CN1416601A - 无定形电极的成分 - Google Patents
无定形电极的成分 Download PDFInfo
- Publication number
- CN1416601A CN1416601A CN01806386A CN01806386A CN1416601A CN 1416601 A CN1416601 A CN 1416601A CN 01806386 A CN01806386 A CN 01806386A CN 01806386 A CN01806386 A CN 01806386A CN 1416601 A CN1416601 A CN 1416601A
- Authority
- CN
- China
- Prior art keywords
- electrode
- metal element
- composition
- electrode composition
- electro
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C45/00—Amorphous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/14—Alloys based on aluminium with copper as the next major constituent with silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C45/00—Amorphous alloys
- C22C45/08—Amorphous alloys with aluminium as the major constituent
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/021—Cleaning or etching treatments
- C23C14/022—Cleaning or etching treatments by means of bombardment with energetic particles or radiation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0682—Silicides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/10—Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/123—Spraying molten metal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/387—Tin or alloys based on tin
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/44—Alloys based on cadmium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/46—Alloys based on magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0471—Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/40—Alloys based on alkali metals
- H01M4/405—Alloys based on lithium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Composite Materials (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
- Conductive Materials (AREA)
Abstract
一种电极成分,它包括本质上由环境温度下呈无定形态混合物形式的至少一种电化学非活性元素金属和至少一种电化学活性元素金属组成的电极材料。电化学活性元素金属最好是铝,硅或锡。当该电极成分加入锂电池并经过至少一次充电—放电全周期循环之后,该混合物在环境温度下仍保持为无定形态。
Description
优先权声明
本申请要求2000年1月13日提出的序号为60/175,893的临时申请的优先权。
技术领域
本发明涉及使用在二次锂电池中的电极材料。
发明背景
已经提出过两种材料作为二次锂电池的阳极。一种材料包括能插入锂内的石墨和其他碳的形式。虽然插入阳极一般显示出良好的周期寿命和库仑效率,但其容量相对不高。第二种材料包括同锂金属形成合金的金属。虽然和插入式阳极相比,这些合金型阳极一般显示出较高的容量,但其周期寿命和库仑效率却相对欠佳。
发明概述
本发明提供适用于二次锂电池的电极成分,其中电极成分具有高的起始容量,即使重复进行充-放周期之后该容量仍保持着。该电极成分以及加入这些成分的电池也便于制造。
为达到这些目标,本发明的电极成分具有如下特征:它包括的电极材料本质上由至少一种电化学非活性元素金属和至少一种电化学活性元素金属在环境温度下以无定形混合物的形式组成。该电极材料本质上不含金属间化合物。当将电极成分加入锂电池并在环境温度下至少进行一次充放电全周期循环之后,诸元素金属的混合物仍保持无定形态。较佳的是,该混合物在经过至少10次充放电周期之后仍保持无定形态,更佳的是至少100次,最佳的是至少1000次之后仍保持为无定形态。
“电化学活性元素金属”是在锂电池充-放电期间典型所遇条件下同锂发生反应的金属。“电化学非活性元素金属”是在该条件下不同锂发生反应的金属。
“无定形态混合物”是缺少结晶材料的长距离原子序特性的混合物。利用诸如X-光衍射、透射电镜以及差分扫描量热学等技术可以证实无定形态混合物的存在。
当加入进锂电池后,该电极成分最好显示出(a)对30次充-放电全周期每克活性金属至少约100mAh的比容量,和(b)当循环以实现每克活性金属成分约100mAh时对于30次充-放电全周期至少为99%的库仑效率(较佳的是至少99.5%,更佳的是至少99.9%)。较佳的是对500次周期,更佳的是对1000次周期实现这一性能水平。
在另一实施例中,当电极成分加进锂电池之后显示出(a)对30次充-放电全周期每克活性金属至少大约500mAh的比容量,和(b)当循环以实现每克活性金属成分约100mAh时对于30次充-放电全周期至少为99%的库仑效率(较佳的是至少99.5%,更佳的是至少99.9%)。较佳的是对200次周期,更佳的是对500次周期实现这一性能水平。
该电极成分可以是薄膜或粉末形式。可以采用许多种技术来制备该薄膜,其中包括溅射或熔融自旋。合适电化学活性元素金属的例子包括铝、硅、锡、锑、铅、锗、镁、锌、镉、铋以及铟。合适电化学非活性元素金属的例子包括IB族至VIIB族元素金属以及VIII族和稀土元素金属。具体的例子包括Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Y、Zr、Nb、Mo、La、Hf、Ta、W、Ce、Pr、Nd、Eu、Gd、Tb、Dy、Ho、Er、Yb、Lu、Be和Sm。该族中较佳的是钼、铌、钨、钽、铁、镍、锰、以及铜。
包括上述电极成分的锂电池可在各种应用中作为电源加以使用。这些例子包括供汽车、计算机、电力工具以及电信装置用的电源。
本发明的其他特征和优点从其以下较佳实施例的叙述以及从权利要求看将是不言自明的。
附图简述
图1是在充-放电周期之前获得的例1中所述铝-硅-锰试样的X-光衍射分布图。
图2A说明例1中所述铝-硅-锰试样相对于可逆比容量的充-放电周期性能。
图2B说明例1中所述铝-硅-锰试样相对于库仑效率的充-放电周期性能。
图3是对例1中所述铝-硅-锰试样得到的差分电压曲线。
图4是进行充放电周期之前得到的例2中所述锗-镍-硅-铝试样的X-光衍射分布图。
图5是进行充放电周期前得到的例2中所述锗-镍-硅-铝试样的TEM(透射电镜)衍射图。
图6是进行充-放电周期前得到的例2中所述锗-镍-硅-铝试样的TEM照片。
图7说明例2中所述铝-镍-硅-铝试样相对于可逆比容量的充-放电周期性能。
图8A和图8B是对例2中所述锗-镍-硅-铝试样得到的差分电压曲线。
图9说明利用例2中所述锗-镍-硅-铝试样进行差分扫描量热学试验的结果。
图10是进行充-放电周期之前得到的例3中所述铝-硅-铜试样的X-光衍射分布图。
图11是对例3中所述铝-硅-铜试样所得差分电压曲线。
图12说明例3中所述铝-硅-铜试样相对于可逆比容量的充-放电周期性能。
图13(a)-(d)是从采用例4中所述硅-锡-铜试样所构建电池得到的原位X-光衍射扫描。
图14说明例5中所述具有导电层的硅-锡-铜试样相对于充电中止电压和涓流充电的充放电周期性能。
图15是进行充放电周期之前得到的例4中所述具有导电层的硅-锡-铜试样的X-光衍射分布图。
图16说明例6中所述退火和未退火的硅-锡-铜试样相对于不可逆比容量的充-放电周期性能。
本发明的详细描述
诸电极成分具有以上本发明概述中所述的化学成分和微结构。它们可以是薄膜或粉末的形式。薄膜制备可以采用以下技术,诸如化学和汽相沉积、真空沉积(也即溅射)、真空蒸发、熔融自旋、喷涂细片冷却、喷雾化、电化学沉积等等。粉末制备可以直接采用诸如球磨或活性金属化学还原之类的技术。或者,粉末可制备成薄膜形式然后粉碎形成。
诸电极成分在二次锂电池中特别有用。为制备电池,直接采用含有活性材料的薄膜作为电极。或者,如果活性材料是粉末形式,则用结合剂(例如,聚偏二氟乙烯结合剂)和溶剂与粉末进行混合以形成稀浆,然后使用一般涂覆技术涂在支座上,并使之干燥以形成电极。然后用电解质和反电极同该电极相结合。
电解质可以是固体或液体电解质。固体电解质的例子包括聚合体电解质,诸如聚乙烯氧化物、聚四氟乙烯、含氟的共聚物、以及其联合。液体电解质的例子包括碳酸乙烯酯、碳酸二乙酯、碳酸丙烯、及其联合。电解质以锂电解质盐提供。合适盐的例子包括LiPF6、LiBF4以及LiClO4。
含液体电解质电池用反电极成分的合适例子包括LiCoO2、LiCo0.2Ni0.8O2,以及LiMn2O4。含固体电解质电池用反电极成分的合适例子包括LiV3O8和LiV2O5。
现将利用以下诸实例进一步阐明本发明。
实例
A.电极制备
按照下列步骤通过溅射或借助于熔融自旋以薄膜形式制备各电极材料。
溅射步骤#1
薄膜形式的电极采用改进过的Perkin-Elmer Randex 2400-8SA型溅射系统通过顺序或单靶溅射加以制备。用购自加州San Diego的Materials Science的直径6英寸直流磁控溅射源来代替原始直径8英寸的溅射源。使用以恒流模式运行的Advanced Energy MDX-10型直流溅射电源向溅射源供电。用步进马达代替Randex系统的转盘部件以改进旋转速度范围和控制。用由常规旋转叶片泵支持的未加捕集器的油扩散泵对该系统进行抽真空。
在范围为3-30mTorr氩气压力下进行溅射。通过结合置于扩散泵上的威尼斯百叶帘式导通限制器控制氩的流量来维持该压力。
使用双面粘合带(购自MN St Paul的3M公司的3M商标Y9415)将铜箔(厚度=0.001英寸)结合至Randex系统的水冷却基底转盘。关闭并抽真空使该系统保持在典型地小于1×10-5Torr的基压(沉积前的基压并不严格)。在沉积之前采用Randex系统的“溅射蚀刻”模式对试样进行蚀刻,此时施加至基底转盘的功率为13.56MHz,溅射室的氩气压力为8mTorr。该步骤引起铜箔表面被中等能量的氩离子(100-150eV)轰击,以进一步清洁铜并确保溅射膜与铜表面的良好粘结。典型的清洁周期是150W进行30分,在此期间保持基底盘在旋转。
腐蚀后接下来利用诸源和铜基底之间的机构阀门起动诸溅射源。这使一些污染物从源表面去除而不在基底表面沉积。下一步在预定的电流水平下起动两个源而使沉积开始。在经合适的沉积时间之后,使一个或两个源断开。
溅射步骤#2
薄膜采用由一常规织物操纵系统构成的溅射涂覆器进行制备,所述织物操纵系统驱动对着3个6英寸长水冷溅射靶的水冷却滚筒上宽为6英寸的织物。多个水冷却屏限止溅射的等离子,并限定移动织物所暴露的面积。采用CTI-CRYOGENICS ON-BORD高真空低温泵和由普通粗泵支持的Leybold 220型高真空涡轮泵对涂覆器抽真空。通过以恒定功率运行的ADVANCED ENERGY MDX II型直流电源对诸靶进行供电。在30mTorr的氩气下进行溅射。调节溅射功率和织物速度以控制所沉积材料的总量(涂覆重量)。
熔融自旋步骤
在熔融自旋的准备中,如下制备金属混合物的铸块。将金属碎片混合物置于50mL氧化铝坩埚中(Vesuvius McDaniel,Beaver Falls,PA)。将此坩埚置于缠绕有石墨纤维的感受器中,并把包含坩埚的感受器置于2030型GCA真空感应炉(Centor Vacuum Industries,Nashua,NH)的铜线圈内。将该炉子抽真空至大约0.05mTorr,接通射频电源,使混合物加热并熔化大约1小时以确保合金化。冷却之后从坩埚中取出得到的铸块,并用锤子敲碎成较小的碎片以形成供熔融自旋用的试样小片。
熔融自旋工艺进行如下。用1000号砂纸对熔融自旋用标准石英喷嘴进行研磨以在顶端获得直径测量为0.03英寸的小孔。将许多试样小片塞入该喷嘴并悬挂在真空室内的铜线圈中。将该石英管连接至向该喷嘴提供加压氮的管道。调节该喷嘴使喷嘴顶端与一8英寸直径的Cu/Be轮表面之间获得0.048英寸的高度。将小室抽真空至66mTorr并在氮气钢瓶和真空室内部之间保持30mm汞柱的过压。马达/皮带驱动Cu/Be轮以2500rpm的速度旋转,对铜线圈提供足够的射频功率使感应场中的合金小片熔化。当这些小片液化时,将氮气施加至喷嘴促使熔融的金属喷射在旋转Cu/Be轮的表面。该工艺制得一可延展的长条,其宽为1~2mm,厚为0.0012英寸。
B.透射电子显微镜
采用透射电子显微镜(“TEM”)来检验充放电周期之前电极试样的微结构。这一技术利用透射强度的空间变化得到微结构的图象,所述透射强度的空间变化同试样的结构、化学和/或厚度的空间变化有关。由于形成这些图象用的辐射由波长极短的高能电子构成,故在高分辨的电子显微镜(HREM)成象条件下有可能获得原子级的信息。再者,这些电子同试样的交互作用产生有关晶体结构(电子衍射)和局部化学(X-光微分析)的信息,这对图像中所得信息是个补充。
在充-放电周期进行之前,通过以随机方向切割薄膜而从熔融自旋的薄膜中制备出试样。于是将切割得到的试样嵌入3M ScotchcastTM电气树脂#5(从MN,ST.Paul的3M公司购得)内,并进行超微化以获得足以供TEM检验用的薄片。薄片厚度约称为24nm。
用来获得微结构数据的TEM仪器是以300kV加速电压运行的日立H9000-NAR型透射电子显微镜。它能达到的点-至-点分辨率为1.75,而X-光微分析用的微探针分辨率则为16。微分析仪器由NORAN VOYAGER III构成,直接数字图像获取和定量长度测量由GATAN慢扫描CCD(电荷耦合器件)相机完成。采用图像和微分析两者的分辨率极限均为1.4的JEOL 2010-F型场发射TEM/STEM来产生Z-相差图像。
C.X-光衍射
采用西门子的Kristalloflex 805 D500型衍射计来收集衍射图案,该衍射计装备铜或钼靶X-光管和衍射束单色仪。在试样架上安放约2cm2的薄膜试样。所有溅射沉积试样均在铜基底上,后者在特定散射角下引起一系列可识别的衍射峰。具体而言,铜基底在43.30度、50.43度以及74.13度的散射角下引起的峰值分别对应于Cu(111),Cu(200)以及Cu(220)。
为了检验充-放电期间的电极材料,室温下采用2325硬币电池进行原位X-光衍射试验,该电池采用50μm厚的微孔聚丙烯隔离器和锂负电极构建。电解质为1∶1体积比的碳酸乙烯酯和碳酸二乙酯混合物中1摩尔的LiPF6。硬币电池外壳还配备有直径为18mm的圆孔。采用压敏粘合剂(购自纽约Rosce ofPort Chester的Roscobond)将直径21mm的铍窗(厚度=250μm)粘附在该孔的内侧。通过混合85wt(重量)%活性粉末,10wt%Super-S碳黑(比利时MMMCarbon),和5wt%聚偏二氟乙烯以形成可涂覆的成分,然后在其接触外壳之前直径涂此成分于该窗口来制备电极材料。
将电池在充满氩气的手套箱内进行装配和卷摺。以恒定的充电和放电电流(30mA/g)进行试验并使用MACCOR充-放电循环器在固定容量极限之间进行充-放电周期。第一次放电到达660mAh/g的极限。第一次充电至1.3V,被抽取的锂超过600mAh/g。第二次放电到达720mAh/g。
将电池安放在西门子D5000型衍射计中,并在0.0V至1.3V之间缓慢地放电和充电。X-光衍射计每三小时重复进行扫描。选择试验电流使放电至600mAh/g将需要约20小时。在充-放电期间顺序地收集2小时X-光衍射图案。
现描述诸特定电极例子的制备和特征。
例1
一含有54wt%铝,28wt%硅,和18wt%锰的无定形膜通过按上述溅射步骤#1的溅射沉积由单靶加以制备,其条件是在15mTorr氩气压和38rpm试样转速下使用1安培的电流120分钟。此三元单靶材料以230/min的速率进行溅射沉积。溅射沉积膜的厚度为2.8μm,密度约为2.9g/cm3。不存在之先或之后的诸层。
该膜的X-光衍射分布图按上述步骤利用-钼靶X-光管进行测量并显示在图1中。该图案表明,结晶的铝、硅或锰,或结晶的金属间化合物AlSiMn都没有峰值。所有示出的峰值均源自试样基座中所用的铜。
对膜的充-放电周期行为进行如下试验。用一测量为7.1mm的模具(die)从溅射膜上切下一电极。试验电池为一半电池,其中该膜形成1225硬币电池的阴极,而锂箔(厚约300μm,购自WI,Milwaukee的Aldrich Chemical公司)则形成阳极。
采用50μm厚的聚乙烯隔离器构建电池。电解质为1∶1体积比的碳酸乙烯酯和碳酸二乙酯混合物中1摩尔的LiPF6。采用铜间隔器作为集电器,并填充电池中的空隙区。
采用MACCOR充-放电循环器测量该电池的电化学性能。电池的第一次放电是在0.5mA/cm2下恒流放电降至5mV,然后恒压(5mV)放电直至电流下降至50μA/cm2。起始放电(锂化)的比容量约为1400mAh/g。于是在设定为约C/3速率(0.5mA/cm2)的恒流充电和放电条件下对该电池进行充-放电周期循环,其终止电压为5mV和1.4V。图2A和2B分别示出该电池的可逆比容量和库仑效率。该结果表明,电极膜将在大于450mAh/g下可逆地进行充放电周期至少450次,而库仑效率则大于99.0%。
该电极的差分电压曲线示于图3。该曲线表明,在充-放电周期进行期间电极的电化学行为并无明显变化,表示充放电周期中未产生较大的结晶区。
例2
含有20wt%锗、10wt%镍、10wt%硅和60wt%铝的无定形熔融自旋膜按上述步骤进行制备。膜的X-光衍射分布图采用铜靶X-光管按上述步骤进行测量。采用0.05度的步长和5秒的扫描时间。结果列于图4。正如图4所示,该分布图缺少结晶材料的峰值特征。
在进行充-放电周期之前按上述步骤也使该膜经受TEM和电子衍射分析。列于图5中的膜的TEM衍射图案缺少结晶材料尖的环或点的特征。示于图6的TEM照片同样缺少表征结晶材料的特点。
膜的充-放电周期行为如下进行试验。从两条熔融自旋的膜制备电极,其中一条测得长为15.11mm,宽为1.15mm,而另一条则测得为7.76mm长,1.15mm宽。试验电池为一半电池,其中膜形成2325硬币电池的阴极而锂箔(约0.015英寸厚和17mm直径)则形成阳极。采用厚0.001英寸的Celgard LLC隔离器(NC,Celgard Charlotte)来构建该电池。电解质为1∶1体积比的碳酸乙烯酯和碳酸二乙酯混合物中1摩尔的LiPF6。
采用MACCOR充-放电循环器测量该电池的电化学性能。电池第一次放电是在0.5mA/cm2下恒流放电降至5mV,然后恒压(5mV)放电直至电流降至50μA/cm2。起始放电(锂化)的比容量为约800mAh/g。于是在设定为约C/3速率(0.5mA/cm2)的恒流充放电条件下对该电进行充-放电周期循环,其终止电压为5mV和1.4V。可逆比容量示于图7。该结果表明,电极膜将在大于400mAh/g下可逆地进行充放电周期至少20次。
图8A(周期0-5)和8B(周期6-10)示出电极的差分电压曲线。该曲线表明,在充-放电周期进行期间电极的电化学行为并无明显变化,表示充放电周期中未产生结晶区。
膜的结晶化温度采用Seiko Instruments DSC220C型量热计通过差分扫描量热学(DSC)进行测定。使用1.58mg的膜试样。对量热计编程使之稳定在25EC20分钟,然后以5EC/分钟的速率从25EC升至450EC,最后以10EC/分钟的速率从450EC降至25EC。在试验期间,试样室充满氩气。结果示于图9并表明,该试样具有大于150EC的结晶化温度。
例3
含74wt%铝-硅(50wt%铝和24wt%硅)和26wt%铜的无定形膜按上述溅射步骤#1由铝-硅靶和铜靶通过溅射沉积加以制备。根据元素分析,铝-硅靶含铝68wt%和硅32wt%。沉积在12mTorr氩气压下采用38rpm的基底旋转速度完成。溅射速度对铝-硅靶为180/分钟,对铜靶为18/分钟。溅射沉积膜厚4.61μm,密度约3.13g/cm3。试样同时具有300厚的之前铜层和300厚的之后铝-硅层。
膜的X-光衍射分布图采用铜靶X-光管按上述步骤进行测量,且列于图10。所有出现峰值均源于试样支座中所用的铜。这通过以下事实加以证明,即从按同一步骤但不含铜支座制备的膜取得的X-光衍射分布图就没有显示出这些峰值。
膜的充-放电周期行为按例1中所述步骤进行试验。图11说明在前6次充电周期中所测试样的差分容量。该差分容量平滑且无特色,和不存在结晶材料相符。对于最初两个再充电周期,在C/40下测得的膜的可逆比容量约为700mAh/g。正如图12所示,在C/10下该试样保持约600mAh/g的容量超过100次周期。
例4
含30wt%硅、66wt%锡和4wt%铜的无定形膜按上述溅射步骤#2通过溅射沉积加以制备,对于三个单靶使用11kW的总功率。溅射在氩气压30mTorr下采用0.24ft/min的织物速度进行。三个相同硅/锡/铜成分的靶以约3g/kWh的速度进行溅射沉积。采用涂有结合剂的10μm厚的铜箔(日本)作为支座。支座制备如下:用8mil带凹口的棒对该箔涂以40wt%超级P碳和60wt%聚偏二氟乙烯在N-甲基-2-吡咯烷二酮中6wt%的固体弥散物,接着在60℃真空下干燥4小时以除去残余的溶剂。干燥的结合剂厚约8μm。溅射沉积膜的厚度为约5μm和密度为约4g/cm3。
硅-锡-铜材料的X-光衍射分布图采用钼靶X-光管获得并在图15中列出。其特征在于不存在结晶的锡和硅。较大的峰值均由于铜箔集电器引起。
借助于丙酮,用刀片将膜从铜支座上剥下,粉碎,并用270筛孔(美国标准筛尺寸;ASTM E-11-61)过筛。于是用此材料构建2325硬币电池供原位X-光衍射测量用。为制备该硬币电池,制备一弥散物,它具有86wt%的该材料,7wt%的超级-P碳(MMM Carbon,比利时),以及7wt%的N-甲基-2-吡咯烷二酮中的聚偏二氟乙烯结合剂。然后将此弥散物涂覆在铜箔上并在真空下干燥数小时以除去残余溶剂。用-锂箔(约厚300μm,购自WI,Milwaukee的AldrichChimical公司)作为反电极,用得到的涂覆箔构建2325硬币电池。采用50μm厚的聚乙烯隔离器来构建该电池。电解质为体积比1∶1的碳酸乙烯酯和碳酸二乙酯混合物中1摩尔的LiPF6。
如上所述用-铜靶X-光管进行原位X-光衍射测量。结果示于图13(a)~(d)。图13(d)示出放电电流启动之前该电极的起始图案。图案中所有的尖峰均源自电池的成分(例如,窗口上的铍,氧化铍等)。这些峰值在充放电期间是不变的。中心靠近26和43度的各个宽峰值是由于硅-锡-铜电极所致。
图13(c)表示在660mAh/g的锂和电极结合之后所测得的X-光衍射分布图。正如该图所示,各个宽峰由于锂的作用而迁移位置。各峰仍保持为宽的。未观察到有结晶的迹象。
图13(b)表示在所有锂第一次去除之后电极的状态。该图案返回至图13(d)所示原始材料的。再次未观察到有结晶的迹象。
图13(a)表示将锂再次插入到达720mAh/g水平之后电极的状态。再-次未观察到有结晶的迹象。
例5
电极按例4的步骤制备,除了制备该电极所用最后的弥散物通过混合1克过筛粉末和16g N-甲基-2-吡咯烷二酮中4.5%的固体弥散物加以制作,固体弥散物包括超级-P碳和聚偏二氯乙烯(70∶30)。最后干燥的涂层含有50wt%活性硅-锡-铜,35wt%超级-P碳和15wt%聚偏二氟乙烯。用此电极如例4所述构建2325硬币电池。
相对于涓流充电容量和充电中止电压,用一MACCOR充放电循环器测量该电池的电化学性能。该电池以350mA/g的高速率第一次放电至700mAh/g固定容量以使电极锂化。然后将此电池以350mA/g的速率充电至1.2V电压以从电极抽取锂。下一步允许该电池中止(零电流)15分钟,之后电池电压可降至1.0V以下。在此中止周期结束时的电势就被记录为“充电中止电压”。它对留在电极中锂的总量提供-量度。一般讲,充电中止电压越高,它作为充电周期数的函数就越稳定,去除锂就越有效。
在中止周期结束时,将该电池以35mA/g的低速(“涓流充电”)充电至1.2V以去除在高速率(350mA/g)下未被去除的锂。涓流充电容量是锂去除程度的一个量度,并相似于库仑效率。一般讲,在施加涓流充电期间被去除的锂越多,高速率充电期间电极放弃锂的效率就越低。因此,对给定充放电周期,期望使涓流充电容量减至最少,并在重复充放电周期之后保持低的涓流充电容量。
对试样的结果示于图14。这些结果表明,相对于涓流充电和充电中止电压两者,该电极表现良好。
例6
含30wt%硅,66wt%锡和4wt%铜的无定形膜为例4所示进行制备,并按例5所述规定进行充-放电周期循环。该膜的不可逆容量作为每次周期之后放电和充电容量之差加以计算。为了比较起见,制备了其他三个膜,但在测量其作为周期数函数的不可逆容量之前,先在150℃真空炉内退火24小时。退火导致产生一半结晶膜。所有四个膜的结果均示于图16。图16中无定形膜标以“A”并以4小时速率进行充-放电周期。退火膜标以“B”、“C”和“D”,并分别以6、2和4小时的速率进行充放电周期。这些结果表明,无定形膜所具有的不可逆容量明显地比退火膜的低。
其他的实施例均在以下权利要求的范围以内。
Claims (11)
1.一种电极成分,其特征在于包含:
在环境温度下以无定形混合物形式存在的本质上由至少一种电化学非活性元素金属和至少一种电化学活性元素金属构成的电极材料,当所述电极成分加进锂电池并经过至少一次充一放电全周期循环后,电极材料仍保持为无定形态。
2.如权利要求1所述的电极成分,其特征在于所述电极材料本质上由至少一种电化学非活性元素金属和多种电化学活性元素金属构成。
3.如权利要求1所述的电极成分,其特征在于所述电极材料本质上由多种电化学非活性元素金属和至少一种电化学活性元素金属构成。
4.如权利要求1所述的电极成分,其特征在于所述电化学活性元素金属选自由以下元素构成的族:铝、硅、锡、锑、铅、锗、镁、锌、镉、铋和铟。
5.如权利要求1所述的电极成分,其特征在于所述电化学非活性元素金属选自由以下元素构成的族:钼、铌、钨、钽、铁、镍、锰、和铜。
6.如权利要求1所述的电极成分,其特征在于所述电化学活性元素金属为铝。
7.如权利要求1所述的电极成分,其特征在于所述电化学活性元素金属为硅。
8.如权利要求1所述的电极成分,其特征在于所述电化学活性元素金属为锡。
9.如权利要求1所述的电极成分,其特征在于所述成分为薄膜形式。
10.如权利要求1所述的电极成分,其特征在于所述成分为粉末形式。
11.一种锂离子电池,其特征在于,它包含:
(a)含有电极材料的第一电极,它本质上由在环境温度下以无定形混合物形式存在的至少一种电化学非活性元素金属和至少一种电化学活性元素金属构成。
(b)反电极;以及
(c)分隔所述电极和所述反电极的电解质,其中所述电极材料在所述电池经过至少一次充-放电全周期循环之后仍保持为无定形态。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17589300P | 2000-01-13 | 2000-01-13 | |
US60/175,893 | 2000-01-13 | ||
US09/751,169 US6699336B2 (en) | 2000-01-13 | 2000-12-29 | Amorphous electrode compositions |
US09/751,169 | 2000-12-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1416601A true CN1416601A (zh) | 2003-05-07 |
CN1199301C CN1199301C (zh) | 2005-04-27 |
Family
ID=26871668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB018063861A Expired - Fee Related CN1199301C (zh) | 2000-01-13 | 2001-01-03 | 无定形电极的成分 |
Country Status (11)
Country | Link |
---|---|
US (2) | US6699336B2 (zh) |
EP (1) | EP1252670B1 (zh) |
JP (1) | JP2003520398A (zh) |
KR (1) | KR100688999B1 (zh) |
CN (1) | CN1199301C (zh) |
AT (1) | ATE279021T1 (zh) |
AU (1) | AU2001229269A1 (zh) |
CA (1) | CA2397061A1 (zh) |
DE (1) | DE60106202T2 (zh) |
HK (1) | HK1051442B (zh) |
WO (1) | WO2001052337A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104795548A (zh) * | 2014-01-10 | 2015-07-22 | 通用汽车环球科技运作有限责任公司 | 用作锂电池负极材料的多相分离硅基合金 |
CN109273673A (zh) * | 2017-07-18 | 2019-01-25 | Tdk株式会社 | 锂离子二次电池用负极及使用其的锂离子二次电池 |
Families Citing this family (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6699336B2 (en) * | 2000-01-13 | 2004-03-02 | 3M Innovative Properties Company | Amorphous electrode compositions |
JP2002170555A (ja) | 2000-12-01 | 2002-06-14 | Sanyo Electric Co Ltd | リチウム二次電池用電極の製造方法 |
KR100382767B1 (ko) * | 2001-08-25 | 2003-05-09 | 삼성에스디아이 주식회사 | 리튬 2차 전지용 음극 박막 및 그의 제조방법 |
EP1313158A3 (en) | 2001-11-20 | 2004-09-08 | Canon Kabushiki Kaisha | Electrode material for rechargeable lithium battery, electrode comprising said electrode material, rechargeable lithium battery having said electrode , and process for the production thereof |
US7498100B2 (en) * | 2003-08-08 | 2009-03-03 | 3M Innovative Properties Company | Multi-phase, silicon-containing electrode for a lithium-ion battery |
US7972725B2 (en) * | 2004-11-08 | 2011-07-05 | 3M Innovative Properties Company | Polyimide electrode binders |
US7767349B2 (en) | 2005-07-25 | 2010-08-03 | 3M Innovative Properties Company | Alloy compositions for lithium ion batteries |
US7851085B2 (en) * | 2005-07-25 | 2010-12-14 | 3M Innovative Properties Company | Alloy compositions for lithium ion batteries |
US7871727B2 (en) * | 2005-07-25 | 2011-01-18 | 3M Innovative Properties Company | Alloy composition for lithium ion batteries |
US7691282B2 (en) * | 2005-09-08 | 2010-04-06 | 3M Innovative Properties Company | Hydrofluoroether compounds and processes for their preparation and use |
US7790312B2 (en) * | 2005-09-08 | 2010-09-07 | 3M Innovative Properties Company | Electrolyte composition |
US20070099084A1 (en) * | 2005-10-31 | 2007-05-03 | T/J Technologies, Inc. | High capacity electrode and methods for its fabrication and use |
US7906238B2 (en) | 2005-12-23 | 2011-03-15 | 3M Innovative Properties Company | Silicon-containing alloys useful as electrodes for lithium-ion batteries |
KR100814816B1 (ko) | 2006-11-27 | 2008-03-20 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 음극 활물질 및 그를 포함하는 리튬 이차전지 |
US8124280B2 (en) * | 2006-12-22 | 2012-02-28 | Uchicago Argonne, Llc | Intermetallic electrodes for lithium batteries |
US7875388B2 (en) * | 2007-02-06 | 2011-01-25 | 3M Innovative Properties Company | Electrodes including polyacrylate binders and methods of making and using the same |
US20090053589A1 (en) * | 2007-08-22 | 2009-02-26 | 3M Innovative Properties Company | Electrolytes, electrode compositions, and electrochemical cells made therefrom |
US20080206631A1 (en) * | 2007-02-27 | 2008-08-28 | 3M Innovative Properties Company | Electrolytes, electrode compositions and electrochemical cells made therefrom |
US20080206641A1 (en) * | 2007-02-27 | 2008-08-28 | 3M Innovative Properties Company | Electrode compositions and electrodes made therefrom |
KR100796664B1 (ko) | 2007-03-21 | 2008-01-22 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차전지 |
KR100869796B1 (ko) | 2007-04-05 | 2008-11-21 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 음극 활물질, 이의 제조 방법, 및 이를포함하는 리튬 이차 전지 |
US20080248386A1 (en) * | 2007-04-05 | 2008-10-09 | Obrovac Mark N | Electrodes with raised patterns |
WO2009131700A2 (en) | 2008-04-25 | 2009-10-29 | Envia Systems, Inc. | High energy lithium ion batteries with particular negative electrode compositions |
US9012073B2 (en) * | 2008-11-11 | 2015-04-21 | Envia Systems, Inc. | Composite compositions, negative electrodes with composite compositions and corresponding batteries |
US9190694B2 (en) * | 2009-11-03 | 2015-11-17 | Envia Systems, Inc. | High capacity anode materials for lithium ion batteries |
US20110183209A1 (en) * | 2010-01-27 | 2011-07-28 | 3M Innovative Properties Company | High capacity lithium-ion electrochemical cells |
US8609287B2 (en) | 2010-05-25 | 2013-12-17 | Uchicago Argonne, Llc | Polyether-functionalized redox shuttle additives for lithium ion batteries |
US8968940B2 (en) | 2010-05-25 | 2015-03-03 | Uchicago Argonne, Llc | Redox shuttles for high voltage cathodes |
US8877390B2 (en) | 2010-05-25 | 2014-11-04 | Uchicago Argonne, Llc | Redox shuttles for lithium ion batteries |
US9178249B2 (en) | 2010-05-27 | 2015-11-03 | Uchicago Argonne, Llc | Electrode stabilizing materials |
US9601228B2 (en) | 2011-05-16 | 2017-03-21 | Envia Systems, Inc. | Silicon oxide based high capacity anode materials for lithium ion batteries |
JP5751448B2 (ja) | 2011-05-25 | 2015-07-22 | 日産自動車株式会社 | リチウムイオン二次電池用負極活物質 |
EP3159307A1 (en) | 2011-08-31 | 2017-04-26 | 3M Innovative Properties Company | High capacity positive electrodes for use in lithium-ion electrochemical cells and methods of making the same |
US9601806B2 (en) | 2011-08-31 | 2017-03-21 | Uchicago Argonne, Llc | Redox shuttle additives for lithium-ion batteries |
US8859144B2 (en) * | 2011-09-16 | 2014-10-14 | GM Global Technology Operations LLC | Multi-phase separated silicon based alloys as negative electrode material for lithium batteries |
US9142830B2 (en) * | 2011-09-16 | 2015-09-22 | GM Global Technology Operations LLC | Phase separated silicon-tin composite as negative electrode material for lithium-ion batteries |
US9005811B2 (en) * | 2011-09-16 | 2015-04-14 | GM Global Technology Operations LLC | Phase separated silicon—tin composite as negative electrode material for lithium-ion and lithium sulfur batteries |
US9139441B2 (en) | 2012-01-19 | 2015-09-22 | Envia Systems, Inc. | Porous silicon based anode material formed using metal reduction |
US9203112B2 (en) | 2012-04-26 | 2015-12-01 | Uchicago Argonne, Llc | Redox shuttles having an aromatic ring fused to a 1,1,4,4-tetrasubstituted cyclohexane ring |
US9780358B2 (en) | 2012-05-04 | 2017-10-03 | Zenlabs Energy, Inc. | Battery designs with high capacity anode materials and cathode materials |
US10553871B2 (en) | 2012-05-04 | 2020-02-04 | Zenlabs Energy, Inc. | Battery cell engineering and design to reach high energy |
US20140063219A1 (en) | 2012-08-28 | 2014-03-06 | General Electric Company | System and method including a portable user profile for medical imaging systems |
EP2924772B1 (en) | 2012-11-22 | 2021-03-17 | Nissan Motor Co., Ltd | Negative electrode for electric device, and electric device using the same |
EP3361532B1 (en) * | 2012-11-22 | 2020-07-29 | Nissan Motor Co., Ltd. | Negative electrode for electric device and electric device using the same |
US9053901B2 (en) | 2012-12-21 | 2015-06-09 | General Electric Company | X-ray system window with vapor deposited filter layer |
US9005822B2 (en) | 2013-03-06 | 2015-04-14 | Uchicago Argonne, Llc | Functional electrolyte for lithium-ion batteries |
US10020491B2 (en) | 2013-04-16 | 2018-07-10 | Zenlabs Energy, Inc. | Silicon-based active materials for lithium ion batteries and synthesis with solution processing |
US10086351B2 (en) | 2013-05-06 | 2018-10-02 | Llang-Yuh Chen | Multi-stage process for producing a material of a battery cell |
US10886526B2 (en) | 2013-06-13 | 2021-01-05 | Zenlabs Energy, Inc. | Silicon-silicon oxide-carbon composites for lithium battery electrodes and methods for forming the composites |
US11476494B2 (en) | 2013-08-16 | 2022-10-18 | Zenlabs Energy, Inc. | Lithium ion batteries with high capacity anode active material and good cycling for consumer electronics |
EP3098892B1 (en) | 2014-01-24 | 2018-11-14 | Nissan Motor Co., Ltd | Electrical device |
US10535870B2 (en) | 2014-01-24 | 2020-01-14 | Nissan Motor Co., Ltd. | Electrical device |
US9577251B2 (en) | 2014-03-27 | 2017-02-21 | GM Global Technology Operations LLC | Active electrode materials and methods for making the same |
US10396865B2 (en) * | 2015-03-19 | 2019-08-27 | Commscope Technologies Llc | Spectral analysis signal identification |
WO2016154617A1 (en) | 2015-03-26 | 2016-09-29 | David Mitlin | Anodes for batteries based on tin-germanium-antimony alloys |
JP2018518817A (ja) * | 2015-06-23 | 2018-07-12 | ナンヤン テクノロジカル ユニヴァーシティNanyang Technological University | 電極、バッテリーセル及びバッテリー装置 |
CN104993115B (zh) * | 2015-08-03 | 2017-05-31 | 温州大学 | 一种锂电池SiCO‑Si梯度薄膜电极体系及制备方法 |
US11094925B2 (en) | 2017-12-22 | 2021-08-17 | Zenlabs Energy, Inc. | Electrodes with silicon oxide active materials for lithium ion cells achieving high capacity, high energy density and long cycle life performance |
US11121354B2 (en) | 2019-06-28 | 2021-09-14 | eJoule, Inc. | System with power jet modules and method thereof |
US11376559B2 (en) | 2019-06-28 | 2022-07-05 | eJoule, Inc. | Processing system and method for producing a particulate material |
US11673112B2 (en) | 2020-06-28 | 2023-06-13 | eJoule, Inc. | System and process with assisted gas flow inside a reaction chamber |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4623597A (en) * | 1982-04-28 | 1986-11-18 | Energy Conversion Devices, Inc. | Rechargeable battery and electrode used therein |
US4948558A (en) | 1983-10-03 | 1990-08-14 | Allied-Signal Inc. | Method and apparatus for forming aluminum-transition metal alloys having high strength at elevated temperatures |
FR2577941B1 (fr) * | 1985-02-27 | 1991-02-08 | Pechiney | Alliages amorphes a base d'al contenant essentiellement du ni et/ou du fe et du si et procede d'obtention |
IN167995B (zh) | 1985-07-26 | 1991-01-19 | Alcan Int Ltd | |
JP3215448B2 (ja) | 1991-03-12 | 2001-10-09 | 三洋電機株式会社 | 亜鉛アルカリ電池 |
AU6237794A (en) * | 1993-02-12 | 1994-08-29 | Valence Technology, Inc. | Electrodes for rechargeable lithium batteries |
JP3403449B2 (ja) | 1993-05-13 | 2003-05-06 | 松下電器産業株式会社 | 非水電解質二次電池 |
JP3079343B2 (ja) | 1993-07-13 | 2000-08-21 | セイコーインスツルメンツ株式会社 | 非水電解質二次電池及びその製造方法 |
JP3405418B2 (ja) * | 1993-11-04 | 2003-05-12 | 松下電器産業株式会社 | 非水電解質二次電池 |
JPH07296812A (ja) | 1994-04-28 | 1995-11-10 | Mitsubishi Cable Ind Ltd | 負極及びLi二次電池 |
EP1339116A3 (en) * | 1994-05-30 | 2005-03-23 | Canon Kabushiki Kaisha | Rechargeable lithium battery |
US5554456A (en) | 1994-06-14 | 1996-09-10 | Ovonic Battery Company, Inc. | Electrochemical hydrogen storage alloys and batteries containing heterogeneous powder particles |
US5721065A (en) | 1995-05-05 | 1998-02-24 | Rayovac Corporation | Low mercury, high discharge rate electrochemical cell |
EP0750359B1 (en) | 1995-06-23 | 1999-12-08 | Hitachi, Ltd. | Secondary battery comprising electrode with multiphase, porous active material |
JP3601124B2 (ja) | 1995-09-22 | 2004-12-15 | 株式会社デンソー | 非水溶液を用いる二次電池の正極活物質、および正極。 |
US5840440A (en) | 1995-11-20 | 1998-11-24 | Ovonic Battery Company, Inc. | Hydrogen storage materials having a high density of non-conventional useable hydrogen storing sites |
US6030726A (en) * | 1996-06-17 | 2000-02-29 | Hitachi, Ltd. | Lithium secondary battery having negative electrode of carbon material which bears metals |
JPH10208741A (ja) * | 1997-01-22 | 1998-08-07 | Hitachi Ltd | リチウム二次電池 |
JP3805053B2 (ja) | 1997-02-10 | 2006-08-02 | 旭化成エレクトロニクス株式会社 | リチウム二次電池 |
JP3846661B2 (ja) | 1997-02-24 | 2006-11-15 | 日立マクセル株式会社 | リチウム二次電池 |
US6517974B1 (en) * | 1998-01-30 | 2003-02-11 | Canon Kabushiki Kaisha | Lithium secondary battery and method of manufacturing the lithium secondary battery |
JP3559720B2 (ja) * | 1998-01-30 | 2004-09-02 | キヤノン株式会社 | リチウム二次電池及びその製造方法 |
US6203944B1 (en) * | 1998-03-26 | 2001-03-20 | 3M Innovative Properties Company | Electrode for a lithium battery |
US6528208B1 (en) * | 1998-07-09 | 2003-03-04 | The University Of Chicago | Anodes for rechargeable lithium batteries |
US6255017B1 (en) | 1998-07-10 | 2001-07-03 | 3M Innovative Properties Co. | Electrode material and compositions including same |
EP1028476A4 (en) | 1998-09-08 | 2007-11-28 | Sumitomo Metal Ind | NEGATIVE ELECTRODE MATERIAL FOR NONAQUEOUS ELECTRODE SECONDARY ACCUMULATOR AND PROCESS FOR PRODUCTION THEREOF |
JP3620703B2 (ja) | 1998-09-18 | 2005-02-16 | キヤノン株式会社 | 二次電池用負極電極材、電極構造体、二次電池、及びこれらの製造方法 |
EP2219253B1 (en) | 1998-09-18 | 2015-06-10 | Canon Kabushiki Kaisha | Electrode material |
JP4393610B2 (ja) | 1999-01-26 | 2010-01-06 | 日本コークス工業株式会社 | リチウム二次電池用負極材料、リチウム二次電池、及び同二次電池の充電方法 |
US6428933B1 (en) | 1999-04-01 | 2002-08-06 | 3M Innovative Properties Company | Lithium ion batteries with improved resistance to sustained self-heating |
US6699336B2 (en) * | 2000-01-13 | 2004-03-02 | 3M Innovative Properties Company | Amorphous electrode compositions |
JP4144997B2 (ja) * | 2000-05-26 | 2008-09-03 | 三洋電機株式会社 | リチウム二次電池用負極 |
-
2000
- 2000-12-29 US US09/751,169 patent/US6699336B2/en not_active Expired - Lifetime
-
2001
- 2001-01-03 AU AU2001229269A patent/AU2001229269A1/en not_active Abandoned
- 2001-01-03 DE DE60106202T patent/DE60106202T2/de not_active Expired - Lifetime
- 2001-01-03 CA CA002397061A patent/CA2397061A1/en not_active Abandoned
- 2001-01-03 KR KR1020027009086A patent/KR100688999B1/ko not_active IP Right Cessation
- 2001-01-03 JP JP2001552458A patent/JP2003520398A/ja active Pending
- 2001-01-03 EP EP01942471A patent/EP1252670B1/en not_active Expired - Lifetime
- 2001-01-03 AT AT01942471T patent/ATE279021T1/de not_active IP Right Cessation
- 2001-01-03 WO PCT/US2001/000163 patent/WO2001052337A1/en active IP Right Grant
- 2001-01-03 CN CNB018063861A patent/CN1199301C/zh not_active Expired - Fee Related
-
2003
- 2003-03-14 HK HK03101918.4A patent/HK1051442B/zh not_active IP Right Cessation
- 2003-07-30 US US10/630,501 patent/US20040131936A1/en not_active Abandoned
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104795548A (zh) * | 2014-01-10 | 2015-07-22 | 通用汽车环球科技运作有限责任公司 | 用作锂电池负极材料的多相分离硅基合金 |
CN109273673A (zh) * | 2017-07-18 | 2019-01-25 | Tdk株式会社 | 锂离子二次电池用负极及使用其的锂离子二次电池 |
Also Published As
Publication number | Publication date |
---|---|
US20020162606A1 (en) | 2002-11-07 |
KR100688999B1 (ko) | 2007-03-09 |
CA2397061A1 (en) | 2001-07-19 |
WO2001052337A1 (en) | 2001-07-19 |
KR20020064379A (ko) | 2002-08-07 |
DE60106202D1 (de) | 2004-11-11 |
CN1199301C (zh) | 2005-04-27 |
AU2001229269A1 (en) | 2001-07-24 |
DE60106202T2 (de) | 2006-02-02 |
US20040131936A1 (en) | 2004-07-08 |
JP2003520398A (ja) | 2003-07-02 |
EP1252670A1 (en) | 2002-10-30 |
US6699336B2 (en) | 2004-03-02 |
EP1252670B1 (en) | 2004-10-06 |
HK1051442B (zh) | 2005-05-27 |
HK1051442A1 (en) | 2003-08-01 |
ATE279021T1 (de) | 2004-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1199301C (zh) | 无定形电极的成分 | |
JP4846901B2 (ja) | 電極材料およびそれを含む組成物 | |
TW544972B (en) | Electrode compositions having improved cycling behavior | |
EP1066659B1 (en) | Tin alloy electrode compositions for lithium batteries | |
JP2004185991A (ja) | リチウム二次電池用負極材料及びこれを用いたリチウム二次電池並びにこの負極材料の製造方法 | |
JP2002093411A (ja) | 非水電解質二次電池用負極材料 | |
JP2003077464A (ja) | リチウム2次電池用陰極薄膜およびその製造方法 | |
CN1208858C (zh) | 具有改进的循环性能的电极成分 | |
TW488101B (en) | Amorphous electrode compositions | |
JP2007128767A (ja) | 活物質の製造方法および電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20050427 Termination date: 20190103 |