CN1444695A - 内燃机及其控制 - Google Patents

内燃机及其控制 Download PDF

Info

Publication number
CN1444695A
CN1444695A CN01807292A CN01807292A CN1444695A CN 1444695 A CN1444695 A CN 1444695A CN 01807292 A CN01807292 A CN 01807292A CN 01807292 A CN01807292 A CN 01807292A CN 1444695 A CN1444695 A CN 1444695A
Authority
CN
China
Prior art keywords
fuel
firing chamber
air
combustion
internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN01807292A
Other languages
English (en)
Inventor
杰弗里·P·卡斯卡特
克里斯琴·C·萨维尔
唐纳德·A·雷尔顿
约翰·R·麦克格雷斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orbital Engine Co Pty Ltd
Original Assignee
Orbital Engine Co Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orbital Engine Co Pty Ltd filed Critical Orbital Engine Co Pty Ltd
Publication of CN1444695A publication Critical patent/CN1444695A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4214Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B17/00Engines characterised by means for effecting stratification of charge in cylinders
    • F02B17/005Engines characterised by means for effecting stratification of charge in cylinders having direct injection in the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/101Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on or close to the cylinder centre axis, e.g. with mixture formation using spray guided concepts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B2023/106Tumble flow, i.e. the axis of rotation of the main charge flow motion is horizontal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F2001/244Arrangement of valve stems in cylinder heads
    • F02F2001/245Arrangement of valve stems in cylinder heads the valve stems being orientated at an angle with the cylinder axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

一种内燃机,包括至少一个燃烧室(20),该燃烧室有传送喷射器(25),用于直接将燃料喷射到所述燃烧室内;所述发动机还包括至少一个有阀的进气道(46),用于将燃烧空气传送到所述燃烧室内,其中,所述进气道和/或它的阀(42)布置成使传送给所述燃烧室的进气产生较低缸内翻转运动,从而减小燃料在所述燃烧室的焰前气体区域的过度贫油。所述传送喷射器(25)用于将夹带于气体中的燃料传送给燃烧室,尤其是,所述燃料传送喷射器是气体辅助直接缸内燃料喷射器,用于在所述燃烧室中产生分层进料。该有阀的进气道设置成在进气口阀的整个升高值范围内都保证缸内翻转比小于大约2.0,优选是小于1.50,更优选是,在进气阀升高的主要范围部分上为大约1.0。这样可以提高发动机的分层控制。

Description

内燃机及其控制
发明领域
本发明涉及利用直接缸内喷射(DI)的燃料喷射系统的火花点火内燃机,尤其是涉及喷雾引导系统和双流体喷射系统,通常称为空气辅助喷射(AADI)系统,本发明还涉及该内燃机的控制,尤其是涉及利用AADI汽油燃料喷射系统的四冲程发动机。
发明背景
直喷汽油发动机技术变得日益普及,因为能够减小燃料消耗,且使得目前的汽车汽油发动机几乎不会在功率密度和成本方面受到损害。为了更好地理解后面所述的本发明,有一些关于不同类型的燃料喷射和燃烧系统的背景知识是很合适的。
直喷(DI)发动机通过直接喷射到发动机气缸(即燃烧室)内的燃料而工作,与普通燃料喷射(FI)发动机(也称为歧管喷射或PFI发动机)不同,在普通燃料喷射发动机中,燃料喷入紧接在燃烧室进气阀后面的进气歧管内,以便使该燃料汽化。
“高压直喷”(HPDI)燃料系统通常是这样,即在该“高压直喷”燃料系统中,喷射的流体是单独的燃料,喷射在高压下(通常50至120巴)进行。这些系统与所谓的“空气(或气体)辅助直喷”(AADI)燃料系统不同,在该“空气(或气体)辅助直喷”系统中,燃料通过计量进入通常为恒压的传送喷射器的混合室中,以便与空气混合。该“双流体”再以较低压力(通常6至8巴)喷入气缸燃烧室中。
通常,对于DI发动机,燃料喷射或传送装置穿过气缸盖透入燃烧室。具有穿过气缸盖透入燃烧室且燃料传送方向相对于燃烧室轴线为大致轴向方向的喷射系统的发动机可以称为中心直喷发动机。具有从侧部透入燃烧室,以便使燃料流以大致径向方向传送的喷射系统的发动机通常称为侧向直喷发动机。
燃烧室中的燃料喷射器出口相对于燃料点火源(例如火花塞)的位置以及所用的燃料喷射系统的类型(HPDI或AADI)影响对特定进料传送机构的选择,以便保证使燃料与通过进气口供给的燃烧空气合适混合,并保证燃料-空气混合物在燃烧室内的点火。
附图1以高度简化和示意的方式表示了在四冲程内燃汽油发动机5的气缸中的三种不同的进料(即燃料或燃料-空气混合物)引导机构。往复运动的活塞在15处界定了内部燃烧室20。为了清楚,图1中省略了进口阀和出口阀,但是对于四冲程阀气缸盖的类型,该进口阀和出口阀在气缸盖10内的相应结构和它们从燃烧室20看时的位置是公知的,并在图6中示出。应当知道,火花塞30布置成有靠近气缸10的中心轴线的点火间隙。由25表示的直接燃料喷射器在不同位置,即成为轴线喷射或侧向喷射发动机结构。
在“喷雾引导”(直喷)燃烧系统中,喷射器通常布置成将燃料喷雾引向火花塞间隙,这样,对将燃料传送给火花塞间隙的辅助机构的依赖减至最小。在图1中,该系统结构是中心喷雾引导类型。另一方面,所谓的“壁引导”燃烧系统用于通过辅助机构将喷射的燃料传送给火花塞间隙,例如通过喷射的燃料与活塞的碗状部分和/或气缸内的空气运动相互作用。在所谓的“进料运动或空气引导”系统中,由进气口进入燃烧室的空气的运动用于通过涡旋和/或翻转运动而实现将燃料朝点火区域的所述传送。
进料引导和壁引导传送方法都导致燃料有较长的准备时间,以便产生汽化进料。这是单独燃料喷射系统的典型情况,与AADI喷射系统不同。较长准备时间对于HPDI系统也尤其重要,因为在该系统中,喷射流体只是燃料,需要在气缸内产生燃料-空气“云”,即汽化的进料。
现代汽油直喷发动机通常试图在燃烧室内产生非均匀的燃料分布。该非均匀分布通常称为分层进料,意思是在特定负载状态下,通常在燃烧室的一个区域有着比燃烧室其它区域更大的燃料浓度。适于这样工作的发动机通常也称为分层进料发动机。分层进料发动机理论上没有均质进料发动机的空气燃料比限制(例如,歧管喷射发动机是典型的均质进料发动机),在该均质进料发动机中,在所有负载状态下点火之前,都将在整个燃烧室中获得空气和燃料的均匀混合物。相反,典型的分层进料发动机在低速和低负载状态下以分层进料方式工作,而在高速和较高负载状态下以均质进料方式工作。
为了通过中心喷射燃料传送系统在发动机中产生分层进料,喷射装置通常为在燃烧循环中将燃料喷雾喷射到燃烧室中的正时迟于需要产生均质进料时的喷射正时。通过在循环中更晚进行喷射,燃料喷雾在燃烧室内与吸入空气混合的时间有限,导致空气和燃料的分层进料。另一方面,通过在燃烧循环中相对较早地进行喷射,可以产生均质进料,这样,由喷射装置喷射的燃料喷雾有足够的时间与吸入空气混合,从而在燃烧室内形成空气和燃料(即汽化燃料)的均匀混合物。
如上所述,直喷(DI)发动机的附属设备包括“喷雾引导”直喷燃料燃烧系统。在该发动机中,喷射装置出口布置成使得燃料喷雾流出,以便透入燃烧室内靠近点火装置的位置处,该点火装置通常为火花塞。喷雾引导直喷燃料燃烧系统可以是中心喷射类型。因此,当中心喷射喷雾引导发动机产生分层进料时,该分层进料通常可以在从位于中心的喷射装置喷出的喷雾经过点火装置时由该点火装置点燃。通常,点火的时间定在喷雾喷射的尾段,这样,当发生点火时,喷射装置的出口关闭。也就是,喷雾引导系统并不会通过利用辅助装置而将燃料喷雾从喷射装置传送给点火装置,就象“壁引导”和“进料运动/空气引导”系统的通常情况。因此,点火在由喷射装置停止传送燃料喷雾之后立刻进行。不过,单流体喷雾引导系统的两个主要问题是火花塞的使用寿命和陡峭的空气/燃料比梯度导致燃烧的稳定性较差。这些缺点大致可通过AADI燃烧系统避免,该AADI燃烧系统能够用于喷雾引导系统。不过,即使采用AADI喷雾引导系统,也发现在发动机出气中的排放水平显示喷雾引导系统还可能使燃料中的烃产生不完全和/或部分燃烧。因此,由于日益严格的排放规定,需要减小发动机外排放,以避免采用昂贵或不经济的催化剂方法。还需要通过改进燃烧提高燃料经济性。
通常,分层进料发动机的燃料消耗优于均质进料发动机。不过,当考虑整个燃烧室,分层进料为贫油空气燃料比时,通常还发现在发动机的各个工作点,分层进料发动机的氧化氮(NOx)排放水平高于相当的均质进料发动机。因此,通常认为喷雾引导直喷燃料系统以分层方式工作有进一步降低发动机外排放的可能。
分层进料发动机通常在称为“喷油提前”的控制方法下工作,在该“燃料优先(fuel-led)”的控制方法中,传送给燃烧室的燃料的量与提高进气歧管传送给燃烧室的空气的量无关。这使得发动机的扭矩和负载直接与传送给发动机的燃料量成比例。相反,在普通均质进料发动机中,可以传送给发动机的燃料的量由阀的角度规定,因此由流入燃烧室的气流规定。因此,这样的控制方法称为“空气优先(air-led)”控制方法。
通常,“燃料优先”控制方法向燃烧室提供足够的燃料,这样,该燃烧室总体看具有贫油的空气和燃料混合物。不过,当燃料位于燃烧室的特定区域时,通常该区域自身可点火,因此,在均质进料发动机中过度贫油的空气燃料混合物的点火和燃烧的某些问题可以减小,尽管并不很显著或不能消除。
考虑到多种影响高效燃烧的变量和上述不同类型的喷射和燃烧系统,由于它们在发动机工作/负载的某些区域有不同的优点,系统的选择仍然不清楚。对于HPDI和AADI系统,继续对壁或进料运动引导系统以及喷射或喷雾引导系统进行了研究。近来的研究例如Niefer.HG等的“The DIGasoline Engine:Quo Vadis-where Does the road lead?”,Vienna MotorSymposium,1999;以及Fraidl,GK等的“Gasoline Direct Injection-TheLow Fuel Consumption for EUR04”,Vienna Motor Symposium,1993都认为喷雾引导燃烧系统可能是直喷汽车汽油发动机中最有潜力的。不过,后两篇文献也涉及排放控制的某些领域,如上所述。通过简单地交叉引用,这两篇文献被本文参引。
本发明考虑了进一步改进直喷式火花点火内燃机的要求,尤其是进一步改进具有提升阀类型的进口阀和出口阀的汽油四冲程发动机,该汽油四冲程发动机采用喷雾引导燃料喷射系统,尤其是AADI喷雾引导燃料喷射系统。本发明尤其涉及这样的机构,该机构能够影响分层进料在喷雾引导燃烧系统的气缸燃烧室中的运动和/或容积(containment),从而确实影响四冲程、火花点火、分层工作的发动机的燃料消耗和排放水平。
发明概述
根据本发明的第一方面,提供了一种内燃机,该内燃机包括至少一个燃烧室,该燃烧室有传送喷射器,用于直接将燃料喷射到所述燃烧室内;所述发动机还包括至少一个进气道和/或阀,该进气道和/或阀布置成使进气产生较低缸内翻转运动,从而减小燃料在所述燃烧室的焰前气体(end gas)区域的过度贫油(over-enleanment)。
优选是,终止于进气口的进气道布置成在紧接着提升阀头部之后产生这样的气流图形,该气流图形使所述进气产生较低的、与主气流运动相反的缸内翻转运动,该提升阀能够可选择地关闭所述孔。
优选是,所述进气道设置成通过避免在紧靠进气口阀座的上游附近形成小曲率半径的进气道,从而提供进气的所述较低缸内运动,否则该小曲率半径的进气道将有利于在从所述进气口送入燃烧室的燃烧室空气中产生气流矢量,该气流矢量将引起所述进气的缸内翻转运动。人们相信,在往复运动型发动机中,相对于气缸轴线基本成径向方向的气流矢量将明显有助于使气缸内的气流产生这样的翻转。经过阀座进入燃烧室的气流将受到影响,以致于在经过提升阀头部的背面后产生更均匀分布的轴向气流,该提升阀调节流过进气口的气流。
进气的如此低的缸内运动将获得静态气缸或静态燃烧室。
优选是,该燃料喷射器布置为喷雾引导、中心喷射的直接燃料喷射器。
有利的是,所述燃料传送喷射器用于将夹带于气体中的燃料传送给燃烧室,例如气体辅助直喷燃料传送系统。夹带在所述气体中的燃料在所述燃烧室中为分层的混合物。因此,发动机布置成通过空气辅助类型的喷雾引导直喷燃料传送系统工作。
尤其是,进气的较低缸内运动适于四冲程内燃机的分层工作,因为该较低缸内运动减小了夹带于喷射空气中的燃料分层进料和吸入空气之间的混合程度。燃料与吸入空气之间的混合可能使得燃烧室内区域中的燃料太过贫油,以至于不能点燃,导致更高的烃排放。
这样,采用本发明的发动机可以获得比现有技术更低的排放和更好的燃烧稳定性。
还惊奇地发现,在背离由H.G.Niefer等和H.Enres等提出的前述模式时,即当在采用了喷雾引导、中心喷射类型的直接缸内燃料喷射系统的火花点火内燃机中提供有“低翻转”进气口/进气道结构时,将明显优于“高”翻转进气口结构。而且,本发明的燃烧能够采用相对延迟的点火时间窗口,这提高了燃烧过程的热效率(即燃料消耗更少),并能够减小排放水平。
因此,本发明发现了在具有喷雾引导、中心直喷燃料传送系统的所谓分层进料发动机中的优选使用方法,该发动机有从发动机进气歧管通向燃烧室的“低翻转进气口”。
“翻转”是对IC发动机的气缸内的进气旋转速度的一种测量,并表示为该旋转速度与平均气缸空气速度之比。这里所用的参数翻转比是根据Endres.H.等的“Influence of Swirl and Tumble on Economy andEmissions of Multi Valve SI Engines”,SAE Technical Series PaperNo.920516中所述的方法测量的。
已经发现,翻转比小于2.0的“低翻转”尤其有利于减小通过AADI而以中心喷雾引导模式喷射的分层进料的过度贫油。根据上下文的翻转比,必须把表述“低翻转”在此提及,翻转比是先进PFI发动机的典型产物,该先进PFI发动机例如Ford“Zetec”发动机。在后一种情况中,在该发动机中,进气阀升高9mm时所测得的最大翻转比在3和4之间。当与采用壁引导、直喷燃料传送系统的产物和原型发动机比较时,PFI发动机的这些值也可称为“低”,在该原型发动机中,所测得的翻转比超过4.0。
根据本发明,优选是,向发动机气缸供给进料空气的进气歧管管路和/或进气阀座设计成在进气口阀的整个升高范围内都保证缸内翻转比为大约2.0或更小。与翻转比为大约4.0或更大的对比基本发动机相比,这样的翻转比使得发动机喷射器的燃烧能够显著改善燃料消耗,较低NOx排放。
根据气缸盖的几何限制,例如可用于改变在进气口/阀座附近的进气道弯曲半径的空间,以及发动机在高负载下工作时的其它限制,优选是在阀的整个升高范围内,该低翻转进气口的平均翻转比小于1.50,更优选是,在进气阀升高的主要范围部分上为大约1.0。
如前所述,本发明的优选实施方式在于发动机具有低翻转进气口结构,并与喷雾引导、分层进料的直接燃料喷射器相结合,因为这样的组合至少在分层条件下能够改变点火正时,因此,与有相同发动机结构但有高翻转进气口的情况相比,点火可以在压缩冲程中“更早”进行,即在减小(曲轴的)上死点前(BTDC)角度的情况下进行。
已经发现,分层进料、中心喷射且喷雾引导的发动机在发动机负载和速度范围内以点火正时在5°至40°BTDC范围内的方式工作,而在400RPM至3600RPM的发动机速度范围内,点火正时更典型的范围为10°至35°BTDC。还发现,10°至35°BTDC的点火正时也可用于1巴IMEP至6巴IMEP(其中IMEP是指示平均有效压力)的发动机负载范围。可选实施例可以是在发动机速度和负载范围为400RPM至3600RPM和1巴IMEP至6巴IMEP时采用10°至35°BTDC的点火正时。
本发明的第二方面是提供一种四冲程、火花点火、直接缸内燃料喷射、分层进料的内燃机的工作方法,该内燃机有燃烧空气传送系统,该燃烧空气传送系统设置成使由所述空气传送系统传送给所述发动机的燃烧室的燃烧空气产生低缸内翻转运动,其中,在预定发动机速度和负载范围内,包括传送给燃烧室的燃烧空气和燃料的进料的点火正时发生在上死点前5°至40°的范围内。
考虑到燃料消耗和废气排放水平,发动机的分层燃烧工作的典型负载和速度范围是400RPM至3600RPM和1至6巴IMEP。
还可以知道,低翻转有阀进气道和AADI燃料喷射器的上述组合也可以组合到具有提高燃料燃烧和/或减小废气排放水平的其它措施的发动机中,这些其它措施例如:废气再循环(EGR);在某些发动机负载条件下双流体喷射器的喷射压力控制;在特定发动机负载状态下使提供给AADI喷射器的空气具有选定的气体量,该气体例如氧气和氮气;以及这里没有清楚提出的其它措施。例如,SAE的文章980153“Combustion andEmission Characteristics of Orbital’s Combustion Process Appliedto Multi-Cylinder Automotive Direct Injected 4-stroke Engines”概述了使喷射器中的空气压力作为燃料压力的函数或作为表示发动机负载状态的变量的函数而进行调节的可能机构。美国专利US 5,207,204(日本Electronic Control Co)涉及一种空气辅助燃料喷射系统,其中,空气压力根据燃烧室压力的变化而控制,这样,在喷射循环过程中保持(最佳)压力差水平。类似的,Geoffrey Cathcart和Christian Zavier的SAE文章OOP-245“Fundamental Characteristics of an Air-AssistedDirect Injection Combustion System as Applied to 4-strokeAutomotive Gasoline Engines”概述了喷射压力、喷射气体成分和EGR水平也可以用于影响进料分层和燃烧性能。
尤其是,在最后所述的SAE文章中介绍的措施可以与根据本发明的、通过采用低翻转进气道/阀与利用AADI喷射器的中心喷射进料的组合而提供的进料运动控制相结合,成为互补的方法,它们通过相互配合而获得更好的发动机工作参数,该SAE文章的内容包含于此,以供参考。
通过下面参考附图对本发明实施例的说明,可以清楚本发明的其它优选特征和优点。
对附图的简要说明
图1示意表示了在内燃机燃烧室内的进料(燃料-空气)引导机构,该内燃机采用三种已知类型的直接缸内喷射燃烧系统,即“喷雾/喷嘴引导”、“壁引导”和“进料运动/空气引导”;
图2示意表示了典型的空气辅助直接燃料喷射器,它能够用于本发明的直喷发动机中;
图3是表示在利用图2的喷射器将燃料供给发动机的整个直喷事件过程中的燃料质量流曲线的视图;
图4是表示利用图2的喷射器将进料喷入燃烧室的穿透速度的曲线图;
图5是表示当采用图2的空气辅助燃料喷射器时在典型的低负载燃料供给事件时的液滴大小分布曲线图;
图6是四阀单气缸盖10的示意平面仰视图,即当从燃烧室内部看时的视图,表示中心喷射系统的出气口、火花塞和直接缸内燃料喷射器的布置方式;
图7a和7b是沿图6的线VII-VII的示意纵剖图,图7a表示低翻转进口孔/进气歧管结构,而高翻转进口孔的结构如图7b所示;
图8是表示低翻转和高翻转进口孔的翻转流动的曲线图;
图9是表示消耗燃料的翻转运动效果和HC排放;
图10是表示对于不同水平的翻转运动的点火正时和燃烧过程;
图11是表示发动机在1500rpm、2.0巴 IMEP下对于不同水平的翻转运动的燃烧质量部分的曲线的视图;
图12是表示在2000rpm、3.0巴 IMEP下燃料消耗和排放随点火定时变化的曲线图;
图13是表示在2000rpm、3.0巴 IMEP下燃烧稳定性和烟雾水平对比点火正时的曲线图;
图14是表示在2000rpm、3.0巴IMEP下对于不同点火正时的燃烧质量部分的曲线的视图;
图15是表示在2000rpm、3.0巴IMEP下燃料消耗和排放随点火定时变化的曲线图;
图16是表示在2000rpm、3.0巴IMEP下燃烧稳定性和烟雾水平对比点火正时的曲线图;
图17是表示在2000rpm、3.0巴 IMEP下对于不同点火正时的燃烧质量部分的曲线的视图;
图18是表示在2000rpm、3.0巴IMEP下燃料消耗和排放随EGR水平变化的曲线图(点火和喷射正时不变);以及
图19是表示在2000rpm、3.0巴IMEP下燃烧稳定性和烟雾水平对比EGR水平的曲线图(点火和喷射正时不变)。
对优选实施例的说明
本发明认为,当在四冲程火花点火发动机中采用中心直接燃料喷射系统时,尤其是采用喷雾运动系统时,保持特定的进气口流动特性能够确实影响燃烧过程。下面将介绍一个发动机实例,该发动机实现和证明了由本发明的低翻转进气口发动机和中心喷雾引导燃料喷射系统的组合而提供的潜在优点。
直接缸内喷雾引导系统可以采用空气辅助直喷燃料系统,以便使喷射的燃料很好地燃烧。空气辅助直喷燃料系统在很多方面(facet)与目前的、基于在高压下传送燃料的单流体直喷系统不同。也许最明显的区别是除直接喷射到燃烧室内的燃料外,还添加了第二流体(即空气)。该第二流体的压力、成分和量都影响发动机的工作。通过有阀的进气口流入燃烧室的燃烧空气流对通过双流体(空气-燃料)喷雾引导燃料系统而喷射到火花塞的点火区域附近的燃料云的分层和容积都有影响。
图2表示了典型的空气辅助直接燃料喷射器。它表示了一种向外开口的直接喷射器(或进料喷射器),该喷射器包括一个普通类型的多点孔燃料喷射器和一个空气喷射器,其中界面区域提供了在空气和燃料回路和喷射器之间的通路。普通的孔喷射器提供了燃料计量功能,并通常在8巴的恒定压差下工作。计量的燃料与空气在界面区域混合,随后,包括燃料和空气的进料通过直接喷射器在通常6.5巴表压下喷射到由发动机的气缸提供的燃烧室中。因为燃料计量与直喷事件分离,直喷事件的持续时间和正时基本与喷射到气缸内的燃料的量无关。因此,增加直喷持续时间不会增大喷射的燃料的量,而是仅仅增加喷射的空气的量,从而增加喷射燃料由喷射的空气总体稀释的程度。单独的燃料计量还使得喷射的燃料质量流量在整个直喷事件中变化,也就是,通过直接喷射器喷射的燃料质量流量相对于时间并不恒定。
在直喷事件过程中传送的燃料速率可以通过改变在燃料计量事件的结束时间和直喷事件的起始时间之间的延迟时间以及直喷的总持续时间而变化。图3表示了直喷事件的整个持续时间中的燃料质量流曲线。该类型的曲线是典型的空气辅助燃料系统,并导致在接近喷射事件结束时产生相对贫油的喷射混合物。空气辅助喷射系统的这一特性曲线在邻近点火正时时显著降低了空气/燃料比梯度,从而导致增加了稳定性。
空气辅助燃料系统在标称压力为6.5巴表压的相对低压下工作,相反,目前的和将来的单流体系统在60至200巴之间的压力下工作。该较低喷射压力意味着穿透速度受到喷入该燃料的气缸压力的很大影响。当气缸压力增大时,穿透速度减小,如图4所示。较高气缸压力下的较低穿透速度使得在压缩冲程后期进行的注射能够有良好的分层进料容积。在该较低喷射压力时,空气辅助喷射器使得该喷射器系统产生很好的小液滴尺寸特性,这主要通过燃料液滴剪切。图5表示了在典型的低负载加燃料事件时的液滴分布,其中SMD大约为10μm。在Houston,R等的“Combustion and Emissions Characteristics of Orbital’sCombustion Process Applied to Multi-Cylinder Automotive DirectInjected 4-Stroke Engines”,SAE 980153中更详细地介绍了空气辅助燃料喷射系统的工作,该文献的内容包含于此,以供参考。
应当知道,主要的缸内流场影响燃料喷雾柱的状态和随后通过直喷燃烧系统提供的进料的可点火性。通过低压空气辅助直喷系统,并与喷雾引导燃烧系统组合,喷射进料对准火花塞间隙位置。通过低穿透速度和活塞的碗状设计,火花塞间隙附近包含喷雾柱。本发明考虑到当用于进料运动引导直喷燃烧时,较高平均流速结构例如翻转或涡旋可以不需要喷雾引导系统。并认为存在过量的缸内平均流动实际上可能有害,并使得喷雾引导系统中的喷射燃料云过度混合,尤其是雾化良好的喷射燃料混合物,因此降低了通过中心喷雾引导喷射器系统提供的分层进料的完全燃烧性。
为了证明中心直喷喷雾引导燃烧系统和具有这样的进气歧管的四冲程火花点火发动机组合的优点,该进气歧管改变成能够使传送给燃烧室的空气有助于在燃烧室内获得“低翻转”,利用单缸试验发动机进行了测试。在该测试中,空气辅助喷雾引导直喷燃烧系统包含在基于Ford Zetec发动机的4V DOHC气缸盖中。当向前的翻转被认为是该类型气缸盖结构的主要进口诱导流,对进气道/口的不同变化形式进行了测试,以便产生不同程度的翻转。
在下面的表1中列出了基本的发动机规格。至于下面所给出的所有结果,是发动机的规格,除非另外进行说明。
    排量     497cc
    孔径     84.8mm
    冲程     88.0mm
    压缩比     10.7∶1
    进气口结构     低翻转,无涡旋
    阀的布置方式     4阀,DOHC
    包括的阀角度     40.0度
    直接喷射器     Synerject part # 37x-115(100度喷嘴座角)
    燃料计量喷射器     Siemens Deka II
    空气喷射压力     6.5巴表压
    燃料喷射压力     8.0巴表压
表1.单缸发动机规格
所采用的燃烧室几何尺寸是用于每气缸4阀的燃烧室的典型值,该燃烧室采用双流体喷雾引导燃烧系统,同时火花塞和喷射器位于燃烧室中心附近,在4阀之间,直接喷射器的轴线平行于气缸孔轴线。火花塞间隙布置在靠近直接喷射器喷嘴出口的位置处,从而提供有当燃料空气混合物经过火花塞间隙时直接点火该燃料空气混合物的装置。该结构尤其如图1以及图6和7可见。
图6是四阀、单缸气缸盖10的示意底平面图,即从燃烧室内部看时的视图,其中,参考标号表示由相应提升阀关闭的两个出气口,40表示进气口,而25和30分别表示燃料喷射器25和火花塞位置。图7a和7b是沿图6的线VII-VII的示意纵剖图,表示一个进气口提升阀42以及它的头部43,该头部43离开在孔开口40处阀座,该阀座以44表示,在该孔开口40处,进气气缸管路46与燃烧室20连通。
图7a表示了低翻转进气口/进气歧管管路46的形状及其结构,而图7b示出了高翻转进气口结构。通过不同结构(布置)措施,可以获得低翻转结构,该措施可以单独或组合影响气流在燃烧室20内的翻转。如当前所知,这些措施包括:在紧接进气道46内的进气口40的上游处提供低紊态气流;保证气流在经过提升阀头43背面后均匀分布;减小在阀头43和阀座44处的流动扰动;干扰气流经过阀座44后的方向;改变进气道46和其它部件的形状。
为了进行测试,改变了进气道的几何形状。在图7a和7b中,箭头“l”和“h”用于表示经过进气口40后的典型气流流道,它们有低翻转和高翻转的结构。图7a的低翻转结构上的箭头“l”表示在经过阀部件42的阀头43后所希望有的、流入燃烧室20中的近乎均匀且轴向向下的气流。还发现,减小进气中的径向流动分量将获得在相应燃烧室中的、具有低翻转气体运动的均匀气流。通过将进气道46在进气口A1上游处的内半径ri和外半径ra增加到超过和大于“普通”进气道轨线的相应内半径ri(h)和外半径ra(h),可以获得均匀气流,否则,该“普通”进气道轨线的相应内半径ri(h)和外半径ra(h)只是由气缸盖内的空间限制来规定。该更大的半径ri和ra选择为有足够的尺寸,以便与在典型的较小半径和相应高翻转孔结构中产生的分离相比,能防止或大幅度减小气流在靠近其弯曲部分的气道壁处的分离。该气流分离由图7b中的气流箭头“hi”表示。由于气道壁在空气经过孔开口排出之前没有引导能力,因此气流“不能”在靠近孔位置40的小内半径处形成合适的方向变化,从而导致横过阀头43的背面有非均匀的气流分布。换句话说,经过孔40的主气流向量仍有足够的径向成分,以便在燃烧室内产生翻转效果。
因此,优选是,低翻转进气口结构在其末端的孔40(或座44)的上游处有直的进气道部分,从而保证流过该孔的气流的方向主要为轴流向量,它有助于在阀头处于打开位置时提供经过阀头43的均匀气流。
显然,也可以采用其它措施来帮助获得在燃烧室内的低翻转气体运动,以便(尽可能)防止破坏由AADI喷射器喷射到燃烧室内的分层进料。
图8表示了在稳态流动工作台上进行的翻转流动比较。如图所示,“低翻转孔”结构在阀的整个提升范围内都减小气缸内的翻转流动。“高翻转”孔类似于很多目前的FI发动机,并显示了与该PFI发动机一样的高度翻转。测试的低翻转孔通过增加进气道在靠近进气阀孔座处的半径而机械加工形成,以便将更多流体引向阀头背面,如前所述。
对各进气口结构进行了部分负载测试,以便定量表示在不同缸内流态下的燃料消耗和排放效果。在各个点,标定的目标是在给定NOx排放水平下使燃料消耗最低。表2概括了测试点与相应的NOx和COV限制。
   速度(rpm)   负载(IMEP巴)     NOx目标(g/kWh)  IMEP的COV(%)
   850   1.0     1.9     <6.0
   1500   2.0     1.0     <4.0
   2000   3.0     1.5     <4.0
表2.进行翻转比较的NOx和COV限制
图9表示了两种进气口结构的燃料消耗和HC排放。结果显示,低翻转进气口在各个部分负载点都能减小燃料消耗,而HC排放也能保持或减小。燃料消耗的减小可能是由于减小了燃料在焰前气体区域的过度贫油。它的一个最佳指示是为了获得最佳扭矩而延迟了点火正时,这对于低翻转孔结构是很显然的。
图10对高翻转孔和低翻转孔在三个部分负载测试点进行了点火正时和燃烧持续时间的比较。在所有情况下,在低翻转孔的结果中,最佳扭矩(最小燃料消耗)的点火正时都延迟。
延迟点火正时的原因是因为如图所示减小了燃烧持续时间,从而提高了燃烧速度。这与均匀工作经验不同,在均匀工作经验中,通常增加燃烧速度以提高缸内运动。对于空气辅助喷雾引导分层进料燃烧系统,减小喷雾末端的燃料过度混合将导致提高燃烧事件后期的燃烧速度。实际上,当对高翻转和低翻转的燃烧质量部分的曲线进行比较时,低翻转孔的总燃烧持续时间减小主要是因为减小了在80至100%的燃料燃烧的持续时间。减小过度混合还可以显示为减小HC排放。不过,HC排放的减小并不是在所有结果中都很明显;而是在两个部分负载点处,HC排放都保持相对恒定。
为了对这种情况进行解释,应当记起在低翻转孔的结果中,点火正时延迟,而这将导致增加烃的排放(如下面所述)。因此,需要减小燃料的过度贫油,以便在延迟点火正时的情况下保持相同的HC排放水平。
图11表示了低翻转和高翻转在1500rpm,2.0巴 IMEP情况下的燃烧质量部分曲线。它清楚显示,对于低翻转孔,在燃烧事件的后期燃烧速度增大。这导致形成了燃烧曲线的高出部分,同时能够使主要燃烧部分延迟。
通过对典型的部分负载标定点,即2000rpm,3.0巴 IMEP进行参数扫描,也可以对双燃料直接缸内喷射燃烧系统的稳定性进行测试。对该点的基线标定获得小于1.5g/kWh的显示单位NOx排放水平。这一低NOx水平是在该速度/负载点获得的多缸车辆标定的典型值,以便满足综合驱动循环排放的目标。表3表示了标准标定设置,基线由该设置得出。下面所述的稳定性测试通过与前面所述的喷射器稍微不同的直接喷射器来进行。在使低NOx排放优化的同时,该喷射器还在燃料经济性方面很有利。通过该喷射器,可以在净显示单位燃料消耗为225g/kWh的情况下获得小于1.5g/kWh的NOx排放水平。
表3.基线标定和排放结果
    速度(rpm)     2000
    负载(IMEP 巴)     3.0
    点火正时(度BTDC)     34
    喷射开始正时(度BTDC)     87
    喷射结束正时(度BTDC)     32
    A/F比率(:1)     24.6
    EGR(%)     40
    ISFC(g/kWh)     225
    ISHC(g/kWh)     5.0
    ISNOx(g/kWh )     1.44
表4.基线标定和排放结果
三个参数进行单独扫描,即:点火正时,喷射正时(固定喷射持续时间)和EGR比例。所有其它参数保持恒定,包括燃料供给量,这样,在测试过程中能感测到负载的波动。
图12表示了单位燃料消耗和绝对排放随点火正时的变化。图中表示了在15度区域的点火正时(BTDC:活塞运动的上死点之前)区域中,对燃料消耗影响很小。当点火正时为32度BTDC时,燃料消耗少量降低,表示为当点火正时为34度BTDC时的基线标定稍微靠上。正如所预计的,HC和NOx的排放看起来对点火正时更敏感。当点火从基线提前时,NOx排放增加,因为增大了燃烧温度峰值。当点火提前大约6度时,HC排放减小。点火从该结果进一步提前将导致HC排放逐渐增大。这是因为当点火点相对于喷射正时不再是最佳点时,将减小燃烧的稳定性。
相反,当点火延迟时,NOx排放减小,而HC排放相应增加。HC排放增加是因为减小了燃烧接近结束时的火焰温度,从而减小了能够顺利燃烧的贫油极限A/F比率。这还使得燃料喷雾有更多时间扩散,从而导致增大燃料云末端贫油。这些效果都增加了火焰实际熄灭时的燃料量,增加了未燃烧烃的排量。
图13表示了对于不同点火正时的IMEP的COV。由该图可见,在大约14度曲柄角区域中,COV小于4%,这对应于IMEP的表压偏差小于0.12巴。
图14表示了与点火正时区域相对应的燃烧质量部分的曲线。当点火正时延迟时,燃烧速度减小,在80至100%的燃料燃烧的区域最显著。
通过提前最佳扭矩的点火正时,90%燃烧也将提前,表示充分混合。当点火正时提前超过40度BTDC时,烟雾水平增加,因为减小了在火焰锋到达之前的混合时间。当点火提前时损失燃料经济性是因为燃烧曲线变得太提前,对于最提前的点火正时,超过90%的燃料在TDC之前燃烧。基线燃烧质量部分曲线显示与典型均匀进料曲线和MBT正时相比提前,根据经验,50%燃烧的位置大约在10度ATDC。对于直喷、分层进料的所述结果,当点火正时在30和34度BTDC之前,IMEP的变化很小。不过,将点火正时从34度延迟到30度BTDC将导致在TDC之前更少燃料燃烧,最后20%的燃烧燃料的燃烧速度减小。这两个效果之间的净结果导致单位燃料消耗的变化非常小。当在低于30度BTDC的情况下减小点火提前时,将减小IMEP,且不会明显损失燃烧稳定性。这显示基线标定点的点火正时设置成接近最佳扭矩,同时不会抑制燃烧的稳定性,因此认为,仅需要使50%燃烧位置处于大约10度ATDC可能并不是最佳燃烧相位的最好显示。当点火正时进一步减小到低于23度BTDC(从基线标定延迟10度)时,燃烧稳定性降低到偶然点不着火的状态。
图15表示了单位燃料消耗和排放对比开始喷射(SOI)正时和固定点火正时。燃料消耗也显示在一定正时范围内对开始喷射正时的变化并不敏感,当点火正时偏离基线标定值时只是逐渐增加。当SOI延迟时,HC排放相对没有变化,不过,当SOI提前时增加。
HC排放增加是因为增加了燃料的损失容积,增大了燃料云末端的贫油。当SOI正时改变时,NOx排放保持在几乎恒定的水平。
图16表示了对于SOI扫描的稳定性和烟雾水平。在大致以SOI正时的基线标定为中心的20度区域内,IMEP的COV小于4%。不过,当喷射正时延迟时烟雾水平增大。该延迟的喷射正时减小了喷射燃料的准备时间,从而导致更高的烟雾水平。当喷射正时延迟时,横过直接喷射器的压力差也减小,从而导致在喷射事件接近结束时喷射的液滴较大。减小准备时间和增大在喷射事件接近结束时的喷射燃料液滴大小相组合,使得一旦喷射超过基线标定正时而延迟时,烟雾水平对SOI具有相当高的敏感性。
通过燃烧质量部分的对比(图17)可知,因为曲线几乎没有变化,因此对于大部分正时,燃料消耗对SOI并不敏感。在测试的SOI的极限情况,燃烧曲线相对于基线标定情况延迟,并导致单位燃料消耗增加。对于提前的SOI,分层变弱,导致在整个燃烧事件中燃烧速度较低,尤其是,在50%的燃料烧完后。该过度混合显然也增加了观察到的HC排放,如前所述。对于非常延迟的SOI,喷射的燃料在点火正时之前的混合时间变得不充分。这增加了火焰中心发展的时间。燃烧速度在燃烧事件的大部分时间内保持与基线点相同,虽然由于点火更加延迟而使该时间延迟。这显示通过延迟SOI正时,燃料喷雾有良好的容积,就象预计的那样。
由点火和喷射正时扫描得出的结果证明空气辅助喷雾引导直喷燃烧系统有很高的稳定性。这与很多已公开的单流体系统不同,这实际上是这些喷射系统的向壁运动或进料运动引导燃烧系统的一个原因,就象在M.Grigo等的文章“Charge Motion Controlled Combustion System forDirect Injection SI Engine”,先进发动机设计和性能,GPC’98以及在C.Preussner等的“GDI:Interaction Between Mixture Preparation,Combustion System and Injector Performance”,SAE文章no.980498中所述。
据认为,双流体系统的稳定特性的一个主要原因是由于在典型点火正时中提高了靠近火花位置处的弱分层梯度。这可通过将空气与喷射燃料一起喷入而实现,同时还能使燃料计量和直喷事件分离。如图3所示,从直接喷射器喷射的燃料质量流量并不恒定。当燃料流量减小时,喷射的空气流量通常增加。这导致与在整个喷射期间的平均情况相比,在喷射事件快结束时喷射出贫油燃料混合物。这样喷射的混合物形成了较低部分负载分层工作时的可点火混合物的基础。结果是在较长时间内,可点火混合物保持在点火源位置,从而形成能使燃烧保持稳定的更大喷射和点火窗口。空气辅助喷雾引导燃烧系统的该特性对于使它很容易转用到车辆上是必不可少的。
还在进气歧管压力恒定且其它参数保持在基线值水平的情况下进行了EGR(再循环废气)的扫描。当EGR水平从基线水平增加或减小时,流过发动机的空气流分别减小或增加。图18表示了当EGR水平改变时对单位燃料消耗和排放的影响。当EGR水平从基线标定变化大约40%时,单位燃料消耗稍微增加。这是因为在燃烧事件中燃烧速度受到截留进料中的EGR浓度的影响。当增加EGR的水平时,燃烧速度减小,从而导致点火正时延迟太多,反之亦然。如图所示,HC排放对EGR水平的变化相对并不敏感,直到EGR水平增加到超过45%。这一增加与燃烧稳定性的减小(图19)相符。NOx的排放看起来对EGR水平非常敏感,增加EGR水平将减小NOx排放,减小EGR水平将导致NOx排放很快增加。该高敏感是由于几个组合因素。如前所述,当EGR水平改变时,喷射和点火正时保持在基线标定值。增加EGR水平导致燃烧速度减小,从而使得燃烧曲线更加延迟,这降低了NOx排放。当EGR水平降低时,燃烧速度增加,导致燃烧曲线提前,这增加了气缸温度峰值,从而增加了NOx排放。当考虑到燃烧速度的变化而对各EGR水平的点火正时重新优化时,NOx的排放对EGR水平变化的敏感程度将小得多。
另一组合效果是由于进入发动机的再循环废气的成分变化。进行EGR扫描的方式是保持进气歧管压力恒定,这表示当EGR水平降低时,A/F比率增大。这意味着不仅EGR的质量减小,而且EGR中的燃烧产物如二氧化碳的浓度将减小,而未燃烧的氧的浓度将增加。氧浓度的增加将进一步增加NOx排放产物。这些净效果导致对EGR水平高度敏感,如图18所示。通过当EGR水平变化时保持A/F比恒定和重新优化点火正时,可以显著降低NOx排放对EGR水平的敏感性。例如,在相同的硬件结构下以该方式进行EGR扫描,结果显示当EGR从40%到35%减小5%时,NOx排放只是从1.5g/kWh增加到1.9g/kWh,比较而言,前面所给出的数据是4.8g/kWh。
如图19所示,当EGR水平减至零时,燃烧的稳定性将保持。这在增加EGR水平时有5%的边界余量,这时燃烧稳定性保持在可接受的水平。当EGR水平增加到超过该水平时将导致损失稳定性,这时将开始部分燃烧和偶然有点不着火的循环。
在标称水平为大约0.06 FSN或更小时,对于EGR水平的变化,烟雾水平保持相对稳定。当EGR水平减小时,烟雾水平有很小地增加趋势,同时当EGR水平减小到低于10%时有相对较大的增加。即使当EGR比例降低时A/F比增加,也可以看见该效果。这样增加的原因是因为其它标定参数,尤其是点火这时在扫描时保持恒定。如前所述,当EGR水平减小时,燃烧速度增加,导致在燃料喷射和火焰锋到达之间的时间更少。准备时间的这样减小导致所记录的烟雾水平增加。通过对各个特定EGR水平优化点火正时,可以消除该效果。通过执行前述EGR扫描,通过优化点火和喷射正时,可以使整个范围内的烟雾水平保持为低于0.1 FSN。
读过本说明书的技术人员能够知道本发明的发动机和系统的改变和变化形式。这些改变和变化也在本发明的范围内。

Claims (19)

1.一种内燃机,其包括至少一个燃烧室,该燃烧室有传送喷射器,用于直接将燃料喷射到所述燃烧室内;所述发动机还包括至少一个有阀的进气道,用于将燃烧空气传送到所述燃烧室内,其中,所述进气道和/或它的阀布置成使传送给所述燃烧室的进气产生较低缸内翻转运动,从而减小燃料在所述燃烧室的焰前气体区域的过度贫油。
2.根据权利要求1所述的内燃机,其中:终止于燃烧室中的进气口的进气道布置成在紧接着提升阀头部之后产生这样的气流图形,该气流图形使所述进气产生较低的、与主气流运动相反的缸内翻转运动,该提升阀能够可选择地关闭所述孔。
3.根据权利要求1或2所述的内燃机,其中:所述进气道设置成通过避免在紧靠进气口阀座的上游附近形成小曲率半径的进气道,从而提供进气的所述较低缸内运动,否则该小曲率半径的进气道将有利于在从所述进气口送入燃烧室的燃烧室空气中产生气流矢量,该气流矢量将引起所述进气的缸内翻转运动。
4.根据权利要求1、2或3所述的内燃机,其中:所述发动机是火花点火、往复运动类型,在该发动机中,活塞基本沿气缸的纵向轴线在气缸内往复运动,而进气道和/或可选择地关闭该进气道的阀布置成使得相对于气缸轴线基本沿径向方向的进气气流矢量最小。
5.根据权利要求4所述的内燃机,其中:该阀是提升阀,在阀座上游的进气道结构将产生流过提升阀头部的背面的气流,该气流主要沿轴向方向,并横过阀头部背面基本均匀地分布。
6.根据前述任意一个权利要求所述的内燃机,其中:该燃料喷射器布置成中心喷射直接燃料喷射器。
7.根据前述任意一个权利要求所述的内燃机,布置成进行喷雾引导燃烧。
8.根据前述任意一个权利要求所述的内燃机,其中:所述燃料传送喷射器用于将夹带于气体中的燃料传送给燃烧室,尤其是,所述燃料传送喷射器是气体辅助直接缸内燃料喷射器,用于在所述燃烧室中产生分层进料。
9.根据前述任意一个权利要求所述的内燃机,其中:该有阀的进气道设置成在进气口阀的整个升高值范围内都保证缸内翻转比小于大约2.0,优选是小于1.5,更优选是,在进气阀升高的主要范围部分上为大约1.0。
10.根据前述任意一个权利要求所述的内燃机,还包括:点火正时系统,用于使通过所述燃料传送喷射器传送到燃烧室内的分层进料可选择地点火,所述点火正时系统布置成在预定发动机负载和速度范围内,在压缩冲程中,使点火正时在大约5°至40°BTDC范围内。
11.根据权利要求10所述的分层进料、中心喷射、喷雾引导、火花点火的内燃机,其中:该点火正时系统布置成在400RPM至3600RPM的发动机速度范围内,工作时的点火正时的范围为大约10°至35°BTDC。
12.根据权利要求10或11所述的分层进料、中心喷射、喷雾引导、火花点火的内燃机,其中:该点火正时系统布置成在1巴IMEP至6巴IMEP的发动机负载范围内,工作时的点火正时为大约10°至35°BTDC。
13.一种内燃机,其包括至少一个燃烧室,该燃烧室有:一进气口,该进气口有相应的进气阀,用于使燃烧空气大致沿第一轴线进入所述燃烧室;一点火装置;以及至少一个燃料传送装置,该燃料传送装置沿大致平行于所述第一轴线的方向将燃料直接输送给所述燃烧室,并输送到所述点火装置附近,其中,所述进气和所述燃料的所述大致平行方向减小了燃料在所述燃烧室的焰前气体区域的过度贫油。
14.根据权利要求13所述的内燃机,其中:所述大致平行的方向是通向所述燃烧室的轴向。
15.根据权利要求13或14所述的内燃机,其中:所述燃料传送成在有所述焰前气体区域的所述燃烧室中提供分层进料。
16.根据权利要求13至15中任意一个所述的内燃机,其中:所述进气相对于所述大致平行方向有着有限的径向流。
17.一种内燃机,其包括至少一个燃烧室,该燃烧室有燃料传送喷射器和点火装置,并布置成使燃料喷雾引导喷射到所述燃烧室中,所述内燃机还包括至少一个有阀的进气道,用于将燃烧空气传送到所述燃烧室内,其中,所述进气道和/或它的阀布置成使传送给所述燃烧室的进气产生较低缸内翻转运动,从而减小所述喷雾引导燃料在所述燃烧室的焰前气体区域的过度贫油。
18.根据权利要求17所述的内燃机,还布置成使燃料的分层进料喷射到所述燃烧室内。
19.根据权利要求17或18所述的内燃机,其中,所述翻转运动小于2.0。
CN01807292A 2000-03-03 2001-03-06 内燃机及其控制 Pending CN1444695A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AUPQ6040 2000-03-03
AUPQ6040A AUPQ604000A0 (en) 2000-03-03 2000-03-03 Internal combustion engines and control

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CNA2005101269105A Division CN1800604A (zh) 2000-03-03 2001-03-06 内燃机及其控制

Publications (1)

Publication Number Publication Date
CN1444695A true CN1444695A (zh) 2003-09-24

Family

ID=3820144

Family Applications (2)

Application Number Title Priority Date Filing Date
CN01807292A Pending CN1444695A (zh) 2000-03-03 2001-03-06 内燃机及其控制
CNA2005101269105A Pending CN1800604A (zh) 2000-03-03 2001-03-06 内燃机及其控制

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNA2005101269105A Pending CN1800604A (zh) 2000-03-03 2001-03-06 内燃机及其控制

Country Status (8)

Country Link
US (1) US6854440B2 (zh)
EP (1) EP1259727A4 (zh)
JP (1) JP2003525389A (zh)
KR (1) KR20020075468A (zh)
CN (2) CN1444695A (zh)
AU (1) AUPQ604000A0 (zh)
BR (1) BR0108964A (zh)
WO (1) WO2001065105A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101501310B (zh) * 2006-08-04 2011-06-22 丰田自动车株式会社 直接喷射火花点火式内燃发动机及其燃料喷射方法
CN101675237B (zh) * 2007-04-02 2012-05-23 雷诺股份公司 内燃机气缸盖进气管道及其制造方法
CN110080915A (zh) * 2019-05-31 2019-08-02 西安交通大学 一种气/液双燃料低压直喷系统
CN114810409A (zh) * 2022-05-10 2022-07-29 潍柴动力股份有限公司 一种气缸盖及发动机总成

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE50112871D1 (de) * 2001-12-14 2007-09-27 Ford Global Tech Llc Brennkraftmaschine mit Direkteinspritzung
DE10234215A1 (de) * 2002-07-27 2004-02-05 Bayerische Motoren Werke Ag Fremdgezündete, direkt einspritzende Brennkraftmaschine
DE10330540A1 (de) * 2003-07-01 2005-01-20 Volkswagen Ag Verfahren zum Betrieb eines direkteinspritzenden Verbrennungsmotors sowie direkteinspritzender Verbrennungsmotor
US7739999B2 (en) 2005-11-23 2010-06-22 Gm Global Technology Operations, Inc. Method and apparatus to control combustion in a multi-cylinder homogeneous charge compression-ignition engine
KR101040344B1 (ko) * 2008-09-12 2011-06-10 서울대학교산학협력단 차량의 연소 시스템
KR101072316B1 (ko) * 2008-12-02 2011-10-11 기아자동차주식회사 가솔린 직접분사 엔진용 피스톤
US10180115B2 (en) 2010-04-27 2019-01-15 Achates Power, Inc. Piston crown bowls defining combustion chamber constructions in opposed-piston engines
EP2547868B1 (en) 2010-04-27 2016-08-03 Achates Power, Inc. Combustion chamber constructions for opposed-piston engines
US9512779B2 (en) 2010-04-27 2016-12-06 Achates Power, Inc. Swirl-conserving combustion chamber construction for opposed-piston engines
EP2606202B1 (en) 2010-08-16 2016-03-09 Achates Power, Inc. Fuel injection spray patterns for opposed-piston engines
US8430074B2 (en) 2010-12-13 2013-04-30 Ford Global Technologies, Llc Rotatable valve in a cylinder intake duct
US9309807B2 (en) 2011-05-18 2016-04-12 Achates Power, Inc. Combustion chamber constructions for opposed-piston engines
US20130104848A1 (en) 2011-10-27 2013-05-02 Achates Power, Inc. Fuel Injection Strategies in Opposed-Piston Engines with Multiple Fuel Injectors
US9211797B2 (en) 2013-11-07 2015-12-15 Achates Power, Inc. Combustion chamber construction with dual mixing regions for opposed-piston engines
CN204060993U (zh) * 2014-02-26 2014-12-31 西港能源有限公司 用于气体燃料内燃发动机的进气歧管
KR20160057717A (ko) * 2014-11-14 2016-05-24 현대자동차주식회사 스월제어방식 예혼합 연소강도 제어방법 및 엔진제어시스템
IT201800006592A1 (it) * 2018-06-22 2019-12-22 Motore ad accensione comandata con stabilita’ di funzionamento e consumo specifico migliorati e metodo di alimentazione di detto motore
JP2020067021A (ja) * 2018-10-23 2020-04-30 株式会社デンソー 内燃機関及びその制御装置
CN114439606B (zh) * 2020-10-30 2023-01-06 比亚迪股份有限公司 一种发动机的进气机构及发动机

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2696446B2 (ja) * 1991-09-10 1998-01-14 株式会社ユニシアジェックス 筒内直接噴射型噴射弁のアシストエア供給装置
US5394845A (en) * 1991-10-15 1995-03-07 Mazda Motor Corporation Intake system for engine
JP2628138B2 (ja) * 1994-05-06 1997-07-09 本田技研工業株式会社 内燃機関における吸気ポート構造
JP3965703B2 (ja) * 1994-12-28 2007-08-29 マツダ株式会社 エンジンの排気ガス浄化装置及び排気ガス浄化方法
US5960767A (en) * 1996-02-09 1999-10-05 Fuji Jukogyo Kabushiki Kaisha Combustion chamber of in-cylinder direct fuel injection engine
JP2982682B2 (ja) * 1996-02-29 1999-11-29 三菱自動車工業株式会社 内燃機関
JP3740741B2 (ja) * 1996-06-26 2006-02-01 日産自動車株式会社 直接筒内噴射式火花点火機関
JP3763491B2 (ja) * 1996-10-08 2006-04-05 富士重工業株式会社 筒内噴射エンジンの燃焼室構造
JP3743896B2 (ja) * 1996-10-31 2006-02-08 富士重工業株式会社 筒内噴射式エンジン
JPH10169453A (ja) * 1996-12-11 1998-06-23 Daihatsu Motor Co Ltd 筒内噴射式内燃機関の構造
JPH10274133A (ja) * 1997-03-28 1998-10-13 Daihatsu Motor Co Ltd 筒内噴射型内燃機関
JP2982754B2 (ja) * 1997-07-25 1999-11-29 三菱自動車工業株式会社 筒内噴射型火花点火式内燃エンジン
SE519767C2 (sv) * 1997-11-26 2003-04-08 Volvo Car Corp Förbränningssystem
JP3733721B2 (ja) * 1997-12-18 2006-01-11 日産自動車株式会社 直噴火花点火式内燃機関
DE19806272C1 (de) * 1998-02-16 1999-04-15 Lipcan Sergiu Valentin Im Druckgußverfahren herstellbarer Leichtmetallzylinderkopf für eine flüssigkeitsgekühlte Brennkraftmaschine mit drei Ventilen pro Zylinder
US5970957A (en) * 1998-03-05 1999-10-26 Ford Global Technologies, Inc. Vapor recovery system
DE19852551C1 (de) * 1998-11-13 2000-06-15 Daimler Chrysler Ag Zylinderkopf für eine Brennkraftmaschine
JP3903657B2 (ja) * 1998-12-02 2007-04-11 トヨタ自動車株式会社 筒内噴射式火花点火内燃機関
JP3598880B2 (ja) * 1999-06-07 2004-12-08 日産自動車株式会社 直噴火花点火式内燃機関
GB9920666D0 (en) * 1999-09-01 1999-11-03 Zalkin Anthony L Improved internal combustion engine
JP3692860B2 (ja) * 1999-09-28 2005-09-07 日産自動車株式会社 筒内噴射式火花点火機関
US6276330B1 (en) * 2000-02-23 2001-08-21 Ford Global Technologies, Inc. Air/fuel induction system for developing swirl motion of an air/fuel mixture
JP2001248484A (ja) * 2000-02-29 2001-09-14 Hitachi Ltd 筒内噴射エンジン及びその制御装置,制御方法
JP4415497B2 (ja) * 2000-03-29 2010-02-17 マツダ株式会社 火花点火式直噴エンジン
JP2002038953A (ja) * 2000-07-25 2002-02-06 Hitachi Ltd 筒内噴射エンジン
JP3852310B2 (ja) * 2000-08-07 2006-11-29 トヨタ自動車株式会社 筒内噴射式火花点火内燃機関
JP3812338B2 (ja) * 2001-01-05 2006-08-23 日産自動車株式会社 筒内直接燃料噴射式火花点火エンジン
JP2002295260A (ja) * 2001-03-30 2002-10-09 Mazda Motor Corp 火花点火式直噴エンジン
EP1406003B1 (en) * 2001-07-02 2006-02-22 Hitachi, Ltd. Cylinder direct injection type internal combustion engine
JP2003106158A (ja) * 2001-09-28 2003-04-09 Toyota Motor Corp 筒内噴射式火花点火内燃機関
JP2003113716A (ja) * 2001-10-03 2003-04-18 Nissan Motor Co Ltd 筒内直接燃料噴射式火花点火エンジン
US6745745B2 (en) * 2002-02-22 2004-06-08 General Motors Corporation Combustion chamber for reverse tumble spark ignition direct injection engine
JP2003262132A (ja) * 2002-03-07 2003-09-19 Mazda Motor Corp 火花点火式直噴エンジンの吸気装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101501310B (zh) * 2006-08-04 2011-06-22 丰田自动车株式会社 直接喷射火花点火式内燃发动机及其燃料喷射方法
CN101675237B (zh) * 2007-04-02 2012-05-23 雷诺股份公司 内燃机气缸盖进气管道及其制造方法
CN110080915A (zh) * 2019-05-31 2019-08-02 西安交通大学 一种气/液双燃料低压直喷系统
CN114810409A (zh) * 2022-05-10 2022-07-29 潍柴动力股份有限公司 一种气缸盖及发动机总成

Also Published As

Publication number Publication date
AUPQ604000A0 (en) 2000-03-30
WO2001065105A1 (en) 2001-09-07
KR20020075468A (ko) 2002-10-04
JP2003525389A (ja) 2003-08-26
BR0108964A (pt) 2002-11-26
EP1259727A1 (en) 2002-11-27
EP1259727A4 (en) 2006-09-13
CN1800604A (zh) 2006-07-12
US20030140891A1 (en) 2003-07-31
US6854440B2 (en) 2005-02-15

Similar Documents

Publication Publication Date Title
CN1444695A (zh) 内燃机及其控制
CN1098416C (zh) 用于直喷式发动机的催化剂触发方法和催化剂触发设备
US6619254B2 (en) Method for operating an internal combustion engine operated with a self-ignitable fuel
CN101351632B (zh) 用于运行火花点火燃料直喷发动机的方法和设备
US7104250B1 (en) Injection spray pattern for direct injection spark ignition engines
CN100416065C (zh) 用于内燃机中气态燃料的引入及控制燃烧的方法和装置
US6401688B2 (en) Auto-ignition combustion management in internal combustion engine
CN1236205C (zh) 用于将双燃料喷射到内燃机中的方法和装置
CN1262757C (zh) 燃料喷射系统
CN1101518C (zh) 组合循环发动机
CN101035978A (zh) 柴油发动机的控制装置
CN1882772A (zh) 内燃机的工作方法
US20150020765A1 (en) Combustion bowl of piston
US7201135B2 (en) Internal combustion engine
CN1280651A (zh) 把燃料-气体混合物喷射到发动机中的方法
CN1274951C (zh) 燃料直喷发动机
US20060207547A1 (en) Internal Combustion engine
CN1082664A (zh) 内燃机
JP2005098121A (ja) 火花点火式直噴エンジン
JP2009287484A (ja) 内燃機関
CN1088796C (zh) 二冲程内燃机
US7506631B2 (en) Internal combustion engine
JP2007162631A (ja) 内燃機関の制御装置
JP7267704B2 (ja) 吸気の運動方向に直接燃料噴射を行う内燃機関
WO2024201933A1 (ja) 副燃焼室付内燃機関

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication