CN1403375A - 合成稀土氢氧化物或氧化物纳米线及其纳米粉体的方法 - Google Patents
合成稀土氢氧化物或氧化物纳米线及其纳米粉体的方法 Download PDFInfo
- Publication number
- CN1403375A CN1403375A CN 02130847 CN02130847A CN1403375A CN 1403375 A CN1403375 A CN 1403375A CN 02130847 CN02130847 CN 02130847 CN 02130847 A CN02130847 A CN 02130847A CN 1403375 A CN1403375 A CN 1403375A
- Authority
- CN
- China
- Prior art keywords
- rare earth
- oxide
- hydroxide
- single crystal
- nanowire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011858 nanopowder Substances 0.000 title claims abstract description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 title claims abstract description 10
- 238000000034 method Methods 0.000 title claims description 23
- 230000015572 biosynthetic process Effects 0.000 title 1
- 238000003786 synthesis reaction Methods 0.000 title 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims abstract description 49
- 229910001404 rare earth metal oxide Inorganic materials 0.000 claims abstract description 33
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910017604 nitric acid Inorganic materials 0.000 claims abstract description 13
- 239000002131 composite material Substances 0.000 claims abstract description 12
- 238000000137 annealing Methods 0.000 claims abstract description 8
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 7
- 239000002070 nanowire Substances 0.000 claims description 64
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 35
- 239000013078 crystal Substances 0.000 claims description 33
- -1 rare earth hydroxide Chemical class 0.000 claims description 30
- 238000006243 chemical reaction Methods 0.000 claims description 25
- 239000008367 deionised water Substances 0.000 claims description 16
- 229910021641 deionized water Inorganic materials 0.000 claims description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- 230000002194 synthesizing effect Effects 0.000 claims description 14
- 235000015110 jellies Nutrition 0.000 claims description 12
- 239000008274 jelly Substances 0.000 claims description 12
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 claims description 10
- 239000002105 nanoparticle Substances 0.000 claims description 10
- 229910001954 samarium oxide Inorganic materials 0.000 claims description 8
- 229940075630 samarium oxide Drugs 0.000 claims description 8
- FKTOIHSPIPYAPE-UHFFFAOYSA-N samarium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Sm+3].[Sm+3] FKTOIHSPIPYAPE-UHFFFAOYSA-N 0.000 claims description 8
- 229910001938 gadolinium oxide Inorganic materials 0.000 claims description 7
- 229940075613 gadolinium oxide Drugs 0.000 claims description 7
- CMIHHWBVHJVIGI-UHFFFAOYSA-N gadolinium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Gd+3].[Gd+3] CMIHHWBVHJVIGI-UHFFFAOYSA-N 0.000 claims description 7
- JYTUFVYWTIKZGR-UHFFFAOYSA-N holmium oxide Inorganic materials [O][Ho]O[Ho][O] JYTUFVYWTIKZGR-UHFFFAOYSA-N 0.000 claims description 6
- OWCYYNSBGXMRQN-UHFFFAOYSA-N holmium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ho+3].[Ho+3] OWCYYNSBGXMRQN-UHFFFAOYSA-N 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- MMKQUGHLEMYQSG-UHFFFAOYSA-N oxygen(2-);praseodymium(3+) Chemical compound [O-2].[O-2].[O-2].[Pr+3].[Pr+3] MMKQUGHLEMYQSG-UHFFFAOYSA-N 0.000 claims description 6
- 229910003447 praseodymium oxide Inorganic materials 0.000 claims description 6
- VQCBHWLJZDBHOS-UHFFFAOYSA-N erbium(iii) oxide Chemical compound O=[Er]O[Er]=O VQCBHWLJZDBHOS-UHFFFAOYSA-N 0.000 claims description 4
- PLDDOISOJJCEMH-UHFFFAOYSA-N neodymium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Nd+3].[Nd+3] PLDDOISOJJCEMH-UHFFFAOYSA-N 0.000 claims description 4
- ZIKATJAYWZUJPY-UHFFFAOYSA-N thulium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Tm+3].[Tm+3] ZIKATJAYWZUJPY-UHFFFAOYSA-N 0.000 claims description 4
- 229910003440 dysprosium oxide Inorganic materials 0.000 claims description 2
- NLQFUUYNQFMIJW-UHFFFAOYSA-N dysprosium(iii) oxide Chemical compound O=[Dy]O[Dy]=O NLQFUUYNQFMIJW-UHFFFAOYSA-N 0.000 claims description 2
- 229910001940 europium oxide Inorganic materials 0.000 claims description 2
- 229940075616 europium oxide Drugs 0.000 claims description 2
- AEBZCFFCDTZXHP-UHFFFAOYSA-N europium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Eu+3].[Eu+3] AEBZCFFCDTZXHP-UHFFFAOYSA-N 0.000 claims description 2
- UZLYXNNZYFBAQO-UHFFFAOYSA-N oxygen(2-);ytterbium(3+) Chemical compound [O-2].[O-2].[O-2].[Yb+3].[Yb+3] UZLYXNNZYFBAQO-UHFFFAOYSA-N 0.000 claims description 2
- 229910003451 terbium oxide Inorganic materials 0.000 claims description 2
- SCRZPWWVSXWCMC-UHFFFAOYSA-N terbium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Tb+3].[Tb+3] SCRZPWWVSXWCMC-UHFFFAOYSA-N 0.000 claims description 2
- 229910003454 ytterbium oxide Inorganic materials 0.000 claims description 2
- 229940075624 ytterbium oxide Drugs 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 2
- 239000002243 precursor Substances 0.000 abstract description 2
- ILCLBMDYDXDUJO-UHFFFAOYSA-K gadolinium(3+);trihydroxide Chemical compound [OH-].[OH-].[OH-].[Gd+3] ILCLBMDYDXDUJO-UHFFFAOYSA-K 0.000 description 10
- LCTWRNOEZKTLGG-UHFFFAOYSA-K holmium(3+);trihydroxide Chemical compound [OH-].[OH-].[OH-].[Ho+3] LCTWRNOEZKTLGG-UHFFFAOYSA-K 0.000 description 9
- BCYBEIXXOVNETJ-UHFFFAOYSA-K samarium(3+);trihydroxide Chemical compound [OH-].[OH-].[OH-].[Sm+3] BCYBEIXXOVNETJ-UHFFFAOYSA-K 0.000 description 9
- YXEUGTSPQFTXTR-UHFFFAOYSA-K lanthanum(3+);trihydroxide Chemical compound [OH-].[OH-].[OH-].[La+3] YXEUGTSPQFTXTR-UHFFFAOYSA-K 0.000 description 8
- ZLGIGTLMMBTXIY-UHFFFAOYSA-K praseodymium(3+);trihydroxide Chemical compound [OH-].[OH-].[OH-].[Pr+3] ZLGIGTLMMBTXIY-UHFFFAOYSA-K 0.000 description 8
- 238000000634 powder X-ray diffraction Methods 0.000 description 7
- KTUFCUMIWABKDW-UHFFFAOYSA-N oxo(oxolanthaniooxy)lanthanum Chemical compound O=[La]O[La]=O KTUFCUMIWABKDW-UHFFFAOYSA-N 0.000 description 6
- 150000002910 rare earth metals Chemical class 0.000 description 6
- 238000003917 TEM image Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 238000002003 electron diffraction Methods 0.000 description 5
- 239000004744 fabric Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 238000005086 pumping Methods 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 238000000197 pyrolysis Methods 0.000 description 4
- 230000035484 reaction time Effects 0.000 description 4
- 238000000975 co-precipitation Methods 0.000 description 2
- 238000000635 electron micrograph Methods 0.000 description 2
- 238000001493 electron microscopy Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229910052693 Europium Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- TXKMVPPZCYKFAC-UHFFFAOYSA-N disulfur monoxide Inorganic materials O=S=S TXKMVPPZCYKFAC-UHFFFAOYSA-N 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000004729 solvothermal method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
合成稀土氢氧化物或氧化物纳米线及其纳米粉体的方法,该方法以稀土氧化物为原料,先用浓硝酸溶解,以氢氧化钾滴定,然后在密闭反应器中于100~250℃条件下水热反应,可合成稀土氢氧化物一维单晶纳米线。若以上述氢氧化物为前躯体,控制升温速度升至400~500℃,经退火,可制备相应稀土氧化物纳米线;将氢氧化物在一定温度下煅烧,则可制备相应稀土氧化物的纳米粉体。若搀杂定量的其他种类稀土元素,则可制备复合型稀土氢氧化物及氧化物纳米线、纳米粉体。该方法工艺简单,成本低廉,可以实现大规模工业化制备;同时由于纳米粉体具有大的比表面积,而纳米线具有各向异性等特殊性质,因此有望在磁性、光学等领域获得广泛的应用。
Description
技术领域
本发明涉及一种稀土化合物的合成方法,尤其涉及稀土氢氧化物或氧化物纳米线及其纳米粒子的合成方法,属于无机化工技术领域。
背景技术
稀土化合物由于其独特的光学、磁学性质而广泛应用于显示器、催化、生物探针等领域。现有合成稀土化合物的方法,仅限于生成块体材料。目前国内外的研究集中于氧化物(Y.Hasegawa等Angew.Chem.Int.Ed.2002,41,2073.)、氟化物(J.W.Stouwdam等,Nano Lett,2002,7,733)纳米颗粒的制备以及镧系金属有机化合物(M.C.Cassani等,J.Organomet.Chem,2002,647,71.)等方面的研究,本发明人于2000年曾在美国无机化学杂志上报道了以溶剂热方法制备硫氧化稀土纳米晶的制备(Y.D.Li等,Inorg Chem,2000,39,3418.),目前尚未有关于稀土氢氧化物或氧化物纳米线及其纳米粉体的制备方法的报道。
发明内容
本发明的目的在于提供一种合成稀土氢氧化物或氧化物纳米线及其纳米粉体的方法,该方法可以在较低的温度条件下,采用廉价易得的原料,大量合成稀土氢氧化物、氧化物纳米线及纳米粉体。
本发明提供的一种合成稀土氢氧化物纳米线的方法,该方法按如下步骤进行:
(1)将稀土氧化物用浓硝酸溶解,以氢氧化钾滴定,控制pH值大于7,生成白色胶状物;
(2)将上述胶状物转入定量去离子水中,使稀土离子浓度控制在0.01~0.05mol/l;
(3)然后放入密闭容器中进行水热反应,于100~250℃温度下反应8~24小时,即可制备出稀土氢氧化物一维单晶纳米线。
本发明提供的一种合成稀土氧化物纳米线的方法,该方法按如下步骤进行:
(1)将稀土氧化物用浓硝酸溶解,以氢氧化钾滴定,控制pH值大于7,生成白色胶状物;
(2)将上述生成胶状物并转入定量去离子水,稀土离子浓度控制在0.01~0.05mol/l;
(3)然后放入密闭容器中进行水热反应,于100~250℃温度下反应8~24小时,制得稀土氢氧化物一维单晶纳米线;
(4)将上述氢氧化物一维单晶纳米线以小于200℃/小时升温速度升至400~500℃,退火2~6小时,则可制备出稀土氧化物纳米线。
本发明还提供了一种合成稀土氧化物纳米粉体的方法,该方法按如下步骤进行:
(1)将稀土氧化物用浓硝酸溶解,以氢氧化钾滴定,控制pH值大于7,生成白色胶状物;
(2)将上述胶状物转入定量去离子水,稀土离子浓度控制在0.01~0.05mol/l;(3)然后放入密闭容器中进行水热反应,于100~250℃温度下反应8~24小时,可制备出稀土氢氧化物一维单晶纳米线;
(3)将上述氢氧化物一维单晶纳米线直接送入温度为800~1000℃的反应炉中煅烧0.5~2小时,即可制备出相应稀土氧化物的纳米粉体。
本发明在稀土氢氧化物的制备过程中,将稀土氧化物与另外一种或几种稀土氧化物共溶,然后按所述步骤,在相同条件下进行操作,则可分别制得相应的复合型稀土氢氧化物或氧化物纳米线及其复合型纳米粉体。
本发明采用稀土氧化物、硝酸、氢氧化钾为原料,采用相同的实验装置,首次制备出了各种稀土氢氧化物或氧化物单晶纳米线及复合型稀土氢氧化物或氧化物纳米线及氧化物纳米粉体。该方法具有工艺简单,成本低廉,可以实现大规模工业化制备;同时由于纳米粉体具有大的比表面积,而纳米线具有各向异性等特殊性质,因此有望在磁性、光学等领域获得广泛的应用。
附图说明
图1为氢氧化镧纳米线X射线粉末衍射图。
图2为氢氧化镧单晶线TEM电镜检测图。
图3为氧化镧纳米线X射线粉末衍射图。
图4为氧化镧纳米线TEM电镜检测图(400℃退火)。
图5为氧化镧纳米颗粒X射线衍射分析(800℃退火2小时)。
图6为氧化镧纳米颗粒TEM电镜检测图。
图7为氢氧化钐纳米线TEM电镜检测图。
图8为氢氧化钆纳米线TEM电镜检测图。
图9为铕搀杂的氢氧化钆纳米线TEM电镜检测图。
图10为铕搀杂的氧化钆纳米线TEM电镜检测图(铕搀杂的氢氧化钆纳米线400℃退火)。
图11为氢氧化镨纳米线TEM电镜检测图。
图12为氢氧化钬纳米线TEM电镜检测图。
具体实施方式
本发明中所称的稀土氧化物包括氧化镧、氧化镨、氧化钕、氧化钐、氧化铕、氧化钆、氧化镝、氧化铽、氧化钬、氧化铒、氧化铥、氧化镱。
本发明的反应过程如下:
下面举出几个具体实施例以进一步理解本发明。
实施例1:
称取0.001mol分析纯氧化镧置于40ml的不锈钢耐压反应釜中,先以少量浓硝酸溶解,再以20%浓氢氧化钾溶液迅速调整pH值至13,然后加入去离子水,在密闭反应釜中于180℃反应12小时。然后冷却至室温,打开反应釜,以布式漏斗抽虑,以去离子水洗涤,得白色粉末。产物经X射线粉末衍射鉴定为六方相氢氧化镧;TEM电镜检测产品形貌:直径10~20纳米,长度2.5~4.0微米。单根纳米线电子衍射证明产品为单晶。在同样的条件下,将反应温度控制在100、120、160、200、250℃,在8~24小时反应时间内,均可得到氢氧化镧一维单晶纳米线,将所得氢氧化镧单晶线以200℃/小时升温速度升至500℃退火4小时,可得氧化镧纳米线,在制备氢氧化镧单晶纳米线的过程中加入另外一种稀土氧化物与其共溶,而后以氢氧化钾共沉淀,在同样的反应条件下,可制备稀土搀杂复合型氢氧化镧及氧化镧纳米线。以氢氧化镧纳米线为前躯体,直接送入温度设定于800℃的马弗炉中煅烧1小时,可以制得氧化镧纳米粉体。
实施例2:
称取0.0015mol分析纯氧化钐置于40ml的不锈钢耐压反应釜中,先以少量浓硝酸溶解,再以10%浓氢氧化钾溶液迅速调整pH值至9,然后加入去离子水,在密闭反应釜中于100℃反应24小时。然后冷却至室温,打开反应釜,以布式漏斗抽虑,以去离子水洗涤,得白色粉末。产物经X射线粉末衍射鉴定为六方相氢氧化钐;TEM电镜检测产品形貌:直径10~20纳米,长度2.5~4.0微米。单根纳米线电子衍射证明产品为单晶。在同样的条件下,将反应温度控制在120℃、160℃、180℃、200℃、250℃,在8~24小时反应时间内,均可得到氢氧化钐一维单晶纳米线,将所得氢氧化钐单晶线以100℃/小时升温速度升至400℃退火3小时,可得氧化钐纳米线;将氢氧化钐纳米线直接送入温度设定于900℃的马弗炉中热解2小时,可以制备氧化钐的纳米颗粒。在制备氢氧化钐单晶线的过程中以另外一种稀土氧化物与其共溶,而后以氢氧化钾共沉淀,可制备稀土搀杂复合型氢氧化钐及氧化钐纳米线、纳米粉。
实施例3:
称取0.0005mol分析纯氧化钆置于40ml的不锈钢耐压反应釜中,先以少量浓硝酸溶解,再以20%浓氢氧化钾溶液迅速调整至PH值为14,然后加入去离子水,在密闭反应釜中于180℃反应15小时。然后冷却至室温,打开反应釜,以布式漏斗抽虑,以去离子水洗涤,得白色粉末。产物经X射线粉末衍射鉴定为六方相氢氧化钆;TEM电镜检测产品形貌:直径10~20纳米,长度2.5~3.0微米。单根纳米线电子衍射证明产品为单晶。在同样的条件下,将反应温度控制在100、120、160、200、250℃,在8~24小时反应时间内,均可得到氢氧化钆一维单晶纳米线,将所得氢氧化钆单晶线以50℃/小时升温速度升至500 ℃退火5小时,可得氧化钆纳米线;将氢氧化钆纳米线直接送入温度设定于1000℃的马弗炉中热解1.5小时,可以制备氧化钆的纳米颗粒。在制备氢氧化钆单晶线的过程中以另外一种稀土氧化物与其共溶,而后以氢氧化钾共沉淀,按照上述反应步骤进行,可制备出稀土搀杂复合型氢氧化钆及氧化钆纳米线及相应的复合型纳米粉体。
实施例4:
称取0.001mol分析纯氧化镨置于40ml的不锈钢耐压反应釜中,先以少量浓硝酸溶解,加入氢氧化钾并加入去离子水使最终氢氧化钾浓度在10mol/l(强碱性),密封反应釜,在250℃反应8小时。然后冷却至室温,打开反应釜,以布式漏斗抽虑,以去离子水洗涤,得白色粉末。产物经X射线粉末衍射鉴定为六方相氢氧化镨;TEM电镜检测产品形貌:直径10~20纳米,长度2.5~4.0微米。单根纳米线电子衍射证明产品为单晶。在同样的条件下,将反应温度控制在100、120、160、180、200,在8~24小时反应时间内,均可得到氢氧化镨一维单晶纳米线,将所得氢氧化镨单晶线以200℃/小时升温速度升至400℃退火3小时,可得氧化镨纳米线;将氢氧化镨纳米线直接送入温度设定于900℃的马弗炉中热解0.5小时,可制备出氧化镨纳米颗粒。在制备氢氧化镨单晶线的过程中以另外一种稀土氧化物与其共溶,而后以氢氧化钾共沉淀,可制备稀土搀杂复合型氢氧化镨及氧化镨纳米线。
实施例5:
称取0.002mol分析纯氧化钬置于40ml的不锈钢耐压反应釜中,先以少量浓硝酸溶解,再以20%浓氢氧化钾溶液迅速调整至氢氧化钾浓度在1mol/l(强碱性),然后加入去离子水,在密闭反应釜中于120℃反应18小时。然后冷却至室温,打开反应釜,以布式漏斗抽虑,以去离子水洗涤,得白色粉末。产物经X射线粉末衍射鉴定为六方相氢氧化钬;TEM电镜检测产品形貌:直径约10纳米,长度100~500纳米。单根纳米线电子衍射证明产品为单晶。在同样的条件下,将反应温度控制在100、160、180、200、250℃,均可得到氢氧化钬一维单晶纳米线,将所得氢氧化钬单晶线以150℃/小时升温速度升至400℃退火2小时,可得氧化钬纳米线;将氢氧化钬纳米线直接送入温度设定于1000℃的马弗炉中热解2小时,可以制备氧化钬的纳米颗粒。在制备氢氧化钬单晶线的过程中以另外一种稀土氧化物与其共溶,而后以氢氧化钾共沉淀,可制备稀土搀杂复合型氢氧化钬及氧化钬纳米线。
Claims (7)
1.一种合成稀土氢氧化物纳米线的方法,其特征在于该方法按如下步骤进行:
(1)将稀土氧化物用浓硝酸溶解,以氢氧化钾滴定,控制pH值大于7,生成白色胶状物;
(2)将上述胶状物转入定量去离子水中,使稀土离子浓度控制在0.01~0.05mol/l;
(3)然后放入密闭容器中进行水热反应,于100~250℃温度下反应8~24小时,即可制备出稀土氢氧化物一维单晶纳米线。
2.按照权利要求1所述的合成稀土氢氧化物纳米线的方法,其特征在于:所述的稀土氧化物为氧化镧、氧化镨、氧化钕、氧化钐、氧化铕、氧化钆、氧化镝、氧化铽、氧化钬、氧化铒、氧化铥、氧化镱中的任一种。
3.按照权利要求1所述的合成稀土氢氧化物纳米线的方法,其特征在于:在步骤(1)中加入另外一种或几种稀土氧化物并使其共溶,则可制得相应的复合型稀土氢氧化物纳米线。
4.一种合成稀土氧化物纳米线的方法,其特征在于该方法按如下步骤进行:
(1)将稀土氧化物用浓硝酸溶解,以氢氧化钾滴定,控制pH值大于7,生成白色胶状物;
(2)将上述胶状物转入定量去离子水中,稀土离子浓度控制在0.01~0.05mol/l;
(3)然后放入密闭容器中进行水热反应,于100~250℃温度下反应8~24小时,制得稀土氢氧化物一维单晶纳米线;
(4)将上述氢氧化物一维单晶纳米线以小于200℃/小时升温速度升至400~500℃,退火2~6小时,则可制备出稀土氧化物纳米线。
5.按照权利要求4所述的合成稀土氧化物纳米线的方法,其特征在于:在步骤(1)中加入另外一种或几种稀土氧化物并使其共溶,则可制得相应的复合型稀土氧化物纳米线。
6.一种合成稀土氧化物纳米粒子的方法,其特征在于该方法按如下步骤进行:
(1)将稀土氧化物用浓硝酸溶解,以氢氧化钾滴定,控制pH值大于7,生成白色胶状物;
(2)将上述胶状物转入定量去离子水中,稀土离子浓度控制在0.01~0.05mol/l;
(3)然后放入密闭容器中进行水热反应,于100~250℃温度下反应8~24小时,可制备出稀土氢氧化物一维单晶纳米线;
(4)将上述氢氧化物一维单晶纳米线直接送入温度为800~1000℃的反应炉中煅烧0.5~2小时,即可制备出相应稀土氧化物的纳米粉体。
7.按照权利要求6所述的合成稀土氧化物纳米粒子的方法,其特征在于:在步骤(1)中加入另外一种或几种稀土氧化物并使其共溶,则可制得相应的复合型稀土氧化物纳米粉体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB021308470A CN1182038C (zh) | 2002-10-11 | 2002-10-11 | 合成稀土氢氧化物或氧化物纳米线及其纳米粉体的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB021308470A CN1182038C (zh) | 2002-10-11 | 2002-10-11 | 合成稀土氢氧化物或氧化物纳米线及其纳米粉体的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1403375A true CN1403375A (zh) | 2003-03-19 |
CN1182038C CN1182038C (zh) | 2004-12-29 |
Family
ID=4746484
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB021308470A Expired - Fee Related CN1182038C (zh) | 2002-10-11 | 2002-10-11 | 合成稀土氢氧化物或氧化物纳米线及其纳米粉体的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1182038C (zh) |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7135161B2 (en) | 2003-09-04 | 2006-11-14 | University Of Florida Research Foundation, Inc. | Method of producing nanosized oxide powders |
CN1326776C (zh) * | 2004-04-06 | 2007-07-18 | 同济大学 | 一种用乳化液膜合成一维氧化镧纳米材料的方法 |
CN100339305C (zh) * | 2005-12-23 | 2007-09-26 | 浙江大学 | 一种微波合成氢氧化镨纳米棒的方法 |
CN101787574A (zh) * | 2010-03-04 | 2010-07-28 | 长春理工大学 | 氢氧化镧多孔空心纳米纤维和链状纳米纤维的制备方法 |
CN101805007A (zh) * | 2010-03-31 | 2010-08-18 | 云南大学 | 一种稀土氢氧化物纳米棒的制备方法 |
CN101704543B (zh) * | 2009-11-25 | 2011-08-31 | 深圳大学 | 一种磷酸铈纳米线的制备方法 |
CN101500938B (zh) * | 2006-08-14 | 2011-11-23 | 梅奥医学教育和研究基金会 | 稀土纳米粒子 |
CN102583495A (zh) * | 2012-02-23 | 2012-07-18 | 清华大学 | 一种稀土金属离子掺杂氧化铈纳米材料的制备方法 |
CN102936028A (zh) * | 2012-11-14 | 2013-02-20 | 陕西科技大学 | 微波-超声波法制备片状氢氧化镧纳米晶的方法 |
CN102942203A (zh) * | 2012-11-14 | 2013-02-27 | 陕西科技大学 | 一种棒状氢氧化镧纳米晶的制备方法 |
CN103118777A (zh) * | 2010-05-24 | 2013-05-22 | 希路瑞亚技术公司 | 纳米线催化剂 |
US8921256B2 (en) | 2011-05-24 | 2014-12-30 | Siluria Technologies, Inc. | Catalysts for petrochemical catalysis |
US8962517B2 (en) | 2011-11-29 | 2015-02-24 | Siluria Technologies, Inc. | Nanowire catalysts and methods for their use and preparation |
CN104393319A (zh) * | 2014-11-19 | 2015-03-04 | 安徽工业大学 | 一种中空球状锗酸镧及其制备方法 |
US9133079B2 (en) | 2012-01-13 | 2015-09-15 | Siluria Technologies, Inc. | Process for separating hydrocarbon compounds |
US9321703B2 (en) | 2014-01-08 | 2016-04-26 | Siluria Technologies, Inc. | Ethylene-to-liquids systems and methods |
US9328297B1 (en) | 2015-06-16 | 2016-05-03 | Siluria Technologies, Inc. | Ethylene-to-liquids systems and methods |
US9334204B1 (en) | 2015-03-17 | 2016-05-10 | Siluria Technologies, Inc. | Efficient oxidative coupling of methane processes and systems |
US9352295B2 (en) | 2014-01-09 | 2016-05-31 | Siluria Technologies, Inc. | Oxidative coupling of methane implementations for olefin production |
US9446397B2 (en) | 2012-02-03 | 2016-09-20 | Siluria Technologies, Inc. | Method for isolation of nanomaterials |
US9469577B2 (en) | 2012-05-24 | 2016-10-18 | Siluria Technologies, Inc. | Oxidative coupling of methane systems and methods |
CN106241852A (zh) * | 2016-06-22 | 2016-12-21 | 中山大学 | 一种Pr(OH)3一维纳米棒的制备方法 |
US9598328B2 (en) | 2012-12-07 | 2017-03-21 | Siluria Technologies, Inc. | Integrated processes and systems for conversion of methane to multiple higher hydrocarbon products |
US9670113B2 (en) | 2012-07-09 | 2017-06-06 | Siluria Technologies, Inc. | Natural gas processing and systems |
US9738571B2 (en) | 2013-03-15 | 2017-08-22 | Siluria Technologies, Inc. | Catalysts for petrochemical catalysis |
US9751079B2 (en) | 2014-09-17 | 2017-09-05 | Silura Technologies, Inc. | Catalysts for natural gas processes |
US9944573B2 (en) | 2016-04-13 | 2018-04-17 | Siluria Technologies, Inc. | Oxidative coupling of methane for olefin production |
US9956544B2 (en) | 2014-05-02 | 2018-05-01 | Siluria Technologies, Inc. | Heterogeneous catalysts |
US10047020B2 (en) | 2013-11-27 | 2018-08-14 | Siluria Technologies, Inc. | Reactors and systems for oxidative coupling of methane |
CN108976609A (zh) * | 2018-08-15 | 2018-12-11 | 合肥卓汇新材料科技有限公司 | 一种发光及蓄能效果优异的发光塑料 |
US10377682B2 (en) | 2014-01-09 | 2019-08-13 | Siluria Technologies, Inc. | Reactors and systems for oxidative coupling of methane |
US10793490B2 (en) | 2015-03-17 | 2020-10-06 | Lummus Technology Llc | Oxidative coupling of methane methods and systems |
US10836689B2 (en) | 2017-07-07 | 2020-11-17 | Lummus Technology Llc | Systems and methods for the oxidative coupling of methane |
US10960343B2 (en) | 2016-12-19 | 2021-03-30 | Lummus Technology Llc | Methods and systems for performing chemical separations |
US11001543B2 (en) | 2015-10-16 | 2021-05-11 | Lummus Technology Llc | Separation methods and systems for oxidative coupling of methane |
US11001542B2 (en) | 2017-05-23 | 2021-05-11 | Lummus Technology Llc | Integration of oxidative coupling of methane processes |
US11186529B2 (en) | 2015-04-01 | 2021-11-30 | Lummus Technology Llc | Advanced oxidative coupling of methane |
US11370724B2 (en) | 2012-05-24 | 2022-06-28 | Lummus Technology Llc | Catalytic forms and formulations |
-
2002
- 2002-10-11 CN CNB021308470A patent/CN1182038C/zh not_active Expired - Fee Related
Cited By (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7135161B2 (en) | 2003-09-04 | 2006-11-14 | University Of Florida Research Foundation, Inc. | Method of producing nanosized oxide powders |
CN1326776C (zh) * | 2004-04-06 | 2007-07-18 | 同济大学 | 一种用乳化液膜合成一维氧化镧纳米材料的方法 |
CN100339305C (zh) * | 2005-12-23 | 2007-09-26 | 浙江大学 | 一种微波合成氢氧化镨纳米棒的方法 |
CN101500938B (zh) * | 2006-08-14 | 2011-11-23 | 梅奥医学教育和研究基金会 | 稀土纳米粒子 |
CN101704543B (zh) * | 2009-11-25 | 2011-08-31 | 深圳大学 | 一种磷酸铈纳米线的制备方法 |
CN101787574A (zh) * | 2010-03-04 | 2010-07-28 | 长春理工大学 | 氢氧化镧多孔空心纳米纤维和链状纳米纤维的制备方法 |
CN101805007A (zh) * | 2010-03-31 | 2010-08-18 | 云南大学 | 一种稀土氢氧化物纳米棒的制备方法 |
US10195603B2 (en) | 2010-05-24 | 2019-02-05 | Siluria Technologies, Inc. | Production of ethylene with nanowire catalysts |
US9718054B2 (en) | 2010-05-24 | 2017-08-01 | Siluria Technologies, Inc. | Production of ethylene with nanowire catalysts |
CN103118777B (zh) * | 2010-05-24 | 2016-06-29 | 希路瑞亚技术公司 | 纳米线催化剂 |
CN103118777A (zh) * | 2010-05-24 | 2013-05-22 | 希路瑞亚技术公司 | 纳米线催化剂 |
US11795123B2 (en) | 2011-05-24 | 2023-10-24 | Lummus Technology Llc | Catalysts for petrochemical catalysis |
US8921256B2 (en) | 2011-05-24 | 2014-12-30 | Siluria Technologies, Inc. | Catalysts for petrochemical catalysis |
US9446387B2 (en) | 2011-05-24 | 2016-09-20 | Siluria Technologies, Inc. | Catalysts for petrochemical catalysis |
US9040762B2 (en) | 2011-05-24 | 2015-05-26 | Siluria Technologies, Inc. | Catalysts for petrochemical catalysis |
US9963402B2 (en) | 2011-05-24 | 2018-05-08 | Siluria Technologies, Inc. | Catalysts for petrochemical catalysis |
US10654769B2 (en) | 2011-05-24 | 2020-05-19 | Siluria Technologies, Inc. | Catalysts for petrochemical catalysis |
US9751818B2 (en) | 2011-11-29 | 2017-09-05 | Siluria Technologies, Inc. | Nanowire catalysts and methods for their use and preparation |
US8962517B2 (en) | 2011-11-29 | 2015-02-24 | Siluria Technologies, Inc. | Nanowire catalysts and methods for their use and preparation |
US11078132B2 (en) | 2011-11-29 | 2021-08-03 | Lummus Technology Llc | Nanowire catalysts and methods for their use and preparation |
US9133079B2 (en) | 2012-01-13 | 2015-09-15 | Siluria Technologies, Inc. | Process for separating hydrocarbon compounds |
US11254626B2 (en) | 2012-01-13 | 2022-02-22 | Lummus Technology Llc | Process for separating hydrocarbon compounds |
US9527784B2 (en) | 2012-01-13 | 2016-12-27 | Siluria Technologies, Inc. | Process for separating hydrocarbon compounds |
US9446397B2 (en) | 2012-02-03 | 2016-09-20 | Siluria Technologies, Inc. | Method for isolation of nanomaterials |
CN102583495A (zh) * | 2012-02-23 | 2012-07-18 | 清华大学 | 一种稀土金属离子掺杂氧化铈纳米材料的制备方法 |
US9469577B2 (en) | 2012-05-24 | 2016-10-18 | Siluria Technologies, Inc. | Oxidative coupling of methane systems and methods |
US11370724B2 (en) | 2012-05-24 | 2022-06-28 | Lummus Technology Llc | Catalytic forms and formulations |
US9556086B2 (en) | 2012-05-24 | 2017-01-31 | Siluria Technologies, Inc. | Oxidative coupling of methane systems and methods |
US9969660B2 (en) | 2012-07-09 | 2018-05-15 | Siluria Technologies, Inc. | Natural gas processing and systems |
US11242298B2 (en) | 2012-07-09 | 2022-02-08 | Lummus Technology Llc | Natural gas processing and systems |
US9670113B2 (en) | 2012-07-09 | 2017-06-06 | Siluria Technologies, Inc. | Natural gas processing and systems |
CN102942203A (zh) * | 2012-11-14 | 2013-02-27 | 陕西科技大学 | 一种棒状氢氧化镧纳米晶的制备方法 |
CN102936028A (zh) * | 2012-11-14 | 2013-02-20 | 陕西科技大学 | 微波-超声波法制备片状氢氧化镧纳米晶的方法 |
US9598328B2 (en) | 2012-12-07 | 2017-03-21 | Siluria Technologies, Inc. | Integrated processes and systems for conversion of methane to multiple higher hydrocarbon products |
US11168038B2 (en) | 2012-12-07 | 2021-11-09 | Lummus Technology Llc | Integrated processes and systems for conversion of methane to multiple higher hydrocarbon products |
US10787398B2 (en) | 2012-12-07 | 2020-09-29 | Lummus Technology Llc | Integrated processes and systems for conversion of methane to multiple higher hydrocarbon products |
US10183900B2 (en) | 2012-12-07 | 2019-01-22 | Siluria Technologies, Inc. | Integrated processes and systems for conversion of methane to multiple higher hydrocarbon products |
US10865166B2 (en) | 2013-03-15 | 2020-12-15 | Siluria Technologies, Inc. | Catalysts for petrochemical catalysis |
US10308565B2 (en) | 2013-03-15 | 2019-06-04 | Silura Technologies, Inc. | Catalysts for petrochemical catalysis |
US9738571B2 (en) | 2013-03-15 | 2017-08-22 | Siluria Technologies, Inc. | Catalysts for petrochemical catalysis |
US11407695B2 (en) | 2013-11-27 | 2022-08-09 | Lummus Technology Llc | Reactors and systems for oxidative coupling of methane |
US10927056B2 (en) | 2013-11-27 | 2021-02-23 | Lummus Technology Llc | Reactors and systems for oxidative coupling of methane |
US10047020B2 (en) | 2013-11-27 | 2018-08-14 | Siluria Technologies, Inc. | Reactors and systems for oxidative coupling of methane |
US9512047B2 (en) | 2014-01-08 | 2016-12-06 | Siluria Technologies, Inc. | Ethylene-to-liquids systems and methods |
US9321703B2 (en) | 2014-01-08 | 2016-04-26 | Siluria Technologies, Inc. | Ethylene-to-liquids systems and methods |
US9321702B2 (en) | 2014-01-08 | 2016-04-26 | Siluria Technologies, Inc. | Ethylene-to-liquids systems and methods |
US10894751B2 (en) | 2014-01-08 | 2021-01-19 | Lummus Technology Llc | Ethylene-to-liquids systems and methods |
US11254627B2 (en) | 2014-01-08 | 2022-02-22 | Lummus Technology Llc | Ethylene-to-liquids systems and methods |
US10377682B2 (en) | 2014-01-09 | 2019-08-13 | Siluria Technologies, Inc. | Reactors and systems for oxidative coupling of methane |
US11208364B2 (en) | 2014-01-09 | 2021-12-28 | Lummus Technology Llc | Oxidative coupling of methane implementations for olefin production |
US9352295B2 (en) | 2014-01-09 | 2016-05-31 | Siluria Technologies, Inc. | Oxidative coupling of methane implementations for olefin production |
US10829424B2 (en) | 2014-01-09 | 2020-11-10 | Lummus Technology Llc | Oxidative coupling of methane implementations for olefin production |
US11008265B2 (en) | 2014-01-09 | 2021-05-18 | Lummus Technology Llc | Reactors and systems for oxidative coupling of methane |
US9701597B2 (en) | 2014-01-09 | 2017-07-11 | Siluria Technologies, Inc. | Oxidative coupling of methane implementations for olefin production |
US10780420B2 (en) | 2014-05-02 | 2020-09-22 | Lummus Technology Llc | Heterogeneous catalysts |
US9956544B2 (en) | 2014-05-02 | 2018-05-01 | Siluria Technologies, Inc. | Heterogeneous catalysts |
US10300465B2 (en) | 2014-09-17 | 2019-05-28 | Siluria Technologies, Inc. | Catalysts for natural gas processes |
US11000835B2 (en) | 2014-09-17 | 2021-05-11 | Lummus Technology Llc | Catalysts for natural gas processes |
US9751079B2 (en) | 2014-09-17 | 2017-09-05 | Silura Technologies, Inc. | Catalysts for natural gas processes |
CN104393319A (zh) * | 2014-11-19 | 2015-03-04 | 安徽工业大学 | 一种中空球状锗酸镧及其制备方法 |
US9790144B2 (en) | 2015-03-17 | 2017-10-17 | Siluria Technologies, Inc. | Efficient oxidative coupling of methane processes and systems |
US10793490B2 (en) | 2015-03-17 | 2020-10-06 | Lummus Technology Llc | Oxidative coupling of methane methods and systems |
US11542214B2 (en) | 2015-03-17 | 2023-01-03 | Lummus Technology Llc | Oxidative coupling of methane methods and systems |
US9334204B1 (en) | 2015-03-17 | 2016-05-10 | Siluria Technologies, Inc. | Efficient oxidative coupling of methane processes and systems |
US9567269B2 (en) | 2015-03-17 | 2017-02-14 | Siluria Technologies, Inc. | Efficient oxidative coupling of methane processes and systems |
US10787400B2 (en) | 2015-03-17 | 2020-09-29 | Lummus Technology Llc | Efficient oxidative coupling of methane processes and systems |
US11186529B2 (en) | 2015-04-01 | 2021-11-30 | Lummus Technology Llc | Advanced oxidative coupling of methane |
US10865165B2 (en) | 2015-06-16 | 2020-12-15 | Lummus Technology Llc | Ethylene-to-liquids systems and methods |
US9328297B1 (en) | 2015-06-16 | 2016-05-03 | Siluria Technologies, Inc. | Ethylene-to-liquids systems and methods |
US11001543B2 (en) | 2015-10-16 | 2021-05-11 | Lummus Technology Llc | Separation methods and systems for oxidative coupling of methane |
US10870611B2 (en) | 2016-04-13 | 2020-12-22 | Lummus Technology Llc | Oxidative coupling of methane for olefin production |
US10407361B2 (en) | 2016-04-13 | 2019-09-10 | Siluria Technologies, Inc. | Oxidative coupling of methane for olefin production |
US9944573B2 (en) | 2016-04-13 | 2018-04-17 | Siluria Technologies, Inc. | Oxidative coupling of methane for olefin production |
US11505514B2 (en) | 2016-04-13 | 2022-11-22 | Lummus Technology Llc | Oxidative coupling of methane for olefin production |
CN106241852A (zh) * | 2016-06-22 | 2016-12-21 | 中山大学 | 一种Pr(OH)3一维纳米棒的制备方法 |
US10960343B2 (en) | 2016-12-19 | 2021-03-30 | Lummus Technology Llc | Methods and systems for performing chemical separations |
US11001542B2 (en) | 2017-05-23 | 2021-05-11 | Lummus Technology Llc | Integration of oxidative coupling of methane processes |
US10836689B2 (en) | 2017-07-07 | 2020-11-17 | Lummus Technology Llc | Systems and methods for the oxidative coupling of methane |
CN108976609A (zh) * | 2018-08-15 | 2018-12-11 | 合肥卓汇新材料科技有限公司 | 一种发光及蓄能效果优异的发光塑料 |
Also Published As
Publication number | Publication date |
---|---|
CN1182038C (zh) | 2004-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1182038C (zh) | 合成稀土氢氧化物或氧化物纳米线及其纳米粉体的方法 | |
US7943106B2 (en) | Rare earth nanorods | |
Byrappa et al. | Hydrothermal technology for nanotechnology | |
CN1142103C (zh) | 一种合成不同晶型二氧化锰一维单晶纳米线的方法 | |
Li et al. | Near monodisperse TiO2 nanoparticles and nanorods | |
Ding et al. | Sodium doping controlled synthesis of monodisperse lanthanide oxysulfide ultrathin nanoplates guided by density functional calculations | |
Yang et al. | Synthesis and photoluminescence of corn-like ZnO nanostructures under solvothermal-assisted heat treatment | |
Wang et al. | Controlled synthesis of calcium tungstate hollow microspheres via ostwald ripening and their photoluminescence property | |
CN1817799A (zh) | 一种TiO2纳米颗粒和纳米棒的合成方法 | |
CN101746826B (zh) | 一种制备五氧化二铌纳米空心球的方法 | |
US10464136B2 (en) | Preparation method of copper nano-structures | |
EP2559654A2 (en) | Method for the mass production of silver nanoparticles having a uniform size | |
Tang et al. | Construction of Ce (OH) 4 nanostructures from 1D to 3D by a mechanical force-driven method | |
CN101486486B (zh) | 强磁场下ZnO及其稀磁半导体材料的制备方法与装置 | |
Kaithwas et al. | Structural features of Ce doped YAG nanoparticles synthesized by modified sol–gel method | |
CN103387265A (zh) | 一种钨酸锰纳米晶体材料及其制备方法 | |
KR101842751B1 (ko) | 산화아연 나노입자의 제조방법 및 이에 따라 제조한 산화아연 나노입자 | |
CN1297483C (zh) | 氢氧化镉单晶纳米线的合成方法 | |
CN1288281C (zh) | 一种高长径比氧化镁晶须的制备方法 | |
CN1696342A (zh) | 气相沉积制备单晶掺杂氧化锌纳米管的方法及其装置 | |
Li et al. | Controllable synthesis of polyhedral YF 3 microcrystals via a potassium sodium tartrate-assisted hydrothermal route | |
CN1546370A (zh) | 一种立方相纳米氮化锆粉体的还原氮化制备方法 | |
CN1242922C (zh) | 氧化铈纳米材料的合成方法 | |
Thirumalai et al. | Synthesis and chemical properties of Y2O2S: Eu3+ nanostructures using composite-hydroxide-mediated method | |
CN100400423C (zh) | 稀土氧化物纳米管状结构的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |