCX3:680nFCs:100nF
推挽式放大器 NEC 2SC3840(pnp),2SA1468(npn)
在图13示出的本发明的有源共模EMI滤波器是基于波纹电流消除技术,用于检测电源波纹电流并且补偿高频波纹电流。为了将由该滤波电路所引起的相位时延减到最少,使用双极晶体管的单级放大器被使用,并且一个12V直流电压源被用作该放大器的偏置电源。当该电源电压是220V的时候,这个系统的直流总线电压是370V,并且PFC运行。
流动到该系统的共模电流在图13示出的共模扼流圈中产生高频波纹磁通量,其在辅助绕组上产生该高频电压。然后,该高频电压被外部电阻和该推挽式放大器的输入阻抗转换为高频电流信号。该放大器通过该输出电容器提供与该检测的共模电流相反方向的补偿电流,因此,借助于本发明的有源共模EMI滤波器,可以为该高频电流(由该PWM反向器产生的)提供一个低阻抗回路。为了在高频上在该PWM反向器的该直流总线级与该滤波电路之间产生该闭合电路,如图13所示使用二个耦合电容器(C0)。这些耦合电容器应该选择为足够小时,以在低频区将该滤波电路与直流总线级隔开。如上所述,因为在低频区该耦合电容器将该路径断开,在本发明的滤波器中该低频共模电流未被抑制。该输出电容器(Cc)也阻碍低频信号的路径,并且在高频时连接该滤波器输出和地。
该传导的EMI的衰减效果在下文中描述。
在传导的EMI的测量中,图12的一个50Ω的电阻是一个假负载电阻,并且另一个被用作频谱分析仪的一个输入阻抗。因为该总的传导的EMI是标准模式EMI和共模EMI的总和,如图14所示,为了分别地从该总的传导的EMI中测量该传导的共模EMI,使用一个DMRN(差模抑制网络)。
图15示出没有本发明的有源共模EMI滤波器传导的(conducted)EMI频谱。图15a示出总的传导的EMI频谱(包括标准模式和共模),图15b示出该共模EMI频谱,以及图15c示出由PWM反向器产生的电机漏电流的信号波形。因为该总的EMI是略微地大于该共模EMI,在这一级(stage)如果没有考虑该共模EMI的减轻不能单独进行传导的EMI的减轻(mitigation)。
图16示出传导的EMI频谱,这里该放大器电路被除去,以及共模电感LCM被包括在本发明的有源共模EMI滤波器中。图16a示出总的传导的EMI频谱(包括标准模式和共模),图16b示出该共模EMI频谱,以及图16c示出由PWM反向器产生的电机漏电流的信号波形。与图15相比,虽然总的EMI已经略微地降低,该衰减不和共模的情况一样。在该共模EMI的情况下,当该电流通路的阻抗已经提高之时,该漏电流的峰值已经降低,并且如图16c所示,该信号波形已经变得更缓慢。由于共模电感的漏磁电感,标准模式EMI频谱也被降低了,但不是和在图16b中示出的共模EMI频谱的一样多。当在总的EMI和共模EMI之间的差值小于10dBμV之时,其不足以区分标准模式EMI与共模EMI的减轻效果。
图17示出传导的EMI频谱,这里设置了本发明的有源共模EMI滤波器。图17a示出总的传导的EMI频谱(包括标准模式和共模),图17b示出该共模EMI频谱,以及图17c示出由PWM反向器产生的电机漏电流的信号波形。与图16b相比较在图17b中的该共模EMI已经减少至少10dBμV以上。该漏电流的大部分高频成分已经被从返回到电源的共模电流中除去,并且仅保持低频成分。将图17a与图17b比较,非常明显,在所有区域中(图17b),该共模EMI频谱的幅值小于总的EMI(图17a),因此,标准模式EMI确定在这一级中该系统总的EMI频谱的电平。
工业实用性
如在上文解释的,在本发明的有源共模EMI滤波器中,因为使用了与该系统的工作电压无关的单独的直流电源,使用低电压的放大器设备是可允许的。该放大器产生该补偿电流,用于从该电源穿越耦合电容器和输出电容器的该共模电流的流动。因此,该高频漏电流(共模电流)被在该系统内循环。耦合电容器在低频区从该主源电路隔开本发明的滤波电路,并且对于由该系统产生的该高频漏电流提供低阻通路。因此,通过利用更快的设备而不是在现有技术的滤波电路中使用的那些设备,不考虑该系统的工作电压可以适用本发明的有源共模EMI滤波器。本发明可以解决现有技术的问题,为了使双极晶体管承受系统总的直流电压,应该使用具有较高的额定电压的晶体管,同时使用一种方法用于检测和补偿高频共模电流。

Claims (8)

1.一个有源共模EMI滤波器,包括;
一个连接到主电源的共模电感,用于在具有不同方向(标准模式电流)的电流流入每个绕组的情况下偏转该磁力线,以及在具有相同方向(共模电流)的电流流动的情况下,作为一个电感工作;
一个安装在相同的磁芯中的辅助绕组,以便在电源侧检测该共模电流的流动;
一个输入级连接到该辅助绕组的放大器;
一个作为放大级的电源与该主电源电路隔开的放大器直流电源;
一个被设置在该放大器的输出端和地之间的输出电容器;和
被设置在该放大器直流电源和该主电路之间的耦合电容器,用于在低频区将该滤波电路与该主电路隔开,并且在该滤波电路和该主电路之间对于由该系统产生的高频共模电流提供低阻抗路径。
2.根据权利要求1的有源共模EMI滤波器,其中一个辅助输出滤波器被与该输出电容器串联,以便抑制比该放大器的带宽更高的频率补偿电流。
3.根据权利要求1的有源共模EMI滤波器,其中该有源共模EMI滤波器被安装在一个单相交流或者直流系统的输入级中。
4.根据权利要求3的有源共模EMI滤波器,其中该共模电感被设置在该主电源和该系统之间,耦合电容器的一端被连接到该系统的输入级,耦合电容器的另一端被连接到该放大器直流电源。
5.根据权利要求3的有源共模EMI滤波器,其中在该系统中该共模电感被设置在主电源和前端整流器(或者转换器)之间,耦合电容器的一端被连接到系统中紧接于前端整流器或者转换器的直流电源级,耦合电容器的另一端被连接到该放大器直流电源。
6.根据权利要求1的有源共模EMI滤波器,其中该有源共模EMI滤波器被安装在一个三相交流负载系统的输入级中。
7.根据权利要求6的有源共模EMI滤波器,其中在该系统中该共模电感被设置在该放大器直流电源和三相前端整流器或者转换器之间,耦合电容器被Y形连接到该共模电感之后的三相线路的每一相,并且其Y形接线的中点连接到该放大器直流电源。
8.根据权利要求6的有源共模EMI滤波器,其中在该系统中该共模电感被设置在该放大器直流电源和前端整流器或者转换器之间,耦合电容器的一端被连接到系统中紧接于前端整流器或者转换器的直流总线级,耦合电容器的另一端被连接到该放大器直流电源。
CN02802238A 2001-06-29 2002-01-14 减轻传导电磁干扰的有源共模emi滤波器 Pending CN1465130A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2001-0038378A KR100403541B1 (ko) 2001-06-29 2001-06-29 전도성 전자파장애 제거를 위한 능동형 공통모드 이엠아이 필터
KR38378/2001 2001-06-29

Publications (1)

Publication Number Publication Date
CN1465130A true CN1465130A (zh) 2003-12-31

Family

ID=19711564

Family Applications (1)

Application Number Title Priority Date Filing Date
CN02802238A Pending CN1465130A (zh) 2001-06-29 2002-01-14 减轻传导电磁干扰的有源共模emi滤波器

Country Status (4)

Country Link
JP (1) JP2004534500A (zh)
KR (1) KR100403541B1 (zh)
CN (1) CN1465130A (zh)
WO (1) WO2003005578A1 (zh)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100417147C (zh) * 2004-06-08 2008-09-03 Tdk股份有限公司 信号传输电路
CN100427957C (zh) * 2006-11-28 2008-10-22 南京师范大学 开关电源emi噪声源内阻抗测定装置及测定方法
CN1851973B (zh) * 2006-04-30 2010-05-12 西安交通大学 宽频带高衰减共模传导电磁干扰并联混合型滤波器
CN101295924B (zh) * 2008-05-22 2010-06-09 中国人民解放军海军工程大学 消除互感耦合电磁干扰的方法和装置
WO2010124533A1 (zh) * 2009-04-30 2010-11-04 华为技术有限公司 一种通信设备
CN102044959A (zh) * 2009-10-26 2011-05-04 现代自动车株式会社 使用阻抗匹配形成逆变器中的电容器模块电路的方法
CN102342010A (zh) * 2009-03-05 2012-02-01 三菱电机株式会社 漏电流降低装置
CN103036419A (zh) * 2012-11-28 2013-04-10 余姚亿威电子科技有限公司 一种共模电流抑制电路
CN103618516A (zh) * 2013-11-14 2014-03-05 深圳振华富电子有限公司 Emi滤波器
CN104052285A (zh) * 2014-03-18 2014-09-17 江苏中利电子信息科技有限公司 Dc电源转换板
CN104143911A (zh) * 2013-05-10 2014-11-12 弗里沃制造有限公司 改进的扼流电路以及包含该扼流电路的总线电源
CN108377666A (zh) * 2015-11-06 2018-08-07 国立大学法人北海道大学 电力转换装置
TWI666862B (zh) * 2017-03-22 2019-07-21 大陸商矽力杰半導體技術(杭州)有限公司 Power factor correction circuit, control method and controller
CN111022276A (zh) * 2019-12-27 2020-04-17 哈尔滨工业大学 一种霍尔效应推力器低频振荡抑制外回路
CN111431502A (zh) * 2020-03-31 2020-07-17 四川九八村信息科技有限公司 一种用于模拟信号电磁兼容防治的系统及方法
CN111869070A (zh) * 2018-04-16 2020-10-30 三电汽车部件株式会社 功率转换装置
CN112285481A (zh) * 2019-07-12 2021-01-29 北京德意新能科技有限公司 一种用于直流线路绝缘监测与故障定位的装置
CN112771776A (zh) * 2018-09-27 2021-05-07 Abb瑞士股份有限公司 用于ac功率与dc功率之间的转换的装置
CN113746319A (zh) * 2021-07-16 2021-12-03 北京交通大学 适用于pwm变换器的反馈型有源emi滤波器优化方法

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005311412A (ja) * 2004-04-16 2005-11-04 Matsushita Electric Ind Co Ltd 線路状態検出装置、並びに平衡伝送システムの送信装置及び受信装置
US8139759B2 (en) 2004-04-16 2012-03-20 Panasonic Corporation Line state detecting apparatus and transmitting apparatus and receiving apparatus of balanced transmission system
EP1774652B1 (en) * 2004-07-23 2017-04-26 Schaffner Emv Ag Emc filter
WO2006084504A1 (en) 2005-02-09 2006-08-17 Schaffner Emv Ag Active emc filter for machine tools
DE112005003419B4 (de) 2005-02-09 2017-08-24 Schaffner Emv Ag Aktiver EMC Filter für medizinische Anwendungen
JP4663404B2 (ja) * 2005-05-27 2011-04-06 株式会社デンソー 車載用高電圧モータ装置用コモンモードノイズキャンセル回路装置
US7595687B2 (en) 2006-07-31 2009-09-29 Wisconsin Alumni Research Foundation Apparatus and method for reducing EMI generated by a power conversion device
CN101507112A (zh) * 2006-08-15 2009-08-12 沙夫纳Emv股份公司 低泄漏emc滤波器
DE102008029478B4 (de) * 2008-06-20 2015-10-08 Continental Automotive Gmbh Steuermodul
DE102011013247A1 (de) * 2010-09-09 2012-03-15 Esw Gmbh Vorrichtung zur Unterdrückung von asymmetrischen elektromagnetischen Störungen
JP6145961B2 (ja) * 2012-03-05 2017-06-14 株式会社リコー 高電圧インバータ装置
DE102017102608B3 (de) 2017-02-09 2018-05-09 Avl Software And Functions Gmbh Aktiver Filter für bipolare Spannungsquellen
DE102017105839A1 (de) * 2017-03-17 2018-09-20 Schaffner Emv Ag Aktives Filter
KR102034651B1 (ko) * 2018-02-01 2019-10-21 엘지전자 주식회사 공기조화기의 전원 공급장치
DE102018121936A1 (de) 2018-09-07 2020-03-12 Avl Software And Functions Gmbh Verfahren und Verstärkerschaltung zum Erhöhen einer Induktivität
DE102018121934A1 (de) 2018-09-07 2020-03-12 Avl Software And Functions Gmbh Aktiver Filter mit mehreren Verstärkerpfaden
KR102500177B1 (ko) * 2019-03-25 2023-02-15 이엠코어텍 주식회사 전류 보상 장치
KR102242048B1 (ko) * 2019-03-25 2021-04-19 이엠코어텍 주식회사 전류 보상 장치
KR102071480B1 (ko) * 2019-04-23 2020-03-02 이엠코어텍 주식회사 전류 보상 장치
KR102208534B1 (ko) * 2019-05-07 2021-01-28 울산과학기술원 Vscc 능동 emi 필터
KR102208533B1 (ko) * 2019-05-03 2021-01-28 울산과학기술원 능동형 전류 보상 장치
KR102131263B1 (ko) * 2019-04-17 2020-07-07 울산과학기술원 전류 보상 장치
KR102377534B1 (ko) * 2019-04-23 2022-03-23 이엠코어텍 주식회사 전류 보상 장치
KR102505193B1 (ko) * 2019-04-17 2023-03-02 이엠코어텍 주식회사 전류 보상 장치
KR102580800B1 (ko) * 2019-05-03 2023-09-21 이엠코어텍 주식회사 능동형 전류 보상 장치
KR102607200B1 (ko) * 2019-05-07 2023-11-29 이엠코어텍 주식회사 Vscc 능동 emi 필터
DE102020105832B4 (de) * 2020-03-04 2022-03-17 EPA GmbH Verfahren und Vorrichtung zur Kompensation eines Ableitstroms
CN111446902B (zh) * 2020-04-30 2022-09-06 西安电子科技大学 一种用于电机驱动系统的交直流耦合集成式emi滤波器
KR102611393B1 (ko) * 2020-06-29 2023-12-08 이엠코어텍 주식회사 전류 보상 장치
CN113131891A (zh) * 2021-04-06 2021-07-16 西安交通大学 一种基于cscc和cscc的对称级联型有源emi滤波器
KR102611381B1 (ko) * 2021-04-09 2023-12-08 이엠코어텍 주식회사 전류 보상 장치
JP7288206B2 (ja) * 2021-09-30 2023-06-07 ダイキン工業株式会社 ノイズ低減回路、電力変換装置及び冷凍装置
CN117897901A (zh) * 2021-09-30 2024-04-16 大金工业株式会社 降噪电路、负载系统、电力转换装置以及制冷装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU189033B (en) * 1984-01-31 1986-06-30 Telefongyar,Hu Circuit arrangement for matched interconnection of an amplifier with inductance in emitter circuit and a filter with series input inductance
US5408193A (en) * 1993-09-03 1995-04-18 Trimble Navigation Limited Active circuit filter for reducing conducted radiation from a load back to its power supply

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100417147C (zh) * 2004-06-08 2008-09-03 Tdk股份有限公司 信号传输电路
CN1851973B (zh) * 2006-04-30 2010-05-12 西安交通大学 宽频带高衰减共模传导电磁干扰并联混合型滤波器
CN100427957C (zh) * 2006-11-28 2008-10-22 南京师范大学 开关电源emi噪声源内阻抗测定装置及测定方法
CN101295924B (zh) * 2008-05-22 2010-06-09 中国人民解放军海军工程大学 消除互感耦合电磁干扰的方法和装置
US8755205B2 (en) 2009-03-05 2014-06-17 Mitsubishi Electric Corporation Leakage current reduction apparatus that includes a voltage amplifier and a voltage applicator
CN102342010B (zh) * 2009-03-05 2014-12-03 三菱电机株式会社 漏电流降低装置
CN102342010A (zh) * 2009-03-05 2012-02-01 三菱电机株式会社 漏电流降低装置
WO2010124533A1 (zh) * 2009-04-30 2010-11-04 华为技术有限公司 一种通信设备
CN102044959B (zh) * 2009-10-26 2014-11-19 现代自动车株式会社 使用阻抗匹配形成逆变器中的电容器模块电路的方法
CN102044959A (zh) * 2009-10-26 2011-05-04 现代自动车株式会社 使用阻抗匹配形成逆变器中的电容器模块电路的方法
CN103036419A (zh) * 2012-11-28 2013-04-10 余姚亿威电子科技有限公司 一种共模电流抑制电路
CN104143911A (zh) * 2013-05-10 2014-11-12 弗里沃制造有限公司 改进的扼流电路以及包含该扼流电路的总线电源
CN103618516A (zh) * 2013-11-14 2014-03-05 深圳振华富电子有限公司 Emi滤波器
CN104052285A (zh) * 2014-03-18 2014-09-17 江苏中利电子信息科技有限公司 Dc电源转换板
CN104052285B (zh) * 2014-03-18 2017-12-01 江苏中利电子信息科技有限公司 Dc电源转换板
CN108377666B (zh) * 2015-11-06 2020-12-08 国立大学法人北海道大学 电力转换装置
CN108377666A (zh) * 2015-11-06 2018-08-07 国立大学法人北海道大学 电力转换装置
TWI666862B (zh) * 2017-03-22 2019-07-21 大陸商矽力杰半導體技術(杭州)有限公司 Power factor correction circuit, control method and controller
CN111869070A (zh) * 2018-04-16 2020-10-30 三电汽车部件株式会社 功率转换装置
CN112771776A (zh) * 2018-09-27 2021-05-07 Abb瑞士股份有限公司 用于ac功率与dc功率之间的转换的装置
CN112285481A (zh) * 2019-07-12 2021-01-29 北京德意新能科技有限公司 一种用于直流线路绝缘监测与故障定位的装置
CN111022276B (zh) * 2019-12-27 2021-03-12 哈尔滨工业大学 一种霍尔效应推力器低频振荡抑制外回路
CN111022276A (zh) * 2019-12-27 2020-04-17 哈尔滨工业大学 一种霍尔效应推力器低频振荡抑制外回路
CN111431502A (zh) * 2020-03-31 2020-07-17 四川九八村信息科技有限公司 一种用于模拟信号电磁兼容防治的系统及方法
CN113746319A (zh) * 2021-07-16 2021-12-03 北京交通大学 适用于pwm变换器的反馈型有源emi滤波器优化方法

Also Published As

Publication number Publication date
KR100403541B1 (ko) 2003-10-30
JP2004534500A (ja) 2004-11-11
KR20030002685A (ko) 2003-01-09
WO2003005578A1 (en) 2003-01-16

Similar Documents

Publication Publication Date Title
CN1465130A (zh) 减轻传导电磁干扰的有源共模emi滤波器
EP0986165B1 (en) Power conversion system
US6459597B1 (en) Electric power conversion apparatus with noise reduction device
US5646498A (en) Conducted emission radiation suppression in inverter drives
JP5505417B2 (ja) 出力フィルタとそれを備えた電動機駆動システム
JP5248713B2 (ja) 漏れ電流低減装置
US8432710B2 (en) Power conversion apparatus
US8289737B2 (en) Bridgeless boost PFC circuits and systems with reduced common mode EMI
WO2013111360A1 (ja) 高周波電流低減装置
CN1201469C (zh) 用于减小电源转换器中的噪声电流的装置
WO2004001927A2 (en) Active emi filter
JP2000201044A (ja) コモンモ―ドノイズ抑制装置
CN110148960B (zh) 一种功率变换电路、逆变器及控制方法
CN108377666A (zh) 电力转换装置
CA3103081C (en) Power conversion device
JP3650314B2 (ja) 変換器のノイズ低減装置
Sinclair et al. A systematic study of EMI reduction by physical converter layout and suppressive circuits
Kouchaki et al. Filter design for active neutral point clamped voltage source converter using high frequency GaN-FETs
Middelstaedt et al. Analyzing EMI issues in a DC/DC converter using GaN instead of Si power transistors
JP4331566B2 (ja) インバータ装置
CN111869085B (zh) 整流器及其驱动方法、芯片、电力设备
JP3313334B2 (ja) ノイズ低減回路
CN218549742U (zh) 一种干扰抑制电路及电器设备
EP4123893A1 (en) Active rectifier in switched-mode power supply
US8587210B2 (en) Electronic ballast for operating at least one discharge lamp

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication