CN1385921A - 预凝胶组合物、其脱水方法、二次电池以及双电层电容器 - Google Patents

预凝胶组合物、其脱水方法、二次电池以及双电层电容器 Download PDF

Info

Publication number
CN1385921A
CN1385921A CN02125178A CN02125178A CN1385921A CN 1385921 A CN1385921 A CN 1385921A CN 02125178 A CN02125178 A CN 02125178A CN 02125178 A CN02125178 A CN 02125178A CN 1385921 A CN1385921 A CN 1385921A
Authority
CN
China
Prior art keywords
compound
composition
gel
weight
pregel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN02125178A
Other languages
English (en)
Inventor
坂野纪美代
佐藤贵哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshinbo Holdings Inc
Original Assignee
Nisshinbo Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Industries Inc filed Critical Nisshinbo Industries Inc
Publication of CN1385921A publication Critical patent/CN1385921A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/22Immobilising of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Secondary Cells (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

将预凝胶组合物加入到在非水溶剂中的电解质盐的有机电解质溶液中,以引起该溶液凝胶化,进而形成聚合物凝胶电解质。通过共沸蒸馏使该预凝胶组合物脱水,其具有的含水量通过卡尔.费歇尔滴定法测量不大于1000ppm。用该预凝胶组合物制备的聚合物凝胶电解质具有高的电化学稳定性,因此非常适合于用在二次电池和双电层电容器中。

Description

预凝胶组合物、其脱水方法、 二次电池以及双电层电容器
                        发明背景
发明领域
本发明涉及用于形成电化学稳定的聚合物凝胶电解质的预凝胶组合物,以及使该预凝胶组合物脱水的方法。本发明还涉及二次电池和双电层电容器,其含有使用该预凝胶组合物制备的聚合物凝胶电解质。
现有技术
通过使用预凝胶组合物使非水溶剂中的电解质盐的有机电解质溶液胶化来制备的聚合物凝胶电解质是当前在非水二次电池和双电层电容器中使用的电解质。该聚合物凝胶电解质必须是电化学稳定的。这就要求有机电解质溶液和预凝胶组合物充分地脱水。没有充分地脱水的预凝胶组合物是不合乎需要的。此外下列预凝胶组合物也是不合乎需要的,即含有使电化学性能降低的残余量的有机溶剂的预凝胶组合物,含有吸附到电解质、电极表面或隔离物上的残余量杂质的预凝胶组合物,以及已经开始聚合进而具有较高的粘度而完全阻止其在隔离物和电极之间进行渗透的预凝胶组合物。
立即会想到许多可能使预凝胶组合物脱水的方法,例如降低共溶剂的粘度和使用脱水吸附剂来进行脱水,或者通过蒸馏除去水。现有技术中的具体的例子包括:(1)使用脱水吸附剂如分子筛或细碎的氧化铝使有机电解质溶液脱水的方法(JP-A10-334730);(2)与一般用于聚合物脱水的方法相似,即先加热再通过蒸馏或共沸蒸馏进行脱水的方法(JP-A11-217350)。
然而,使用脱水吸附剂如分子筛或细碎的氧化铝进行脱水的方法具有不利的电化学影响,因为,例如:(1)残余量的用于降低粘度的共溶剂的存在;(2)从分子筛或细碎的氧化铝引进的杂质;(3)粘合和残存在电解质、负极表面或隔离物上的分子筛或细碎的氧化铝;和(4)不能充分地降低含水量。通过蒸馏脱水还存在严重的缺点。(1)对于该蒸馏所要求的温度和时间将引起带有活性双键的化合物开始进行聚合。(2)在共沸蒸馏的情况下,用作共沸剂的痕量的有机溶剂将残留在里面,进而降低了聚合物凝胶电解质的电化学特性。
发明概述
因此本发明的一个目的是提供用于形成聚合物凝胶电解质的预凝胶组合物,该组合物充分地脱水,具有低的含水量。本发明的另一个目的是提供一种获得该低湿度预凝胶组合物的脱水方法。另一个目的是提供二次电池和双电层电容器,该电容器含有使用该低湿度预凝胶组合物制备的聚合物凝胶电解质。
我们已经发现能够较容易地制备具有低含水量的形成聚合物凝胶电解质的预凝胶组合物,也就是说与现有技术通过脱水方法来制备聚合物凝胶电解质相比,该方法可以在较短的时间内在较低的温度下进行,其中现有技术的脱水方法即是在有机电解质溶液中使用作为共沸剂的非水溶剂进行共沸蒸馏的方法。我们还发现在有机电解质溶剂中对于制备用于二次电池或双电层电容器的聚合物凝胶电解质所使用的作为共沸剂的非水溶剂,对二次电池或电容器的性能没有损害,将有少量的共沸剂留在通过共沸蒸馏脱水之后的预凝胶组合物中。
因此,第一个方面,本发明提供一种预凝胶组合物,当将其加入到在非水溶剂中的电解质盐的有机电解质溶液中时,将引起该溶液凝胶化,进而形成聚合物凝胶电解质。通过卡尔.费歇尔滴定法测量,该预凝胶组合物具有不大于1000ppm的含水量。
在一个优选的实施方案中,该预凝胶组合物含有至少一种能够进行反应以形成聚合物凝胶电解质的物质。
在另一个优选的实施方案中,该预凝胶组合物含有至少一种具有活性双键的化合物。
然而在再一个优选的实施方案中,该预凝胶组合物含有至少一种直链或支链的聚合物以及一种具有活性双键的化合物。
在另一个优选的实施方案中,该预凝胶组合物含有至少一种异氰酸酯化合物。
一般情况下该预凝胶组合物是在共沸剂存在下通过共沸蒸馏来制备的,该共沸剂是有机电解质溶液中的非水溶剂。
第二个方面,本发明提供一种使预凝胶组合物脱水的方法,当将其加入到在非水溶剂中的电解质盐的有机电解质溶液中时,将引起该溶液凝胶化,进而形成聚合物凝胶电解质。在该脱水方法中,在共沸剂的存在下将该预凝胶组合物进行共沸蒸馏,以便将该预凝胶组合物的含水量降低到通过卡尔.费歇尔滴定法测量不大于1000ppm。该共沸剂是有机电解质溶液中的非水溶剂。
第三个方面,本发明提供一种具有正极、负极和电解质的二次电池,在该电池中,该电解质是聚合物凝胶电解质,其是通过根据上述本发明的第一个方面将预凝胶组合物加入到在非水溶剂中的电解盐的有机电解质溶液中,进而进行胶凝制得的。
第四个方面,本发明提供一种具有一对可极化电极和在可极化电极之间的电解质的双电层电容器,在该电容器中,该电解质是聚合物凝胶电解质,其是通过根据上述本发明的第一个方面将预凝胶组合物加入到在非水溶剂中的电解盐的有机电解质溶液中,进而进行胶凝制得的。
发明详述
本发明的用于形成聚合物凝胶电解质的预凝胶组合物具有的含水量,通过卡尔.费歇尔滴定法测量不大于1000ppm,优选不大于500ppm,更优选不大于200ppm,甚至更优选不大于100ppm,仍旧更优选不大于50ppm,最优选不大于30ppm。
该预凝胶组合物由以下组分组成:(I)具有活性双键的化合物,(II)与具有活性双键的化合物进行结合的直链或支链的聚合物,或者(III)与具有至少两个能够与异氰酸酯基反应的活泼氢的化合物进行结合的带有异氰酸酯基的化合物。当被加热或者受到合适形式的辐射如紫外光、电子束、微波或射频辐射时,该组合物形成三维网络结构,进而转化成由溶解在非水溶剂中的电解质盐组成的凝胶有机电解质。
聚合的物质(I)至(III)具有高粘合特性,因此它们的使用能提高该聚合物凝胶电解质的物理强度。由与具有活性双键的有机化合物进行结合的直链或支链的聚合物组成的组分(II)能形成互穿网络结构或半互穿网络结构,进而在电解质溶剂分子和离子分子之间提供一种高的亲合力。此外,其还具有高的离子迁移率,能够使电解盐溶解成高的浓度,具有高的离子电导率。
上述具有活性双键的化合物(I)的例子包括(1)不饱和的聚氨基甲酸酯化合物,(2)带有聚乙二醇组分的不饱和化合物,和(3)除了上述(1)和(2)的具有活性双键的化合物。
不饱和的聚氨基甲酸酯化合物(1)优选通过以下方法来制备,即通过使(A)在分子中具有至少一个(甲基)丙烯酰基和羟基的不饱和醇,(B)多元醇化合物,(C)多异氰酸酯化合物,和(D)任选的增链剂进行反应来制备。
用作组分(A)的不饱和醇没有特别地限制,只要该分子带有至少一个(甲基)丙烯酰基和羟基就可以。可列举的例子包括丙烯酸2-羟乙基酯、丙烯酸2-羟丙基酯、甲基丙烯酸2-羟乙基酯、甲基丙烯酸2-羟丙基酯、一丙烯酸二甘醇酯、一甲基丙烯酸二甘醇酯、一丙烯酸三甘醇酯和一甲基丙烯酸三甘醇酯。
用作组分(B)的多元醇化合物可以是例如聚醚型多元醇如聚乙二醇、聚丙二醇、聚氧化四亚甲基二醇、乙二醇-丙二醇共聚物或乙二醇-氧化四亚甲基二醇共聚物;或者聚酯型多元醇如聚己酸内酯。特别优选下面通式(1)的多元醇化合物。
HO-[(R1)h-(Y)i-(R2)j]q-OH       (1)在上式中,R1和R2每一个独立地是1-10个碳、优选1-6个碳的二价烃基,其可以含有氨基、硝基、羰基或醚基。特别优选亚烷基如亚甲基、1,2-亚乙基、1,3-亚丙基、1,2-亚丙基、环氧乙烷和环氧丙烷。Y是-COO-,-OCOO-,-NR3CO-(R3是氢原子或1-4个碳的烷基),-O-或者亚芳基如亚苯基。字母h,i和j每一个独立地是0或1-10的整数。字母q是1或更大、优选5或更大、最优选10-200的数。
用作组分(B)的多元醇化合物具有的数均分子量优选为400-10000,更优选1000-5000。
用作组分(C)的多异氰酸酯化合物的例子包括芳族的二异氰酸酯如甲苯二异氰酸酯、4,4’-二苯甲烷二异氰酸酯、对苯二异氰酸酯、1,5-萘二异氰酸酯、3,3’-二氯-4,4’-二苯甲烷二异氰酸酯和二甲苯二异氰酸酯;以及脂肪族或脂环族二异氰酸酯如1,6-己二异氰酸酯、异佛尔酮二异氰酸酯、4,4’-二环己甲烷二异氰酸酯和氢化二甲苯二异氰酸酯。
上述的不饱和聚氨基甲酸酯化合物(1)优选由上述组分(A)至(C)和,如果必要的话,增链剂制备的化合物。可以使用一般用于热塑性聚氨基甲酸酯树脂制备中的任意的增链剂。可列举的例子包括脂肪族二醇如乙二醇、二乙二醇、丙二醇、1,3-丙二醇、1,4-丁二醇、1,5-戊二醇、1,6-己二醇、1,7-庚二醇、1,8-辛二醇和1,9-壬二醇;芳族或脂环族二醇如1,4-二(β-羟基乙氧基)苯、1,4-环己二醇、二(β-羟乙基)对苯二酸酯和二甲苯二醇;二胺如肼、1,2-乙二胺、1,6-己二胺、1,3-丙二胺、苯二甲胺、异佛尔酮二胺、哌嗪、哌嗪衍生物、苯二胺、甲苯二胺;以及氨基醇类如己二酰肼和间苯二酰肼。可以单独或两个或多个这些化合物结合使用。
还可以使用氨基甲酸酯预聚合物,其是通过用作组分(B)的多元醇化合物同用作组分(C)的多异氰酸酯化合物的初步反应来制备的。
在制备用于本发明的不饱和聚氨基甲酸酯化合物(1)中,以下述比例使组分(A)至(D)反应是有利的:(A)100重量份数的不饱和醇;(B)100-20000重量份数、优选1000-10000重量份数的多元醇化合物;(C)80-5000重量份数、优选300-2000重量份数的多异氰酸酯化合物;以及,任选地,(D)5-1000重量份数、优选10-500重量份数的增链剂。
能够如上所述制备的不饱和聚氨基甲酸酯化合物(1)的例子包括下述化合物。在本发明中可以单独或两个或多个这些不饱和聚氨基甲酸酯化合物结合使用。(i)CH2=C(CH3)COO-C2H4O-CONH-C6H4-CH2C6H4-NHCOO-[(C2H4O)h-(CH2CH(CH3)O)j]q-CONH-C6H4-CH2C6H4-NHCOO-C2H4O-COC(CH3)=CH2(其中h是7,j是3,以及q是5-7)
组分A:甲基丙烯酸羟乙酯
组分B:环氧乙烷/环氧丙烷无规共聚物二醇(在上面的通式(1)中,h/j的比率是7/3;数均分子量是约3000)
组分C:4,4’-二苯甲烷二异氰酸酯(ii)CH2=C(CH3)COO-C2H4O-CONH-C6H4-CH2C6H4-NHCOO-{[(C2H4O)h(CH2CH(CH3)O)j]q-CONH-C6H4-CH2C6H4-NHCOO-C4H8O}r-CONH-C6H4-CH2C6H4-NHCOO-C2H4O-COC(CH3)=CH2(其中h是7,j是3,q是5-7,以及r是2-20)
组分A:甲基丙烯酸羟乙酯
组分B:环氧乙烷/环氧丙烷无规共聚物二醇(在上面的通式(1)中,h/j的比率是7/3;数均分子量是约3000)
组分C:4,4’-二苯甲烷二异氰酸酯
组分D:1,4-丁二醇(iii)CH2=C(CH3)COO-C2H4O-CONH-C6H7(CH3)3-CH2-NHCOO-[(C2H4O)h(CH2CH(CH3)O)j]q-CONH-C6H7(CH3)3-CH2-NHCOO-C2H4O-COC(CH3)=CH2(其中h是7,j是3,以及q是5-7)
组分A:甲基丙烯酸羟乙酯
组分B:环氧乙烷/环氧丙烷无规共聚物二醇(在上面的通式(1)中,h/j的比率是7/3;数均分子量是约3000)
组分C:异佛尔酮二异氰酸酯(iv)CH2=C(CH3)COO-C2H4O-CONH-C6H4-CH2C6H4-NHCOO-CH2CH2O-(COC5H10O)s-CH2CH2O-CONH-C6H4-CH4C6H4-NHCOO-C2H4O-COC(CH3)=CH2(其中s是20-30)
组分A:甲基丙烯酸羟乙酯
组分B:聚己酸内酯二醇(数均分子量是约3000)
组分C:4,4’-二苯甲烷二异氰酸酯
得到的不饱和聚氨基甲酸酯化合物具有的数均分子量优选1000-50000,最优选3000-30000。太小的数均分子量将导致固化凝胶,其在交联位置具有小的分子量,这将使得聚合物凝胶电解质具有不充分的弹性。另一方面,数均分子量太大可能引起聚合物电解质在凝胶固化之前的粘度变得太大,以至于使该凝胶很难结合成二次电池或双电层电容器。
在本发明的实施中,伴随物使用的物质可能由可同不饱和聚氨基甲酸酯化合物进行共聚合的单体形成。这样的例子包括丙烯腈、甲基丙烯腈、丙烯酸酯、甲基丙烯酸酯和N-乙烯基吡咯烷酮。丙烯酸酯或甲基丙烯酸酯伴随物使用对于增加聚合物凝胶电解质的强度而没有损害其离子电导率是有利的。一般含有的可同不饱和聚氨基甲酸酯化合物进行共聚合的单体组分的量,以每升使凝胶固化前的电解质溶液的不饱和双键的摩尔等价物表示,为0.5-5.0、优选1.0-2.5。太少的单体组分将不能产生充分的交联反应,结果可能不能形成凝胶化。另一方面,太多的单体组分可能某种程度上降低交联位置的分子量,结果导致聚合物凝胶电解质的弹性过度下降。
带具有聚氧化烯组分的不饱和化合物(2)的例子包括含有两个或多个活性双键的化合物,例如二甲基丙烯酸乙二醇酯、二甲基丙烯酸二乙二醇酯、二甲基丙烯酸三甘醇酯、聚二甲基丙烯酸乙二醇酯(平均分子量200-1000)、二甲基丙烯酸1,3-丁二醇酯、二甲基丙烯酸新戊二醇酯、聚二甲基丙烯酸丙二醇酯(平均分子量400)、二丙烯酸乙二醇酯、二丙烯酸二乙二醇酯、二丙烯酸三甘醇酯、聚二丙烯酸乙二醇酯(平均分子量200-1000)、二丙烯酸1,3-丁二醇酯、二丙烯酸新戊二醇酯、聚二丙烯酸丙二醇酯(平均分子量400)和上述的不饱和聚氨基甲酸酯化合物(1)。
具有活性双键的化合物(3)的例子除了上面的(1)和(2)包括二乙烯基苯、二乙烯基砜、甲基丙烯酸烯丙基酯、二甲基丙烯酸1,6-己二醇酯、2-羟基-1,3-二甲基丙烯酰氧基丙烷、2,2-二[4-(甲基丙烯酰氧基乙氧基)苯基]丙烷、2,2-二[4-(甲基丙烯酰氧基乙氧基-二乙氧基)苯基]丙烷、2,2-二[4-(甲基丙烯酰氧基乙氧基-多乙氧基)苯基]丙烷、二丙烯酸1,6-己二醇酯、2-羟基-1,3-二丙烯酰氧基丙烷、2,2-二[4-(丙烯酰氧基乙氧基)苯基]丙烷、2,2-二[4-(丙烯酰氧基乙氧基-二乙氧基)苯基]丙烷、2,2-二[4-(丙烯酰氧基乙氧基-多乙氧基)苯基]丙烷、三羟甲基丙烷三丙烯酸酯、三羟甲基丙烷三甲基丙烯酸酯、四羟甲基甲烷三丙烯酸酯、四羟甲基甲烷四丙烯酸酯、丙烯酸三环癸烷二甲醇酯、氢化二环戊二烯二丙烯酸酯、聚酯二丙烯酸酯和聚酯二甲基丙烯酸酯。
如果需要,可以加入含有丙烯酸或甲基丙烯酸基团的化合物。这种化合物的例子包括丙烯酸酯类和甲基丙烯酸酯类如甲基丙烯酸缩水甘油酯、丙烯酸缩水甘油酯和甲基丙烯酸四氢糠酯,还可以是甲基丙烯酰基异氰酸酯、2-羟甲基甲基丙烯酸烯和N,N-二甲基氨基乙基甲基丙烯酸烯。还可以加入其它含有活性双键的化合物,包括丙烯酰胺(例如N-羟甲基丙烯酰胺,亚甲双丙烯酰胺,双丙酮丙烯酰胺)和乙烯基化合物(例如乙烯基噁唑啉,碳酸亚乙烯酯)。
为了使上述具有活性双键的化合物反应和形成三维网络结构,必须加入具有至少两个活性双键的化合物。即不能形成三维网络结构的唯一的化合物是例如只有一个活性双键的甲基丙烯酸甲酯。要求加入一些具有至少两个活性双键的化合物。
在前提到的具有活性双键的化合物中,特别优选的活性单体包括上述的不饱和聚氨基甲酸酯化合物(1)和如下通式(2)所示的具有聚氧化烯组分的二酯。推荐这些化合物之一同通式(3)中的具有聚氧化烯组分的单酯结合使用。对于具有聚氧化烯组分的不饱和化合物来说,依据物理强度和其它特性,优选不饱和聚氨基甲酸酯化合物。
Figure A0212517800101
在式(2)中,R10、R11和R12每一个独立地是氢原子或具有1-6个碳、优选1-4个碳的烷基,例如甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基或叔丁基;X和Y满足条件X≥1和Y≥0或条件X≥0和Y≥1。X+Y的总和优选不高于100,特别是1-30。R10、R11和R12最优选甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基或叔丁基。
在式(3)中,R13、R14和R15每一个独立地是氢原子或具有1-6个碳的烷基,优选1-4个碳,例如甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基或叔丁基;A和B满足条件A≥1和B≥0或条件A≥0和B≥1。A+B的总和优选不高于100,特别是1-30。R13、R14和R15最优选甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基或叔丁基。
一般情况下,可将在聚合物电解质组合物中的上述的不饱和聚氨基甲酸酯化合物(1)或具有聚氧化烯组分的二酯和具有聚氧化烯组分的单酯加热或进行合适形式的辐射(如电子束、微波、射频辐射),或者加热该化合物的混合物,进而形成三维网络结构。
一般只有通过使上述的不饱和聚氨基甲酸酯化合物(1)或具有聚氧化烯组分的二酯反应才能形成三维网络结构。然而,已经注意到,优选将多官能团的单体、特别是带有聚氧化烯组分的单酯加入到不饱和聚氨基甲酸酯化合物或带有聚氧化烯组分的二酯中,因为这种加入将聚氧化烯支链引入到三维网络上。
对于不饱和聚氨基甲酸酯化合物或具有聚氧化烯组分的二酯和具有聚氧化烯组分的单酯的相对比例没有特别地限制,虽然优选的重量比(不饱和聚氨基酯化合物或具有聚氧化烯组分的二酯)/(具有聚氧化烯组分的单酯)为0.2-10,特别是0.5-5,因为这样能加强聚合物凝胶电解质的膜强度。
一般含有的用作组分(I)的具有活性双键的化合物的量为基于聚合物凝胶电解质总量的1-40重量%,优选3-20重量%。
现在描述上述的直链或支链聚合物同具有活性双键的化合物(II)的结合。这些化合物可一起用于形成互穿或半互穿网络结构。举例包括:(A)预凝胶组合物,其是(a)羟烷基多糖衍生物同上述的具有活性双键的化合物(1)的结合,(B)预凝胶组合物,其是(b)聚乙烯醇衍生物同上述的具有活性双键的化合物(1)的结合,和(C)预凝胶组合物,其是(c)多缩水甘油醇衍生物同上述的具有活性双键的化合物(1)的结合。
下述任何一个可以被用作作为上面预凝胶组合物A的组分(a)的羟烷基多糖衍生物:(i)羟乙基多糖,其通过环氧乙烷同天然产生的多糖如纤维素、pullulan或淀粉反应来制备的,(ii)羟丙基多糖,其通过相似方法来制备,除了用环氧丙烷进行反应外,(iii)二羟丙基多糖,其通过相似方法来制备,除了用缩水甘油醇或3-氯-1,2-丙二醇进行反应外。在这些羟烷基多糖上的一些或所有羟基都可以被酯键或醚键取代基封端。
该种多糖的例子包括纤维素、淀粉、直链淀粉、支链淀粉、pullulan、凝胶多糖、甘露聚糖、葡甘露聚糖、阿拉伯糖、甲壳质、聚氨基葡糖、藻酸、角叉菜聚糖和葡聚糖。对于该多糖的分子量、是否存在支链结构、在多糖和其它特性中组分糖的类型和排列没有任何特别的限制。特别优选使用纤维素和pullulan,部分因为其随时可用性。
在美国专利No.4096326记载了合成二羟丙基纤维素的方法。其它的二羟丙基多糖可通过已知的方法合成,例如Sato等人在Makromol.Chem.193,647页(1992)或在Macromolecules 24,4691页(1991)中描述的方法。
本发明中可以使用的羟烷基多糖具有至少为2的摩尔取代度。在摩尔取代度小于2时,溶解传导离子的金属盐的能力成为很低,结果利用羟烷基多糖是不可能的。摩尔取代度的上限优选30,更优选20。由于工业生产的成本和合成操作的复杂性,具有大于30的摩尔取代度的羟烷基多糖的工业合成是很困难的。而且,即使克服了额外的困难生产了具有的摩尔取代度大于30的羟烷基多糖,由较高摩尔取代度产生的电导率的增加也不可能很大。
用作组分(a)的羟烷基多糖衍生物,其中在上述的羟烷基多糖分子链上至少10%的端OH基用一个或多个选自卤原子、取代或未取代的一价烃基、R4CO-(其中R4是取代或未取代的一价烃基)、R4 3Si-(其中R4与上述相同)、氨基、烷氨基、H(OR5)m-(其中R5是2-5个碳的亚烷基,字母m是1-100的整数)和含磷基团的一价基团封端。
可以使用的取代或未取代的一价烃基包括烷基、芳基、芳烷基和烯基,在这些基团上的一些或所有的氢原子都可以被例如卤原子、氰基、羟基、H(OR5)m-、氨基、氨基烷基或膦酰基取代。一价烃基优选含有1-10个碳。
可以使用任何已知的方法引进相应的基团来封端端基OH。
一般含有的用作组分(a)的羟烷基多糖衍生物的量为基于聚合物凝胶电解质总量的0.01-30重量%,优选0.5-20重量%。
在上述的预凝胶组合物B的用作组分(b)的聚乙烯醇衍生物中,在具有带有氧化烯链的聚乙烯醇单元的聚合物上,一些或所有的羟基都可以被取代。在此,“羟基”共同地指聚乙烯醇单元中保留的羟基和引入到该分子中的含有氧化烯基团上的羟基。
具有聚乙烯醇单元的聚合物所具有的平均聚合度(在分子中聚乙烯醇单元的数量)至少为20,优选至少为30,最优选至少为50。在聚乙烯醇单元上的一些或所有的羟基都可以被含有氧化烯的基团取代。在平均聚合度中,优选上限不高于2000,最优选不高于200。在此平均聚合度指数均的聚合度。具有太高聚合度的聚合物将具有额外高的粘度,使得它们很难控制。因此,聚合度的范围优选20-500单体单元。
这些聚乙烯醇单元由聚乙烯醇衍生物的骨架组成,具有下述通式(4)。
Figure A0212517800131
在式(4)中,字母n至少为20,优选至少为30,更优选至少为50。n的上限优选不高于2000,最优选不高于200。
就含有聚乙烯醇单元的聚合物来说成为能够满足上述平均聚合度范围的均聚物是非常有利的,对于该均聚物来说,分子中聚乙烯醇单元部分至少为98摩尔%。然而,没有特别的限制,还可以使用能够满足上述平均聚合度范围以及具有的聚乙烯醇部分优选至少60摩尔%、最优选至少70摩尔%的含有聚乙烯醇单元的聚合物。举例包括聚乙烯醇缩甲醛,其中在聚乙烯醇上的一些羟基已经转化为了缩甲醛,改性的聚乙烯醇,其中在聚乙烯醇上的一些羟基已经被烷基化,聚(亚乙基乙烯醇),部分皂化的聚乙烯乙酸酯和其它改性的聚乙烯醇。
在聚合物的聚乙烯醇单元上,一些或所有的羟基都可以被含有氧化烯的基团(而且,在这些氧化烯基团上的一些氢原子可以被羟基取代)取代,平均摩尔取代度至少为0.3。被含有氧化烯的基团取代的羟基的比例优选至少30摩尔%,更优选至少50摩尔%。
通过精确地测量指定的聚乙烯醇的重量和产物的重量能测定平均摩尔取代度(MS)。例如让我们试想这样一种情况,其中10克聚乙烯醇(PVA)与环氧乙烷反应,得到的PVA衍生物的重量是15克。该PVA单元具有式-(CH2CH(OH))-,因此其单元分子量为44。在得到的作为产物的PVA衍生物中,最初的-(CH2CH(OH))-单元上的-OH已经成为了-O-(CH2CH2O)n-H,因此该产物的单元分子量是44+44n。因为与反应相关的重量的增加用44n表示,如下进行计算。
Figure A0212517800141
               440+440n=660
                      n=0.5
因此,在该例中摩尔取代度为0.5。当然,该值只是代表平均摩尔取代度,并不表明例如分子上未反应的PVA的数目或者通过反应引入到PVA上的氧化乙烯基团的长度。
MS=0    MS=1    MS=2平均 MS = 0 + 1 + 2 3 = 1
将含有氧化烯的基团引入到含有上述聚乙烯醇单元的可聚合化合物上的适合方法包括(1)使含有聚乙烯醇单元的可聚合化合物同环氧乙烷化合物如环氧乙烷反应,和(2)使含有聚乙烯醇单元的可聚合化合物同在末端具有羟基反应性的取代基的聚氧化烯化合物反应。
在上述方法(1)中,环氧乙烷化合物可以单独或组合选自环氧乙烷、环氧丙烷和缩水甘油。
如果在此情况下环氧乙烷进行反应,被引入到可聚合化合物上的氧化乙烯链如下式所示。
           PVA-(CH2CH2O)a-H在该式中,字母a优选1-10,最优选1-5。
如果代替的是环氧丙烷进行反应,被引入到可聚合化合物上的氧化丙烯链如下式所示。在该式中,字母b优选1-10,最优选1-5。
而且如果缩水甘油进行反应,被引入到该化合物上的两个支链(1)和(2)如下所示。
PVA上的羟基同缩水甘油的反应以二种方式之一进行:a进攻或b进攻。一个缩水甘油分子的反应产生两个新的羟基,每一个都能轮流同缩水甘油反应。结果,两个如下所示的支链(1)和(2)被引入到PVA单元的羟基上。
Figure A0212517800152
                    PVA-OH:带有羟基的PVA单元
在支链(1)和(2)中,x+y的值优选1-10,最优选1-5。x与y的比率没有特别的说明,虽然x∶y一般落在0.4∶0.6至0.6∶0.4的范围内。
能够使用碱催化剂如氢氧化钠、氢氧化钾或任何种类的胺化合物进行含有聚乙烯醇单元的可聚合化合物同上述环氧乙烷化合物的反应。
为了举例的目的,描述聚乙烯醇同缩水甘油的反应。首先,将溶剂和聚乙烯醇放入反应器中。这时,聚乙烯醇不必溶解在溶剂中即聚乙烯醇可以一律溶解的状态或悬浮的状态存在于溶剂中。加入所给出量的碱催化剂如含水氢氧化钠,搅拌一会直到成为溶液或悬浮液,接着加入用溶剂稀释的缩水甘油。在所给出的温度下在所给出的时间内进行反应,之后除去聚乙烯醇。如果聚乙烯醇以不溶解的形式存在于反应混合物中,则通过过滤例如使用玻璃过滤器进行分离。另一方面,如果聚乙烯醇以溶液形式存在于反应混合物中,则通过向反应混合物中加入醇或其它合适的沉淀剂沉淀出溶液,接着使用玻璃过滤器等分离出沉淀。可通过在水中溶解、中和和通过离子交换树脂或渗析的任何形式纯化改性的聚乙烯醇产品。然后将纯化过的产品冷冻干燥,获得二羟丙基化的聚乙烯醇。
在该反应中,聚乙烯醇和环氧乙烷化合物的摩尔比优选1∶10,最优选1∶20。
在上面的方法(2)中使用的在末端具有羟基活性的取代基的聚氧化烯化合物可以是如下通式(5)所示的化合物。
A-(R7O)m-R6                                         (5)
在式(5)中,字母A代表能同羟基反应的一价取代基。举例包括异氰酸酯基,环氧基,羧基,氯化酰基,酯基,酰胺基,卤原子如氟、溴和氯,带有硅的活性取代基和其它能够同羟基反应的一价取代基。其中,由于其反应性,优选异氰酸酯基、环氧基和氯化酰基。
羧基还可以是酸酐。优选的酯基是甲酯基和乙酯基。适合的带有硅的活性取代基的例子包括具有端基为SiH或SiOH基团的取代基。
该羟基活性基团如异氰酸酯基或环氧基可以直接被键合到氧化烯基团R7O上或者通过例如插入的氧原子、硫原子、羧基、羧氧基、含氮基团(例如NH-,N(CH3)-,N(C2H5)-)或SO2基团被键合到氧化烯基团R7O上。优选该羟基活性基团通过例如具有1-10个碳、特别是1-6个碳的亚烷基、亚烯基或亚芳基被键合到氧化烯基团R7O上。
可以使用的具有该种取代基A类型的聚氧化烯的例子是通过使在聚氧化烯的羟基端基处的多异氰酸酯化合物反应来获得的产品。为此可以使用的具有异氰酸酯基团的化合物包括在分子中具有两个或多个异氰酸酯基的化合物,例如甲苯二异氰酸酯、二异氰酸二甲苯酯、萘二异氰酸酯、二苯甲烷二异氰酸酯、二苯二异氰酸酯、二苯基醚二异氰酸酯、联甲苯胺二异氰酸酯、1,6-己二异氰酸酯和异佛尔酮二异氰酸酯。例如,能够利用下述反应获得的化合物。
在该式中,R7O是有2-5个碳的氧化烯基,其例子包括-CH2CH2O-、-CH2CH2CH2O-、-CH2CH(CH3)O-、-CH2CH(CH2CH3)O-和-CH2CH2CH2CH2O-。字母m表示加入的氧化烯基的摩尔数。该加入的摩尔数(m)优选1-100,最优选1-50。
在此,上式(R7O)m表示的聚氧化烯链最优选为聚乙二醇链、聚丙二醇链或聚环氧乙烷(EO)/聚环氧丙烷(PO)共聚物链。该聚氧化烯链的重均分子量优选为100-3000,最优选200-1000,在室温下在此范围内的该化合物为液态。
在上式中R6是该链的一个末端的封端部分。其代表氢原子,具有1-10个碳的取代或未取代的一价烃基,或R8CO-基团(其中R8是具有1-10个碳的取代或未取代的一价烃基)。
作为封端部分可以使用的R8CO-基团的例子包括这些其中R8是具有1-10个碳的取代或未取代的一价烃基。优选的R8例子包括可以被氰基、丙烯酰基、苯甲酰基和氰基苯甲酰基取代的烷基或苯基。
上述具有1-10个碳的取代或未取代的一价烃基可以同样的基团作为这些上面提到的R4的例子。特别优选这些具有1-8个碳的基团。
上述的含有聚乙烯醇单元的可聚合化合物和上述的在末端具有羟基活性取代基的聚氧化烯化合物之间的反应可以在适合的溶剂中进行。
在该反应中,聚乙烯醇和在末端具有羟基活性取代基的聚氧化烯化合物的摩尔比优选1∶1-1∶20,最优选1∶1-1∶10。
已经将含有氧化烯的基团引入到聚乙烯醇单元上的可聚合化合物的结构能通过13C-NMR光谱学来证明。
能够使用各种分析技术如NMR和元素分析来测定含有带有氧化烯链的聚乙烯醇单元的可聚合化合物含有氧化烯基的程度,虽然基于作为反应物的聚合物重量和通过反应所形成的聚合物重量的增加的测定方法是简单易行的。例如,可以通过精确地测量加入的含有聚乙烯醇单元的可聚合化合物的重量和反应所获得的含有具有氧化烯链的聚乙烯醇单元的可聚合化合物的重量来从收率进行测定,然后使用此差计算被引入到分子上的氧化烯链的量(以下称平均摩尔取代度,或“MS”)。
在此平均摩尔取代度作为引入到每个聚乙烯醇单元分子上的氧化烯基的摩尔数的一个指标.本发明的可聚合化合物中,平均摩尔取代度必须至少为0.3,优选至少0.5,更优选至少0.7,最优选至少1.0。对于平均摩尔取代度,没有特别的上限,虽然优选该值不高于20。太低的平均摩尔取代度可能导致传导离子的盐不溶,较低的离子迁移率和较低的离子电导率。另一方面,使平均摩尔取代度增加超过某一水平,将在传导离子的盐的溶解性和离子迁移率方面不会产生进一步的变化,因此是没有意义的。
根据其平均聚合度,被用作预凝胶组合物B的组分(b)的含有具有氧化烯链的聚乙烯醇单元的可聚合化合物,在室温(20℃)下在外观方面,可由高度粘性类似糖蜜的液体变为橡胶状的固体。平均分子量越高,该具有低流动性的化合物越有资格在室温下作为固体,虽然是软的、类似糊状的固体。
不管其平均聚合度,该可聚合化合物不是直链聚合物。当然,由于其高度支化的分子链的互锁,它是无定形聚合物。
用作组分(b)的聚乙烯醇衍生物能够通过优选用至少10摩尔%的一个或多个一价烃基来封端分子(其是来自聚乙烯醇单元的保留的羟基和引入到分子上的含有氧化烯基团的羟基总和)上的一些或所有的羟基来制备,该一个或多个一价烃基选自卤原子、具有1-10个碳的取代或未取代的一价烃基、R9CO-(其中R9是具有1-10个碳的取代或未取代的一价烃基)、R9 3Si-(其中R9如上定义)、氨基、烷基氨基和含磷基的基团。
上述具有1-10个碳的取代或未取代的一价烃基可以同样的基团作为这些上面提到的R4的例子。优选这些具有1-8个碳的基团,特别优选氰乙基、甲基、乙基和乙酰基。
可以使用已知的技术将各种适合的取代基引入到羟基端基上进行封端。
一般含有的用作组分(b)的上述聚乙烯醇衍生物的量为基于聚合物凝胶电解质总量的0.01-30重量%,优选0.5-20重量%。
用作较早描述的预凝胶组合物C的组分(c)的聚缩水甘油衍生物是含有式(6)单元(以下称作“A单元”)和式(7)单元(以下称作“B单元”)
Figure A0212517800192
的化合物。在该化合物上的分子链的端基用特殊的取代基封端。
通过使缩水甘油或3-氯-1,2-丙二醇聚合来制备聚缩水甘油,虽然一般建议使用缩水甘油作为起始原料进行聚合。
进行这样聚合反应的已知方法包括(1)包括使用碱性催化剂如氢氧化钠、氢氧化钾或任何种类的胺化合物的方法;和(2)包括使用路易斯酸(Lewis acid)催化剂的方法(参见A.Dworak等人:Macromol.Chem.Phys.196,1963-1970(1995);和R.Toker:Macromolecules 27,320-322(1994))。
在聚缩水甘油中A和B单元的总数优选至少为2,更优选至少为6,最优选至少为10。没有特别的上限,虽然优选这些基团的总数不超过10000。万一要求聚缩水甘油必须具有液体流动性时,A和B单元的总数优选低,当要求具有高粘稠性时,A和B单元的总数优选高。
这些A和B单元的顺序没有规律,而是无规的。任何结合都是可能的,包括例如-A-A-A,-A-A-B-,-A-B-A-,-B-A-A-,-A-B-B-,-B-A-B-,-B-B-A-和-B-B-B-。
正如通过凝胶渗透色普(GPC)所测量的那样,聚缩水甘油具有聚乙二醇等价物的重均分子量(Mw),优选为200-730000,更优选200-100000,最优选600-20000。具有达到约2000的重均分子量的聚缩水甘油是高度粘稠的在室温下流动的液体,而具有3000以上的重均分子量的聚缩水甘油在室温下是软的、类似糊状的固体。平均分子量的比(Mw/Mn)优选是1.1-20,最优选为1.1-10。
依据其分子量,聚缩水甘油在室温(20℃)下在外观方面,可由高度粘性类似糖蜜的液体变为橡胶状的固体。分子量越高,该具有低流动性的化合物越有资格在室温下作为固体,虽然是软的、类似糊状的固体。
不管其分子量多大或多小,该聚缩水甘油不是直链聚合物。当然,由于其高度支化的分子链的互锁,它是无定形聚合物。从大角度的x射线衍射花样中看是很显然的,其缺少任何表明晶体存在的峰。
在分子中A单元对B单元的比率优选为1/9-9/1,特别是3/7-7/3。
因为聚缩水甘油是无色、透明和无毒的,能在较宽的范围内应用,如电化学原料,包括各种用于活性原料的粘合剂物质(例如在电场致发光设备中的粘合剂),作为增稠剂,或作为烷撑二醇的代替品。
在本发明的实施中,预凝胶组合物C的组分(c)是聚缩水甘油衍生物,其中在上述的聚缩水甘油的分子链上至少10%的端羟基被一种或多种类型的一价基团来封端,该一种或多种类型的一价基团选自卤原子、取代或未取代的一价烃基、R4CO-基(其中R4是取代或未取代的一价烃基)、R4 3Si-基(其中R4如上定义)、氨基、烷基氨基、H(OR5)m-(其中R5是2-5个碳的烯基,字母m是1-100的整数)和含膦酰基的基团。该R4如上进行例证。可以使用已知的技术将各种适合的取代基引入到羟基端基上进行封端。
一般含有的用作组分(c)的聚缩水甘油衍生物的量为基于聚合物凝胶电解质总量的0.01-30重量%,优选0.5-20重量%。
具有活性双键的化合物(I),可优选以基于聚合物凝胶电解质总量的1-40重量%、最优选3-20重量%的比例同上述组分(a)、(b)或(c)进行混合。
在由(III)与具有至少两个活泼氢的能够与异氰酸酯基反应的化合物进行结合的带有异氰酸酯基的化合物组成的预凝胶组合物中使用的带有异氰酸酯基的化合物的例子包括具有两个或多个异氰酸酯基的化合物,例如二苯基甲烷-4,4’-二异氰酸酯,可聚合的二苯基甲烷-4,4’-二异氰酸酯,苯二甲撑二异氰酸酯,亚萘基二异氰酸酯,亚联苯二异氰酸酯,二苯基醚二异氰酸酯,联甲苯胺二异氰酸酯、1,6-己二异氰酸酯和异佛尔酮二异氰酸酯。
还可以使用通过上面的异氰酸酯化合物同多醇化合物反应来制备的端基为异氰酸根合的多醇化合物。能通过使异氰酸酯如二苯基甲烷-4,4’-二异氰酸酯或联甲苯胺二异氰酸酯同下示的多醇化合物之一进行反应来制备这些化合物。
在此情况下,异氰酸酯化合物上的异氰酸酯基[NCO]和多醇化合物上的羟基[OH]之间的化学计量比是这样的,即满足条件[NCO]>[OH]。比率[NCO]/[OH]优选为1.03/1-10/1,特别是1.10/1-5/1。
适合的多元醇化合物的例子包括可聚合的多元醇例如聚乙二醇、聚丙二醇和乙二醇-丙二醇共聚物;还有乙二醇、1,2-丙二醇、1,3-丙二醇、1,3-丁二醇、1,4-丁二醇、1,5-戊二醇、1,6-己二醇、2,2-二甲基-1,3-丙二醇、二乙二醇、二丙二醇、1,4-环己二甲醇、1,4-二-(β-羟基乙氧基)苯、对苯二醇、苯基二乙醇胺、甲基二乙醇胺和3,9-二(2-羟基-1,1-二甲基)-2,4,8,10-四氧杂螺[5,5]十一烷。
或者,代替多元醇的是,具有两个或多个活性氢的胺同异氰酸酯反应。使用的胺可以是具有伯或仲氨基的胺,虽然优选具有伯氨基的化合物。适合的例子包括二胺如乙二胺、1,6-二氨基己烷、1,4-二氨基丁烷和哌嗪;聚胺如聚乙二胺;氨基醇如N-甲基二乙醇胺和氨基乙醇。其中,特别优选具有相同反应水平的官能团的二胺。在此,异氰酸酯化合物上的[NCO]和胺化合物上的[NH2]和[NH]之间的化学计量比是这样的,即满足条件[NCO]>[NH2]+[NH]。
上述带有异氰酸酯基的化合物本身不能形成三维网络结构。然而,通过具有异氰酸酯基的化合物同至少具有两个活性氢的化合物如胺、醇、羧酸或苯酚反应能形成三维网络结构。这种具有至少两个活性氢的化合物的例子包括可聚合的多元醇如聚乙二醇、聚丙二醇和乙二醇-丙二醇共聚物;还有乙二醇、1,2-丙二醇、1,3-丙二醇、1,3-丁二醇、1,4-丁二醇、1,5-戊二醇、1,6-己二醇、2,2-二甲基-1,3-丙二醇、二乙二醇、二丙二醇、1,4-环己二甲醇、1,4-二-(β-羟基乙氧基)苯和对苯二醇;聚胺如苯基二乙醇胺、甲基二乙醇胺和聚乙烯亚胺;以及聚羧酸。
带有异氰酸酯基的化合物和具有至少两个活泼氢的能够与异氰酸酯基反应的化合物倾向于一混合就立即开始反应。为了防止该种情况的发生,将每个化合物分开脱水。得到的混合物用作预凝胶组合物(III)。
异氰酸酯化合物一般具有低的湿度,但是因为该种具有聚氧化烯结构的化合物如端基为异氰酸根合的多醇化合物可通过异氰酸酯化合物和多元醇化合物反应来制备,所以进行脱水是有利的。
在本发明的实施中,通过卡尔.费歇尔滴定法测量,将上述的预凝胶组合物脱水到含水量不大于1000ppm。然后使用脱水过的预凝胶组合物制备聚合物凝胶电解质。
在脱水之前,通过卡尔.费歇尔滴定法测量,该预凝胶组合物具有的湿度一般为1000-20000ppm。该湿度可以起源于用于制备预凝胶组合物的原料或可以在生产操作过程中被混合。
在本发明的实施中,对于预凝胶组合物来说,有利的是使用作为共沸剂的非水溶剂通过共沸蒸馏进行脱水,该非水溶剂是用在二次电池或双电层电容器中的有机电解质,优选非水溶剂具有的沸点至少为60℃,更优选至少为80℃,最优选100-250℃。这种共沸剂的例子包括用于有机电解质的电化学稳定的非水溶剂,例如碳酸乙甲酯、碳酸二乙酯、碳酸二甲酯、二甲氧基乙烷、γ-丁内酯、碳酸亚乙酯、碳酸亚丁酯和碳酸亚丙酯。特别优选碳酸乙甲酯和碳酸二乙酯。
加入的共沸剂的量优选为基于预凝胶组合物量的1-200重量%,更优选5-100重量%,最优选8-30重量%。
适当的选择脱水条件,虽然在温度20-130℃、优选40-80℃进行脱水是合乎需要的。在较高的温度下脱水是容易的,但是温度太高,能引起活性双键进行聚合,其对改变聚合物电解质的组分具有不期望的影响。真空为约10-2-10-3托是合乎需要的。
优选的脱水方法包括将在上面指定量内的共沸剂加入预凝胶组合物中进行脱水,接着将脱水了的预凝胶组合物加入分开制备的有机电解质溶液中,以形成聚合物凝胶电解质溶液。或者,将共沸剂和预先指定的有机电解质溶液加入到预凝胶组合物中,仅仅通过蒸馏掉共沸剂相进行脱水,以产生聚合物凝胶电解质溶液。
在本发明的实施中,可以通过使用上述具有的湿度至多为1000ppm的预凝胶组合物,诱使非水溶剂中的电解质盐的有机电解质凝胶化来制备聚合物凝胶电解质。所得到的聚合物凝胶电解质可以用作二次电池或双电层电容器中的电解质。
用作本发明电解质溶液的组分的电解质盐可以是任何电解质盐,包括碱金属盐和季铵盐,其被用在如锂二次电池、锂离子二次电池和双电层电容器的装置中。适合的碱金属盐包括锂盐、钠盐和钾盐,更加特别的是:(1)锂盐如四氟硼酸锂、六氟磷酸锂、高氯酸锂、三氟甲烷硫酸锂、如下通式(8)的磺酰亚氨基锂盐
(R16-SO2)(R17-SO2)NLi                  (8),如下通式(9)的磺酰甲基锂盐
(R18-SO2)(R19-SO2)(R20-SO2)CLi      (9),乙酸锂、三氟乙酸锂、苯甲酸锂、对甲苯磺酸锂、硝酸锂、溴化锂、碘化锂和四苯基硼酸锂;(2)钠盐如高氯酸钠、碘化钠、四氟硼酸钠、六氟硼酸钠、三氟甲烷硫酸钠和溴化钠;(3)钾盐如碘化钾、四氟硼酸钾、六氟磷酸钾和三氟甲烷硫酸钾。
在上面的式(8)和(9)中,R16至R20每一个独立地是可以有一个或两个醚键合的C1-4全氟烷基。
通式(8)的磺酰亚氨基锂盐的例子包括(CF3SO2)2NLi,(C2F5SO2)2NLi,(C3F7SO2)2NLi,(C4F9SO2)2NLi,(CF3SO2)(C2F5SO2)NLi,(CF3SO2)(C3F7SO2)NLi,(CF3SO2)(C4F9SO2)NLi,(C2F5SO2)(C3F7SO2)NLi,(C2F5SO2)(C4F9SO2)NLi和(CF3OCF2SO2)2NLi.
通式(9)的磺酰甲基锂盐的例子包括(CF3SO2)3CLi,(C2F5SO2)3CLi,(C3F7SO2)3CLi,(C4F9SO2)3CLi,(CF3SO2)2(C2F5SO2)CLi,(CF3SO2)2(C3F7SO2)CLi,(CF3SO2)2(C4F9SO2)CLi,(CF3SO2)(C2F5SO2)2CLi,(CF3SO2)(C3F7SO2)2CLi,(CF3SO2)(C4F9SO2)2CLi,(C2F5SO2)2(C3F7SO2)CLi,(C2F5SO2)2(C4F9SO2)CLi和(CF3OCF2SO2)3CLi.
用于双电层电容器的适合的季铵盐包括六氟磷酸四甲基铵、六氟磷酸四乙基铵、六氟磷酸甲基三乙铵、四氟硼酸四乙基铵和高氯四乙胺;还有丙烯酰胺、环酰胺(如咪唑、咪唑啉、吡啶、1,5-二氮杂双环[4.3.0]壬-5-烯、1,8-二氮杂双环[5.4.0]十一-7-烯)、吡咯、吡唑、唑、噻唑、噁二唑、噻二唑、三唑、吡啶、吡嗪、三嗪、吡咯烷、吗啉、哌啶和哌嗪。
在上面的电解质盐中,在基于锂的电池中优选使用四氟硼酸锂、六氟磷酸锂、通式(8)的磺酰亚氨基锂盐和通式(9)的磺酰甲基锂盐,这是因为其特别高的离子电导率和优秀的热稳定性。这些电解质盐可以单独或其两个或多个混合使用。
除了上面提到的电解质盐,用于双电层电容器的聚合物凝胶电解质可以包括其它的共同在双电层电容器中使用的电解质盐。优选的例子包括通过将通式R11 R12 R13 R14N+或者R11 R12 R13 R14P+(其中R11至R14每一个独立地是1-10个碳的烷基)的四价鎓阳离子同阴离子如BF4 -、N(CF3SO2)2 -、PF6 -或ClO4 -结合所获得的盐。
例子包括(C2H5)4PBF4,(C3H7)4PBF4
(C4H9)4PBF4,(C6H13)4PBF4,(C4H9)3CH3PBF4,(C2H5)3(Ph-CH2)PBF4
(其中Ph表示苯基),(C2H5)4PPF6,(C2H5)PCF3SO2
(C2H5)4NBF4,(C4H9)4NBF4,(C6H13)4NBF4,(C2H5)6NPF6,LiBF4
LiCF3SO3.这些可以单独或其两个或多个混合使用。
在电解质溶液中电解质盐的浓度一般为0.05-3摩尔/升,优选0.1-2摩尔/升。浓度太低,不可能获得充足的离子电导率,而浓度太高,又阻止了在溶剂中的完全溶解。
用于溶解上述电解质盐的非水有机溶剂的例子包括环状或无环碳酸酯、无环羧酸酯、环状或无环醚、磷酸酯、内酯化合物、腈化合物和酰胺化合物及其混合物。
适合的环碳酸酯的例子包括碳酸亚烷基酯如碳酸亚丙酯、碳酸亚乙酯和碳酸亚丁酯。适合的无环碳酸酯的例子包括碳酸二烷基酯如碳酸二甲酯、碳酸甲乙酯和碳酸二乙酯。适合的无环羧酸酯的例子包括乙酸甲酯和丙酸甲酯。适合的环状或无环醚的例子包括四氢呋喃、1,3-二氧戊环和1,2-二甲氧基乙烷。适合的磷酸酯的例子包括磷酸三甲酯、磷酸三乙酯、磷酸乙基二甲酯、磷酸二乙甲酯、磷酸三丙酯、磷酸三丁酯、磷酸三(三氟甲)酯、磷酸三(三氯甲)酯、磷酸三(三氟乙)酯、磷酸三(全氟乙)酯、2-乙氧基-1,3,2-二氧杂正膦-2-酮、2-三氟乙氧基-1,3,2-二氧杂正膦-2-酮和2-甲氧基乙氧基-1,3,2-二氧杂正膦-2-酮。适合的内酯化合物的例子是γ-丁内酯。适合的腈化合物的例子是乙腈。适合的酰胺化合物的例子是二甲基甲酰胺。其中优选环碳酸酯、无环碳酸酯、磷酸酯及其混合物,因为它们能引起合乎需要的电池特性如高的充/放电特性和高的输出特性。
如果必要的话,在本发明的电解质溶液中还可以使用一个或多个各种类型的化合物,例如聚酰亚胺、polyacetanols、聚亚烃化硫、聚环氧烷、纤维素酯、聚乙烯醇、聚苯并咪唑、聚苯并噻唑、硅氧烷甘醇(siliconeglycols)、乙酸乙烯酯、丙烯酸、甲基丙烯酸、聚醚改性的硅氧烷、聚环氧乙烷、酰胺化合物、胺化合物、磷酸化合物和氟化的非离子表面活性剂,原因是为了降低正负电极之间在界面处的电阻,进而改善充/放电周期特性或加强隔离物的可湿性。这些化合物中,特别优选氟化的非离子表面活性剂。
下面描述本发明的二次电池和双电层电容器。<本发明的二次电池>
根据本发明,二次电池包括正极、负极和电解质。上述的聚合物凝胶电解质用作该电解质。
一般用主要由粘合剂树脂和正极活性物质组成的正极粘合剂组合物涂覆正极电流收集器的一边或两边来制备正极。将主要由粘合剂树脂和正极活性物质组成的正极粘合剂组合物融化和混合,然后挤压成膜形成正极。
粘合剂树脂可以是用于形成聚合物凝胶电解质的上述预凝胶组合物或者可以是在二次电池中共同用作电极粘合剂树脂的另一种粘合剂树脂。为了降低电池的内在电阻,优选由用于形成聚合物凝胶电解质的作为本发明预凝胶组合物的相同的可聚合的物质组成的粘合剂树脂。
该正极电流收集器可以由适合的物质如不锈钢、铝、钛、钽和镍组成。其中,依据性能和成本,特别优选铝。可以各种形式使用电流收集器,包括薄片、网状铁、片、泡沫、羊毛,或者三维结构如网络。
选择适合电极应用、电池类型和其它因素的正极活性物质。例如,适于用在锂二次电池正极的正极活性物质的例子包括I族金属化合物如CuO、Cu2O、Ag2O、CuS和CuSO2;IV族金属化合物如TiS、SiO2、SnO;V族金属化合物如V2O5、V6O13、VOX、Nb2O5、Bi2O3和Sb2O3;VI族金属化合物如CrO3、Cr2O3、MoO3、MoS2、WO3、SeO2;VII族金属化合物如MnO2、Mn2O4;VIII族金属化合物如Fe2O3、FeO、Fe3O4、Ni2O3、NiO和CoO2;导电聚合物如聚吡咯、聚苯胺、聚(对亚苯基)、聚乙炔和聚烯烃。
适于用在锂离子二次电池中的正极活性物质包括能够吸附和释放锂离子的硫属元素化合物和含锂离子的硫属元素化合物。
这种能够吸附和释放锂离子的硫属元素化合物的例子包括FeS2、TiS2、MoS2、V2O5、V6O13和MnO2
含锂离子的硫属元素化合物的具体的例子包括LiCoO2、LiMnO2、LiMn2O4、LiMo2O4、LiV3O8、LiNiO2和LixNiyM1-yO2(其中M是至少一种选自钴、锰、钛、铬、钒、铝、锡、铅和锌的金属元素;0.05≤x≤1.10;和0.5≤y≤1.0)。
除了上述的粘合剂树脂和正极活性物质外,如果必要的话,对于正极的粘合剂组合物还可以包括导电物质。导电物质的例子包括炭黑、Ketjenblack、乙炔黑、碳须晶、碳纤维、天然石墨和人造石墨。
一般本发明的粘合剂组合物包括每100重量份数粘合剂树脂的1000-5000重量份数、优选1200-3500重量份数的正极活性物质和20-500重量份数、优选50-400重量份数的导电物质。
因为本发明的正极粘合剂组合物提供了好的正极活性物质颗粒的粘结,并且对于正极电流收集器具有高的粘合性,因此只加入少量的粘合剂树脂就能制备正极。当电解质溶液膨胀时,该粘合剂组合物的高的离子电导率能够降低电池的内在电阻。
一般情况下将上述的正极粘合剂组合物同分散剂一起以糊状的形式使用。适合的分散剂包括极性溶剂如N-甲基-2-吡咯烷酮、二甲基甲酰胺、二甲基乙酰胺和二甲基硫酰胺。一般每100重量份数的正极粘合剂组合物加入的分散剂的量为约30-300重量份数。
使正极成形为薄膜的方法并没有特别的限制,虽然优选以适合的方式如用涂漆辊辊涂、筛涂、刮涂法、自旋涂法或绕线棒刮涂法来应用该组合物,以形成无水具有均匀厚度为10-200μm、特别是50-150μm的活性物质层。当本发明的形成聚合物凝胶电解质的预凝胶组合物也被用作正极粘合剂树脂时,正极可以首先被制成如上所述的成形电极,接着将其浸渍在增塑剂中进行溶胀。
一般用主要由粘合剂树脂和负极活性物质组成的负极粘合剂组合物涂覆负极电流收集器的一边或两边来制备负极。可以使用与在正极中相同的粘合剂树脂。将主要由粘合剂树脂和负极活性物质组成的负极粘合剂组合物融化和混合,然后挤压成膜形成负极。
该负极电流收集器可以由适合的物质如铜、不锈钢、钛或镍组成。其中,依据性能和成本,特别优选铜。可以各种形式使用电流收集器,包括薄片、网状铁、片、泡沫、羊毛,或者三维结构如网络。
选择适合电极应用、电池类型和其它因素的负极活性物质。适于用在锂二次电池负极的活性物质的例子包括碱金属、碱金属合金、含碳的物质,以及与上述正极活性物质中提到的相同的物质。
适合的碱金属的例子包括锂、钠和钾。适合的碱金属合金包括Li-Al、Li-Mg、Li-Al-Ni、Na-Hg和Na-Zn。
适合的含碳物质的例子包括石墨、炭黑、焦炭、玻璃化碳、碳纤维和从这些任何一个获得的烧结体。
在锂离子二次电池中,利用能可逆地保留和释放锂离子的物质。适合的能够可逆地吸附和释放锂离子的含碳物质包括非石墨的含碳物质和石墨物质。特殊的例子包括热解碳、焦炭(例如沥青焦炭、针状焦炭、石油焦炭)、石墨、玻璃化碳、烧结有机可聚合的物质(物质如通过在合适温度下烧结碳化的苯酚树脂和呋喃树脂)、碳纤维和活性炭。可以使用的其它的能可逆地吸附和释放锂离子的物质包括聚合物如聚乙炔和聚吡咯,以及氧化物如SnO2
除了上述的粘合剂树脂和负极活性树脂外,如果必要的话,对于负极的粘合剂组合物还可以包括导电物质。导电物质的例子包括炭黑、Ketjenblack、乙炔黑、碳须晶、碳纤维、天然石墨和人造石墨。
一般本发明的负极粘合剂组合物含有每100重量份数粘合剂树脂的500-1700重量份数、优选700-1300重量份数的负极活性物质和0-70重量份数、优选0-40重量份数的导电物质。
一般情况下将上述的负极粘合剂组合物同分散剂一起以糊状的形式使用。适合的分散剂包括极性溶剂如N-甲基-2-吡咯烷酮、二甲基甲酰胺、二甲基乙酰胺和二甲基硫酰胺。一般每100重量份数的负极粘合剂组合物加入的分散剂的量为约30-300重量份数。
使负极成形为薄膜的方法并没有特别的限制,虽然优选以适合的方式如用涂漆辊辊涂、筛涂、刮涂法、自旋涂法或绕线棒刮涂法来应用该组合物,以形成无水具有均匀厚度为10-200μm、特别是50-150μm的活性物质层。当本发明的形成聚合物凝胶电解质的预凝胶组合物也被用作负极粘合剂树脂时,负极可以首先被制成如上所述的成形电极,接着将其浸渍在增塑剂中进行溶胀。
在所得到的正极和负极之间安置的隔离物优选为(1)通过用聚合物电解质溶液浸渍隔离物基质,然后进行化学反应以进行固化制备的隔离物,或(2)上述的聚合物凝胶电解质。
用在第一种隔离物类型(1)中的隔离物基质的适合的非限制性的例子包括氟聚合物,聚醚如聚环氧乙烷和聚环氧丙烷,聚丙烯腈,聚偏1,1-二氯乙烯,聚甲基丙烯酸甲酯,聚丙烯酸甲酯,聚乙烯醇,聚甲基丙烯腈,聚乙酸乙烯酯,聚乙烯吡咯烷酮,聚乙烯亚胺,聚丁二烯,聚苯乙烯,聚异戊二烯,聚氨基甲酸酯及其任何一个上述聚合物的衍生物,以及纤维素,纸和无纺布。这些物质可以单独或其两个或多个混合使用。
根据本发明,可以通过堆集、扇形折叠或绕电池组合件来组合二次电池,其中该电池组合件由正极、负极和其之间的隔离物组成,并且如上所述制备每一部分。将电池组合件制成层压材料或象硬币的形状,然后将其放在电池箱如电池罐或层压包装里。然后用聚合物电解质溶液填充电池组合件,并且进行化学反应以实现固化,接着如果该电池箱是罐,就将其机械密封,如果该电池箱是层压包装,就将其热密封。
本发明所得到的二次电池能在高电容和高电流下操作,二不损害其杰出的性能特性,例如优秀的充/放电效率、高能量密度、高输出密度和寿命长。而且,它们具有宽的工作温度范围。这些特性使它们特别适合作为锂二次电池和锂离子二次电池。
根据本发明,二次电池如锂二次电池和锂离子二次电池非常适合在宽的应用范围内使用,包括主能量供应和用于移动式电子设备如可携式摄像机、笔记本电脑、可移动电话和在日本被称作的“个人手机系统”(PHS)的存储备用能量供应,对于设备如个人计算机,运输设备如电车和混合车的连续能量供应,以及同太阳能电池一起作为太阳能产生的能量储藏系统。<本发明的双电层电容器>
根据本发明,双电层电容器包括一对可极化的电极和可极化电极之间的电解质。上述的聚合物凝胶电解质用作该电解质。
一般用主要由粘合剂树脂和活性碳组成的可极化电极粘合剂组合物涂覆电流收集器来制备每一个可极化电极。将可极化电极粘合剂组合物融化和混合,然后挤压成膜形成可极化电极。
该粘合剂树脂可以是用于形成聚合物凝胶电解质的上述预凝胶组合物或者可以是在双电层电容器中共同用作电极粘合剂树脂的另一种粘合剂树脂。为了降低电容器的内在电阻,优选由用于形成聚合物凝胶电解质的作为本发明预凝胶组合物的相同的可聚合的物质组成的粘合剂树脂。
活性炭的例子包括基于植物的物质如木材、锯屑、椰子壳和用过的木浆液;基于矿物燃料的物质如煤和石油燃料油,以及来自这些基于矿物燃料物质的热裂解所获得的煤或基于石油的沥青或来自焦油沥青的纤维纱;以及合成的聚合物,苯酚树脂,呋喃树脂,聚氯乙烯树脂,聚偏1,1-二氯乙烯树脂,聚酰亚胺树脂,聚酰胺树脂,液晶聚合物,废塑料和再生的轮胎用橡胶制备的那些。将这些起始物质碳化,然后活化。
该活性炭优选以细粉末的形式,通过下述方法制备:用碱金属化合物将基于中间相沥青的碳物质、基于聚丙烯腈的碳物质、生长气相的碳物质、基于人造纤维的碳物质或基于沥青的碳物质进行碱性活化,然后研磨活性炭物质。特别优选使用作为纤维的含碳物质是基于中间相沥青的碳物质、基于聚丙烯腈的碳物质、生长气相的碳物质、基于人造纤维的碳物质或基于沥青的碳物质。
具有半径达10的孔占总孔体积至多70%的孔径大小分布的活性炭的使用,正如氮吸附等温线所测定的那样,当使用非水电解质溶液、特别是有机电解质溶液时,才可能获得具有适宜孔径分布的活性炭。有机电解质溶液完全渗入到了孔的内部,允许阳离子或阴离子有效地吸附到了活性炭的表面以及形成双电层,因此储存大量的电能是可能的。
通过连续方法使用氮气,之后真空除去活性炭样品中的气来测量活性炭的孔径大小分布。通过从孔分布图的BJH孔大小分析所获得的解吸附等温线来计算具有半径大于10的孔体积(cc/g)。通过从MP图的MP过程所获得的吸附等温线来计算具有半径大于10的孔体积(cc/g)。
在活性炭中,正如氮吸附等温线所测定的那样,具有半径达10的孔体积占总孔体积至多70%,优选多达50%,更优选多达30%,最优选为0-30%。如果具有半径达10的孔体积太大,则活性炭的总孔体积就会成为太大,每单位体积的容量就会太小。
在活性炭的孔大小分布中,正如氮吸附等温线所测定的那样,最普通的孔半径优选为15-500,更优选20-200,最优选50-120。而且,在活性炭中,优选至少50%、更优选至少60%、甚至更优选至少70%、最优选至少80%的具有半径大于10的孔所具有的孔半径为20-400。半径为20-400的半径大于10的孔的比例甚至可以是100%。
除了满足上述的孔半径条件,正如氮吸附BET方法所测定的那样,就活性炭来说,有利的是具有特定的表面积为1-500平方米/克,优选20-300平方米/克,更优选20-200平方米/克,甚至更优选20-150平方米/克,最优选50-150平方米/克。如果该活性炭的比表面积太小,则在该活性炭的表面上形成的双电层就会成为比期望的小,导致低电容。另一方面,如果比表面积太大,则不能吸附离子分子的活性炭上的微孔和亚微孔的数量增加,除此之外,电极密度降低,并且伴随电容降低。
在研磨之后,该活性炭所具有的累积平均粒度优选至多20μm,更优选至多10μm,甚至更优选至多5μm,最优选0.1-5μm。对于该活性炭来说,特别有利的是以细碎粉末的形式,具有的累积平均粒度为5μm,最优选0.1-5μm,其是通过将基于中间相沥青的碳纤维碱性活化、接着研磨活性炭纤维制成的。
在此使用的“累积平均粒度”是指,当测定细碎活性炭的粒度分布时,在累积曲线上基于粉末质量总体积的100%的值在50%点(中值大小)处的粒度。
将含碳物质进行碱性活化、之后研磨,将使得累积平均粒度甚至更小。因此该活性炭被紧密填充于双电层电容器的可极化电极,这样可能提高电极密度。而且,与纤维性的活性炭相比,涂成糊状的由所获得的物质组成的电极更加容易应用到电流收集器上,以及施加压力很容易制成均匀厚度的电极。
在用于可极化电极的粘合剂组合物中,含有的活性炭的量一般为每100重量份数的粘合剂树脂的500-10000重量份数,优选1000-4000重量份数。加入太多的活性炭可能会降低粘合剂组合物的粘合强度,导致对电流收集器的很差的粘合。另一方面,活性炭太少,可能有增加电阻的影响,因而降低了由组合物制备的可极化电极的电容。
除了上述的粘合剂树脂和活性炭,如果必要的话,用于可极化电极的粘合剂组合物还可以包括导电物质。
该导电物质可以是任何适合的使用于可极化电极的粘合剂组合物具有电导率的物质。例子包括炭黑、Ketjen black、乙炔黑、碳须晶、碳纤维、天然石墨、人造石墨、氧化钛、氧化钌和金属纤维如铝和镍。可以单独或其两个或多个混合使用。其中,优选Ketjen black、乙炔黑,其是炭黑的两种类型。导电物质粉末的平均粒度优选为10-100nm,特别是20-40nm。
含有的导电物质的量优选为每100重量份数的粘合剂树脂的0-300重量份数,特别是50-200重量份数。在粘合剂组合物中太多的导电物质的存在将减少活性炭的比例,这将降低使用该组合物获得的可极化电极的电容。另一方面,太少的导电物质不能赋予充足的电导率。
一般用于可极化电极的粘合剂组合物与稀释剂一起以糊状形式使用。适合的稀释剂包括N-甲基-2-吡咯烷酮、丙烯腈、四氢呋喃、丙酮、甲乙酮、1,4-二噁烷和乙二醇二甲醚。一般加入的稀释剂的量为每100重量份数的粘合剂组合物的约30-300重量份数。
使可极化电极成形为薄膜的方法并没有特别的限制,虽然优选以适合的方式如用涂漆辊辊涂、筛涂、刮涂法、自旋涂法或绕线棒刮涂法来应用该组合物,以形成干燥后具有均匀厚度为10-500μm、特别是50-400μm的活性炭层。如果当本发明的用于形成聚合物凝胶电解质的预凝胶组合物也被用作可极化电极的粘合剂树脂时,则可极化电极可以被如上所述制成,将其浸渍在增塑剂中进行溶胀,进而获得完美的可极化电极。
在所得到的一对可极化电极之间安置的隔离物优选为(1)通过用聚合物电解质溶液浸渍隔离物基质,然后进行化学反应以进行固化制备的隔离物,或(2)上述的聚合物凝胶电解质。
用在第一种隔离物类型(1)中的隔离物基质可以由共同用在用于双电层电容器的隔离物基质中的物质制成。例子包括聚乙烯无纺布、聚丙烯无纺布、聚酯无纺布、聚四氟乙烯多孔膜、牛皮纸、来自人造纤维和剑麻纤维混合的片层、焦麻片、玻璃纤维片、基于纤维素的电解纸、由人造纤维制备的纸、由纤维素和玻璃纤维混合制备的纸和它们以多层片状形式的结合。
根据本发明,可以通过堆集、扇形折叠或绕双电层电容器组合件来组合双电层电容器,其中该双电层电容器组合件由一对在其之间具有隔离物的可极化电极组成,并且如上所述制备每一部分。将该电容器组合件制成象硬币的或层压材料形状,然后将其放在电容器箱如电容器罐或层压包装里。然后用聚合物电解质溶液填充该组合件,接着如果该电容器箱是罐,就将其机械密封,如果该电容器箱是层压包装,就将其热密封。
本发明所得到的双电层电容器具有高的输出电压、大的输出电流和宽的工作温度范围,而不损害其杰出的性能特性,例如优秀的充/放电效率、高能量密度、高输出密度和寿命长。
本发明的双电层电容器非常适合在宽的应用范围内使用,包括用于电子设备如个人计算机和无线终端的存储备用能量供应,对于个人计算机和其它设备、在运输设备如电车和混合车的连续能量供应,同太阳能电池一起作为太阳能产生的能量储藏系统,以及同电池组结合作为填充能量供应。
实施例
为举例解释本发明,提供了下面的合成实施例、本发明的实施例和比较例,其并不用于限制本发明的范围。合成实施例1 不饱和聚氨基甲酸酯化合物的合成
向配备有搅拌器、温度计和冷凝器的反应器中加入870重量份数的脱水了的具有羟基数量为36.1的环氧乙烷(EO)/环氧丙烷(PO)无规共聚物二醇(摩尔比EO/PO=7/3),107.4重量份数的4,4’-二苯基甲烷二异氰酸酯,和100重量份数作为溶剂的甲乙酮。将这些组分混合,在80℃下搅拌3小时,得到具有异氰酸酯端基的聚氨基甲酸酯预聚物。
然后,将整个反应器冷却到50℃,接着加入0.3重量份数的苯醌,5重量份数的月桂酸二丁基锡,16.3重量份数的丙烯酸羟乙酯和6.3重量份数的1,4-丁二醇,使这些组分在50℃反应3小时。接着在真空下除去甲乙酮,得到不饱和聚氨基甲酸酯化合物。
用凝胶渗透色普测量得到的不饱和聚氨基甲酸酯化合物的重均分子量,发现其分布是在17300-6200。合成实施例2 纤维素衍生物的合成
将8克羟丙基纤维素(摩尔取代度为4.65;Nippon Soda Co.,Ltd的产品)悬浮于400毫升的丙烯腈中,接着加入1毫升4重量%含水氢氧化钠,在30℃下搅拌该混合物4小时。
然后将反应混合物用乙酸中和,倒入大量的甲醇中,得到氰乙基化的羟丙基纤维素。
为了除去杂质,将氰乙基化的羟丙基纤维素溶于丙酮,接着把该溶液放入渗析膜试管中,用离子交换水通过渗析纯化。收集和干燥渗析过程中澄清了的氰乙基化的羟丙基纤维素。
得到的氰乙基化的羟丙基纤维素的元素分析表明含氮量为7.3重量%。基于该值,用氰乙基封端的羟丙基纤维素上的羟基的比例为94%。实施例1
向配有搅拌器的反应器中加入60重量份数的合成实施例1中制备的不饱和聚氨基甲酸酯化合物,30重量份数的甲氧基聚乙二醇一甲基丙烯酸酯(氧化乙烯单元的数量=9)和9重量份数的作为共沸蒸馏共沸剂的碳酸乙甲酯。在该状态下,湿度为14560ppm。然后用真空泵将该系统抽空,其后在搅拌下、在60℃下进行0.5小时的共沸脱水,同时通过毛细管引入少量的干燥空气,进而产生预凝胶组合物。通过用液化氮冷却回收的共沸物的量为9.02重量份数。
接着脱水,通过卡尔.费歇尔滴定法测量预凝胶组合物的含水量,用Brookfield粘度计测量粘度。结果示于表1。离子导电的聚合物电解质溶液的制备:
通过将1.43摩尔/千克的六氟磷酸锂(LiPF6)作为支持电解质盐溶于作为非水溶剂的1∶1体积混合的碳酸乙酯和碳酸二乙酯中来制备电解质溶液。接着,把10重量份数实施例1制备的预凝胶组合物加入到90份数的电解质溶液中,然后再加入0.5重量份数的偶氮二异丁腈,进而形成聚合物凝胶电解质溶液。
也就是说,作为电解质的六氟磷酸锂(LiPF6)的加入量为每千克混合量的六氟磷酸锂、非水溶剂、不饱和聚氨基甲酸酯化合物、甲氧基聚乙二醇一甲基丙烯酸酯和偶氮二异丁腈1摩尔,或1.43摩尔LiPF6/千克。制备二次电池[制备正极]
将90重量份数的作为正极活性物质的LiCoO2、6重量份数的作为导电物质的Ketjen black、40重量份数的预先通过将10重量份数的聚偏1,1-二氟乙烯溶于90重量份数的N-甲基-2-吡咯烷酮制备的树脂溶液和20重量份数的N-甲基-2-吡咯烷酮搅拌混合获得糊状的正极粘合剂组合物。用刮刀将该组合物涂覆在铝箔上,得到厚度为100μm的干燥膜,然后在80℃下干燥2小时形成正极。[制备负极]
将90重量份数的作为负极活性物质的mesocarbon microbeads(MCMB6-28,Osaka Gas Chemicals Co.,Ltd.生产的)、100重量份数的预先通过将10重量份数的聚偏1,1-二氟乙烯溶于90重量份数的N-甲基-2-吡咯烷酮制备的树脂溶液和20重量份数的N-甲基-2-吡咯烷酮搅拌混合获得糊状的负极粘合剂组合物。用刮刀将该组合物涂覆在铜箔上,得到厚度为100μm的干燥膜,然后在80℃下干燥2小时形成负极。
将隔离物基质置于上面制备的正极和负极之间。把实施例1的聚合物电解质溶液引入得到的电池组合件中,接着密封层压包装,在80℃下加热2小时以实现经化学反应的固化,进而得到层压型二次电池。充/放电试验
将实施例1中制备的层压型二次电池进行200个周期的充/放电试验,其中充电过程中设置的上限电压是4.2伏,放电过程中的设置的最终电压是3伏,在恒定电流下在0.5毫安/平方厘米的电流密度下进行该试验。通过第200个充放电周期的电容与第1个周期的电容的比率来计算周期衰竭。结果示于表1。实施例2
向容器中加入6重量份数的合成实施例2中制备的纤维素衍生物,60重量份数的合成实施例1中制备的不饱和聚氨基甲酸酯化合物,30重量份数的甲氧基聚乙二醇一甲基丙烯酸酯(氧化乙烯单元的数量=9)和9重量份数的作为共沸蒸馏共沸剂的碳酸乙甲酯,接着搅拌各组分使其溶解。该湿度为16880ppm。
将得到的混合溶液加入配有搅拌器的反应器中,然后用真空泵将该系统抽空,在搅拌下、在60℃下进行0.5小时的共沸脱水,同时通过毛细管引入少量的干燥空气,进而形成预凝胶组合物。通过用液化氮冷却回收的共沸物的量为9.03重量份数。将所得到的预凝胶组合物以与实施例1相同的方式用于制备二次电池。将这样得到的电池组进行相似的试验和评价。结果示于表1。实施例3
除了使用碳酸二乙酯代替碳酸乙甲酯外,以与实施例1相同的方式进行共沸脱水,得到预凝胶组合物。将该预凝胶组合物以与实施例1相同的方式用于制备二次电池,接着将该电池组进行相似的试验和评价。结果示于表1。比较实施例1
向容器中加入60重量份数的合成实施例1中制备的不饱和聚氨基甲酸酯化合物,30重量份数的甲氧基聚乙二醇一甲基丙烯酸酯(氧化乙烯单元的数量=9)和45重量份数的作为共溶剂的甲醇。该湿度为14560ppm。向其中加入预先在200℃下加热12小时已经脱水了的钠型分子筛4,然后将该容器的内容物放置5天进行脱水。接着在60℃蒸馏掉甲醇。将所得到的组合物以与实施例1相同的方式用于制备二次电池,接着将该电池组进行相似的试验和评价。结果示于表1。比较实施例2
向配有搅拌器的容器中加入60重量份数的合成实施例1中制备的不饱和聚氨基甲酸酯化合物和30重量份数的甲氧基聚乙二醇一甲基丙烯酸酯(氧化乙烯单元的数量=9)。该湿度为14560ppm。用真空泵将该系统抽空,在搅拌下、在80℃下进行15小时的脱水,并且通过毛细管引入少量的干燥空气。将所得到的组合物以与实施例1相同的方式用于制备二次电池,接着将该电池组进行相似的试验和评价。结果示于表1。
                       表1
   湿度   粘度(cP) 充/放电周期衰减
  实施例1     40     213     90
  实施例2     48     356     87
  实施例3     42     217     87
  比较实施例1     104     205     68
  比较实施例2     160     8,520     49
如上所述和在前面实施例中所论证的,本发明能够提供具有低湿度的预凝胶组合物。用该预凝胶组合物制备的聚合物凝胶电解质具有高的电化学稳定性,因此非常适合于用在二次电池和双电层电容器中。
日本专利申请No.2000-062832在此并入作为参考。
虽然已经描述了一些优选的实施方案,但是依据上面的教导,还可以对其作出许多改进和变化。因此可以理解在没有离开附加的权利要求的范围下本发明也可以不同于具体描述的方式进行实施。

Claims (9)

1.一种预凝胶组合物,当将其加入到在非水溶剂中的电解质盐的有机电解质溶液中时,将引起该溶液凝胶化,进而形成聚合物凝胶电解质;其中通过卡尔.费歇尔滴定法测量该组合物具有的含水量不大于1000ppm。
2.权利要求1的预凝胶组合物,其含有至少一种能进行反应形成聚合物凝胶电解质的物质。
3.权利要求1的预凝胶组合物,其含有至少一种具有活性双键的化合物。
4.权利要求1的预凝胶组合物,其含有至少一种直链或支链的聚合物和具有活性双键的化合物。
5.权利要求1的预凝胶组合物,其含有至少一种异氰酸酯化合物。
6.权利要求1的预凝胶组合物,其是在共沸剂存在下通过共沸蒸馏来制备的,该共沸剂是有机电解质溶液中的非水溶剂。
7.一种使预凝胶组合物脱水的方法,当将其加入到在非水溶剂中的电解质盐的有机电解质溶液中时,将引起该溶液凝胶化,进而形成聚合物凝胶电解质,该方法包括在共沸剂的存在下将该预凝胶组合物进行共沸蒸馏,以便将该预凝胶组合物的含水量降低到通过卡尔.费歇尔滴定法测量不大于1000ppm,该共沸剂是有机电解质溶液中的非水溶剂。
8.一种二次电池,其包括正极、负极和电解质,其中该电解质是聚合物凝胶电解质,其是通过将权利要求1-6任何一项的预凝胶组合物加入到在非水溶剂中的电解质盐的有机电解质溶液中,进而进行胶凝制得的。
9.一种双电层电容器,其包括在一对可极化电极之间的电解质,其中该电解质是聚合物凝胶电解质,其是通过将权利要求1-6任何一项的预凝胶组合物加入到在非水溶剂中的电解质盐的有机电解质溶液中,进而进行胶凝制得的。
CN02125178A 2001-03-07 2002-03-07 预凝胶组合物、其脱水方法、二次电池以及双电层电容器 Pending CN1385921A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-062832 2001-03-07
JP2001062832A JP2002270235A (ja) 2001-03-07 2001-03-07 高分子ゲル電解質用プレゲル組成物及びその脱水方法並びに二次電池及び電気二重層キャパシタ

Publications (1)

Publication Number Publication Date
CN1385921A true CN1385921A (zh) 2002-12-18

Family

ID=18921917

Family Applications (1)

Application Number Title Priority Date Filing Date
CN02125178A Pending CN1385921A (zh) 2001-03-07 2002-03-07 预凝胶组合物、其脱水方法、二次电池以及双电层电容器

Country Status (7)

Country Link
US (1) US6838211B2 (zh)
EP (1) EP1239531A3 (zh)
JP (1) JP2002270235A (zh)
KR (1) KR100518679B1 (zh)
CN (1) CN1385921A (zh)
CA (1) CA2374838A1 (zh)
TW (1) TW543214B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101409366B (zh) * 2008-11-19 2010-09-15 江苏双登集团有限公司 一种凝胶聚合物锂离子电池的制造方法
CN103337379A (zh) * 2013-06-07 2013-10-02 江苏大学 一种集储能-结构一体化的多功能储能装置及其制备方法
CN113675479A (zh) * 2021-10-21 2021-11-19 惠州市纬世新能源有限公司 一种凝胶锂电池的制备工艺以及应用

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040175625A1 (en) * 2003-03-06 2004-09-09 Lotfi Hedhli Non-perfluorinated resins containing ionic or ionizable groups and products containing the same
JP4195411B2 (ja) * 2004-04-12 2008-12-10 セイコーエプソン株式会社 有機エレクトロルミネッセンス装置の製造方法
WO2006035696A1 (ja) * 2004-09-29 2006-04-06 Kowa Co., Ltd. セルロース誘導体リン酸エステル及びそれを用いた金属吸着材
US20060199996A1 (en) * 2005-03-04 2006-09-07 Ricardo Caraballo Sling for supporting and occluding a tissue and method of using the same
CA2517248A1 (fr) 2005-08-29 2007-02-28 Hydro-Quebec Procede de purification d'un electrolyte, electrolyte ainsi obtenu et ses utilisations
DE102006031152A1 (de) * 2006-07-04 2008-01-10 Byk-Chemie Gmbh Polyhydroxyfunktionelle Polysiloxane als anti-adhäsive und schmutzabweisende Zusätze in Beschichtungen, polymeren Formmassen und Thermoplasten, Verfahren zu ihrer Herstellung und ihre Verwendung
US8098482B2 (en) * 2006-07-28 2012-01-17 Illinois Tool Works Inc. Double layer capacitor using polymer electrolyte in multilayer construction
CN101517814B (zh) 2006-09-25 2012-01-18 株式会社Lg化学 非水性电解质以及包含该电解质的电化学装置
JP5049565B2 (ja) * 2006-11-21 2012-10-17 パナソニック株式会社 全固体型電気二重層コンデンサー
US20090035646A1 (en) * 2007-07-31 2009-02-05 Sion Power Corporation Swelling inhibition in batteries
KR101181837B1 (ko) * 2010-06-25 2012-09-11 삼성에스디아이 주식회사 첨가제를 포함하는 리튬 이차 전지용 겔 전해질 및 이를 포함하는 리튬 이차 전지
US8760851B2 (en) 2010-12-21 2014-06-24 Fastcap Systems Corporation Electrochemical double-layer capacitor for high temperature applications
US9214709B2 (en) * 2010-12-21 2015-12-15 CastCAP Systems Corporation Battery-capacitor hybrid energy storage system for high temperature applications
US9001495B2 (en) 2011-02-23 2015-04-07 Fastcap Systems Corporation High power and high energy electrodes using carbon nanotubes
CN104271880A (zh) 2011-05-24 2015-01-07 快帽系统公司 用于高温应用的具有可再充电能量存储器的电力系统
US9218917B2 (en) 2011-06-07 2015-12-22 FastCAP Sysems Corporation Energy storage media for ultracapacitors
CN104221110B (zh) 2011-07-08 2019-04-05 快帽系统公司 高温能量储存装置
US9558894B2 (en) 2011-07-08 2017-01-31 Fastcap Systems Corporation Advanced electrolyte systems and their use in energy storage devices
JP6061066B2 (ja) * 2011-07-29 2017-01-18 株式会社大阪ソーダ 電気化学キャパシタ
CA2854404C (en) 2011-11-03 2021-05-25 Fastcap Systems Corporation Production logging instrument
EP2805978A4 (en) * 2012-01-17 2015-08-19 Dainippon Ink & Chemicals AQUEOUS RESIN RESISTANT AQUEOUS RESIN COMPOSITION, AQUEOUS COAT RESISTANT AQUEOUS COATING, AND COATED COATED ARTICLE PRODUCTS
US20160165970A1 (en) 2013-07-25 2016-06-16 Drexel University Knitted electrochemical capacitors and heated fabrics
US10872737B2 (en) 2013-10-09 2020-12-22 Fastcap Systems Corporation Advanced electrolytes for high temperature energy storage device
WO2015095858A2 (en) 2013-12-20 2015-06-25 Fastcap Systems Corporation Electromagnetic telemetry device
US11270850B2 (en) 2013-12-20 2022-03-08 Fastcap Systems Corporation Ultracapacitors with high frequency response
US9972894B2 (en) * 2014-03-10 2018-05-15 Drexel University Wearable power harvesting system
CN107533925B (zh) 2014-10-09 2021-06-29 快帽系统公司 用于储能装置的纳米结构化电极
CN107533919A (zh) 2015-01-27 2018-01-02 快帽系统公司 宽温度范围超级电容器
JP5864008B1 (ja) * 2015-05-08 2016-02-17 サンユレック株式会社 ポリウレタン樹脂組成物製造用ポリオール組成物
CA3045460A1 (en) 2016-12-02 2018-06-07 Fastcap Systems Corporation Composite electrode
FR3063493B1 (fr) * 2017-03-01 2023-06-09 Nawatechnologies Procede de preparation d'une electrode comprenant un support en aluminium, des nanotubes de carbone alignes et un polymere organique electro-conducteur, ladite electrode et ses utilisations
CN110310842B (zh) * 2018-03-20 2022-03-18 中天超容科技有限公司 高电压电容的电解液及其制备方法和电容器件
US11557765B2 (en) 2019-07-05 2023-01-17 Fastcap Systems Corporation Electrodes for energy storage devices
CN114497748B (zh) * 2022-01-07 2023-08-29 上海工程技术大学 一种纤维素类自修复凝胶电解质材料及其制备方法与应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09278971A (ja) * 1996-04-10 1997-10-28 Showa Highpolymer Co Ltd 固体電解質が形成可能な組成物
JPH09278841A (ja) * 1996-04-10 1997-10-28 Showa Highpolymer Co Ltd 固体電解質が形成可能な組成物
JPH10334730A (ja) 1997-04-04 1998-12-18 Showa Denko Kk 有機電解液及びその用途
US6190805B1 (en) * 1997-09-10 2001-02-20 Showa Denko Kabushiki Kaisha Polymerizable compound, solid polymer electrolyte using the same and use thereof
JP3031365B2 (ja) 1997-11-17 2000-04-10 住友化学工業株式会社 アクリル酸の製造方法
JP2001526451A (ja) * 1997-12-10 2001-12-18 ミネソタ マイニング アンド マニュファクチャリング カンパニー 電気化学系中のビス(ペルフルオロアルキルスルホニル)イミド界面活性剤塩
JP3899499B2 (ja) * 1998-11-18 2007-03-28 ソニー株式会社 非水電解質電池
EP1144066A1 (en) * 1998-12-29 2001-10-17 Minnesota Mining And Manufacturing Company Dehydration process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101409366B (zh) * 2008-11-19 2010-09-15 江苏双登集团有限公司 一种凝胶聚合物锂离子电池的制造方法
CN103337379A (zh) * 2013-06-07 2013-10-02 江苏大学 一种集储能-结构一体化的多功能储能装置及其制备方法
CN103337379B (zh) * 2013-06-07 2016-08-31 江苏大学 一种集储能-结构一体化的多功能储能装置及其制备方法
CN113675479A (zh) * 2021-10-21 2021-11-19 惠州市纬世新能源有限公司 一种凝胶锂电池的制备工艺以及应用

Also Published As

Publication number Publication date
CA2374838A1 (en) 2002-09-07
JP2002270235A (ja) 2002-09-20
TW543214B (en) 2003-07-21
US6838211B2 (en) 2005-01-04
US20030003359A1 (en) 2003-01-02
KR100518679B1 (ko) 2005-10-05
EP1239531A2 (en) 2002-09-11
EP1239531A3 (en) 2006-03-15
KR20020071776A (ko) 2002-09-13

Similar Documents

Publication Publication Date Title
CN1385921A (zh) 预凝胶组合物、其脱水方法、二次电池以及双电层电容器
CN1505849A (zh) 聚合物凝胶电解质组合物,聚合物凝胶电解质以及由该电解质制得的二次电池和双层电容器
CN1528029A (zh) 引入形成聚合物凝胶电解质的组合物和非水电解质溶液的方法
KR100823972B1 (ko) 이온성 액체, 축전 디바이스용 전해질염, 축전 디바이스용전해액, 전기 2중층 캐패시터, 및 2차 전지
CN100370561C (zh) 碳质材料、双电层电容器的可极化电极和双电层电容器
TW561640B (en) Nonaqueous electrolytic solution, composition for polymer gel electrolyte, polymer gel electrolyte, secondary cell, and electric double-layer capacitor
CN1249156C (zh) 离子导电固体聚合物电解质和包含该电解质的蓄电池
CN1679200A (zh) 非水电解质和非水电解质二次电池
CN1379497A (zh) 电池活性材料粉末混合物,电池电极组合物,二次电池电极,二次电池,用于双电层电容器的碳质材料粉末混合物可极化电极组合物,可极化电极和双电层电容器
CN1682319A (zh) 高分子电解质用组合物和高分子电解质以及双电层电容器和非水电解质二次电池
CN1360357A (zh) 离子导电组合物、凝胶电解质、非水电解质电池和电容器
CA2364298A1 (en) Polymer gel electrolyte, secondary cell, and electrical double-layer capacitor
CN1682320A (zh) 非水电解质、双电层电容器和非水电解质二次电池
JPWO2017057603A1 (ja) ゲル電解質用組成物
CN1941237A (zh) 双电层电容器
JP2013175701A (ja) 電気化学キャパシタ
JP4863008B2 (ja) イオン性液体
CN1454388A (zh) 用于电双层电容器的电解液组合物和固体聚合物电解质,极性电极组合物、极性电极以及电双层电容器
JPWO2016159083A1 (ja) 電気化学キャパシタ
JP2013155318A (ja) 電解質組成物およびそれを用いた非水電解質二次電池
JP2021057205A (ja) 蓄電デバイス、およびその製造方法
JP2003086470A (ja) 電極用活性炭、電気二重層キャパシタ用分極性電極および電気二重層キャパシタ
JPWO2016159078A1 (ja) 電気化学キャパシタ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned
C20 Patent right or utility model deemed to be abandoned or is abandoned